KR101568119B1 - Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof - Google Patents
Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof Download PDFInfo
- Publication number
- KR101568119B1 KR101568119B1 KR1020140021315A KR20140021315A KR101568119B1 KR 101568119 B1 KR101568119 B1 KR 101568119B1 KR 1020140021315 A KR1020140021315 A KR 1020140021315A KR 20140021315 A KR20140021315 A KR 20140021315A KR 101568119 B1 KR101568119 B1 KR 101568119B1
- Authority
- KR
- South Korea
- Prior art keywords
- polyethylene glycol
- polyimide
- glycol copolymer
- pervaporation membrane
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001223 polyethylene glycol Polymers 0.000 title claims abstract description 108
- 239000002202 Polyethylene glycol Substances 0.000 title claims abstract description 99
- 238000005373 pervaporation Methods 0.000 title claims abstract description 93
- 239000012528 membrane Substances 0.000 title claims abstract description 87
- 238000002360 preparation method Methods 0.000 title 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 212
- 238000000034 method Methods 0.000 claims description 34
- 229920000642 polymer Polymers 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 150000004986 phenylenediamines Chemical group 0.000 claims description 10
- 229920005575 poly(amic acid) Polymers 0.000 claims description 10
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 150000008065 acid anhydrides Chemical class 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- WCZNKVPCIFMXEQ-UHFFFAOYSA-N 2,3,5,6-tetramethylbenzene-1,4-diamine Chemical compound CC1=C(C)C(N)=C(C)C(C)=C1N WCZNKVPCIFMXEQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- GZVVXXLYQIFVCA-UHFFFAOYSA-N 2,3-dimethylbenzene-1,4-diamine Chemical compound CC1=C(C)C(N)=CC=C1N GZVVXXLYQIFVCA-UHFFFAOYSA-N 0.000 claims description 3
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical compound CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 claims description 3
- 229910005965 SO 2 Inorganic materials 0.000 claims description 3
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 claims description 2
- CQMIJLIXKMKFQW-UHFFFAOYSA-N 4-phenylbenzene-1,2,3,5-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C(O)=O)=C1C1=CC=CC=C1 CQMIJLIXKMKFQW-UHFFFAOYSA-N 0.000 claims description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 claims 2
- 125000006160 pyromellitic dianhydride group Chemical group 0.000 claims 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 43
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 abstract description 12
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 23
- 230000035699 permeability Effects 0.000 description 21
- 239000004642 Polyimide Substances 0.000 description 20
- 229920001721 polyimide Polymers 0.000 description 20
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 239000012527 feed solution Substances 0.000 description 13
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical group CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 4
- 238000004231 fluid catalytic cracking Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- IIXBOEDONSWOCD-UHFFFAOYSA-N 3,4,5,6-tetramethylbenzene-1,2-diamine Chemical compound CC1=C(C)C(C)=C(N)C(N)=C1C IIXBOEDONSWOCD-UHFFFAOYSA-N 0.000 description 2
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 2
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000006159 dianhydride group Chemical group 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- -1 tetracarboxylic acid dianhydride Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
- B01D67/00111—Polymer pretreatment in the casting solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0013—Casting processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0095—Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/52—Polyethers
- B01D71/521—Aliphatic polyethers
- B01D71/5211—Polyethylene glycol or polyethyleneoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/219—Specific solvent system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/34—Molecular weight or degree of polymerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
본 발명은 폴리이미드-폴리에틸렌글리콜 공중합체로부터 투과증발막을 제조하여 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거할 수 있는 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막에 관한 것이다.
본 발명에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막은 벤젠에 대한 투과선택성이 우수하여 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거할 수 있어 MLCN 등으로부터 벤젠을 제거하는 분리공정에 적용할 수 있으며, 그 분리공정을 통하여 벤젠이 제거된 MLCN은 가솔린으로 사용할 수 있을 것으로 기대된다.The present invention relates to a polyimide-polyethylene glycol copolymer pervaporation membrane capable of selectively separating and removing benzene from a hydrocarbon mixture containing benzene by preparing a pervaporation membrane from a polyimide-polyethylene glycol copolymer.
The polyimide-polyethylene glycol copolymer pervaporation membrane prepared according to the present invention has excellent permeation selectivity to benzene, and thus can selectively remove and remove benzene from a hydrocarbon mixture containing benzene. Thus, a separation process for removing benzene from MLCN and the like , And it is expected that MLCN in which benzene is removed through the separation process can be used as gasoline.
Description
본 발명은 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 그 제조방법에 관한 것으로, 보다 상세하게는 폴리이미드-폴리에틸렌글리콜 공중합체로부터 투과증발막을 제조하여 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거할 수 있는 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막에 관한 것이다.The present invention relates to a polyimide-polyethylene glycol copolymer pervaporation membrane and a process for preparing the same, and more particularly, to a process for producing a polyimide-polyethylene glycol copolymer by pervaporation from a polyimide-polyethylene glycol copolymer and selectively separating benzene from a hydrocarbon mixture containing benzene And a polyimide-polyethylene glycol copolymer pervaporation membrane which can be removed.
일반적으로 탄화수소 혼합물로부터 지방족 탄화수소와 방향족 탄화수소 화합물을 각각 분리하는 공정은 나프타 개질, 사이클로헥산의 생산 및 가솔린으로부터 황을 제거하는 공정을 포함하여 다양한 정제 및 석유화학공정과 관련이 있다. 그런데 이러한 혼합물들은 유사한 물리화학적 성질을 갖는 것으로서 끓는점이 크게 차이 나지 않는 화합물을 포함하고 있어 분리하는 것이 쉽지 않다. 전통적으로는 추출 증류, 공비증류, 액체-액체 추출공정을 이용하고 있지만, 이러한 공정들은 에너지 소모가 많고 비용이 높은 단점을 갖고 있으며, 특히 20% 미만의 방향족 탄화수소를 함유하는 탄화수소 혼합물로부터 방향족 또는 지방족 화합물을 선택적으로 분리할 수 있는 상용화된 공정은 그리 많지 않다.In general, the process of separating aliphatic and aromatic hydrocarbon compounds from a hydrocarbon mixture, respectively, involves a variety of refinery and petrochemical processes, including naphtha reforming, cyclohexane production, and removal of sulfur from gasoline. However, these mixtures have similar physico-chemical properties and contain compounds that do not differ greatly in boiling point. Conventionally, distillation, azeotropic distillation and liquid-liquid extraction processes are used. However, these processes have disadvantages of high energy consumption and high cost, and in particular, aromatic or aliphatic hydrocarbons from a hydrocarbon mixture containing less than 20% There are not many commercially available processes capable of selectively separating the compounds.
그러나 최근에는 이러한 단점을 해소할 수 있는 것으로서 분리막 공정이 널리 알려져 있고, 그 중에서도 공정이 간단하면서도 분리성능이 우수한 투과증발막 공정이 각광을 받고 있는데, 많은 연구자들이 다양한 고분자 소재를 이용하여 투과증발막 공정으로 탄화수소 혼합물로부터 지방족 또는 방향족 탄화수소 화합물을 분리하는 방법을 개발하고 있다(비특허문헌 1).In recent years, however, the membrane process has been well known as one that can overcome these disadvantages. Among them, the process of the pervaporation membrane, which is simple in process and excellent in separation performance, is in the spotlight. Many researchers have developed a pervaporation membrane A process for separating an aliphatic or aromatic hydrocarbon compound from a hydrocarbon mixture has been developed (Non-Patent Document 1).
특히, 정유공장의 유동 촉매 크래킹(Fluid Catalytic Cracking) 공정에서 생산되는 MLCN(Middle Light Cracked Naphtha)에 함유되어 있는 벤젠의 함량은 10 중량%에 가까운 정도로서 다른 유분에 비해서 벤젠의 함유량이 매우 많기 때문에 가솔린으로 사용하려면 이를 0.6 중량% 이하로 낮추어야 하는바, 탄화수소 스트림으로부터 투과증발막 공정을 이용하여 벤젠을 제거하고자 하는 시도가 있었으나, 막장치를 포함하여 전체적인 공정이 매우 복잡한 단점을 가지고 있다(특허문헌 1).Particularly, since the content of benzene contained in MLCN (Middle Light Cracked Naphtha) produced in the fluid catalytic cracking process of the refinery is close to 10% by weight and the content of benzene is much higher than other oils, It has been attempted to remove benzene by using a pervaporation membrane process from a hydrocarbon stream, but it has a disadvantage in that the whole process including the membrane is very complicated (Patent Document 1) .
또한, 벤젠을 함유하는 탄화수소 혼합물로부터 투과증발막 공정에 의하여 벤젠의 함유량을 감소시키려는 기술도 알려져 있는데, 비교적 간단한 공정으로 벤젠의 함유량을 감소시킬 수는 있었으나, 투과증발막 장치 이외에 증류 장치가 필수적으로 수반되어야 하는 단점이 있고 투과증발막 소재에 따른 벤젠의 투과선택성에 대한 구체적인 실험결과도 개시되지 않았다(특허문헌 2).It is also known to reduce the content of benzene by a pervaporation membrane process from a hydrocarbon mixture containing benzene. Although the content of benzene can be reduced by a relatively simple process, a distillation apparatus is indispensable in addition to the pervaporation membrane apparatus And a specific experimental result on the permeation selectivity of benzene according to the material of the pervaporation membrane is not disclosed (Patent Document 2).
그리고 폴리이미드계 투과증발막을 사용하여 벤젠/n-헵탄의 혼합물을 분리하는 연구결과도 공지되었는데, 폴리이미드를 구성하는 디아민의 화학 구조에 따라 투과도에서 약 4배까지 차이가 나며, 또한 벤젠에 대한 선택성이 있는 것으로 개시되어 있으나, 벤젠의 투과도 및 n-헵탄에 대한 벤젠의 선택도가 여전히 만족할만한 수준에 이르지 못하여 MLCN에 함유된 벤젠을 선택적으로 분리 및 제거하는 상업화 공정에 적용하기에는 한계가 있다(비특허문헌 2).It has also been known that the polyimide-based pervaporation membrane is used to separate a mixture of benzene and n-heptane. The result shows that the permeability is about 4 times as high as that of the diamine constituting the polyimide, However, since the permeability of benzene and the selectivity of benzene to n-heptane are still not satisfactory, there is a limit to the commercialization process of selectively separating and removing benzene contained in MLCN Non-Patent Document 2).
따라서 본 발명자들은, 벤젠에 대한 투과선택성이 우수한 고분자 소재로부터 투과증발막을 제조하면, 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거함으로써 MLCN의 분리공정에 적용할 수 있는 점에 착안하여 본 발명을 완성하기에 이르렀다.Therefore, the inventors of the present invention have focused on the fact that when a pervaporation membrane is produced from a polymer material having excellent permeation selectivity to benzene, benzene is selectively separated and removed from a hydrocarbon mixture containing benzene, And has reached the completion of the invention.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 벤젠에 대한 투과선택성이 우수하여 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거함으로써 MLCN의 분리공정에 적용할 수 있는 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 그 제조방법을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a process for separating and removing benzene from a hydrocarbon mixture containing benzene, A polyimide-polyethylene glycol copolymer pervaporation membrane and a process for producing the same.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 하기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 제공한다.In order to accomplish the above object, the present invention provides a polyimide-polyethylene glycol copolymer pervaporation membrane having a repeating unit represented by the following general formula (1).
<화학식 1>≪ Formula 1 >
(상기 화학식 1에서, Ar은 하기 구조식으로 표시되는 것 중에서 선택되는 것으로,(In the above formula (1), Ar is selected from those represented by the following structural formulas,
, , , , , ,
Q는 O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있으며,Q is O, S, CO, SO 2 , Si (CH 3) 2, (CH 2) p (1≤P≤10), (CF 2) q (1≤q≤10), C (CH 3) 2 , C (CF 3) is connected to 2 or CO-NH,
R은 탄소수 1 내지 5의 알킬기이고, m은 1 내지 4의 정수로서 m이 2 이상일 때 R은 서로 동일하거나 상이할 수 있으며,R is an alkyl group having 1 to 5 carbon atoms, m is an integer of 1 to 4, and when m is 2 or more, Rs may be the same or different from each other,
a, b는 각각 1 내지 3의 정수로서 동일하거나 상이할 수 있고, n은 10 내지 100의 정수이며, a and b each represent an integer of 1 to 3 and may be the same or different, and n is an integer of 10 to 100,
x, y는 각각 반복단위 내 몰분율로서 0.8≤x≤0.97, 0.03≤y≤0.2, x+y=1 이다)x and y are molar ratios in the repeating unit, 0.8? x? 0.97, 0.03? y? 0.2, x + y = 1,
상기 화학식 1의 Ar은 하기 구조식으로 표시되는 것 중에서 선택되는 어느 하나의 것을 특징으로 한다.Ar of Formula 1 is characterized by any one selected from the following structural formulas.
, , , , , ,
상기 화학식 1의 R은 메틸기이고, m은 4인 것을 특징으로 한다.R in the above formula (1) is a methyl group, and m is 4.
상기 화학식 1의 a, b는 모두 3인 것을 특징으로 한다.Wherein a and b in Formula 1 are all 3.
상기 화학식 1의 x=0.95, y=0.05인 것을 특징으로 한다.X = 0.95 and y = 0.05 in the formula (1).
상기 투과증발막은 MLCN(Middle Light Cracked Naphtha)에 함유된 벤젠을 선택적으로 분리하여 제거하는 것을 특징으로 한다.The pervaporation membrane selectively separates and removes benzene contained in MLCN (Middle Light Cracked Naphtha).
또한, 본 발명은 i) 산이무수물, 알킬기로 치환된 페닐렌디아민 및 공단량체로서 디아민 말단 폴리에틸렌글리콜을 반응시켜 폴리아믹산 용액을 얻은 후, 화학적 이미드화법에 의하여 폴리이미드-폴리에틸렌글리콜 공중합체를 합성하는 단계;The present invention also relates to a process for producing a polyimide-polyethylene glycol copolymer, which comprises the steps of: i) reacting phenylene diamine substituted with an acid anhydride, an alkyl group, and diamine-terminated polyethylene glycol as a comonomer to obtain a polyamic acid solution, ;
ii) 상기 i) 단계의 폴리이미드-폴리에틸렌글리콜 공중합체를 유기용매에 녹여 고분자용액을 얻는 단계; 및ii) dissolving the polyimide-polyethylene glycol copolymer of step i) in an organic solvent to obtain a polymer solution; And
iii) 상기 ii) 단계의 고분자용액을 캐스팅 및 건조하여 폴리이미드-폴리에틸렌글리콜 공중합체 막을 형성하는 단계;를 포함하는 상기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 제조방법을 제공한다.and iii) casting and drying the polymer solution of step ii) to form a polyimide-polyethylene glycol copolymer film. The polyimide-polyethylene glycol copolymer pervaporation membrane having the repeating unit represented by the above formula (1) And a manufacturing method thereof.
상기 i) 단계의 산이무수물은 하기 일반식 1로 표시되는 것을 특징으로 한다.The acid dianhydride in step i) is characterized by being represented by the following general formula (1).
<일반식 1>≪ General Formula 1 &
(상기 일반식 1에서, Ar은 상기 화학식 1에서 정의한 바와 같다)(In the
상기 산이무수물은 피로멜리트산이무수물, 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA), 4,4'-옥시디프탈산이무수물(ODPA), 3,3',4,4'-벤조페논테트라카르복실산이무수물(BTDA), 3,3'4,4'-비페닐테트라카르복실산이무수물(BPDA), 및 3,3',4,4'-디페닐술폰테트라카르복실산이무수물(DSDA)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The acid dianhydrides include pyromellitic dianhydride, 4,4'-hexafluoroisopropylidene phthalic acid dianhydride (6FDA), 4,4'-oxydiphthalic dianhydride (ODPA), 3,3 ', 4,4 '-Benzophenone tetracarboxylic acid dianhydride (BTDA), 3,3'4,4'-biphenyltetracarboxylic dianhydride (BPDA), and 3,3', 4,4'-diphenylsulfone tetracarboxylate And an acid anhydride (DSDA).
상기 i) 단계의 알킬기로 치환된 페닐렌디아민은 하기 일반식 2로 표시되는 것을 특징으로 한다.The phenylenediamine substituted with the alkyl group in the step i) is characterized by being represented by the following general formula (2).
<일반식 2>≪ General Formula 2 &
(상기 일반식 2에서, R, m은 상기 화학식 1에서 정의한 바와 같다)(In the
상기 알킬기로 치환된 페닐렌디아민은 2,4,6-트리메틸-메타-페닐렌디아민, 2,3,5,6-테트라메틸-1,4-페닐렌디아민, 3,4,5,6-테트라메틸-오르쏘-페닐렌디아민, 및 2,3-디메틸-파라-페닐렌디아민으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The phenylenediamine substituted with the alkyl group is preferably 2,4,6-trimethyl-meta-phenylenediamine, 2,3,5,6-tetramethyl-1,4-phenylenediamine, 3,4,5,6- Tetramethyl-ortho-phenylenediamine, and 2,3-dimethyl-para-phenylenediamine.
상기 i) 단계의 디아민 말단 폴리에틸렌글리콜은 하기 일반식 3으로 표시되는 것을 특징으로 한다.The diamine-terminated polyethylene glycol in the step i) is characterized by being represented by the following general formula (3).
<일반식 3>≪ General Formula 3 &
(상기 일반식 3에서, a, b, n은 상기 화학식 1에서 정의한 바와 같다)(In the above
상기 디아민 말단 폴리에틸렌글리콜은 수평균분자량이 600~5,000인 것을 특징으로 한다.The diamine-terminated polyethylene glycol has a number average molecular weight of 600 to 5,000.
상기 디아민 말단 폴리에틸렌글리콜은 수평균분자량이 1,500인 것을 특징으로 한다.The diamine-terminated polyethylene glycol has a number average molecular weight of 1,500.
상기 i) 단계의 화학적 이미드화법은 폴리아믹산 용액에 트리에틸아민 또는 피리딘, 및 아세트산무수물을 첨가하고 교반하여 100~120℃에서 1~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 한다.In the chemical imidization method in the step i), triethylamine, pyridine, and acetic anhydride are added to a polyamic acid solution, and the mixture is stirred and subjected to an imidization reaction at 100 to 120 ° C for 1 to 12 hours.
상기 ii) 단계의 유기용매는 클로로포름인 것을 특징으로 한다.The organic solvent in step ii) is chloroform.
상기 ii) 단계의 고분자용액은 그 농도가 5~20 중량%인 것을 특징으로 한다.The polymer solution in the step ii) has a concentration of 5 to 20% by weight.
상기 iii) 단계의 건조는 상온에서 24~48 시간 동안 유기용매를 서서히 증발시켜 자연건조 하는 것을 특징으로 한다.The drying in the step iii) is performed by slowly evaporating the organic solvent at room temperature for 24 to 48 hours.
본 발명에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막은 벤젠에 대한 투과선택성이 우수하여 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거할 수 있어 MLCN 등으로부터 벤젠을 제거하는 분리공정에 적용할 수 있으며, 그 분리공정을 통하여 벤젠이 제거된 MLCN은 가솔린으로 사용할 수 있을 것으로 기대된다.The polyimide-polyethylene glycol copolymer pervaporation membrane prepared according to the present invention has excellent permeation selectivity to benzene, and thus can selectively remove and remove benzene from a hydrocarbon mixture containing benzene. Thus, a separation process for removing benzene from MLCN and the like , And it is expected that MLCN in which benzene is removed through the separation process can be used as gasoline.
도 1은 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 NMR 스펙트럼.
도 2는 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 FT-IR 스펙트럼.
도 3은 실시예 3, 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 열중량분석(TGA) 결과 그래프.
도 4는 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 광각 X-선 회절(WAXD) 패턴을 나타낸 그래프.
도 5는 본 발명에서 사용한 투과증발막 분리장치의 구성도.
도 6은 벤젠 함량이 10 중량%인 피드 조성에서 실시예 1 내지 5로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 PEG 몰분율에 따른 투과증발 성능(농축된 벤젠 함량)을 나타낸 그래프.
도 7은 벤젠 함량이 10 중량%인 피드 조성에서 실시예 1 내지 5로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 PEG 몰분율에 따른 투과증발 성능(투과도)을 나타낸 그래프.
도 8은 실시예 2로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 피드 용액(벤젠/헵탄) 조성에 따른 투과증발 성능을 나타낸 그래프.
도 9는 실시예 2로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 피드 용액(벤젠/헥센/헵탄) 조성에 따른 투과증발 성능을 나타낸 그래프.
도 10은 벤젠 함량이 10 중량%인 초기 피드 조성에서 실시예 2로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 사용하여 시간에 따른 벤젠의 감소량을 나타낸 그래프.1 is an NMR spectrum of polyimide-polyethylene glycol copolymer pervaporation membranes and polyimide polymer pervaporation membranes prepared according to Examples 1 to 5 and Comparative Examples.
2 is a FT-IR spectrum of a polyimide-polyethylene glycol copolymer pervaporation membrane and a polyimide polymer pervaporation membrane prepared according to Examples 1 to 5 and Comparative Example.
3 is a graph of thermogravimetric analysis (TGA) results of polyimide-polyethylene glycol copolymer pervaporation membranes and polyimide polymer pervaporation membranes prepared according to Examples 3, 5 and Comparative Example.
4 is a graph showing the wide angle X-ray diffraction (WAXD) patterns of polyimide-polyethylene glycol copolymer pervaporation membranes and polyimide polymer pervaporation membranes prepared according to Examples 1-5 and comparative examples.
5 is a configuration diagram of a pervaporation membrane separation apparatus used in the present invention.
6 is a graph showing the pervaporation performance (concentration of concentrated benzene) of the polyimide-polyethylene glycol copolymer pervaporation membranes prepared in Examples 1 to 5 according to the PEG mole fractions in a feed composition having a benzene content of 10% by weight.
7 is a graph showing the pervaporation performance (permeability) according to the PEG mole fractions of the polyimide-polyethylene glycol copolymer pervaporation membranes prepared in Examples 1 to 5 in a feed composition having a benzene content of 10 wt%.
8 is a graph showing the pervaporation performance of the polyimide-polyethylene glycol copolymer pervaporation membrane prepared in Example 2 according to the feed solution (benzene / heptane) composition.
9 is a graph showing the pervaporation performance according to the feed solution (benzene / hexene / heptane) composition of the polyimide-polyethylene glycol copolymer pervaporation membrane prepared in Example 2. Fig.
10 is a graph showing the amount of decrease in benzene over time using the polyimide-polyethylene glycol copolymer pervaporation membrane prepared from Example 2 at an initial feed composition having a benzene content of 10% by weight.
이하에서는 본 발명에 따른 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 그 제조방법에 관하여 실시예 및 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, the polyimide-polyethylene glycol copolymer pervaporation membrane according to the present invention and a method for producing the same will be described in detail with reference to examples and accompanying drawings.
본 발명에서는 하기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 제공한다.The present invention provides a polyimide-polyethylene glycol copolymer pervaporation membrane having a repeating unit represented by the following formula (1).
<화학식 1>≪
(상기 화학식 1에서, Ar은 하기 구조식으로 표시되는 것 중에서 선택되는 것으로,(In the above formula (1), Ar is selected from those represented by the following structural formulas,
, , , , , ,
Q는 O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있으며,Q is O, S, CO, SO 2 , Si (CH 3) 2, (CH 2) p (1≤P≤10), (CF 2) q (1≤q≤10), C (CH 3) 2 , C (CF 3) is connected to 2 or CO-NH,
R은 탄소수 1 내지 5의 알킬기이고, m은 1 내지 4의 정수로서 m이 2 이상일 때 R은 서로 동일하거나 상이할 수 있으며,R is an alkyl group having 1 to 5 carbon atoms, m is an integer of 1 to 4, and when m is 2 or more, Rs may be the same or different from each other,
a, b는 각각 1 내지 3의 정수로서 동일하거나 상이할 수 있고, n은 10 내지 100의 정수이며, a and b each represent an integer of 1 to 3 and may be the same or different, and n is an integer of 10 to 100,
x, y는 각각 반복단위 내 몰분율로서 0.8≤x≤0.97, 0.03≤y≤0.2, x+y=1 이다)x and y are molar ratios in the repeating unit, 0.8? x? 0.97, 0.03? y? 0.2, x + y = 1,
상기 화학식 1의 Ar은 상기 화학식 1에서 정의한 바와 같은 것이라면, 어느 것이나 가능하고, 구체적으로는 하기 구조식으로 표시되는 것 중에서 선택되는 어느 하나의 것일 수 있다.Ar of the above formula (1) may be any one as long as it is as defined in the above formula (1), and specifically, may be any one selected from those represented by the following structural formulas.
, , , , , ,
또한, 상기 화학식 1의 R은 탄소수 1 내지 5의 알킬기로서 벤젠 고리의 어느 위치에나 직접 치환될 수 있는 것으로 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 이소프로필기 또는 이소부틸기가 바람직하다. 아울러 m은 1 내지 4의 정수 값을 갖는 것으로 m이 2 이상일 때 R은 서로 동일하거나 상이할 수 있으며, R이 메틸기이면서 m이 4인 경우에 해당하는 듀렌기는 벌키한 구조를 갖고 있어 자유부피가 크므로 투과도를 향상시킬 수 있는 점에서 더욱 바람직하다.R in the above formula (1) is an alkyl group having 1 to 5 carbon atoms which may be directly substituted at any position of the benzene ring, and is preferably a methyl group, ethyl group, propyl group, butyl group, pentyl group, isopropyl group or isobutyl group. M is an integer of 1 to 4, and when m is 2 or more, Rs may be the same or different from each other, and when R is a methyl group and m is 4, the duren group has a bulky structure, It is more preferable that the transmittance can be improved.
그리고 상기 화학식 1의 폴리에틸렌글리콜 구조단위에서 스페이서의 기능을 갖는 메틸렌(-CH2)기의 수와 관련 하여서는 a, b가 각각 1 내지 3의 정수로서 동일하거나 상이할 수 있는데, 벤젠의 투과선택성을 고려하면 a, b 모두 3인 것이 더욱 바람직하고, 이와 함께 n의 값도 10 내지 100의 정수라면 다양한 범위의 수평균분자량을 갖는 폴리에틸렌글리콜이 상기 화학식 1로 표시되는 반복단위 내 폴리에틸렌글리콜의 구조단위에 개재될 수 있다.With regard to the number of methylene (-CH 2 ) groups having a spacer function in the polyethylene glycol structural unit of the above-mentioned formula (1), a and b may be the same or different from each other as an integer of 1 to 3, It is more preferable that both of a and b are 3, and if the value of n is also an integer of 10 to 100, polyethylene glycol having a number average molecular weight in various ranges is preferably a structural unit of the polyethylene glycol in the repeating unit represented by the above formula As shown in FIG.
또한, 상기 투과증발막은 벤젠을 함유하는 탄화수소 혼합물에서 벤젠을 선택적으로 분리 및 제거하는데 사용되는 것이므로, 정유공장의 유동 촉매 크래킹[Fluid Catalytic Cracking(FCC)] 공정에서 생산되는 MLCN(Middle Light Cracked Naphtha)에 함유된 벤젠을 선택적으로 분리하여 제거하는 용도에 적용할 수 있다.In addition, since the pervaporation membrane is used to selectively separate and remove benzene from a hydrocarbon mixture containing benzene, the middle light cracked naphtha (MLCN) produced in a fluid catalytic cracking (FCC) The present invention can be applied to the use of selectively separating and removing benzene contained in the exhaust gas.
상기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체는 산이무수물과 디아민을 반응시켜 얻은 폴리아믹산을 이미드화 시킴으로써 제조되는 폴리이미드의 합성을 기본으로 한다. 아울러 본 발명에서는 공단량체로서 디아민 말단 폴리에틸렌글리콜을 함께 반응시켜 폴리이미드-폴리에틸렌글리콜 공중합체를 합성하고, 이를 유기용매에 녹인 고분자용액을 캐스팅 및 건조하여 본 발명의 목적물인 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 제조한다.The polyimide-polyethylene glycol copolymer having the repeating unit represented by the above formula (1) is based on the synthesis of a polyimide prepared by imidizing a polyamic acid obtained by reacting an acid dianhydride with a diamine. In the present invention, a polyimide-polyethylene glycol copolymer is synthesized by reacting a diamine-terminated polyethylene glycol as a comonomer together with a polyimide-polyethylene glycol copolymer. The polymer solution is then cast and dried in an organic solvent to obtain a polyimide- Thereby producing a pervaporation membrane.
즉, 본 발명에서는 i) 산이무수물, 알킬기로 치환된 페닐렌디아민 및 공단량체로서 디아민 말단 폴리에틸렌글리콜을 반응시켜 폴리아믹산 용액을 얻은 후, 화학적 이미드화법에 의하여 폴리이미드-폴리에틸렌글리콜 공중합체를 합성하는 단계;That is, in the present invention, i) a polyimide-polyethylene glycol copolymer is synthesized by a chemical imidization method by reacting phenylene diamine substituted with an acid anhydride and an alkyl group and diamine-terminated polyethylene glycol as a comonomer to obtain a polyamic acid solution, ;
ii) 상기 i) 단계의 폴리이미드-폴리에틸렌글리콜 공중합체를 유기용매에 녹여 고분자용액을 얻는 단계; 및ii) dissolving the polyimide-polyethylene glycol copolymer of step i) in an organic solvent to obtain a polymer solution; And
iii) 상기 ii) 단계의 고분자용액을 캐스팅 및 건조하여 폴리이미드-폴리에틸렌글리콜 공중합체 막을 형성하는 단계;를 포함하는 상기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 제조방법을 제공한다.and iii) casting and drying the polymer solution of step ii) to form a polyimide-polyethylene glycol copolymer film. The polyimide-polyethylene glycol copolymer pervaporation membrane having the repeating unit represented by the above formula (1) And a manufacturing method thereof.
통상 폴리이미드를 합성하기 위해서는 먼저 산이무수물과 디아민을 반응시켜 폴리아믹산을 얻어야 하는바, 본 발명에서도 산이무수물로서 하기 일반식 1로 표시되는 화합물을 사용한다.Generally, in order to synthesize polyimide, a polyamic acid is to be obtained by first reacting an acid dianhydride with a diamine. In the present invention, a compound represented by the following
<일반식 1>≪
(상기 일반식 1에서, Ar은 상기 화학식 1에서 정의한 바와 같다)(In the
폴리이미드를 합성하기 위한 단량체로서 산이무수물은 상기 일반식 1에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 피로멜리트산이무수물, 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA), 4,4'-옥시디프탈산이무수물(ODPA), 3,3',4,4'-벤조페논테트라카르복실산이무수물(BTDA), 3,3',4,4'-비페닐테트라카르복실산이무수물(BPDA), 및 3,3',4,4'-디페닐술폰테트라카르복실산이무수물(DSDA)로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하는 것이 바람직하고, 특히 합성되는 폴리이미드의 열적, 화학적 특성을 더욱 향상시킬 수 있는 점을 고려하여 불소기를 갖고 있는 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA), 또는 4,4'-옥시디프탈산이무수물(ODPA)을 사용하는 것이 더욱 바람직하다.As the monomers for synthesizing the polyimide, any of the acid dianhydrides may be used as long as they are as defined in the
또한, 상기 i) 단계의 알킬기로 치환된 페닐렌디아민은 하기 일반식 2로 표시되는 화합물을 사용한다.The phenylenediamine substituted with the alkyl group in the step i) is a compound represented by the following general formula (2).
<일반식 2>≪
(상기 일반식 2에서, R, m은 상기 화학식 1에서 정의한 바와 같다)(In the
알킬기로 치환된 페닐렌디아민은 상기 일반식 2에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 2,4,6-트리메틸-메타-페닐렌디아민, 2,3,5,6-테트라메틸-1,4-페닐렌디아민, 3,4,5,6-테트라메틸-오르쏘-페닐렌디아민, 및 2,3-디메틸-파라-페닐렌디아민으로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하는 것이 바람직하고, 공중합체 반복단위 내 벌키한 구조의 도입에 따른 자유부피의 증가와 투과도 향상의 측면에서 벌키한 듀렌기를 도입할 수 있는 2,3,5,6-테트라메틸-1,4-페닐렌디아민을 사용하는 것이 더욱 바람직하다.The phenylenediamine substituted with an alkyl group may be any of those as defined in the
그리고 본 발명에서는 공단량체로서 하기 일반식 3으로 표시되는 디아민 말단 폴리에틸렌글리콜을 사용함으로써 폴리이미드-폴리에틸렌글리콜 공중합체를 합성한다.In the present invention, a polyimide-polyethylene glycol copolymer is synthesized by using a diamine-terminated polyethylene glycol represented by the following
<일반식 3>≪
(상기 일반식 3에서, a, b, n은 상기 화학식 1에서 정의한 바와 같다)(In the above
또한, 상기 일반식 3으로 표시되는 디아민 말단 폴리에틸렌글리콜은 수평균분자량이 600~5,000인 것이 바람직하며, 특히 수평균분자량이 1,500인 것이 더욱 바람직한데, 수평균분자량이 600 미만이면 벤젠의 투과선택성 향상을 기대하기 어렵고, 5,000을 초과하면 제막이 원활하지 않은 문제가 발생할 수 있다.The number average molecular weight of the diamine-terminated polyethylene glycol represented by the general formula (3) is preferably 600 to 5,000, more preferably 1,500. If the number-average molecular weight is less than 600, And if it is more than 5,000, there may occur a problem that the film formation is not smooth.
즉, 상기 i) 단계에서는 일반식 1의 산이무수물, 일반식 2의 알킬기로 치환된 페닐렌디아민 및 일반식 3의 디아민 말단 폴리에틸렌글리콜을 N,N-디메틸아세트아미드(DMAc)와 같은 유기용매에 용해 및 교반하여 폴리아믹산 용액을 얻은 후, 화학적 이미드화법에 의하여 폴리이미드-폴리에틸렌글리콜 공중합체를 합성한다.That is, in step i), phenylenediamine substituted with an acid anhydride of the
상기 화학적 이미드화법은 폴리아믹산 용액에 트리에틸아민 또는 피리딘, 및 아세트산무수물을 첨가하고 교반하여 100~120℃에서 1~12시간 이미드화 반응을 수행한다. 이때, 트리에틸아민 또는 피리딘, 및 아세트산무수물은 반응물인 산이무수물보다 과량으로 사용하며, 산이무수물의 몰수에 비하여 3~5배 정도 과량으로 사용하는 것이 바람직하다. 화학적 이미드화 반응이 종결되면 생성물을 증류수 또는 메탄올에 침전시키고 수회 세척한 후, 60~80℃ 진공오븐에서 24~48시간 충분히 건조시킴으로써 폴리이미드-폴리에틸렌글리콜 공중합체를 얻는다.In the chemical imidization method, triethylamine, pyridine, and acetic anhydride are added to a polyamic acid solution, and the mixture is stirred and subjected to imidization reaction at 100 to 120 ° C for 1 to 12 hours. At this time, triethylamine or pyridine, and acetic anhydride are used in an excess amount of acid as the reactant and 3 to 5 times as much as the number of moles of acid anhydride. When the chemical imidization reaction is terminated, the product is precipitated in distilled water or methanol, washed several times, and sufficiently dried in a vacuum oven at 60 to 80 ° C for 24 to 48 hours to obtain a polyimide-polyethylene glycol copolymer.
다음으로, ii) 단계에서는 상기 i) 단계의 폴리이미드-폴리에틸렌글리콜 공중합체를 유기용매에 녹여 고분자용액을 얻게 되는데, 이때 유기용매로서는 일반적으로 N-메틸-2-피롤리돈(NMP), N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드(DMAc) 또는 디메틸술폭시드(DMSO)와 같은 극성 용매를 사용할 수 있고, 클로로포름과 같은 비극성 용매를 사용할 수도 있는바, 본원발명에서는 저비점으로서 휘발성이 강하여 상온에서 자연 증발이 가능한 클로로포름을 바람직하게 사용한다.Next, in step ii), the polyimide-polyethylene glycol copolymer of step i) is dissolved in an organic solvent to obtain a polymer solution. As the organic solvent, N-methyl-2-pyrrolidone (NMP), N (DMF), N, N-dimethylacetamide (DMAc) or dimethylsulfoxide (DMSO), or a nonpolar solvent such as chloroform may be used. In the present invention, Chloroform, which has a low boiling point and is highly volatile and can be spontaneously evaporated at room temperature, is preferably used.
마지막으로, iii) 단계에서는 상기 ii) 단계의 고분자용액을 유리판 또는 페트리 디쉬에 캐스팅 및 건조시킴으로써 폴리이미드-폴리에틸렌글리콜 공중합체 막이 형성되는데, 이때 상기 ii) 단계의 고분자용액은 그 농도가 5~20 중량%인 것이라야 양호한 상태의 막을 제조할 수 있다.Finally, in step iii), the polyimide-polyethylene glycol copolymer film is formed by casting and drying the polymer solution of step ii) on a glass plate or a Petri dish, wherein the polymer solution of step ii) has a concentration of 5 to 20 If it is a weight%, a film in a good state can be produced.
이하에서는 본 발명에 따른 실시예를 도면과 함께 구체적으로 설명한다.
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
[[ 실시예Example 1] 폴리이미드- 1] Polyimide- 폴리에틸렌글리콜Polyethylene glycol 공중합체 Copolymer 투과증발막의Pervaporation membrane 제조 Produce
2,3,5,6-테트라메틸-1,4-페닐렌디아민(4MPD) 9.7 mmol 및 O,O'-비스(3-아미노프로필)폴리에틸렌글리콜(PEG, 수평균분자량 1,500) 0.3 mmol을 무수 NMP 10ml에 용해시켜 0℃로 냉각하고, 여기에 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA) 10 mmol을 첨가하였다. 이 반응 혼합물을 0℃에서 15분 교반한 다음 상온으로 승온하여 12시간 반응시킨 후, 폴리아믹산 점성 용액을 얻었다. 이어서 폴리아믹산 용액에 트리에틸아민(TEA) 30 mmol과 아세트산무수물(Ac2O) 30 mmol을 첨가한 후 강력하게 교반 및 가열하여 105℃에서 3시간 이미드화를 수행하였다. 이렇게 얻어진 점성 용액을 상온으로 냉각, 증류수에 침적, 온수로 수회 세척 및 80℃의 진공오븐에서 24시간 건조하는 일련의 과정을 폴리이미드-폴리에틸렌글리콜 공중합체를 합성하였다.9.7 mmol of 2,3,5,6-tetramethyl-1,4-phenylenediamine (4MPD) and 0.3 mmol of O, O'-bis (3-aminopropyl) polyethylene glycol (PEG, number average molecular weight 1,500) Dissolved in 10 ml of NMP, cooled to 0 占 폚, and 10 mmol of 4,4'-hexafluoroisopropylidene phthalic anhydride (6FDA) was added thereto. The reaction mixture was stirred at 0 ° C for 15 minutes, then heated to room temperature and reacted for 12 hours to obtain a polyamic acid viscous solution. Then, 30 mmol of triethylamine (TEA) and 30 mmol of acetic anhydride (Ac 2 O) were added to the polyamic acid solution, followed by strongly stirring and heating to carry out imidization at 105 ° C for 3 hours. Polyimide-polyethylene glycol copolymer was synthesized by cooling the obtained viscous solution to room temperature, immersing in distilled water, washing several times with hot water, and drying in a vacuum oven at 80 DEG C for 24 hours.
상기 합성된 폴리이미드-폴리에틸렌글리콜 공중합체를 유기용매인 클로로포름에 10 중량% 농도로 녹여 유리판에 캐스팅하고 상온에서 24시간 유기용매를 휘발시켜 목적물인 하기 화학식 2로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 제조하였다.The synthetic polyimide-polyethylene glycol copolymer was dissolved in chloroform as an organic solvent at a concentration of 10% by weight and cast on a glass plate. The organic solvent was volatilized for 24 hours at room temperature to obtain a target polyimide having a repeating unit represented by the following formula - polyethylene glycol copolymer pervaporation membrane was prepared.
<화학식 2>(2)
상기 화학식 2에서 x, y는 반복단위 내 몰분율로서 x=0.97, y=0.03이다.
In the above formula (2), x and y are mole fractions in the repeating unit, and x = 0.97 and y = 0.03.
[[ 실시예Example 2 내지 5] 폴리이미드- 2 to 5] polyimide- 폴리에틸렌글리콜Polyethylene glycol 공중합체 Copolymer 투과증발막의Pervaporation membrane 제조 Produce
실시예 1과 동일한 방법으로 폴리이미드-폴리에틸렌공중합체 투과증발막을 제조하되, 반응물의 사용량을 아래 표 1에 기재된 바와 같이 조절하였다.The polyimide-polyethylene copolymer pervaporation membrane was prepared in the same manner as in Example 1 except that the amount of the reactant used was adjusted as shown in Table 1 below.
* TEA와 Ac2O는 실시예 1 내지 5 모두 각각 30 mmol
* TEA and Ac 2 O were 30 mmol each in Examples 1 to 5
[[ 비교예Comparative Example ] 폴리이미드 중합체 ] Polyimide polymer 투과증발막의Pervaporation membrane 제조 Produce
반응물로서 공단량체인 PEG를 사용하지 않고, 4MPD를 10 mmol 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리이미드 중합체 투과증발막을 제조하였다.
A polyimide polymer pervaporation membrane was prepared in the same manner as in Example 1, except that 10 mmol of 4MPD was used instead of PEG as a co-monomer.
[[ 실험예Experimental Example ] ] 투과증발막Pervaporation membrane 분리장치를 이용한 투과도 측정 Measurement of permeability using separator
투과증발공정에 따른 투과도를 측정하기 위하여 도 5에 나타낸 바와 같은 투과증발막 분리장치를 이용하였는바, 피드탱크에 벤젠/헵탄 또는 벤젠/헥센/헵탄의 혼합용액을 넣고 피드펌프로 0.2L/min의 유속으로 순환시키면서 혼합용액의 온도를 항온수조를 이용하여 50℃로 유지하였고, 분리막으로서는 본 발명의 실시예로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막을 사용하였다. 이때 투과된 물질은 기체상태로 확산되므로 냉각장치를 이용하여 분리된 물질을 응축시켰으며, 이를 가스크로마토그래피로 정량분석 하여 물질의 조성으로부터 투과도를 계산하였다.
5, a mixed solution of benzene / heptane or benzene / hexene / heptane was added to the feed tank, and the feed pump was operated at a flow rate of 0.2 L / min The temperature of the mixed solution was maintained at 50 ° C. by using a constant temperature water bath while the polyimide-polyethylene glycol copolymer pervaporation membrane prepared from the embodiment of the present invention was used as the separation membrane. At this time, since the permeated material diffuses into the gas state, the separated material was condensed using a cooling device, and the permeability was calculated from the composition of the material by quantitative analysis by gas chromatography.
도 1에는 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 NMR 스펙트럼을 나타내었다. 7~8.5 ppm에서 방향족 고리의 수소 특성 피크가 나타나며, 듀렌기의 메틸기는 수소 특성 피크가 2.15 ppm에서 관찰되고, 3.6 ppm에서는 듀렌기가 포함된 폴리이미드-폴리에틸렌글리콜 공중합체에서 폴리에틸렌글리콜의 지방족 수소에 기인하는 특성 피크가 나타난다.FIG. 1 shows NMR spectra of polyimide-polyethylene glycol copolymer pervaporation membranes and polyimide polymer pervaporation membranes prepared according to Examples 1 to 5 and Comparative Examples. The hydrogen characteristic peak of the aromatic ring was observed at 7 to 8.5 ppm, the hydrogen characteristic peak was observed at 2.15 ppm at the duren group, and the polyimide-polyethylene glycol copolymer containing the duren group at the 3.6 ppm was found to have an aliphatic hydrogen of polyethylene glycol Resulting in characteristic peaks appearing.
또한, 도 2에는 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 FT-IR 스펙트럼을 나타내었는바, 1717, 1780 cm-1 부근에서 C=O 신축진동 피크가 관찰되고, 1352 cm-1 부근에서는 이미드기의 C-N-C 신축진동 피크가 나타나며, 또한 2867, 1095 cm-1 부근에서 폴리에틸렌글리콜의 C-H, C-O-C 신축진동 피크가, 1110 cm-1 부근에서는 에테르 특성 피크(C-O-C 밴드)가 폴리에틸렌글리콜의 함량이 많아질수록 크게 나타나는 것으로 보아, 폴리이미드-폴리에틸렌글리콜 공중합체 및 폴리이미드 중합체가 합성되었음을 알 수 있다.Further, Fig. 2, in Examples 1 to 5 and Comparative polyimide prepared according to Example-polyethylene glycol copolymer pervaporation membrane, and polyimide polymer pervaporation membrane FT-IR spectrum indicate the bar was it, 1717, 1780 cm -1 vicinity The CN = stretching vibration peak of the imide is observed at around 1352 cm -1 , and the CH and COC stretching vibration peaks of the polyethylene glycol at around 2867 and 1095 cm -1 are 1110 cm < -1 & gt ; 1 near the characteristic peak ether (COC band) are seen the more the content of the polyethylene glycol that greatly appears, polyimide - it can be seen that the polyethylene glycol copolymer and the polyimide polymer is synthesized.
한편, 도 3에는 실시예 3, 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 열중량분석(TGA) 결과를 나타내었는데, 비교예로부터 제조된 폴리이미드 중합체 투과증발막의 5 중량% 손실 온도는 약 500℃인 반면, 실시예 3, 5로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막은 380℃에서부터 분해가 시작됨을 확인할 수 있는바, 이는 폴리이미드-폴리에틸렌글리콜 공중합체에 함유된 PEG 단위에 기인하여 열적 안정성이 떨어지는 것으로 해석되고, PEG 함량이 많아질수록 더 많은 중량감소가 나타나는 사실로부터도 확인할 수 있다.Meanwhile, FIG. 3 shows the results of thermogravimetric analysis (TGA) of polyimide-polyethylene glycol copolymer pervaporation membranes and polyimide polymer pervaporation membranes prepared according to Examples 3, 5 and Comparative Examples. The 5 wt% loss temperature of the polyimide polymer pervaporation membrane was about 500 ° C, whereas the polyimide-polyethylene glycol copolymer pervaporation membranes prepared from Examples 3 and 5 started to decompose at 380 ° C, It is interpreted that the thermal stability is poor due to the PEG unit contained in the mid-polyethylene glycol copolymer, and that the larger the PEG content, the more weight reduction appears.
도 4에는 실시예 1 내지 5 및 비교예에 따라 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막 및 폴리이미드 중합체 투과증발막의 광각 X-선 회절(WAXD) 패턴을 나타내었다. 모든 샘플에서 넓은 범위의 회절 패턴을 나타내는 것으로 보아 비정질 구조를 가짐을 알 수 있고, PEG 함량이 많아질수록 그 회절 패턴이 높은 2쪽으로 이동되었고, d-spacing 값도 PEG 함량이 증가할수록 감소하였다.FIG. 4 shows the wide angle X-ray diffraction (WAXD) patterns of the polyimide-polyethylene glycol copolymer pervaporation membranes and the polyimide polymer pervaporation membranes prepared according to Examples 1 to 5 and Comparative Examples. The diffraction pattern was shifted to the higher side as the PEG content increased, and the d-spacing value decreased as the PEG content increased.
또한, 도 5에 나타낸 바와 같은 투과증발막 분리장치로 피드 용액(벤젠 : 헥센: 헵탄)의 조성을 일정하게 하고 본 발명의 실시예 1 내지 5로부터 제조된 투과증발막을 사용하여 24시간 운전한 후 투과성능을 평가하였는바, 투과된 용액의 조성을 가스크로마토그래피로 측정하여 비교하였고, 그에 따른 투과도를 계산하여 얻어진 결과를 아래 표 2에 기재하였다.Further, the composition of the feed solution (benzene: hexene: heptane) was kept constant by the pervaporation membrane separation apparatus as shown in Fig. 5, and after 24 hours of operation using the pervaporation membranes prepared in Examples 1 to 5 of the present invention, As a result of evaluating the performance, the composition of the permeated solution was measured by gas chromatography, and the permeability was calculated. The results are shown in Table 2 below.
(B : Hex : Hep)Feed liquid composition
(B: Hex: Hep)
(B : Hex : Hep)Permeate composition
(B: Hex: Hep)
(g·μm/m2·h)Permeability
(g 占 퐉 / m 2占 h)
상기 표 2에서 알 수 있는 바와 같이, 실시예 2로부터 제조된 투과증발막(폴리이미드-폴리에틸렌글리콜 공중합체 내 폴리에틸렌글리콜의 함량이 5 몰%)의 투과도가 가장 높고, 폴리이미드-폴리에틸렌글리콜 공중합체 내 폴리에틸렌글리콜의 함량이 5 몰% 이상에서는 폴리에틸렌글리콜의 함량이 많아질수록 투과도가 감소하고 있으며, 가스크로마토그래피로 분석한 결과 투과된 용액의 벤젠 조성이 높은 것을 확인할 수 있었다. 도 6 및 7에는 각각 벤젠 함량이 10 중량%인 피드 조성에서 실시예 1 내지 5로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 PEG 몰분율에 따른 투과증발 성능으로서 농축된 벤젠 함량 및 투과도를 나타내었다.As can be seen from Table 2, the permeation rate of the pervaporation membrane (content of polyethylene glycol in the polyimide-polyethylene glycol copolymer of 5 mol%) prepared in Example 2 was the highest, and the permeability of the polyimide-polyethylene glycol copolymer When the content of polyethylene glycol was more than 5 mol%, the permeability was decreased as the content of polyethylene glycol was increased. As a result of analysis by gas chromatography, it was confirmed that the benzene composition of the permeated solution was high. 6 and 7 show the concentration and permeability of the concentrated benzene in the pervaporation performance of the polyimide-polyethylene glycol copolymer pervaporation membrane prepared in Examples 1 to 5, respectively, in the feed composition having a benzene content of 10 wt% .
또한, 상기 표 2의 결과로부터 투과도가 가장 높은 실시예 2에 따라 제조된 투과증발막을 사용하여 피드 용액(벤젠 : 헵탄)의 조성을 다양하게 하고 24시간 운전한 후 투과성능을 평가하였는바, 투과된 용액의 조성을 가스크로마토그래피로 측정하여 비교하였고, 그에 따른 투과도를 계산하여 얻어진 결과를 아래 표 3에 기재하였다.From the results of Table 2, the permeation performance was evaluated after 24 hours of operation by varying the composition of the feed solution (benzene: heptane) using the pervaporation membrane prepared according to Example 2 having the highest permeability, The composition of the solution was measured by gas chromatography, and the permeability was calculated. The results are shown in Table 3 below.
(B : H)Feed liquid composition
(B: H)
(B : H)Permeate composition
(B: H)
(g·μm/m2·h)Permeability
(g 占 퐉 / m 2占 h)
(B투과도/H투과도)Selectivity
(B permeability / H permeability)
표 3에서 보는 바와 같이, 피드액의 조성에서 벤젠의 농도가 높을수록 투과도가 증가하는 것을 알 수 있고, 투과된 기체를 응축시켜 가스크로마토그래피로 분석한 결과 피드액의 조성에서 벤젠의 농도가 높을수록 투과된 용액에서 벤젠의 조성이 높은 것으로 보아 벤젠에 대한 선택성이 우수하며, 도 8에 나타낸 실시예 2로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 피드 용액(벤젠/헵탄) 조성에 따른 투과증발 성능 그래프로부터 이러한 사실을 확인할 수 있다.As shown in Table 3, it can be seen that the higher the concentration of benzene in the composition of the feed liquid, the greater the permeability. The gas chromatographic analysis of the permeated gas shows that the concentration of benzene in the composition of the feed liquid is high (Benzene / heptane) composition of the polyimide-polyethylene glycol copolymer pervaporation membrane prepared from Example 2 shown in FIG. 8 was excellent in the selectivity to benzene, This fact can be confirmed from the graph of pervaporation performance.
또한, 실시예 2에 따라 제조된 투과증발막을 사용하여 피드 용액(벤젠 : 헥센 : 헵탄)의 조성을 벤젠의 농도가 10 중량% 이하인 것으로 다양하게 하고 24시간 운전한 후 투과성능을 평가하였는바, 투과된 용액의 조성을 가스크로마토그래피로 측정하여 비교하였고, 그에 따른 투과도를 계산하여 얻어진 결과를 아래 표 4에 기재하였다.The permeation performance of the feed solution (benzene: hexene: heptane) was evaluated by varying the composition of the feed solution (benzene: hexene: heptane) by varying the concentration of benzene to 10% by weight or less using the pervaporation membrane prepared in Example 2 for 24 hours, The composition of the obtained solution was measured by gas chromatography, and the permeability was calculated. The results are shown in Table 4 below.
(B : Hex : Hep)Feed liquid composition
(B: Hex: Hep)
(B : Hex : Hep)Permeate composition
(B: Hex: Hep)
(g·μm/m2·h)Permeability
(g 占 퐉 / m 2占 h)
표 4에서 보는 바와 같이, 피드액의 조성에서 벤젠의 농도가 10 중량% 이하인 경우에도 벤젠의 농도가 높을수록 투과도가 증가하는 것을 알 수 있고, 투과된 기체를 응축시켜 가스크로마토그래피로 분석한 결과 3가지가 혼합된 피드액의 조성에서 벤젠의 농도가 높을수록 투과된 용액에서 벤젠의 조성이 높은 것으로 보아 벤젠에 대한 선택성이 역시 우수하며, 도 9에 나타낸 실시예 2로부터 제조된 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 피드 용액(벤젠/헥센/헵탄) 조성에 따른 투과증발 성능 그래프로부터 이러한 사실을 확인할 수 있다.As shown in Table 4, even when the concentration of benzene in the composition of the feed liquid is 10% by weight or less, it can be seen that the higher the concentration of benzene, the greater the permeability. The permeated gas is condensed and analyzed by gas chromatography The higher the concentration of benzene in the composition of the feed solution mixed with the three components, the higher the selectivity to benzene as the composition of the benzene in the permeated solution was higher. As a result, the polyimide-polyethylene This fact can be confirmed from the graph of pervaporation performance according to the feed solution (benzene / hexene / heptane) composition of the glycol copolymer pervaporation membrane.
또한, 정유공장의 유동 촉매 크래킹(Fluid Catalytic Cracking) 공정에서 생산되는 MLCN(Middle Light Cracked Naphtha)에 함유되어 있는 벤젠의 함량은 10 중량% 정도임을 고려하여, 표 2 내지 4에서 확인된 바와 같이 벤젠에 대한 투과선택성이 우수한 본 발명의 실시예 2에 따라 제조된 투과증발막으로 벤젠의 함량이 10중량%인 피드 용액으로부터 농축 실험을 수행하였는바, 12시간마다 농축된 용액을 포집하였으며 가스크로마토그래피로 피드 용액의 조성 변화를 분석한 결과, 시간이 지남에 따라 피드 용액에서의 벤젠 함량이 감소하고 투과도도 조금씩 감소하는 것을 확인할 수 있으며, 336시간 경과 후 피드 용액에서 10 중량%의 벤젠 함량이 3.5 중량% 수준까지 감소하는 것을 확인하였고, 그 결과는 도 10에 나타내었다.Considering that the content of benzene contained in the MLCN (Middle Light Cracked Naphtha) produced in the fluid catalytic cracking process of the refinery is about 10% by weight, as shown in Tables 2 to 4, The concentration of the concentrated solution was collected from the feed solution having a benzene content of 10% by weight with respect to the pervaporation membrane prepared according to Example 2 of the present invention. As a result of the analysis of the compositional change of the feed solution, it was confirmed that the benzene content in the feed solution was decreased and the permeability was slightly decreased with time. After 336 hours, the content of benzene in the feed solution was 10% %, Respectively. The results are shown in Fig.
상기 투과증발실험 결과로부터 본 발명에 따라 제조된 폴리이미드-폴리에틸렌글리콜 투과증발막은 벤젠에 대한 투과선택성이 우수함을 알 수 있고, 특히 폴리이미드-폴리에틸렌글리콜 투과증발막 내 폴리에틸렌글리콜 단위의 함량이 5 몰%인 경우에는 벤젠에 대한 투과선택성이 매우 높아, 피드 용액에서 벤젠의 함량이 10 중량%인 지방족/방향족 탄화수소 혼합물로부터 벤젠을 선택적으로 분리 및 제거함으로써 MLCN의 분리공정에 적용할 수 있으며, 그 분리공정을 통하여 벤젠이 제거된 MLCN은 가솔린으로 사용할 수 있을 것으로 기대된다.From the results of the above-mentioned pervaporation test, it can be seen that the polyimide-polyethylene glycol pervaporation membrane prepared according to the present invention has excellent permeation selectivity to benzene, and in particular, the content of polyethylene glycol units in the polyimide-polyethylene glycol pervaporation membrane is 5 mol %, The permeation selectivity to benzene is so high that it can be applied to the separation process of MLCN by selectively separating and removing benzene from an aliphatic / aromatic hydrocarbon mixture having a benzene content of 10 wt% in the feed solution, It is expected that MLCN with benzene removed through the process can be used as gasoline.
Claims (18)
<화학식 1>
(상기 화학식 1에서, Ar은 하기 구조식으로 표시되는 것 중에서 선택되는 것으로,
, , ,
Q는 O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있으며,
R은 탄소수 1 내지 5의 알킬기이고, m은 1 내지 4의 정수로서 m이 2 이상일 때 R은 서로 동일하거나 상이할 수 있으며,
a, b는 각각 1 내지 3의 정수로서 동일하거나 상이할 수 있고, n은 10 내지 100의 정수이며,
x, y는 각각 반복단위 내 몰분율로서 0.8≤x≤0.97, 0.03≤y≤0.2, x+y=1 이다)A polyimide-polyethylene glycol copolymer pervaporation membrane having a repeating unit represented by the following formula (1).
≪ Formula 1 >
(In the above formula (1), Ar is selected from those represented by the following structural formulas,
, , ,
Q is O, S, CO, SO 2 , Si (CH 3) 2, (CH 2) p (1≤P≤10), (CF 2) q (1≤q≤10), C (CH 3) 2 , C (CF 3) is connected to 2 or CO-NH,
R is an alkyl group having 1 to 5 carbon atoms, m is an integer of 1 to 4, and when m is 2 or more, Rs may be the same or different from each other,
a and b each represent an integer of 1 to 3 and may be the same or different, and n is an integer of 10 to 100,
x and y are molar ratios in the repeating unit, 0.8? x? 0.97, 0.03? y? 0.2, x + y = 1,
, , , The polyimide-polyethylene glycol copolymer pervaporation membrane according to claim 1, wherein Ar of the formula (1) is any one selected from the group consisting of the following structural formulas.
, , ,
ii) 상기 i) 단계의 폴리이미드-폴리에틸렌글리콜 공중합체를 유기용매에 녹여 고분자용액을 얻는 단계; 및
iii) 상기 ii) 단계의 고분자용액을 캐스팅 및 건조하여 폴리이미드-폴리에틸렌글리콜 공중합체 막을 형성하는 단계;를 포함하는 제1항의 상기 화학식 1로 표시되는 반복단위를 갖는, 폴리이미드-폴리에틸렌글리콜 공중합체 투과증발막의 제조방법.i) synthesizing a polyimide-polyethylene glycol copolymer by a chemical imidization method by reacting phenylene diamine substituted with an acid anhydride, an alkyl group, and diamine-terminated polyethylene glycol as a comonomer to obtain a polyamic acid solution;
ii) dissolving the polyimide-polyethylene glycol copolymer of step i) in an organic solvent to obtain a polymer solution; And
and iii) casting and drying the polymer solution of the step ii) to form a polyimide-polyethylene glycol copolymer film. The polyimide-polyethylene glycol copolymer having a repeating unit represented by the formula (1) A method for producing a pervaporation membrane.
<일반식 1>
(상기 일반식 1에서, Ar은 상기 화학식 1에서 정의한 바와 같다)The process for producing a polyimide-polyethylene glycol copolymer pervaporation membrane according to claim 7, wherein the acid dianhydride in step i) is represented by the following general formula (1).
≪ General Formula 1 &
(In the general formula 1, Ar is the same as defined in the above formula (1)
<일반식 2>
(상기 일반식 2에서, R, m은 상기 화학식 1에서 정의한 바와 같다)The process for producing a polyimide-polyethylene glycol copolymer pervaporation membrane according to claim 7, wherein the phenylenediamine substituted with an alkyl group in the step i) is represented by the following general formula (2).
≪ General Formula 2 &
(In the general formula 2, R and m are the same as defined in the general formula (1)
<일반식 3>
(상기 일반식 3에서, a, b, n은 상기 화학식 1에서 정의한 바와 같다)The process for producing a polyimide-polyethylene glycol copolymer pervaporation membrane according to claim 7, wherein the diamine-terminated polyethylene glycol in the step i) is represented by the following general formula (3).
≪ General Formula 3 &
(In the above general formula 3, a, b and n are the same as defined in the general formula (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140021315A KR101568119B1 (en) | 2014-02-24 | 2014-02-24 | Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140021315A KR101568119B1 (en) | 2014-02-24 | 2014-02-24 | Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150100029A KR20150100029A (en) | 2015-09-02 |
KR101568119B1 true KR101568119B1 (en) | 2015-11-11 |
Family
ID=54241821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140021315A Active KR101568119B1 (en) | 2014-02-24 | 2014-02-24 | Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101568119B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10478778B2 (en) | 2015-07-01 | 2019-11-19 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
US10618008B2 (en) | 2015-07-01 | 2020-04-14 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
US10737220B2 (en) | 2015-07-01 | 2020-08-11 | 3M Innovative Properties Company | PVP- and/or PVL-containing composite membranes and methods of use |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117343547B (en) * | 2023-12-04 | 2024-02-27 | 宁波长阳科技股份有限公司 | Ag@ polypyrrole/polyethylene glycol-polyimide composite material, preparation method and pressure sensor |
-
2014
- 2014-02-24 KR KR1020140021315A patent/KR101568119B1/en active Active
Non-Patent Citations (1)
Title |
---|
Dong Nyoung Heo 외 5인, Cell fouling resistance of PEG-grafted polyimide film for neural implant applications, Third International Conference on Smart Materials and Nanotechnology in Engineering, 2012.0* |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10478778B2 (en) | 2015-07-01 | 2019-11-19 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
US10618008B2 (en) | 2015-07-01 | 2020-04-14 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
US10737220B2 (en) | 2015-07-01 | 2020-08-11 | 3M Innovative Properties Company | PVP- and/or PVL-containing composite membranes and methods of use |
Also Published As
Publication number | Publication date |
---|---|
KR20150100029A (en) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0400812B1 (en) | Copolyimide gas separation membranes derived from substituted phenylene diamines and substituted methylene dianilines | |
Smith et al. | Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers | |
Hu et al. | Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations | |
JP6023329B2 (en) | Polymer, polymer film and production method thereof | |
EP3472170B1 (en) | Troger's base-based monomers, and polymers, methods of making and uses thereof | |
EP0337001A1 (en) | Polyimide gas separation membranes | |
Mao et al. | Synthesis, characterization and gas transport properties of novel poly (amine-imide) s containing tetraphenylmethane pendant groups | |
US10052592B2 (en) | Highly crosslinked hybrid polyimide-silsesquioxane membranes | |
KR101568119B1 (en) | Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof | |
US11001672B2 (en) | Polyimide, dianhydride monomers, and polymers, methods of making and uses thereof | |
Wang et al. | Facile synthesis and gas transport properties of Hünlich's base-derived intrinsically microporous polyimides | |
Huertas et al. | Preparation and gas separation properties of partially pyrolyzed membranes (PPMs) derived from copolyimides containing polyethylene oxide side chains | |
Saimani et al. | Synthesis and characterization of bis (4-maleimidophenyl) fluorene and its semi interpenetrating network membranes with polyether imide (Ultem® 1000) | |
JPH0768143A (en) | New polyimide and gas separation membrane prepared thereof | |
WO2011082469A1 (en) | Semi-interpenetrating polymer network membranes | |
JP2018122280A (en) | Asymmetric membrane | |
Yang et al. | Synthesis of crown ether-containing copolyimides and their pervaporation properties to benzene/cyclohexane mixtures | |
US9308488B1 (en) | High permeability polyimide membranes: gas selectivity enhancement through UV treatment | |
García et al. | Aliphatic–aromatic polyimide blends for H2 separation | |
KR101477710B1 (en) | Novel polyimide derivatives, preparation method thereof and polymer gas separation membrane comprising the same | |
CN111233842B (en) | Phthalazinone diamine monomer and preparation method thereof, polyimide and preparation method thereof, and polyimide film | |
KR101441344B1 (en) | Co- POLYIMIDES WITH HIGH GAS PERMEABILITY AND SELECTIVITY AND METHODS OF SYNTHESIS THEREOF | |
JP2001040089A (en) | Polyimide resin, its production and gas separation membrane composed thereof | |
US9308502B1 (en) | High permeability polyimide membranes: gas selectivity enhancement through UV treatment | |
EP0488341B1 (en) | Polyimide gas separation membranes and process of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20140224 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150428 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20151102 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20151105 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20151106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20181016 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20181016 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20191022 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20191022 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20201106 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20221107 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20231102 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20241106 Start annual number: 10 End annual number: 10 |