도 1은 무선통신 시스템을 나타낸 블록도이다. 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 무선통신 시스템은 단말(10; User Equipment, UE) 및 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 하나의 기지국(20)에는 하나 이상의 셀이 존재할 수 있다.
이하에서 하향링크(downlink; DL)는 기지국(20)에서 단말(10)로의 통신을 의미하며, 순방향 링크(forward link)라 불릴 수도 있다. 상향링크(uplink; UL)는 단말(10)에서 기지국(20)으로의 통신을 의미하며, 역방향 링크(reverse link)라 불릴 수도 있다. 하향링크에서, 송신기는 기지국(20)의 일부일 수 있고 수신기는 단말(10)의 일부일 수 있다. 상향링크에서, 송신기는 단말(10)의 일부일 수 있고 수신기는 기지국(20)의 일부일 수 있다.
무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), SC-FDMA(Single-Carrier FDMA), OFDMA(Orthogonal Frequency Division Multiple Access) 또는 공지된 다른 변조 기술들과 같은 다중 접속 기법들에 기초할 수 있다. 이들 변조 기법들은 통신 시스템 의 다중 사용자들로부터 수신된 신호들을 복조하여 통신 시스템의 용량을 증가시킨다.
하향링크와 상향링크 전송을 위한 다중 접속 방식은 서로 다를 수 있다. 예를 들어, 하향링크는 OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하고, 상향링크는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 또는 clustered DFT S-OFDM 를 사용할 수 있다. 일반적인 SC-FDMA 기법은 DFT 확산된 심볼열을 연속된 부반송파 또는 등간격을 갖는 부반송파에 할당(또는 맵핑)하는 것을 의미하는데, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.
도 2는 무선 프레임 구조의 일 예를 나타낸다.
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함할 수 있다. 하나의 슬롯은 시간 영역에서 복수의 SC-FDMA 심벌(또는 OFDM 심벌)과 주파수 영역에서 적어도 하나의 부반송파를 포함할 수 있다. 슬롯은 시간 영역과 주파수 영역에서 무선 자원을 할당하기 위한 단위라 할 수 있다.
하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와, 확 장된 CP보다 길이가 짧은 일반 CP(normal CP)가 있다. 예를 들어, SC-FDMA 심벌이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 7개일 수 있다. SC-FDMA 심벌이 확장된 CP에 의해 구성된 경우, 한 SC-FDMA 심벌의 길이가 늘어나므로, 한 슬롯에 포함되는 SC-FDMA 심벌의 수는 일반 CP인 경우보다 적다. 예를 들어, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 6개일 수 있다. 확장된 CP는 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심벌간 간섭을 더욱 줄이기 위해 사용될 수도 있고, 멀티미디어 브로드캐스트 멀티캐스트 서비스(Multimedia Broadcast Multicast Service; MBMS)를 제공하기 위해 사용될 수도 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수, 서브프레임에 포함되는 슬롯의 수 및 슬롯에 포함되는 SC-FDMA 심벌의 수는 다양하게 변경될 수 있다.
도 3은 서브프레임의 일 예를 나타낸다.
도 3을 참조하면, 서브프레임은 2개의 슬롯을 포함한다. SC-FDMA 심벌이 일반 CP로 구성되므로, 하나의 슬롯은 시간 영역에서 7개의 SC-FDMA 심벌을 포함한다. 따라서, 하나의 서브프레임은 총 14개의 SC-FDMA 심벌을 포함한다. 한편, 주파수 영역에서 복수의 자원블록(resource block; RB)을 포함한다. 1개의 SC-FDMA 심벌과 1개의 부반송파로 이루어진 단위를 자원 요소라 한다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, 하나의 자원블록은 12×7 자원요소를 포함한다. 각 슬롯에서 적어도 하나의 SC-FDMA 심벌은 데이터의 복조에 사용되는 복조 기준신 호(DMRS)의 전송을 위해 할당된다. 나머지 SC-FDMA 심벌은 데이터 또는 제어신호의 전송을 위해 할당되므로, 한 서브프레임내에서 총 12개의 SC-FDMA 심벌이 데이터 또는 제어신호의 전송을 위해 할당된다. 만약, DMRS 외에, 상향링크 채널 추정을 위한 사운딩 기준신호(Sounding Reference Signal; SRS)가 1개의 SC-FDMA 심벌상으로 전송된다면, 한 서브프레임내에서 총 11개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 사운딩 기준신호는 2번째 슬롯의 마지막 SC-FDMA 심벌상으로 전송될 수 있다.
서브프레임의 구조는 예시에 불과하고, 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 SC-FDMA 심벌의 수, DMRS의 수, DMRS와 SRS로 할당되는 SC-FDMA 심벌의 위치는 다양하게 변경될 수 있다.
도 4는 서브프레임의 다른 예를 나타낸다.
도 4를 참조하면, 도 3에서의 서브프레임 구조와 달리, SC-FDMA 심벌이 확장된 CP로 구성되므로, 하나의 슬롯은 시간 영역에서 6개의 SC-FDMA 심벌을 포함한다. 따라서, 하나의 서브프레임은 총 12개의 SC-FDMA 심벌을 포함한다. 하나의 서브프레임이 1 TTI(Transmission Time Interval)이고, 1 TTI는 1ms이다. 각 슬롯은 0.5ms 길이이다. 각 슬롯에서 적어도 하나의 SC-FDMA 심벌은 DMRS의 전송을 위해 할당된다. 나머지 SC-FDMA 심벌은 데이터 또는 제어신호의 전송을 위해 할당되므로, 한 서브프레임내에서 총 10개의 SC-FDMA 심벌이 데이터 또는 제어신호의 전송을 위해 할당된다. 만약, DMRS외에, SRS가 1개의 SC-FDMA 심벌상으로 전송된다면, 한 서브프레임내에서 총 9개의 SC-FDMA 심벌이 데이터 또는 제어신호의 전송을 위 해 할당된다. 사운딩 기준신호는 2번째 슬롯의 마지막 SC-FDMA 심벌상으로 전송될 수 있다. 서브프레임의 구조는 예시에 불과하고, 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 SC-FDMA 심벌의 수 및 복조 기준신호가 전송되는 SC-FDMA 심벌의 위치는 다양하게 변경될 수 있다.
도 5는 STBC 기법이 적용되는 무선통신 시스템을 설명하는 설명도이다. STBC에서 신호는 시간과 공간 영역에서 분리되어 전송되며, 각 안테나별로 수신된 신호들은 최대 우도 결합(Maximum Likelihood Combining) 기법에 의해 결정된다.
도 5를 참조하면, STBC가 적용되는 무선통신 시스템은 전송기(100)와 수신기(200)를 포함한다. 전송기(100)는 데이터 처리부(data processor, 110), SC-FDMA 변조기(SC-FDMA modulator, 120), 제어부(130), RF부(Radio Frequency Unit; 140) 및 송신안테나(150-1, 150-2,..., 150-N)를 포함한다.
데이터 처리부(110)는 입력되는 정보비트(information bit)를 채널부호화(channel coding)하여 부호어(codeword)를 생성하고, 상기 부호어를 성상맵핑(constellation mapping)하여 데이터 심벌(data symbol)을 생성한다. 정보비트는 수신기(200)로 보낼 사용자 평면의 정보를 포함한다. 또한, 정보비트는 사용자 평면의 정보의 전송 또는 무선자원 할당과 관련된 제어평면의 정보를 포함할 수 있다.
SC-FDMA 변조부(120)는 시간영역의 데이터 심벌에 STBC를 수행하여 시공간 블록 부호(Space Time Block code)를 생성하고, SC-FDMA 변조 방식으로 변조하여 SC-FDMA 심벌을 생성한다. 제어평면의 정보는 사용자 평면의 정보와 별도로 변조되 어 SC-FDMA 변조부(120)로 입력될 수 있다. 제어부(130)는 데이터 처리부(110)와 SC-FDMA 변조부(120)의 동작을 제어한다. RF부(140)는 입력되는 SC-FDMA 심벌을 아날로그 신호로 변환한다. 변환된 아날로그 신호는 송신안테나(150-1, 150-2,..., 150-N)를 통하여 무선 채널로 전파된다.
수신기(200)는 RF부(210), SC-FDMA 복조부(220), 데이터 처리부(230), 제어부(240) 및 수신안테나(250-1, 250-2,... 250-M)를 포함한다.
RF부(210)는 수신안테나(250-1, 250-2,... 250-M)에서 수신한 신호를 디지털화된 신호로 변환한다. SC-FDMA 복조부(220)는 디지털화된 신호에서 SC-FDMA 변조부(120)에 대응하는 동작을 수행하여 데이터 심벌을 출력한다. 데이터 처리부(230)는 데이터 심벌로부터 정보비트를 복원한다. 제어부(240)는 SC-FDMA 복조부(220) 및 데이터 처리부(230)의 처리과정을 제어한다.
도 6은 SC-FDMA 변조부의 일 예를 도시한 블록도이다. 이는 STBC 기법이 적용되는 SC-FDMA 변조부이다. 여기서, 송신안테나는 2개라고 가정한다.
도 6을 참조하면, SC-FDMA 변조부(120)는 DFT(Discrete Fourier Transform)를 수행하는 DFT부(121), STBC 처리부(STBC processor; 122), 부반송파 맵퍼(subcarrier mapper, 123) 및 IFFT(Inverse Fast Fourier Transform)를 수행하는 IFFT부(124)를 포함한다.
DFT부(121)는 시간영역의 2N개의 데이터 심벌열 S1, S2,..., SN, SN +1,..., S2N에 DFT를 수행하여 주파수 영역 심벌열 X1, X2,..., XN, XN +1,..., X2N을 출력한다. DFT의 크기가 N이면, 한번에 N개씩 DFT 확산된다. DFT 크기는 할당된 자원블록의 크기만큼 고정된 것일 수도 있고, 시스템에 따라 가변적일 수도 있다.
STBC 처리부(122)는 주파수 영역 심벌열 X1, X2,..., XN, XN +1,..., X2N을 STBC 기법에 의해 안테나 및 시간별로 블록화하여 시공간 블록 부호 [(X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N), (XN +1, XN +2,..., X2N), (X* 1, X* 2,..., X* N)]를 생성한다. 제1 시공간 블록 부호열 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N)는 제i SC-FDMA 심벌의 부반송파에 대응되고, 제2 시공간 블록 부호열 (XN +1, XN +2,..., X2N), (X* 1, X* 2,..., X* N)는 제j SC-FDMA 심벌의 부반송파에 대응된다(i<j). STBC 처리부(123)에 의한 시공간 블록 부호는 크기 p×nT인 전송행렬 G에 의해 정의된다. 여기서, p는 시공간 블록 부호의 길이이며, nT는 송신안테나의 개수이다. G는 심벌(symbol) x1, x2,..., xp와 이들의 공액 복소수의 선형 조합으로 구성된다. 각각의 송신안테나로 다른 부호어들이 동시에 전송된다. 시공간 블록 부호의 길이가 2이고, 2개의 송신안테나를 갖는 STBC 시스템에서의 전송행렬 G는 수학식 1과 같다.
여기서,
인 경우, 생성되는 시공간 블록 부호열과 송신안테나, SC-FDMA 심벌간의 맵핑관계를 보면, 표 1과 같다.
|
제i SC-FDMA 심벌 |
제j SC-FDMA 심벌 |
제1 송신안테나 |
X1, X2,..., XN |
XN +1, XN +2,..., X2N |
제2 송신안테나 |
-X* N+1, -X* N+2,..., -X* 2N |
X* 1, X* 2,..., X* N |
표 1을 참조하면, 제i SC-FDMA 심벌에 제1 시공간 블록 부호열 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N)이 맵핑되는데, 이 중 (X1, X2,..., XN)는 제1 송신안테나를 통해 전송되고, (-X* N+1, -X* N+2,..., -X* 2N)는 제2 송신안테나를 통해 전송된다. 또한, 제j SC-FDMA 심벌에 제2 시공간 블록 부호열 (XN +1, XN +2,..., X2N), (X* 1, X* 2,..., X* N)이 맵핑되는데, 이 중 (XN +1, XN +2,..., X2N)는 제1 송신안테나를 통해 전송되고, (X* 1, X* 2,..., X* N)은 제2 송신안테나를 통해 전송된다.
부반송파 맵퍼(123)는 스케줄링 정보에 따라 할당되는 부반송파에 시공간 블록 부호어 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N), (XN +1, XN +2,..., X2N), (X* 1, X* 2,..., X* N)를 각각 맵핑한다. 여기서, 할당되는 부반송파는 매 슬롯마다 주파수 호핑(hopping)됨이 없이 모두 동일한 주파수 대역에 위치한다. 예를 들어, 송신기에 복수의 자원블록이 할당되는 경우, 각 자원블록은 연속된 슬롯상에서 모두 동일한 주파수 대역을 점유한다. 여기서, 자원블록은 복수의 부반송파를 포함하는 물리자원을 의미한다.
IFFT부(124)는 시공간 블록 부호어가 맵핑된 부반송파에 대해 IFFT를 수행하여 시간 영역 심벌인 SC-FDMA 심벌을 출력한다. 시간순서에 따라 제i SC-FDMA 심벌과 제j SC-FDMA 심벌이 생성된다. 하나의 IFFT부(124)만이 도시되었으나, 이는 예시일 뿐, 송신안테나의 개수에 따라 IFFT부(124)의 개수가 달라질 수 있음은 물론이다. DFT와 IFFT를 결합하여 변조하는 방식을 SC-FDMA라 하고, 이는 IFFT만을 사용하는 OFDM에 비해 PAPR(Peak-to-Average Power Ratio)을 낮추는 데 유리하다. 단일 반송파의 특성(Single Carrier Property)을 갖기 때문이다.
전송행렬 G에 의한 시공간 블록 부호에 있어서, 단일 반송파 특성이 만족되려면 동일한 주파수 대역의 SC-FDMA 심벌들이 짝(pair)을 이룰 것이 요구된다. SC-FDMA 심벌의 짝을 구성하는 방법에는 여러가지가 있을 수 있으나, 데이터 복원 성능을 극대화하기 위하여 DMRS의 위치 및 개수를 고려하여 SC-FDMA 심벌의 짝을 구성할 필요가 있다. 이는 DMRS의 위치로부터 가까운 SC-FDMA 심벌일수록 성공적인 데이터 복원 확률이 높아지기 때문이다. 또한, DMRS의 개수에 따라 한 슬롯에서 짝을 이룰 수 있는 SC-FDMA 심벌의 수가 좌우되기 때문데, 짝을 이루지 못하는 SC-FDMA 심벌을 어떻게 전송할지도 문제가 된다.
이하에서, SC-FDMA 심벌의 짝을 맞추는 과정을 심벌 페어링(symbol paring)이라 하고, 심벌 페어링에 의해 짝지어진 SC-FDMA 심벌의 짝을 심벌 페어(symbol pair)라 한다. 상기 도 6에서 STBC 처리부(122)에 의한 시공간 블록 부호들이 대응되는 제i SC-FDMA 심벌과 제j SC-FDMA 심벌은 심벌 페어이다. 이하에서 제i SC-FDMA 심벌과 제j SC-FDMA 심벌의 심벌 페어를 (i, j)라 표기하도록 한다.
도 7은 서브프레임내에서 심벌 페어링의 일 예를 설명하는 블록도이다.
도 7을 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 4번째 SC-FDMA심벌을 통해 전송된다. DMRS용 SC-FDMA 심벌 주변의 SC-FDMA 심벌들로 심벌페어링을 하면 데이터 전송의 신뢰성을 높일 수 있다. 이는 DMRS용 SC-FDMA 심벌에 가까울수록 향상된 채널추정에 의해 데이터가 복원될 수 있기 때문이다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
1 |
(1,2)(3,5)(6,7) |
2 |
(1,2)(3,6)(5,7) |
3 |
(1,2)(3,7)(5,6) |
4 |
(1,3)(2,5)(6,7) |
5 |
(1,3)(2,6)(5,7) |
6 |
(1,3)(2,7)(5,6) |
7 |
(1,5)(2,6)(3,7) |
8 |
(1,5)(2,7)(3,6) |
9 |
(1,5)(2,3)(6,7) |
10 |
(1,6)(2,3)(5,7) |
11 |
(1,6)(2,5)(3,7) |
12 |
(1,6)(2,7)(3,5) |
13 |
(1,7)(2,3)(5,6) |
14 |
(1,7)(2,5)(3,6) |
15 |
(1,7)(2,6)(3,5) |
표 2를 참조하면, 인덱스 15의 심벌페어링은 1번째와 7번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 3번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이루며, 2번째와 6번째 SC-FDMA 심벌이 제3 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다. 물론, 여기서 정보 1과 정보 2가 함께 전송될 수도 있고, 정보 1 또는 정보 2 중 어느 하나만 전송될 수도 있으며, 정보 1과 정보 2가 모두 전송되지 않을 수도 있다.
도 8은 서브프레임내에서 심벌 페어링의 다른 예를 설명하는 블록도이다.
도 8을 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 4번째 SC-FDMA심벌을 통해 전송된다. 한편, 7번째 SC-FDMA 심벌을 통해 SRS가 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 3, 5, 6번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
16 |
(2,3)(5,6) 1 |
17 |
(2,5)(3,6) 1 |
18 |
(2,6)(3,5) 1 |
19 |
(1,3)(5,6) 2 |
20 |
(1,5)(3,6) 2 |
21 |
(1,6)(3,5) 2 |
22 |
(1,2)(5,6) 3 |
23 |
(1,5)(2,6) 3 |
24 |
(1,6)(2,5) 3 |
25 |
(1,2)(3,6) 5 |
26 |
(1,3)(2,6) 5 |
27 |
(1,6)(2,3) 5 |
28 |
(1,2)(3,5) 6 |
29 |
(1,3)(2,5) 6 |
30 |
(1,5)(2,3) 6 |
표 3을 참조하면, 인덱스 18의 심벌페어링은 2번째와 6번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 3번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 1번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다. 물론, 여기서 정보 1과 정보 2가 함께 전송될 수도 있고, 정보 1 또는 정보 2 중 어느 하나만 전송될 수도 있으며, 정보 1과 정보 2가 모두 전송되지 않을 수도 있다.
도 9는 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 9를 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 SC-FDMA심벌을 통해 전송된다. DMRS용 SC-FDMA 심벌 주변의 SC-FDMA 심벌들로 심벌페어링을 하면 데이터 전송의 신뢰성을 높일 수 있다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
31 |
(1,2)(4,5)(6,7) |
32 |
(1,2)(4,6)(5,7) |
33 |
(1,2)(4,7)(5,6) |
34 |
(1,4)(2,5)(6,7) |
35 |
(1,4)(2,6)(5,7) |
36 |
(1,4)(2,7)(5,6) |
37 |
(1,5)(2,4)(6,7) |
38 |
(1,5)(2,6)(4,7) |
39 |
(1,5)(2,7)(4,6) |
40 |
(1,6)(2,4)(5,7) |
41 |
(1,6)(2,5)(4,7) |
42 |
(1,6)(2,7)(4,5) |
43 |
(1,7)(2,4)(5,6) |
44 |
(1,7)(2,5)(4,6) |
45 |
(1,7)(2,6)(4,5) |
표 4를 참조하면, 인덱스 37의 심벌페어링은 1번째와 5번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 4번째 SC-FDMA 심벌이 제2 심벌페어를 이루며, 6번째와 7번째 SC-FDMA 심벌이 제3 심벌페어를 이룬다. 제1 및 제2 심벌페어는 서로 이격된 위치의 SC-FDMA 심벌간에 페어를 이루고 있으나, 제3 심벌페어는 서로 인접한 SC-FDMA 심벌간에 페어를 이루고 있다.
도 10은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 10을 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 SC-FDMA심벌을 통해 전송된다. 한편, 7번째 SC-FDMA 심벌을 통해 SRS가 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 4, 5, 6번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
46 |
(2,4)(5,6) 1 |
47 |
(2,5)(4,6) 1 |
48 |
(2,6)(4,5) 1 |
49 |
(1,4)(5,6) 2 |
50 |
(1,5)(4,6) 2 |
51 |
(1,6)(4,5) 2 |
52 |
(1,2)(5,6) 4 |
53 |
(1,5)(2,6) 4 |
54 |
(1,6)(2,5) 4 |
55 |
(1,2)(4,6) 5 |
56 |
(1,4)(2,6) 5 |
57 |
(1,6)(2,4) 5 |
58 |
(1,2)(4,5) 6 |
59 |
(1,4)(2,5) 6 |
60 |
(1,5)(2,4) 6 |
표 5를 참조하면, 인덱스 60의 심벌페어링은 1번째와 5번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 4번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 1번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 11은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 11을 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 4번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 3, 5, 6번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
61 |
(2,3)(5,6) 1 |
62 |
(2,5)(3,6) 1 |
63 |
(2,6)(3,5) 1 |
64 |
(1,3)(5,6) 2 |
65 |
(1,5)(3,6) 2 |
66 |
(1,6)(3,5) 2 |
67 |
(1,2)(5,6) 3 |
68 |
(1,5)(2,6) 3 |
69 |
(1,6)(2,5) 3 |
70 |
(1,2)(3,6) 5 |
71 |
(1,3)(2,6) 5 |
72 |
(1,6)(2,3) 5 |
73 |
(1,2)(3,5) 6 |
74 |
(1,3)(2,5) 6 |
75 |
(1,5)(2,3) 6 |
표 6을 참조하면, 인덱스 70의 심벌페어링은 1번째와 2번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 3번째와 6번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 5번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 12는 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 12를 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 4번째 SC-FDMA심벌을 통해 전송된다. 한편, 6번째 SC-FDMA 심벌을 통해 SRS가 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 3, 5번째 SC-FDMA 심벌로서 총 4개이다. 심벌페어링에 의하면, 2개의 심벌페어가 만들어진다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
76 |
(1,2)(3,5) |
77 |
(1,3)(2,5) |
78 |
(1,5)(2,3) |
표 7을 참조하면, 인덱스 76의 심벌페어링은 1번째와 2번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 3번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 13은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 13을 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 4, 5, 6번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
79 |
(2,4)(5,6) 1 |
80 |
(2,5)(4,6) 1 |
81 |
(2,6)(4,5) 1 |
82 |
(1,4)(5,6) 2 |
83 |
(1,5)(4,6) 2 |
84 |
(1,6)(4,5) 2 |
85 |
(1,2)(5,6) 4 |
86 |
(1,5)(2,6) 4 |
87 |
(1,6)(2,5) 4 |
88 |
(1,2)(4,6) 5 |
89 |
(1,4)(2,6) 5 |
90 |
(1,6)(2,4) 5 |
91 |
(1,2)(4,5) 6 |
92 |
(1,4)(2,5) 6 |
93 |
(1,5)(2,4) 6 |
표 8을 참조하면, 인덱스 90의 심벌페어링은 1번째와 6번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 4번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 5번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 14는 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 14를 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 SC-FDMA심벌을 통해 전송된다. 한편, 6번째 SC-FDMA 심벌을 통해 SRS가 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 4, 5번째 SC-FDMA 심벌로서 총 4개이다. 심벌페어링에 의하면, 2개의 심벌페어가 만들어진다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
94 |
(1,2)(4,5) |
95 |
(1,4)(2,5) |
96 |
(1,5)(2,4) |
표 9를 참조하면, 인덱스 95의 심벌페어링은 1번째와 4번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 15는 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 15를 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 3번째와 4번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 5, 6, 7번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
97 |
(2,5)(6,7) 1 |
98 |
(2,6)(5,7) 1 |
99 |
(2,7)(5,6) 1 |
100 |
(1,5)(6,7) 2 |
101 |
(1,6)(5,7) 2 |
102 |
(1,7)(5,6) 2 |
103 |
(1,2)(6,7) 5 |
104 |
(1,6)(2,7) 5 |
105 |
(1,7)(2,6) 5 |
106 |
(1,2)(5,7) 6 |
107 |
(1,5)(2,7) 6 |
108 |
(1,7)(2,5) 6 |
109 |
(1,2)(5,6) 7 |
110 |
(1,5)(2,6) 7 |
111 |
(1,6)(2,5) 7 |
표 10을 참조하면, 인덱스 100의 심벌페어링은 1번째와 5번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 6번째와 7번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 2번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 16은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 16을 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 및 4번째 SC-FDMA심벌을 통해 전송된다. 한편, 7번째 SC-FDMA 심벌을 통해 SRS가 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 5, 6번째 SC-FDMA 심벌로서 총 4개이다. 심벌페어링에 의하면, 2개의 심벌페어가 만들어진다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
112 |
(1,2)(5,6) |
113 |
(1,5)(2,6) |
114 |
(1,6)(2,5) |
표 11을 참조하면, 인덱스 114의 심벌페어링은 1번째와 6번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 17은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 17을 참조하면, 하나의 슬롯은 7개의 SC-FDMA심벌을 포함하고, DMRS은 1번째와 7번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 2, 3, 4, 5, 6번째 SC-FDMA 심벌로서 총 5개이다. 심벌페어링에 의하면, 2개의 심벌페어만이 만들어지고, 1개의 SC-FDMA 심벌은 심벌페어를 이룰 수 없다. 따라서, 1개의 SC-FDMA 심벌에는 STBC방식이 적용될 수 없고, 다른 전송 다이버시티 기법이 선택적으로 적용된다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
115 |
(3,4)(5,6) 2 |
116 |
(3,5)(4,6) 2 |
117 |
(3,6)(4,5) 2 |
118 |
(2,4)(5,6) 3 |
119 |
(2,5)(4,6) 3 |
120 |
(2,6)(4,5) 3 |
121 |
(2,3)(5,6) 4 |
122 |
(2,5)(3,6) 4 |
123 |
(2,6)(3,5) 4 |
124 |
(2,3)(4,6) 5 |
125 |
(2,4)(3,6) 5 |
126 |
(2,6)(3,4) 5 |
127 |
(2,3)(4,5) 6 |
128 |
(2,4)(3,5) 6 |
129 |
(2,5)(3,4) 6 |
표 12를 참조하면, 인덱스 120의 심벌페어링은 2번째와 6번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 4번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이루나, 나머지 1개인 3번째 SC-FDMA 심벌은 심벌페어를 이루지 못한다. 따라서, 제1 및 제2 심벌페어에는 각각 STBC가 적용되나, 나머지 1개의 SC-FDMA 심벌에는 FSTD, PVS, CDD등과 같은 다른 전송 다이버시티 기법이 적용된다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 18은 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 18을 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 3번째 및 4번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 1, 2, 5, 6번째 SC-FDMA 심벌로서 총 4개이다. 심벌페어링에 의하면, 2개의 심벌페어가 만들어진다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
130 |
(1,2)(5,6) |
131 |
(1,5)(2,6) |
132 |
(1,6)(2,5) |
표 13을 참조하면, 인덱스 131의 심벌페어링은 1번째와 5번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 2번째와 6번째 SC-FDMA 심벌이 제2 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 19는 서브프레임내에서 심벌 페어링의 또 다른 예를 설명하는 블록도이다.
도 19를 참조하면, 하나의 슬롯은 6개의 SC-FDMA심벌을 포함하고, DMRS은 1번째 및 6번째 SC-FDMA심벌을 통해 전송된다. 따라서, 데이터의 전송을 위해 사용될 수 있는 SC-FDMA 심벌은 2, 3, 4, 5번째 SC-FDMA 심벌로서 총 4개이다. 심벌페어링에 의하면, 2개의 심벌페어가 만들어진다. 심벌페어링은 반드시 인접한 SC-FDMA 심벌간에만 적용될 필요는 없고, 다음의 여러가지 형태가 될 수 있다.
인덱스 |
심벌페어링 |
133 |
(2,3)(4,5) |
134 |
(2,4)(3,5) |
135 |
(2,6)(3,4) |
표 14를 참조하면, 인덱스 133의 심벌페어링은 2번째와 3번째 SC-FDMA 심벌이 제1 심벌페어를 이루고, 4번째와 5번째 SC-FDMA 심벌이 제2 심벌페어를 이룬다. 만약 정보 1이 제1 심벌페어를 통해 전송되고, 정보 2가 제2 심벌페어를 통해 전송되면, 보다 강건한 전송을 기대할 수 있다.
도 20은 본 발명의 일 예에 따른 데이터 전송방법을 나타내는 흐름도이다.
도 20을 참조하면, 정보비트를 부호화(coding)하고 성상맵핑(constellation mapping)하여 변조심벌(modulation symbol)을 생성한다(S100). 상기 변조심벌에 DFT(Discrete Fourier Transform)를 수행하여 주파수 영역 심벌을 생성한다(S110). 상기 주파수 영역 심벌에 STBC 기법을 적용하여 시공간 블록 부호를 생성한다(S120). 상기 시공간 블록 부호를 부반송파에 맵핑한 후(S130), IFFT(Inverse Fast Fourier Transform)를 수행하여 SC-FDMA 심벌을 생성한다(S140). 상기 SC-FDMA 심벌을 슬롯단위(on a slot basis)로 전송한다(S150). 여기서, 상기 슬롯은 복수의 SC-FDMA 심벌을 포함하고, 상기 복수의 SC-FDMA 심벌 중 적어도 하나는 상향링크 데이터의 복조를 위한 기준신호인 DMRS(DeModulation Reference Signal)의 전송에 사용된다. 한편, 남은 SC-FDMA 심벌들은 2개씩 짝(pair)을 이루어 STBC 기법에 따라 부호화된 정보를 전송하는데 사용된다.
상기 짝은 서로 인접한 SC-FDMA 심벌로 이루어질 수도 있고, 서로 이격된 위치의 SC-FDMA 심벌로 이루어질 수도 있다. 상기 복수의 SC-FDMA 심벌 중 적어도 하나는 상향링크 채널의 품질을 측정하기 위한 기준신호인 SRS(Sounding Reference Signal)의 전송에 사용될 수 있다. 그리고, 상기 SRS의 전송에 사용되는 SC-FDMA 심벌은 상기 슬롯의 마지막에 위치한다. 일 예로서, 상기 복수의 SC-FDMA 심벌은 7개이고, 상기 DMRS의 전송에 사용되는 SC-FDMA 심벌은 상기 슬롯내에서 4번째에 위치한다. 다른 예로서, 상기 복수의 SC-FDMA 심벌은 7개이고, 상기 DMRS의 전송에 사용되는 SC-FDMA 심벌은 상기 슬롯내에서 3번째에 위치한다. 또 다른 예로서, 상기 복수의 SC-FDMA 심벌은 6개이고, 상기 DMRS의 전송에 사용되는 SC-FDMA 심벌은 상기 슬롯내에서 3번째에 위치한다. 또 다른 예로서, 상기 복수의 SC-FDMA 심벌은 6개이고, 상기 DMRS의 전송에 사용되는 SC-FDMA 심벌은 상기 슬롯내에서 4번째에 위치한다.
상기 복수의 SC-FDMA 심벌 중 짝을 이루지 못하는 SC-FDMA 심벌은 PVS(Precoding Vector Switching), FSTD(Frequency Switched Tansmit Diversity), 또는 CDD(Cyclic Delay Diversity) 기법에 의해 부호화된 정보를 전송하는데 사용된다.
상술한 모든 기능은 상기 기능을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.