KR101577525B1 - Liquid purification system for seawater electrolysis - Google Patents
Liquid purification system for seawater electrolysis Download PDFInfo
- Publication number
- KR101577525B1 KR101577525B1 KR1020140023516A KR20140023516A KR101577525B1 KR 101577525 B1 KR101577525 B1 KR 101577525B1 KR 1020140023516 A KR1020140023516 A KR 1020140023516A KR 20140023516 A KR20140023516 A KR 20140023516A KR 101577525 B1 KR101577525 B1 KR 101577525B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- liquid separator
- fuel cell
- water
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 92
- 239000013535 sea water Substances 0.000 title claims abstract description 69
- 238000005868 electrolysis reaction Methods 0.000 title abstract description 6
- 238000000746 purification Methods 0.000 title description 23
- 239000000446 fuel Substances 0.000 claims abstract description 75
- 239000000498 cooling water Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 143
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 39
- 239000001301 oxygen Substances 0.000 claims description 39
- 229910052760 oxygen Inorganic materials 0.000 claims description 39
- 230000005587 bubbling Effects 0.000 claims description 31
- 230000003197 catalytic effect Effects 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 20
- 230000002000 scavenging effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 15
- 230000002209 hydrophobic effect Effects 0.000 claims description 12
- 238000003795 desorption Methods 0.000 claims description 6
- 238000004880 explosion Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 4
- 230000008929 regeneration Effects 0.000 claims description 4
- 238000011069 regeneration method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000010926 purge Methods 0.000 claims 1
- 239000005708 Sodium hypochlorite Substances 0.000 abstract description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 abstract description 6
- 244000005700 microbiome Species 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 31
- 239000001257 hydrogen Substances 0.000 description 27
- 229910052739 hydrogen Inorganic materials 0.000 description 27
- 238000010586 diagram Methods 0.000 description 14
- 239000006227 byproduct Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
- H01M16/003—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04738—Temperature of auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/40—Combination of fuel cells with other energy production systems
- H01M2250/402—Combination of fuel cell with other electric generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 해수전해 연료전지 복합설비에 관한 것으로, 해수를 분해함으로써 생성된 액체와 기체를 분리하는 기액분리기, 및 이 기액분리기를 통해 분리된 기체성분을 공급받아 연료전지로 공급하기 전(前)에 특정 기체를 고순도로 정제하는 기체정제처리부를 포함하는 것을 특징으로 한다.
본 발명은 종래 기술과 달리 발전소 등에서 해수의 전기분해를 통해 차아염소산나트륨을 생성하여 냉각수 계통에 해양 미생물 등의 부착을 방지하는 해수전해설비 중 전기분해과정에서 생성되는 부생수소의 고순도화를 위해 정제한 후 연료전지에 공급함에 따라 안정적인 전력 생산이 가능하다.The present invention relates to a seawater electrolytic fuel cell hybrid facility, which comprises a gas-liquid separator for separating a gas and a liquid generated by decomposing seawater, and a gas-liquid separator for separating the gas- And a gas purifying unit for purifying the specific gas with high purity.
The present invention relates to a seawater electrolytic apparatus for preventing the attachment of marine microorganisms to a cooling water system by generating sodium hypochlorite through electrolysis of seawater in a power plant unlike the prior art, And supply it to the fuel cell, it is possible to produce stable electric power.
Description
본 발명은 해수전해 연료전지 복합설비에 관한 것으로서, 더욱 상세하게는 발전소 등에서 해수의 전기분해를 통해 차아염소산나트륨을 생성하여 냉각수 계통에 해양 미생물 등의 부착을 방지하는 해수전해설비 중 전기분해과정에서 생성되는 부생수소의 고순도화를 위해 정제한 후 연료전지에 공급하고자 하는 해수전해 연료전지 복합설비에 관한 것이다.
BACKGROUND OF THE
연료전지는 연료의 화학에너지를 직접 전기에너지로 변환시키는 전기화학적 장치이다. 통상적으로는 연료극과 공기극으로 이루어진 두 개의 전극 사이에 전해질을 삽입하여 이루어진다. 연료전지의 분류를 보면, 전해질의 종류에 따라 고분자막을 이용하는 고분자 전해질 연료전지(동작온도 60℃-80℃), 수산화칼륨을 이용하는 알칼리연료전지(동작온도 70℃-120℃), 황산을 이용하는 황산연료전지(동작온도 160℃-200℃), 리튬/탄산칼륨을 이용하는 용융탄산염연료전지(동작온도 650℃) 및 이트리아 안정화 지르 코니아(YSZ, yttria-stabilized zirconia)를 이용하는 고체 산화물 연료전지(동작온도 1000℃)로 분류된다. 전해질을 어떤 것으로 선택하느냐에 따라 연료전지의 동작온도가 크게 좌우된다.Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly into electric energy. Normally, an electrolyte is inserted between two electrodes made of a fuel electrode and an air electrode. According to the classification of the fuel cell, a polymer electrolyte membrane fuel cell (operating temperature: 60 ° C-80 ° C), an alkali fuel cell using potassium hydroxide (operating temperature: 70 ° C - 120 ° C), a sulfuric acid- Solid oxide fuel cells using a fuel cell (
특히, 국내등록특허 제10-01142474호(발명의 명칭: 고분자 전해질 연료전지 시스템)에는 발전소의 해수전해 설비 또는 폐기물 처리 설비 등에서 부산물로 생성되는 부생수소를 이용하여 연료전지의 연료로 사용하는 기술이 제안되어 있다.Particularly, in Korean Patent No. 10-01142474 (entitled " Polymer Electrolyte Fuel Cell System "), a technique of using fuel as a fuel for fuel cells using byproduct hydrogen generated as a byproduct in a seawater electrolysis facility or a waste treatment facility of a power plant Has been proposed.
그리고, 국내공개특허 제10-2012-0114182호(발명의 명칭: 해수전해 및 연료전지 복합설비)에는 해수를 전기분해하여 생성된 부생수소를 기액분리한 후 이를 수분제거유닛과 수소정제유닛을 거쳐 고순도의 수소를 생산한 후 연료전지로 공급하는 기술이 제안되어 있다.In addition, Korean Patent Laid-Open No. 10-2012-0114182 (entitled "Seawater electrolytic and fuel cell hybrid facility") separates the by-produced hydrogen produced by electrolysis of seawater, There has been proposed a technique of producing high purity hydrogen and supplying it to a fuel cell.
기존 전해질 연료전지 시스템은 전해조에서 생성된 수소와 차아염소산나트륨을 기액분리하여 차아염소산나트륨을 저장하고 부생수소를 단순히 필터에 통과시켜 수용성 기체를 제거 후 연료전지에 공급함에 따라 해수전해설비의 양극의 부반응에 의해 생성되는 산소와 혼합된 순도가 낮은 부생수소가 연료전지로 공급되어 연료전지의 효율을 저하시키는 문제점이 있다.Existing electrolytic fuel cell system is a system that separates hydrogen generated from an electrolytic cell and sodium hypochlorite by gas-liquid separation, stores sodium hypochlorite, and passes by-pass hydrogen through a filter to remove water-soluble gas and supplies it to the fuel cell. There is a problem that the by-produced hydrogen mixed with the oxygen generated by the side reaction is supplied to the fuel cell to lower the efficiency of the fuel cell.
그리고, 기존 해수전해 및 연료전지 복합설비는 해수전해설비의 장기간 가동에 따라 수용성 기체생성 효율이 저하되고, 이로 인해 산소발생량은 더욱 증가되어 발생되는 부생수소에서 산소가 차지하는 비율이 높아짐에 따라 연료전지로 공급되는 수소의 순도가 낮아져 연료전지의 효율이 저하되는 문제점이 있다.
In addition, the conventional seawater electrolytic and fuel cell hybrid facilities have a problem in that water-soluble gas production efficiency is lowered due to long-term operation of the sea water electrolytic facility, and as a result, the amount of oxygen generated is further increased, The efficiency of the fuel cell is lowered.
본 발명은 상기와 같은 문제점들을 개선하기 위하여 안출된 것으로서, 해수전해설비에서 부생수소를 고순도화 후 연료전지에 공급함에 따라 전력을 안정적으로 생산하고자 하는 해수전해 연료전지 복합설비를 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION The present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a seawater electrolytic fuel cell hybrid facility for producing power stably by supplying high- have.
본 발명에 따른 해수전해 연료전지 복합설비는: 해수를 분해함으로써 생성된 액체와 기체를 분리하는 기액분리기, 및 상기 기액분리기를 통해 분리된 기체성분을 공급받아 연료전지로 공급하기 전(前)에 특정 기체를 고순도로 정제하는 기체정제처리부를 포함한다.The seawater electrolytic fuel cell hybrid facility according to the present invention comprises: a gas-liquid separator for separating a gas and a liquid generated by decomposing seawater; and a gas-liquid separator for separating the liquid and the gas, And a gas purification treatment unit for purifying the specific gas with high purity.
일례로서, 상기 기체정제처리부는, 상기 기액분리기로부터 분리된 기체성분에 함유된 염소 등의 수용성 기체를 제거하는 버블링기, 상기 버블링기를 통과한 특정 기체 내의 산소 등의 불순가스와 반응시켜 물로 전환시키는 산소제거 촉매반응기, 및 상기 산소제거 촉매반응기를 통과한 특정 기체 중 수분을 제거하는 수분제거기를 포함한다.As an example, the gas purifying unit may include a bubbling unit for removing a water-soluble gas such as chlorine contained in a gas component separated from the gas-liquid separator, an impurity gas such as oxygen in a specific gas passing through the bubbling unit, And a moisture eliminator for removing moisture in the specific gas passing through the oxygen elimination catalytic reactor.
상기 기액분리기는 분리된 액체를 저장하기 위해 액체저장조를 연결할 수 있다.The gas-liquid separator may connect the liquid reservoir to store the separated liquid.
상기 기액분리기와 상기 액체저장조 사이에는 상기 기액분리기의 내의 압력을 조절하기 위해 압력조절기가 구비될 수 있다.A pressure regulator may be provided between the gas-liquid separator and the liquid reservoir to regulate the pressure in the gas-liquid separator.
상기 기액분리기는 내부에 부구를 구비할 수 있고, 상기 부구의 상측에 해당되는 내부에 개방홀을 갖는 격벽을 구비할 수 있다.The gas-liquid separator may have an internal port, and may include a partition having an internal opening corresponding to an upper side of the port.
상기 기액분리기는 전측에 해수전해조를 연결하고, 소수성 촉매반응기를 구비하거나 연결할 수 있다.The gas-liquid separator connects the seawater electrolytic cell to the front side, and can be equipped with or connected to a hydrophobic catalytic reactor.
상기 산소제거 촉매반응기는 소수성촉매를 충진함이 바람직하다.Preferably, the oxygen scavenging catalyst reactor is filled with a hydrophobic catalyst.
상기 산소제거 촉매반응기는 냉각수분사기에서 분사되는 냉각수에 의해 발열량이 저감되도록 함이 바람직하다.It is preferable that the oxygen elimination catalytic reactor reduces the amount of heat generated by the cooling water injected from the cooling water injector.
상기 수분제거기는 상기 버블링기와 상기 산소제거 촉매반응기 사이에 위치할 수 있다.The moisture remover may be located between the bubbling unit and the oxygen scavenging catalytic reactor.
상기 버블링기는 상기 연료전지에서 전기생산 반응시 생산되는 수분, 또는 상기 산소제거 촉매반응기에서 생산된 수분을 공급받을 수 있다.The bubbling unit may receive moisture produced in the electricity production reaction or moisture produced in the oxygen removal catalyst reactor in the fuel cell.
상기 버블링기는 상기 산소제거 촉매반응기와 일체화하여 불순물 가스를 공급받아 특정 기체 내의 수용성 기체와 산소를 동시에 제거할 수 있다.The bubbling unit may be integrated with the oxygen scavenging catalyst reactor to receive the impurity gas and simultaneously remove the water-soluble gas and oxygen in the specific gas.
분리된 특정 기체는 순환라인을 통해 상기 기액분리기 후단과 상기 기체정제처리부의 전단에 분지되어 연결될 수 있다.The separated specific gas may be branched and connected to the rear end of the gas-liquid separator and the front end of the gas purification unit through a circulation line.
다른 예로서, 상기 기체정제처리부는, 상기 기액분리기로부터 분리된 기체성분에 함유된 수용성기체를 제거하는 버블링기, 상기 버블링기를 통과한 특정 기체 내에 불순가스를 흡착하는 가스흡착기, 및 상기 가스흡착기를 통과한 특정 기체 중 수분을 제거하는 수분제거기를 포함한다.As another example, the gas purifier may include a bubbling machine for removing a water-soluble gas contained in the gas component separated from the gas-liquid separator, a gas adsorber for adsorbing impurity gas in the specific gas passing through the bubbling machine, And a moisture eliminator that removes moisture in the specific gas that has passed through the gas.
또 다른 예로서, 상기 기체정제처리부는, 상기 기액분리기로부터 분리된 기체성분에 함유된 수용성기체를 제거하는 버블링기, 상기 버블링기를 통과한 특정 기체 내에 불순가스를 흡착하는 가스흡착기, 상기 가스흡착기를 통과한 특정 기체를 더욱 고순도화하기 위해 특정 기체 중 불순가스와 반응하여 물로 전환시키는 산소제거 촉매반응기, 및 상기 산소제거 촉매반응기를 통과한 특정 기체 중 수분을 제거하는 수분제거기를 포함한다.As another example, the gas purifying unit may include a bubbling unit for removing a water-soluble gas contained in the gas component separated from the gas-liquid separator, a gas adsorber for adsorbing impurity gas in the specific gas passing through the bubbling unit, An oxygen scavenging catalytic reactor which reacts with the impurity gas in the specific gas to convert it into water in order to further purify the specific gas having passed through the oxygen scavenging catalytic reactor, and a moisture eliminator which removes moisture in the specific gas passing through the oxygen scavenging catalytic reactor.
상기 가스흡착기는 복수 개의 챔버로 구성되고, 일부 챔버가 특정 기체 내의 불순가스를 정제하는 동안 다른 챔버가 탈착을 통한 재생을 수행할 수 있다.The gas adsorber is composed of a plurality of chambers, and while some of the chambers refine the impurity gas in a specific gas, the other chambers can perform regeneration through desorption.
탈착을 통한 재생용 챔버는 탈착에 필요한 열에너지를 연료전지에서 발생되는 열을 활용할 수 있다.The chamber for regeneration through desorption can utilize the heat energy necessary for desorption to generate heat from the fuel cell.
또한, 기체정제처리부는 버블링기, 가스흡착기, 산소제거 촉매반응기 및 수분제거기를 포함하여 구성될 수 있다.
Further, the gas purification treatment section may be configured to include a bubbling machine, a gas adsorber, an oxygen scavenging catalyst reactor, and a water eliminator.
이상에서 설명한 바와 같이, 본 발명에 따른 해수전해 연료전지 복합설비는 종래 기술과 달리 버려지는 부생수소를 정제 처리하여 고순도화 처리한 후 연료전지로 공급함에 따라 연료전지의 수명과 설비의 성능을 향상시킴으로써 전력을 안정적으로 생산할 수 있다.
As described above, the seawater electrolytic fuel cell hybrid facility according to the present invention improves the lifetime of the fuel cell and the performance of the equipment by refining and discarding the discarded by-product hydrogen and supplying it to the fuel cell. The power can be produced stably.
도 1은 본 발명의 제 1실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 2는 본 발명의 제 2실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 3은 본 발명의 제 3실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 4는 본 발명의 제 4실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 5는 본 발명의 제 5실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 6은 본 발명의 제 6실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.
도 7은 본 발명의 제 6실시예에 따른 해수전해 연료전지 복합설비의 가스흡착기 구성도이다.1 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a first embodiment of the present invention.
2 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a second embodiment of the present invention.
3 is a configuration diagram of a seawater electrolytic fuel cell hybrid plant according to a third embodiment of the present invention.
4 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a fourth embodiment of the present invention.
5 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a fifth embodiment of the present invention.
6 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a sixth embodiment of the present invention.
FIG. 7 is a configuration diagram of a gas adsorber of a seawater electrolytic fuel cell hybrid plant according to a sixth embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 해수전해 연료전지 복합설비의 실시예를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
Hereinafter, embodiments of a seawater electrolytic fuel cell hybrid facility according to the present invention will be described with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the intention or custom of the user, the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.
도 1은 본 발명의 제 1실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.1 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제 1실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.Referring to FIG. 1, a combined system for a sea water electrolytic fuel cell according to the first embodiment of the present invention includes a gas-
특히, 해수(海水)는 해수공급부(10)를 통해 공급된다. 여기서, 해수공급부(10)는 해수펌프와 해수 공급파이프 등을 포함한다.Particularly, seawater is supplied through the
그리고, 해수공급부(10)를 통해 공급되는 해수는 전처리필터(20)를 거치게 된다. 그래서, 해수는 전처리필터(20)에 의해 불순물 등이 필터링된다. 이때, 전처리필터(20)는 유입되는 해수로부터 부유물질을 걸러내는 스크린, 필터, 스트레이너 등을 포함한다.The seawater supplied through the
이 후, 해수는 해수전해조(30)로 공급된다. 해수전해조(30)는 유입된 해수를 전기 분해하는 것으로서, 양극과 음극의 양 전극으로 구성된다. 특히, 해수전해조(30)는 내부에 메쉬 또는 판형의 전극이 교대로 배열된 구조를 가질 수도 있고, 원주가 다른 원통형 전극이 동심원 상에 배열되는 원통 형상의 전해조의 구성을 가질 수도 있다. Thereafter, the seawater is supplied to the seawater
아울러, 해수전해조(30)에는 정류기(40)가 연결된다. 정류기(40)는 해수전해조(30)로 공급되는 교류 상태인 전원을 직류로 변환하여 공급하는 역할을 한다.In addition, a rectifier (40) is connected to the sea water electrolyzer (30). The
해수전해조(30)에서 전기 분해된 액체(분해수)와 기체(가스)는 기액분리기(50)로 공급된다. 즉, 기액분리기(50)는 해수를 분해함으로써 생성된 액체와 기체를 분리하는 역할을 한다. 여기서, 액체는 다양하지만, 해수로부터 분리되는 차아염소산나트륨으로 한다. 그리고, 기체는 수소 가스로 한다. The liquid (decomposed water) and the gas (gas) electrolyzed in the seawater
특히, 도시하지는 않았지만, 기액분리기(50)는 분리기 본체(52), 분리기 본체(52)에 설치되어 전해수가 유입되는 유입구(54), 분리기 본체(52)에 설치되어 분리된 액체를 배출하는 액체 배출구(56) 및 분리된 가스를 배출하는 가스 배출구(58)를 구비한다. 이때, 기액분리기(50)는 사이클론방식을 채택할 수 있다.
아울러, 액체 배출구(56)는 분리기 본체(52)의 둘레면 하측에 구비되고, 기액분리기(50)에서 분리된 액체를 저장하는 액체저장조(140)와 연결된다. 액체저장조(140)는 액상의 차아염소산나트륨을 저장하는 역할을 한다.The
한편, 기액분리기(50)에서 분리된 기체 특히, 수소는 연료전지(70)로 공급되어 전력을 생산할 수 있도록 하는 역할을 한다. 이때, 기체가 연료전지(70)로 공급되기 전(前)에 정제되어 고순도화 처리되어야 한다.On the other hand, the gas separated in the gas-
그래서, 가스 배출구(58)는 분리기 본체(52)의 둘레면 상측에 구비되고, 기체정제처리부(100)와 연결된다. 기체정제처리부(100)는 기액분리기(50)를 통해 분리된 기체성분을 공급받아 연료전지(70)로 공급하기 전(前)에 특정 기체를 고순도로 정제하는 역할을 한다. 기체정제처리부(100)는 분리된 기체성분 중에 불필요한 산소 등의 불순가스를 제거한다.Thus, the
이때, 기체정제처리부(100)는 고순도의 기체를 정제 후 연료전지(70)로 공급하되, 수소폭발한계범위 이상인 95% 이상으로 유지하도록 하여 배출한다. 더욱 바람직하게는, 연료전지(70)에 적합한 99.5% 이상의 수소농도를 유지하며 배출하도록 정제되어야 한다. At this time, the
따라서, 기체정제처리부(100)는 버블링기(110), 산소제거 촉매반응기(120) 및 수분제거기(130)를 포함한다.Thus, the gas
버블링기(110)는 기액분리기(50)로부터 공급되는 특정 기체(부생수소) 내의 염소 등의 수용성 기체를 제거하기 위해 구비된다. 즉, 특정 기체가 버블링기(110)를 통과하면서 수용성 기체를 걸러내게 된다. 버블링기(110)는 폭기장치 등을 구비한다.The bubbling
그리고, 산소제거 촉매반응기(120)는 버블링기(110)를 통과한 특정 기체 내에 불순물 가스인 불순물가스와 반응되며, 해당 불순물가스를 물로 전환시키는 역할을 한다. 여기서, 불순물가스는 산소로 한다. 아울러, 산소제거 촉매반응기(120)는 소수성촉매를 충진함이 바람직하다.The oxygen-removing
이때, 버블링기(110)는 연료전지(70)에서 전기생산 반응시 생산되는 수분, 또는 산소제거 촉매반응기(120)에서 생산된 수분을 공급받는 것이 바람직하다.At this time, it is preferable that the bubbling
또한, 산소제거 촉매반응기(120)는 촉매반응을 일으키면서 가열된다. 그래서, 산소제거 촉매반응기(120)는 냉각수분사기(122)에서 분사되는 냉각수에 의해 발열량이 저감되도록 함이 바람직하다. 냉각수분사기(122)는 산소제거 촉매반응기(120)의 내부에 냉각수를 분사하는 것으로서, 자동 제어 또는 수동 제어된다. 냉각수분사기(122)는 다양하게 적용 가능하다.Also, the oxygen scavenging
수분제거기(130)는 산소제거 촉매반응기(120)를 통과한 특정 기체 중 수분을 제거하는 역할을 한다. 즉, 수분제거기(130)는 기액분리기(50), 버블링기(110) 및 산소제거 촉매반응기(120)에서 미처 분리되지 않은 소량의 수분을 제거하기 위한 것으로서, 수분제거필터, 수분제거흡착제, 저온응축법에 의한 수분 흡수장치 등을 포함할 수 있으며, 이외에도 다양한 공지의 수분제거수단이 적용될 수 있다.The
수분제거기(130)에서 수분이 제거되며 고순도화된 특정 기체 즉, 수소가스는 연료전지(70)로 공급된다. 수분제거기(130)를 통과한 수소가스는 고순도로서, 수소폭발한계범위 이상인 95% 이상으로, 더욱 바람직하게는 99.5% 이상으로 유지되도록 하여 연료전지(70)로 공급된다.Moisture is removed from the
기체정제처리부(100)는 버블링기(110), 산소제거 촉매반응기(120) 및 수분제거기(130)가 순서대로 배치된다.The
따라서, 해수전해조(30)에서 배출되는 특정 기체, 즉 부생수소가 연료전지(70)에 공급되기 전에 기체정제처리부(100)를 거치면서 최적화된 수소순도를 유지함에 따라, 고순도화 상태로 연료전지(70)에 공급됨으로써, 안정적인 전력 생산이 가능하게 된다.Therefore, as the specific gas discharged from the
도 2는 본 발명의 제 2실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.2 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a second embodiment of the present invention.
도 2를 참조하면, 본 발명의 제 2실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.2, the seawater electrolytic fuel cell hybrid facility according to the second embodiment of the present invention includes a gas-
기액분리기(50)는 내부에 부구(60)를 구비한다. The gas-liquid separator (50) has an inlet (60) therein.
부구(60)는 기액분리기(50) 내부 액체의 비중보다 작은 재질로 이루어진다.
부구(60)는 기액분리기(50) 내부에서 가스배출라인(58)으로 기액분리기(50)가 재기능을 발휘하지 못하여 액체가 배출될 경우 기액분리기(50) 상단의 개방홀(53)을 막음으로 액체가 유출되는 것을 방지하는 자동밸브 역할을 수행한다.
또한, 부구(60)의 상측에 해당되는 기액분리기(50) 내부 상측에는 격벽(51)이 구비된다. 그리고, 격벽(51)은 부구(60)에 대응되는 위치에 개방홀(53)을 통공한다. 이때, 개방홀(53)은 오리피스의 형태를 가지도록 구성될 수 있다. 이러한 오리피스 형상의 개방홀(53)은 기액분리기(50)에서의 효율적인 기체분리와 기체의 압력을 조절할 수 있는 역할을 수행한다. 즉, 기액분리기(50)의 분리기 본체(52)는 내부의 액체 수위가 상승하게 되면, 부구(60)가 개방홀(53)을 막아 액체가 배출되지 않도록 한다.A
아울러, 기액분리기(50)는 내부에 소수성 촉매반응기(80)를 구비한다. 소수성 촉매반응기(80)는 해수전해조(30)에서 기액분리기(50)로 유입된 기체 내에 불순물인 산소가스와 반응되며 해당 산소가스가 수소가스와 반응하여 물로 전환시키는 역할을 한다.In addition, the gas-
그리고, 기액분리기(50)와 액체저장조(140) 사이에는 기액분리기(50)의 내의 압력을 조절하기 위해 압력조절기(150)가 구비된다. 압력조절기(150)는 기액분리기(50) 내의 기체의 압력을 일정하게 높여주어 후단의 기체정제처리부(100)로 유입시킴으로 궁극적으로 일정한 압력으로 정제된 가스를 연료전지에 공급할 수 있게 된다.A
또한, 특히, 기액 분리 후, 부생가스의 수소와 산소의 농도가 수소폭발범위 이내일 경우가 발생한다. 이 경우, 연료전지(70)로 공급되는 수소의 일부를 기체정제처리부(100)로 순환시켜 수소폭발범위 이내로 설정함이 바람직하다.Particularly, after the gas-liquid separation, the concentration of hydrogen and oxygen in the by-product gas may be within the hydrogen explosion range. In this case, it is preferable that a part of the hydrogen supplied to the
따라서, 분리된 특정 기체는 순환라인(90)을 통해 기액분리기(50) 후단과 기체정제처리부(100)의 전단에 분지 연결되어 순환된다.Thus, the separated specific gas is branched and circulated through the
미설명된 도면부호는 상술한 것으로 대체한다.The reference numerals not described are replaced with those described above.
도 3은 본 발명의 제 3실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.3 is a configuration diagram of a seawater electrolytic fuel cell hybrid plant according to a third embodiment of the present invention.
도 3을 참조하면, 본 발명의 제 3실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.Referring to FIG. 3, the seawater electrolytic fuel cell hybrid facility according to the third embodiment of the present invention includes a gas-
그리고, 기액분리기(50)는 전측에 해수전해조(30)를 연결한다. 특히, 기액분리기(50)와 해수전해조(30)는 소수성 촉매반응기(80)를 통해 연결된다. 소수성 촉매반응기(80)를 해수전해조(30)와 기액분리기(50) 사이에 구성함으로, 기액분리가 되지 않은 액체와 기체가 공존된 상태에서 소수성 촉매반응기(80)를 통과함에 따라, 기체는 촉매반응을 통해 정제되고, 이로 인해 발생되는 열을 액체가 자연스럽게 제어해 줌으로 별도의 냉각장치를 구성할 필요가 없는 장점을 확보할 수 있다. 또한, 소수성 촉매반응기(80)를 별도로 구성함으로 유지보수의 편리성을 제공할 수 있다.The gas-
미설명된 도면부호는 상술한 것으로 대체한다.The reference numerals not described are replaced with those described above.
도 4는 본 발명의 제 4실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.4 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a fourth embodiment of the present invention.
도 4를 참조하면, 본 발명의 제 4실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.Referring to FIG. 4, the combined system for a sea water electrolytic fuel cell according to the fourth embodiment of the present invention includes a gas-
특히, 기체정제처리부(100)는 수분제거기(130)를 버블링기(110)와 산소제거 촉매반응기(120) 사이에 위치함이 바람직하다.In particular, the
이러한 구성은 수분제거기(130) 전단에서 기체에 포함되어 유입되는 수증기는 해수전해과정에서 일부 불순물을 포함할 수 있어 순도가 낮아 연료전지(70)로 직접 공급할 수 없음으로, 수분제거기(130)를 통해 제거 후 연료전지(70)로 공급한다. 그러나, 연료전지(70)로 수소를 공급할 때 다시 가습상태로 공급하여야 할 경우 별도의 가습장치가 필요로 하지만 산소제거 촉매반응기(120)를 통해 산소와 수소가 반응하여 물을 생성하고 이것은 발열량으로 인해 산소제거 촉매반응기(120)를 통과한 고순도의 수소가스는 자체적으로 고순도의 수증기를 함유한 가습된 수소가 자체적으로 생산됨으로 별도의 가습장치를 필요로 하지 않게 구성할 수 있다.Such a configuration can not be directly supplied to the
미설명된 도면부호는 상술한 것으로 대체한다.The reference numerals not described are replaced with those described above.
도 5는 본 발명의 제 5실시예에 따른 해수전해 연료전지 복합설비의 구성도이다.5 is a configuration diagram of a seawater electrolytic fuel cell hybrid facility according to a fifth embodiment of the present invention.
도 5를 참조하면, 본 발명의 제 5실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.Referring to FIG. 5, the combined system of a seawater electrolytic fuel cell according to the fifth embodiment of the present invention includes a gas-
기체정제처리부(100) 중 버블링기(110)는 불순물가스를 공급받아 특정 기체 내의 수용성 기체와 산소를 동시에 제거할 수도 있다. 즉, 버블링기(110)가 산소제거 촉매반응기(120)의 역할을 겸하게 된다. 이 경우, 다른 실시예로 제시된 산소제거 촉매반응기(120)는 불필요하게 된다. 냉각분사기(122)는 필요에 따라 버블링기(110)에 냉각수를 분사하게 구비된다.The bubbling
미설명된 도면부호는 상술한 것으로 대체한다.The reference numerals not described are replaced with those described above.
도 6은 본 발명의 제 6실시예에 따른 해수전해 연료전지 복합설비의 구성도이고, 도 7은 본 발명의 제 6실시예에 따른 해수전해 연료전지 복합설비의 가스흡착기 구성도이다.FIG. 6 is a configuration diagram of a seawater electrolytic fuel cell hybrid system according to a sixth embodiment of the present invention, and FIG. 7 is a configuration diagram of a gas adsorber of a seawater electrolytic fuel cell hybrid system according to a sixth embodiment of the present invention.
도 6 및 도 7을 참조하면, 본 발명의 제 6실시예에 따른 해수전해 연료전지 복합설비는 기액분리기(50) 및 기체정제처리부(100)를 포함한다.6 and 7, a seawater electrolytic fuel cell hybrid installation according to a sixth embodiment of the present invention includes a gas-
기체정제처리부(100)는 버블링기(100), 가스흡착기(160) 및 수분제거기(130)을 포함한다.The gas
이때, 버블링기(100)와 수분제거기(130)는 상술한 내용과 동일한 작용을 수행한다.At this time, the bubbling
가스흡착기(160)는 버블링기(110)를 통과한 특정 기체 내에 불순물 가스를 선택적으로 흡착하여 제거한다. 이를 통해 상술한 촉매반응을 통해서는 산소를 제거하기 위해 일부 수소가 소모되게 되나 흡착을 통한 산소의 제거는 수소의 소모가 전혀 없이 산소를 선택적으로 제거할 수 있는 장점을 가지고 있다.The
이때, 가스흡착기(160)는 복수 개의 챔버로 구성되어 있다. 편의상, 챔버는 2개 구비되는 것으로 도시한다. 어느 한 챔버가 특정기체 내의 불순물 가스를 흡착하여 정제하는 동안, 다른 챔버는 탈착을 통한 재생을 동시에 수행하도록 구성되는 것이 바람직하다.At this time, the
탈착을 수행할 때에는 열과 압력을 가하여 탈착을 수행할 수 있으며, 이때 필요한 열은 연료전지(70)에서 발생된 열을 회수하여 사용하도록 구성할 수 있다.The desorption can be performed by applying heat and pressure, and the heat required at this time can be recovered from the heat generated in the
또한, 가스흡착기(160) 후단에 산소제거 촉매반응기(120)를 추가로 구성하여 더욱 고순도의 수소를 생산하도록 구성할 수 있다.Further, the oxygen removing
가스흡착기(160)와 수분제거기(130)는 위치를 바꾸어 설치하여도 무방하다.The
또한, 정제된 특정 기체(수소가스)를 일부 순환라인(90)을 통해 기액분리기(50) 후단과 기체정제처리부(100)의 전단에 분지하여 공급하도록 구성할 수 있다. 이는, 기액분리기(50)에서 공급되는 기체의 순도가 낮아 폭발범위에서 기체정제처리부(100)로 공급되는 것을 제어하여 안전하게 기체를 정제하기 위함이다. It is also possible to branch the purified specific gas (hydrogen gas) through a part of the
또한, 도시하지는 않았지만, 필요에 따라서 연료전지(70)로 공급하는 수소의 압력을 유지하기 위해 기체정제처리부(10) 후단에 가압폄프 및 버퍼탱크를 별도로 구성할 수도 있다.Although not shown, a pressurizing pump and a buffer tank may be separately provided at the downstream end of the gas
미설명된 도면부호는 상술한 것으로 대체한다.The reference numerals not described are replaced with those described above.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. I will understand. Accordingly, the true scope of the present invention should be determined by the following claims.
10: 해수공급부 20: 전처리필터
30: 해수전해조 40: 정류기
50: 기액분리기 60: 부구
70: 연료전지 80: 소수성 촉매반응기
90: 순환라인 100: 기체정제처리부
110: 버블링기 120: 산소제거 촉매반응기
122: 냉각수분사기 130: 수분제거기
140: 액체저장조 150: 압력조절기10: Seawater supply section 20: Pretreatment filter
30: Sea water electrolyzer 40: Rectifier
50: gas-liquid separator 60:
70: Fuel cell 80: Hydrophobic catalytic reactor
90: circulation line 100: gas purification processing section
110: bubbling machine 120: oxygen removal catalyst reactor
122: Cooling water injector 130: Moisture eliminator
140: Liquid reservoir 150: Pressure regulator
Claims (15)
상기 기체정제처리부는, 상기 기액분리기로부터 분리된 기체성분에 함유된 수용성 기체를 제거하는 버블링기;
상기 버블링기를 통과한 특정 기체 내의 불순가스와 반응시켜 물로 전환시키는 산소제거 촉매반응기; 및
상기 산소제거 촉매반응기를 통과한 특정 기체 중 수분을 제거하는 수분제거기를 포함하며,
상기 수분제거기에서 수분이 제거된 특정 기체는 순환라인을 통해 상기 기액분리기에서 상기 버블링기로 이동하는 특정 기체에 혼합되는 것을 특징으로 하는 해수전해 연료전지 복합설비.
A gas-liquid separator for separating gas and liquid produced by decomposing seawater; And a gas purifier for purifying a specific gas with high purity before supplying the gas component separated through the gas-liquid separator to the fuel cell and maintaining the purge gas within the explosion limit range of the specific gas, ,
The gas purifier includes a bubbler for removing a water-soluble gas contained in the gas component separated from the gas-liquid separator;
An oxygen scavenging catalytic reactor for reacting with the impure gas in the specific gas passing through the bubbling unit to convert it into water; And
And a water eliminator for removing moisture in the specific gas passing through the oxygen elimination catalyst reactor,
Wherein the specific gas from which moisture has been removed from the water eliminator is mixed with the specific gas moving from the gas-liquid separator to the bubbling unit through the circulation line.
상기 기액분리기는 분리된 액체를 저장하기 위해 액체저장조를 연결하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1,
Wherein the gas-liquid separator connects the liquid reservoir to store the separated liquid.
상기 기액분리기와 상기 액체저장조 사이에는 상기 기액분리기의 내의 압력을 조절하기 위해 압력조절기가 구비되는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method of claim 3,
And a pressure regulator is provided between the gas-liquid separator and the liquid reservoir to regulate the pressure in the gas-liquid separator.
상기 기액분리기는 내부에 부구를 구비하고, 상기 부구의 상측에 해당되는 내부에 개방홀을 갖는 격벽을 구비하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1 or 3,
Wherein the gas-liquid separator comprises a partition wall having an opening in the interior and an opening in the interior of the gas-liquid separator.
상기 기액분리기는 전측에 해수전해조를 연결하고, 소수성 촉매반응기를 구비하거나 연결하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1,
Wherein the gas-liquid separator comprises a seawater electrolytic cell connected to the front side, and a hydrophobic catalytic reactor is provided or connected to the gas-liquid separator.
상기 산소제거 촉매반응기는 소수성촉매를 충진하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1,
Wherein the oxygen scavenging catalytic reactor is filled with a hydrophobic catalyst.
상기 산소제거 촉매반응기는 냉각수분사기에서 분사되는 냉각수에 의해 발열량이 저감되는 것을 특징으로 하는 해수전해 연료전지 복합설비.
8. The method of claim 1 or 7,
Wherein the calorific value of the oxygen-removing catalytic reactor is reduced by the cooling water injected from the cooling water injector.
상기 수분제거기는 상기 버블링기와 상기 산소제거 촉매반응기 사이에 위치하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1,
Wherein the water eliminator is located between the bubbling unit and the oxygen scavenging catalyst reactor.
상기 버블링기는 상기 연료전지에서 전기생산 반응시 생산되는 수분, 또는 상기 산소제거 촉매반응기에서 생산된 수분을 공급받는 것을 특징으로 하는 해수전해 연료전지 복합설비.
10. The method of claim 1 or 9,
Wherein the bubbling unit receives water produced in the electricity production reaction or water produced in the oxygen removal catalyst reactor in the fuel cell.
상기 버블링기는 상기 산소제거 촉매반응기를 일체로 구비하여 불순물 가스를 공급받아 특정 기체 내의 수용성 기체와 산소를 동시에 제거하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
10. The method of claim 1 or 9,
Wherein the bubbling unit is integrally provided with the oxygen scavenging catalytic reactor and is supplied with an impurity gas to simultaneously remove water-soluble gas and oxygen in a specific gas.
상기 기체정제처리부는, 상기 버블링기를 통과한 특정 기체 내에 불순가스를 흡착하는 가스흡착기를 포함하는 것을 특징으로 하는 해수전해 연료전지 복합설비.
The method according to claim 1,
Wherein the gas purifier includes a gas adsorber for adsorbing impurity gas in a specific gas passing through the bubbling unit.
상기 가스흡착기는 복수 개의 챔버로 구성되고;
일부 챔버가 특정 기체 내의 불순가스를 정제하는 동안, 다른 챔버가 탈착을 통한 재생을 수행하는 것을 특징으로 하는 해수전해 연료전지 복합설비.15. The method of claim 14,
Wherein the gas adsorber is composed of a plurality of chambers;
Characterized in that while some of the chambers refine the impurity gas in the specific gas, the other chamber performs regeneration through desorption.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140023516A KR101577525B1 (en) | 2014-02-27 | 2014-02-27 | Liquid purification system for seawater electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140023516A KR101577525B1 (en) | 2014-02-27 | 2014-02-27 | Liquid purification system for seawater electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150101798A KR20150101798A (en) | 2015-09-04 |
KR101577525B1 true KR101577525B1 (en) | 2015-12-14 |
Family
ID=54242842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140023516A Active KR101577525B1 (en) | 2014-02-27 | 2014-02-27 | Liquid purification system for seawater electrolysis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101577525B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020013378A1 (en) * | 2018-07-11 | 2020-01-16 | 한국해양과학기술원 | Marine biofouling prevention apparatus for seawater battery |
KR20220075499A (en) | 2020-11-30 | 2022-06-08 | (주)케이워터크레프트 | Energy system using by-products from seawater electrolysis equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240146245A (en) | 2023-03-29 | 2024-10-08 | 주식회사 유니윈 | Energized and reusing system of Hydrogen gas generated from salt water Electrochlorination |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002052301A (en) * | 2000-08-10 | 2002-02-19 | Max Co Ltd | Ozone water producer |
JP2003288935A (en) * | 2002-01-24 | 2003-10-10 | Ebara Corp | Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device |
-
2014
- 2014-02-27 KR KR1020140023516A patent/KR101577525B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002052301A (en) * | 2000-08-10 | 2002-02-19 | Max Co Ltd | Ozone water producer |
JP2003288935A (en) * | 2002-01-24 | 2003-10-10 | Ebara Corp | Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020013378A1 (en) * | 2018-07-11 | 2020-01-16 | 한국해양과학기술원 | Marine biofouling prevention apparatus for seawater battery |
KR20200006857A (en) * | 2018-07-11 | 2020-01-21 | 한국해양과학기술원 | Marine organism antifouling device for seawater battery |
KR102106376B1 (en) | 2018-07-11 | 2020-05-04 | 한국해양과학기술원 | Marine organism antifouling device for seawater battery |
KR20220075499A (en) | 2020-11-30 | 2022-06-08 | (주)케이워터크레프트 | Energy system using by-products from seawater electrolysis equipment |
US11824240B2 (en) | 2020-11-30 | 2023-11-21 | KWaterCraft Co., Ltd. | Energy system using byproducts generated from seawater electrolyzer |
Also Published As
Publication number | Publication date |
---|---|
KR20150101798A (en) | 2015-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101436138B1 (en) | A seawater electrolysi and fuel cell complex system | |
CN110023543B (en) | Water electrolysis system and method for operating water electrolysis system | |
RU2096337C1 (en) | Installation for electrochemically cleaning water and/or aqueous solutions | |
KR101600037B1 (en) | A ballast water treatment system | |
CN102627300A (en) | Double-membrane-method technology for refining brine and equipment for the same | |
CA2562842C (en) | System for recovering gas produced during electrodialysis | |
KR101577525B1 (en) | Liquid purification system for seawater electrolysis | |
CN110513711A (en) | An oxygen-enriched combustion system coupled with electrolyzed water hydrogen production | |
RU2521971C2 (en) | Electrolysis method of water solutions of hydrogen chloride or alkali metal chloride in electrolysis unit, and plant for implementation of this method | |
KR101427563B1 (en) | Seawater electrolytic apparatus | |
KR101289848B1 (en) | Byproduct generated during the electrolysis of hydrogen processing unit | |
KR20140076540A (en) | A seawater electrolysi and fuel cell complex system | |
KR102032676B1 (en) | Carbon dioxide utilization system | |
KR101732850B1 (en) | sodium hypochlorite generation apparatus | |
US10252922B2 (en) | Electrolysis device | |
KR20080066460A (en) | Wastewater Treatment System Using Microbial Fuel Cell | |
KR102385106B1 (en) | Hydrogen production apparatus using plasma discharge and seawater desalination system comprising the same | |
RU2448053C1 (en) | Apparatus for purifying alkaline wastes | |
CN216891240U (en) | Discharged liquid recovery system of water electrolysis hydrogen production device | |
KR101815107B1 (en) | Pollution reduction equipment for FPSO | |
EP3299342B1 (en) | Dehydrogenation tank for ballast water treatment system having same | |
US11492275B2 (en) | Water treatment device and water treatment method | |
CN117136254A (en) | Method for treating a process fluid and filter device for carrying out the method | |
RU2241525C1 (en) | Method of removing sulfur-containing compounds from gases | |
JP4228144B2 (en) | Solid polymer water electrolysis hydrogen production system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20140227 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150625 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20151124 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20151208 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20151208 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20201029 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20211015 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20221012 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20231110 Start annual number: 9 End annual number: 9 |