[go: up one dir, main page]

KR101467029B1 - Steel - Google Patents

Steel Download PDF

Info

Publication number
KR101467029B1
KR101467029B1 KR1020120070301A KR20120070301A KR101467029B1 KR 101467029 B1 KR101467029 B1 KR 101467029B1 KR 1020120070301 A KR1020120070301 A KR 1020120070301A KR 20120070301 A KR20120070301 A KR 20120070301A KR 101467029 B1 KR101467029 B1 KR 101467029B1
Authority
KR
South Korea
Prior art keywords
steel
weight
calcium
steel material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120070301A
Other languages
Korean (ko)
Other versions
KR20140002260A (en
Inventor
손제영
염성호
이상원
최화열
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020120070301A priority Critical patent/KR101467029B1/en
Publication of KR20140002260A publication Critical patent/KR20140002260A/en
Application granted granted Critical
Publication of KR101467029B1 publication Critical patent/KR101467029B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

칼슘 등의 합금성분 조절을 통하여 고경도를 가지면서도 수소성 결함을 저감할 수 있는 강재 및 그 제조 방법에 대하여 개시한다.
본 발명에 따른 강재는 중량%로, 탄소(C) : 0.44~0.46%, 실리콘(Si): 0.25~0.30%, 망간(Mn) : 0.8~1.2%, 인(P) : 0.02% 이하, 황(S) : 0.01~0.03%, 구리(Cu) : 0.05~0.15%, 니켈(Ni) : 0.04~0.07%, 크롬(Cr) : 0.1~0.2%, 몰리브덴(Mo) : 0.01~0.05%, 알루미늄(Al) : 0.005~0.01%, 바나듐(V) : 0.05~0.1%, 칼슘(Ca) : 0.004~0.005%, 질소(N) : 0.008~ 0.015%, 산소(O) : 0.005% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 것을 특징으로 한다.
A steel material capable of reducing the hydrolytic defects while having high hardness through adjustment of alloy components such as calcium, and a method for producing the same.
The steel according to the present invention contains, by weight%, 0.44 to 0.46% of carbon (C), 0.25 to 0.30% of silicon (Si), 0.8 to 1.2% of manganese (Mn) (Si): 0.01-0.03%, Cu: 0.05-0.15%, Ni: 0.04-0.07%, Cr: 0.1-0.2%, Mo: 0.01-0.05%, aluminum 0.005 to 0.01% of vanadium (V), 0.004 to 0.005% of calcium (Ca), 0.008 to 0.015% of nitrogen (N), 0.005% or less of oxygen (O) (Fe) and inevitable impurities.

Description

강재 {STEEL}Steel {STEEL}

본 발명은 강재 제조 기술에 관한 것으로, 보다 상세하게는 칼슘 등의 합금성분 조절을 통하여 고경도를 가지면서도 수소성 결함을 저감할 수 있는 강재 및 그 제조 방법에 관한 것이다.
The present invention relates to a steel material manufacturing technique, and more particularly, to a steel material capable of decreasing hydraulic defects while having high hardness by controlling an alloy component such as calcium and a manufacturing method thereof.

강중의 수소 고용도는 온도가 감소함에 따라 감소한다. The hydrogen solubility of steels decreases with decreasing temperature.

또한, 온도의 감소에 따라 수소 확산능도 감소하여 강재의 표층부의 냉각에 따른 내부 수소의 외부 확산을 저해하게 되며, 이에 따라 수소는 강재 내부에 그대로 잔류하게 된다. In addition, as the temperature decreases, the hydrogen diffusing ability also decreases, and the external diffusion of the internal hydrogen due to the cooling of the surface layer of the steel is inhibited. As a result, the hydrogen remains in the steel.

이러한 잔류 수소에 의하여 상온에서의 연성의 감소, 파단시 진응력의 감소, 하중 허용 능력의 감소 등이 발생하며, 이는 강 내부 크랙이나 지연 크랙 발생의 요인이 된다. This residual hydrogen causes reduction of ductility at room temperature, reduction of fracture stress, and decrease of load capacity, which are factors of internal cracks and delayed cracks.

따라서, 이러한 수소에 기인하는 크랙을 감소시킬 수 있는 기술이 요구된다.
Therefore, there is a demand for a technique capable of reducing the crack caused by such hydrogen.

본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-2012-0044118호 (2012.05.07. 공개)에 개시된 수소유기균열 저항성이 우수한 라인파이프용 고강도 열연강판 및 그 제조 방법이 있다.
As a background art related to the present invention, there is a high strength hot-rolled steel sheet for a line pipe excellent in resistance to cracking by hydrogen organic cracking disclosed in Korean Patent Laid-Open Publication No. 10-2012-0044118 (published on May 21, 2012) and a method for manufacturing the same.

본 발명의 목적은 칼슘(Ca) 등과 같은 합금 성분 조절을 통하여 고경도를 나타내면서도 수소성 결함을 저감할 수 있는 강재 및 그 제조 방법을 제공하는 것이다.
An object of the present invention is to provide a steel material capable of reducing the hydrothermal defects while exhibiting high hardness through adjustment of alloy components such as calcium (Ca), and a method for producing the same.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 강재는 중량%로, 탄소(C) : 0.44~0.46%, 실리콘(Si): 0.25~0.30%, 망간(Mn) : 0.8~1.2%, 인(P) : 0.02% 이하, 황(S) : 0.01~0.03%, 구리(Cu) : 0.05~0.15%, 니켈(Ni) : 0.04~0.07%, 크롬(Cr) : 0.1~0.2%, 몰리브덴(Mo) : 0.01~0.05%, 알루미늄(Al) : 0.005~0.01%, 바나듐(V) : 0.05~0.1%, 칼슘(Ca) : 0.004~0.005%, 질소(N) : 0.008~ 0.015%, 산소(O) : 0.005% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 것을 특징으로 한다. In order to achieve the above object, steel according to an embodiment of the present invention comprises 0.44 to 0.46% of carbon, 0.25 to 0.30% of silicon, 0.8 to 1.2% of manganese (Mn) (P): 0.02% or less, S: 0.01-0.03%, Cu: 0.05-0.15%, Ni: 0.04-0.07%, Cr: 0.1-0.2%, molybdenum (N): 0.008 to 0.015%, and oxygen (O) in a range of 0.01 to 0.05% Mo, 0.005 to 0.01% aluminum, 0.05 to 0.1% vanadium (V), 0.004 to 0.005% O): 0.005% or less and the balance of iron (Fe) and unavoidable impurities.

이때, 상기 강재는 브리넬 경도(HB) : 250 이상을 나타낼 수 있다.At this time, the steel may have a Brinell hardness (HB) of 250 or more.

또한, 상기 강재는 MnS 개재물의 평균 길이가 2.2㎛ 이하이고, 종횡비가 1.8 이하일 수 있다.
The steel material may have an average length of MnS inclusions of 2.2 mu m or less and an aspect ratio of 1.8 or less.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 강재 제조 방법은 중량%로, 탄소(C) : 0.44~0.46%, 실리콘(Si): 0.25~0.30%, 망간(Mn) : 0.8~1.2%, 인(P) : 0.02% 이하, 황(S) : 0.01~0.03%, 구리(Cu) : 0.05~0.15%, 니켈(Ni) : 0.04~0.07%, 크롬(Cr) : 0.1~0.2%, 몰리브덴(Mo) : 0.01~0.05%, 알루미늄(Al) : 0.005~0.01%, 바나듐(V) : 0.05~0.1%, 칼슘(Ca) : 0.004~0.005%, 질소(N) : 0.008~ 0.015%, 산소(O) : 0.005% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 반제품 강재를 마련하는 단계; 상기 반제품 강재를 Ar3 온도 이상의 마무리 압연온도 조건으로 열간압연하는 단계; 및 상기 열간압연된 강재를 냉각하는 단계;를 포함하는 것을 특징으로 한다.
In order to achieve the above object, a method of manufacturing a steel material according to an embodiment of the present invention includes: 0.44 to 0.46% of carbon; 0.25 to 0.30% of silicon; 0.8 to 1.2% of manganese (Mn) (P): 0.02% or less, S: 0.01-0.03%, Cu: 0.05-0.15%, Ni: 0.04-0.07%, Cr: 0.1-0.2% And the molybdenum content is preferably in the range of 0.01 to 0.05% of molybdenum (Mo), 0.005 to 0.01% of aluminum (Al), 0.05 to 0.1% of vanadium (V), 0.004 to 0.005% of calcium (Ca) Providing a semi-finished steel material consisting of 0.005% or less of oxygen (O) and the balance of iron (Fe) and unavoidable impurities; Hot-rolling the semi-finished steel material at a finishing rolling temperature condition of Ar3 or higher; And cooling the hot-rolled steel material.

본 발명에 따른 강재 제조 방법에 의하면, 칼슘 등의 합금성분 조절을 통하여, 고경도를 유지할 수 있고, 아울러 칼슘의 적정량 첨가에 따라 MnS 개재물의 형상을 제어함으로서 강 내부 수소의 외부 확산을 유도할 수 있어, 수소성 결함을 저해할 수 있다.
According to the method for manufacturing a steel material according to the present invention, it is possible to maintain the high hardness through controlling the alloy component such as calcium, and to control the shape of the MnS inclusion according to the addition of a proper amount of calcium, So that it is possible to inhibit the hydrogenation defects.

도 1은 비교예 1~3 및 실시예 1에 따른 시편의 MnS 개재물 형상을 나타낸 것이다.
도 2는 비교예 1~3 및 실시예 1에 따른 시편의 MnS 개재물의 사이즈 분포도를 나타낸 것이다.
도 3은 비교예 1~3 및 실시예 1에 따른 시편의 MnS 개재물의 종횡비 분포도를 나타낸 것이다.
도 4는 비교예 1 및 실시예 1에 따른 시편의 개재물 형상을 비교한 것이다.
도 5는 비교예 1~3 및 실시예 1에 따른 시편의 충격 이방성 평가 결과를 나타낸 것이다.
도 6은 비교예 1~3 및 실시예 1에 따른 시편의 HIC 평가 결과를 나타낸 것이다.
Fig. 1 shows the shape of MnS inclusions of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.
Fig. 2 shows a size distribution diagram of MnS inclusions of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.
Fig. 3 shows the distribution of aspect ratios of MnS inclusions of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.
Fig. 4 compares the inclusion shapes of the specimens according to Comparative Example 1 and Example 1. Fig.
5 shows results of impact anisotropy evaluation of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.
6 shows the HIC evaluation results of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 강재 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a steel material according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

강재Steel

본 발명에 따른 강재는 중량%로, 탄소(C) : 0.44~0.46%, 실리콘(Si): 0.25~0.30%, 망간(Mn) : 0.8~1.2%, 인(P) : 0.02% 이하, 황(S) : 0.01~0.03%, 구리(Cu) : 0.05~0.15%, 니켈(Ni) : 0.04~0.07%, 크롬(Cr) : 0.1~0.2%, 몰리브덴(Mo) : 0.01~0.05%, 알루미늄(Al) : 0.005~0.01%, 바나듐(V) : 0.05~0.1%, 칼슘(Ca) : 0.004~0.005%, 질소(N) : 0.008~ 0.015% 및 산소(O) : 0.005% 이하를 포함한다. The steel according to the present invention contains, by weight%, 0.44 to 0.46% of carbon (C), 0.25 to 0.30% of silicon (Si), 0.8 to 1.2% of manganese (Mn) (Si): 0.01-0.03%, Cu: 0.05-0.15%, Ni: 0.04-0.07%, Cr: 0.1-0.2%, Mo: 0.01-0.05%, aluminum , 0.005 to 0.01% of aluminum (Al), 0.05 to 0.1% of vanadium (V), 0.004 to 0.005% of calcium (Ca), 0.008 to 0.015% of nitrogen (N) .

상기 성분들 외 나머지는 철(Fe)과 불가피한 불순물로 이루어진다. The rest of the above components are composed of iron (Fe) and unavoidable impurities.

이하, 본 발명에 따른 강재에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
Hereinafter, the role and content of each component contained in the steel according to the present invention will be described.

탄소(C)Carbon (C)

본 발명에서 탄소(C)는 강의 경도를 확보하기 위하여 첨가된다. In the present invention, carbon (C) is added to secure the hardness of the steel.

상기 탄소는 강재 전체 중량의 0.44~0.46중량%로 첨가되는 것이 바람직하다. 탄소의 첨가량이 0.44중량% 미만인 경우, 목표로 하는 경도 확보가 어렵다. 반대로, 탄소의 첨가량이 0.46중량%를 초과할 경우 가공성이 저하되는 문제점이 있다.
The carbon is preferably added in an amount of 0.44 to 0.46% by weight based on the total weight of the steel material. When the addition amount of carbon is less than 0.44 wt%, it is difficult to secure the desired hardness. On the contrary, when the addition amount of carbon exceeds 0.46% by weight, the workability is deteriorated.

실리콘(Si)Silicon (Si)

본 발명에서 실리콘(Si)은 강 중의 산소를 제거하기 위한 탈산제로 첨가되며, 또한 고용 강화 효과를 향상시키는 역할을 한다. In the present invention, silicon (Si) is added as a deoxidizer to remove oxygen in the steel, and also serves to improve the solid solution strengthening effect.

상기 실리콘은 강재 전체 중량의 0.25~0.30중량%로 첨가되는 것이 바람직하다. 실리콘의 첨가량이 0.25중량% 미만일 경우 실리콘 첨가에 따른 탈산 효과 및 고용 강화 효과가 불충분하다. 반대로, 실리콘의 첨가량이 0.30중량%를 초과할 경우 제조되는 강재의 가공성을 저하시키는 문제점이 있다.
The silicon is preferably added in an amount of 0.25 to 0.30% by weight based on the total weight of the steel material. When the addition amount of silicon is less than 0.25% by weight, the deoxidation effect and the solid solution strengthening effect by the addition of silicon are insufficient. On the contrary, when the addition amount of silicon exceeds 0.30 wt%, there is a problem that the workability of a steel material to be produced is lowered.

망간(Mn)Manganese (Mn)

본 발명에서 망간(Mn)은 고용강화 원소로써 매우 효과적이며 제조되는 강재의 강도 확보에 효과적인 원소이다. In the present invention, manganese (Mn) is a very effective element as a solid solution strengthening element and is an effective element for securing the strength of a steel material to be produced.

상기 망간은 강재 전체 중량의 0.8~1.2중량%로 첨가되는 것이 바람직하다. 망간의 첨가량이 0.8중량% 미만인 경우, 망간 첨가에 따른 고용강화 효과 및 강도 확보 효과가 불충분하다. 반대로, 망간의 첨가량이 1.2중량%를 초과할 경우, 피삭성을 악화시키는 문제점이 있다.
The manganese is preferably added in an amount of 0.8 to 1.2% by weight based on the total weight of the steel material. When the addition amount of manganese is less than 0.8% by weight, the solid solution strengthening effect and the strength securing effect due to the addition of manganese are insufficient. On the contrary, when the addition amount of manganese exceeds 1.2% by weight, the machinability is deteriorated.

인(P)In (P)

인(P)은 입게 편석성 원소로서, 과다 함유되면 강의 충격 특성을 저해하며, 공정 중 크랙을 유발한다. Phosphorus (P) is a segregating element, and if it is contained in excess, it impairs the impact characteristics of the steel and causes cracks in the process.

이에 본 발명에서는 인의 함량을 강재 전체 중량의 0.02중량% 이하로 제한하였다.
In the present invention, the content of phosphorus is limited to 0.02% by weight or less based on the total weight of the steel material.

황(S)Sulfur (S)

황(S)은 본 발명에 따른 강재의 피삭성 혹은 가공성을 향상시키기 위하여 첨가된다. Sulfur (S) is added to improve the machinability or workability of the steel material according to the present invention.

상기 황은 강재 전체 중량의 0.01~0.03중량%로 첨가되는 것이 바람직하다. 황의 첨가량이 0.01중량% 미만인 경우, MnS 개재물 형성이 불충분하여 가공성 향상에 기여하지 못한다. 반대로, 황(S)의 함량이 0.03중량%를 초과할 경우 강의 찢어짐을 유발하고, 거대 개재물 형성에 의하여 표면 결함의 원인이 된다.
The sulfur is preferably added in an amount of 0.01 to 0.03% by weight based on the total weight of the steel material. When the addition amount of sulfur is less than 0.01% by weight, MnS inclusion formation is insufficient and does not contribute to improvement of processability. On the other hand, when the content of sulfur (S) exceeds 0.03% by weight, tearing of the steel is caused, and surface defects are caused by the formation of large inclusions.

구리(Cu)Copper (Cu)

구리(Cu)는 미세 석출물을 조장하여 강도 상승에 기여한다. Copper (Cu) promotes fine precipitates and contributes to the increase in strength.

상기 구리는 강재 전체 중량의 0.05~0.15중량%로 첨가되는 것이 바람직하다. 구리의 첨가량이 0.05중량% 미만일 경우, 강도 상승 효과가 불충분하다. 반대로, 구리의 첨가량이 0.15중량%를 초과하는 경우, 강의 가공성이 저하되고, 표면 결함을 유발하는 문제점이 있다.
The copper is preferably added in an amount of 0.05 to 0.15% by weight based on the total weight of the steel material. When the addition amount of copper is less than 0.05% by weight, the effect of increasing the strength is insufficient. On the other hand, when the addition amount of copper exceeds 0.15% by weight, the workability of the steel is lowered and surface defects are caused.

니켈(Ni)Nickel (Ni)

니켈(Ni)은 경화능을 증대시켜 강의 강도 향상에 기여한다.Nickel (Ni) increases the hardenability and contributes to the strength improvement of steel.

상기 니켈은 강재 전체 중량의 0.04~0.07중량%로 첨가되는 것이 바람직하다. 니켈의 첨가량이 0.04중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 니켈의 첨가량이 0.07중량%를 초과하는 경우, 강재 제조 원가가 크게 상승하고, 가공성이 저하될 수 있다.
The nickel is preferably added in an amount of 0.04 to 0.07% by weight based on the total weight of the steel material. When the addition amount of nickel is less than 0.04% by weight, the effect of addition is insufficient. On the other hand, when the addition amount of nickel exceeds 0.07% by weight, the manufacturing cost of steel material increases greatly, and the workability may be lowered.

크롬(Cr)Chromium (Cr)

크롬(Cr)은 경화능 향상 원소로 첨가되어 강도 향상에 기여한다. Chromium (Cr) is added as an element for improving hardenability and contributes to the improvement of strength.

상기 크롬은 강재 전체 중량의 0.1~0.2중량%로 첨가되는 것이 바람직하다. 크롬의 첨가량이 0.1중량% 미만일 경우 강도 보상 효과가 미미하다. 반대로, 크롬의 첨가량이 0.2중량%를 초과하는 경우, 가공성이 저하되는 문제점이 있다.
The chromium is preferably added in an amount of 0.1 to 0.2% by weight based on the total weight of the steel material. If the addition amount of chromium is less than 0.1 wt%, the effect of compensating the strength is insignificant. On the contrary, when the addition amount of chromium exceeds 0.2% by weight, the workability is deteriorated.

몰리브덴(Mo)Molybdenum (Mo)

몰리브덴(Mo)은 소입성 원소로 첨가되어 강도 향상에 기여한다. Molybdenum (Mo) is added as an ingot element and contributes to strength improvement.

상기 몰리브덴은 강재 전체 중량의 0.01~0.05중량%로 첨가되는 것이 바람직하다. 몰리브덴의 첨가량이 0.01중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 몰리브덴의 첨가량이 0.05중량%를 초과할 경우, 가공성을 저하시키며, 또한 강재 제조 원가를 크게 상승시킬 수 있다.
The molybdenum is preferably added in an amount of 0.01 to 0.05% by weight based on the total weight of the steel material. If the addition amount of molybdenum is less than 0.01% by weight, the effect of the addition is insufficient. On the other hand, when the addition amount of molybdenum exceeds 0.05% by weight, the workability is lowered and the manufacturing cost of steel material can be greatly increased.

알루미늄(Al)Aluminum (Al)

알루미늄(Al)은 우수한 탈산 효과를 제공하며, 또한 질소(N)와 결합하여 입자미세화에 기여한다. Aluminum (Al) provides an excellent deoxidizing effect and also contributes to particle refinement by bonding with nitrogen (N).

상기 알루미늄은 강재 전체 중량의 0.005~0.01중량%로 첨가되는 것이 바람직하다. 알루미늄의 첨가량이 0.005중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 알루미늄의 첨가량이 0.01중량%를 초과하는 경우, Al2O3를 과다하게 생성할 수 있다.
The aluminum is preferably added in an amount of 0.005 to 0.01% by weight based on the total weight of the steel material. When the addition amount of aluminum is less than 0.005% by weight, the effect of addition is insufficient. On the contrary, when the added amount of aluminum exceeds 0.01% by weight, Al 2 O 3 can be excessively produced.

바나듐(V)Vanadium (V)

바나듐(V)은 석출 강화에 의하여 강도를 향상시키는 역할을 한다. Vanadium (V) plays a role in improving the strength by precipitation strengthening.

상기 바나듐은 강재 전체 중량의 0.05~0.1중량%로 첨가되는 것이 바람직하다. 바나듐의 첨가량이 0.05중량% 미만일 경우, 석출 강화 효과가 불충분하다. 반대로, 바나듐의 첨가량이 0.1중량%를 초과하는 경우에는 가공성이 크게 저하될 수 있다.
The vanadium is preferably added in an amount of 0.05 to 0.1% by weight based on the total weight of the steel material. If the addition amount of vanadium is less than 0.05% by weight, the precipitation strengthening effect is insufficient. On the contrary, when the addition amount of vanadium exceeds 0.1 wt%, the workability may be greatly lowered.

칼슘(Ca)Calcium (Ca)

칼슘(Ca)은 MnS 개재물의 핵생성 사이트로 작용하여, 수소 확산을 저해하는 MnS 개재물의 연신을 억제함으로써, 강재의 수소성 결함 발생을 억제한다. Calcium (Ca) functions as a nucleation site of MnS inclusions, and suppresses the elongation of MnS inclusions that inhibit hydrogen diffusion, thereby suppressing the occurrence of hydrogenation defects in the steel.

상기 칼슘은 강재 전체 중량의 0.004~0.005중량%(40~50ppm)로 첨가되는 것이 바람직하다. 칼슘의 첨가량이 0.004중량% 미만일 경우, 그 효과가 불충분하다. 반대로, 칼슘의 첨가량이 0.005중량%를 초과하는 경우, 경질의 CaO를 다량 생성하여 강의 가공성을 저해할 수 있다.
The calcium is preferably added in an amount of 0.004 to 0.005% by weight (40 to 50 ppm) of the total weight of the steel material. When the addition amount of calcium is less than 0.004% by weight, the effect is insufficient. On the other hand, when the addition amount of calcium exceeds 0.005% by weight, a large amount of hard CaO can be produced and the workability of the steel can be inhibited.

질소(N)Nitrogen (N)

질소(N)는 알루미늄 등과 결합하여 질화물을 형성함으로써 오스테나이트 결정립 미세화에 따른 기계적 특성 향상에 기여한다. 그러나, 질소의 과다 함유는 열간 단조성을 저해한다. Nitrogen (N) combines with aluminum or the like to form a nitride, thereby contributing to improvement of mechanical characteristics due to miniaturization of austenite grains. However, excessive nitrogen content inhibits hot stripping.

상기 질소는 강재 전체 중량의 0.008~0.015중량%(80~150ppm)으로 함유되는 것이 바람직하다. 질소의 함량이 0.008중량% 미만일 경우 질화물 형성 효과가 불충분하다. 반대로, 질소의 함량이 0.015중량%를 초과하는 경우 열간 단조성을 저해할 수 있다.
The nitrogen is preferably contained in an amount of 0.008-0.015 wt% (80-150 ppm) of the total weight of the steel material. When the content of nitrogen is less than 0.008% by weight, the nitride forming effect is insufficient. On the other hand, if the content of nitrogen exceeds 0.015 wt%, the hot stripping can be inhibited.

산소(N)Oxygen (N)

산소(O)는 칼슘과 결합하여 경질의 CaO를 형성함으로써, 본 발명에서 목적으로 하는 MnS 개재물의 연신 억제를 방해한다. Oxygen (O) binds calcium to form hard CaO, thereby inhibiting the stretching inhibition of the intended MnS inclusion in the present invention.

이러한 이유로, 본 발명에서는 상기 산소의 함량을 강재 전체 중량의 0.005중량%(50ppm) 이하로 제한하였다.
For this reason, in the present invention, the oxygen content is limited to 0.005 wt% (50 ppm) or less of the total weight of the steel material.

본 발명에 따른 강재는 브리넬 경도(HB) : 250 이상의 고경도를 나타낼 수 있다. 아울러, 본 발명에 따른 강재는 MnS 개재물의 평균 길이가 2.2㎛ 이하이고, 종횡비가 1.8 이하일 수 있다.
The steel material according to the present invention may exhibit a hardness of Brinell hardness (HB): 250 or more. In addition, the steel material according to the present invention may have an average length of MnS inclusions of 2.2 탆 or less and an aspect ratio of 1.8 or less.

강재 제조 방법Steel manufacturing method

본 발명에 따른 강재 제조 방법은 반제품 강재 마련 단계, 열간압연 단계 및 냉각 단계를 포함한다. The method for manufacturing a steel material according to the present invention includes a semi-finished steel material preparing step, a hot rolling step and a cooling step.

반제품 강재 마련 단계에서는 전술한 조성을 갖는 반재품 강재, 즉, 슬라브, 잉곳, 빌렛 등을 마련한다. In the semi-finished steel product preparing step, semi-finished steel having the above-mentioned composition, that is, slab, ingot, billet and the like are provided.

다음으로, 열간압연 단계는 반제품 강재를 열간압연한다. 이때, 열간압연은 Ar3 이상, 보다 바람직하게는 900~1000℃의 마무리압연온도 조건으로 실시될 수 있다. Ar3 이상의 마무리압연온도 조건에서, 열간압연 후 냉각 전 강판의 조직이 안정된 오스테나이트 상이 될 수 있으며, 그 이하에서의 압연은 혼립 조직 발생 등의 문제를 야기할 수 있다. 다만, 마무리압연온도가 1000℃를 초과하여 과다하게 높을 경우 오스테나이트 결정립이 조대화되어 강도 확보가 어려워질 수 있다. Next, the hot rolling step hot-rolls the semi-finished steel. At this time, the hot rolling can be carried out at a finish rolling temperature of Ar3 or higher, more preferably 900 to 1000 占 폚. Under the finish rolling temperature condition of Ar3 or higher, the structure of the steel sheet before cooling after hot rolling may become a stable austenite phase, and rolling at a lower temperature may cause problems such as generation of coarse grain structure. However, if the finishing rolling temperature is excessively high exceeding 1000 캜, the austenite grains may become coarse and the strength may be hardly secured.

다음으로, 냉각 단계에서는 열간압연된 강을 냉각한다. 냉각은 자연냉각 및 강제냉각 모두 가능하나, 강 제조 비용 측면에서 상온까지 자연냉각하는 것이 보다 바람직하다.
Next, in the cooling step, the hot-rolled steel is cooled. Cooling can be both natural cooling and forced cooling, but natural cooling to room temperature is more preferable in terms of steel production cost.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 강재 시편의 제조1. Manufacture of steel specimens

표 1-1 및 표 1-2에 기재된 조성을 이용하여, 강재 시편을 제조하였다. 시편 1~9에 따른 강재 시편의 제조를 위하여, 진공유도용해로를 이용하여 표 1 및 표 2에 기재된 조성을 갖는 50Kg의 잉곳을 각각 제작하였다. 이 후, 각각의 잉곳을 950℃의 마무리압연온도 조건으로 열간압연한 뒤, 상온까지 공냉하였다. Using the compositions shown in Table 1-1 and Table 1-2, steel specimens were prepared. For the preparation of the steel specimens according to Specimens 1 to 9, ingots of 50 kg each having the compositions shown in Tables 1 and 2 were prepared by using a vacuum induction melting furnace. Thereafter, each of the ingots was hot-rolled at a finishing rolling temperature of 950 캜 and then air-cooled to room temperature.

[표 1-1] (단위 : 중량%)[Table 1-1] (Unit:% by weight)

Figure 112012051926718-pat00001
Figure 112012051926718-pat00001

[표 1-2] (단위 : 중량%)[Table 1-2] (Unit:% by weight)

Figure 112012051926718-pat00002

Figure 112012051926718-pat00002

2. 경도 및 MnS 개재물 평가2. Evaluation of hardness and MnS inclusions

(1) 경도 평가(1) Hardness evaluation

브리넬 경도기를 이용하여, 각각의 강재 시편의 경도를 각각 5회 측정한 후, 상한값/하한값을 제외한 중간값의 평균값을 나타내었으며, 그 결과를 표 1-2에 나타내었다. The hardness of each steel specimen was measured five times using a Brinell hardness tester, and the average value of the intermediate values excluding the upper limit value and the lower limit value was shown, and the results are shown in Table 1-2.

표 1-2를 참조하면, 칼슘이 첨가되지 않은 비교예 1에 따른 강재 시편 및 칼슘이 0.0048중량% 포함된 실시예 1에 따른 강재 시편의 경우, 브리넬 경도(HB) 250 이상을 나타내었으나, 칼슘이 상대적으로 적게 첨가된 비교예 2~3에 따른 강재 시편의 경우, 브리넬 경도(HB)가 상대적으로 낮게 나타났다.
Referring to Table 1-2, the steel specimen according to Comparative Example 1 in which calcium was not added and the steel specimen according to Example 1 including 0.0048 wt% of calcium exhibited a Brinell hardness (HB) of 250 or more, In the case of the steel specimens according to Comparative Examples 2 to 3 in which relatively little addition was made, the Brinell hardness (HB) was relatively low.

(2) 개재물 평가(2) Evaluation of inclusions

표 2는 ASTM E45 방법으로 MnS 개재물을 평가한 결과를 나타낸 것이다. Table 2 shows the results of evaluating MnS inclusions by the ASTM E45 method.

[표 2] [Table 2]

Figure 112012051926718-pat00003
Figure 112012051926718-pat00003

표 2를 참조하면, 칼슘이 첨가되지 않은 비교예 1에 따른 시편에 비하여 칼슘이 첨가된 비교예 2~3 및 실시예 1에 따른 시편의 경우, 개재물의 연신성이 억제되었으며, 특히 실시예 1에 따른 시편의 경우, 연신성이 가장 억제되어 있는 것을 볼 수 있다. 이는 실시예 1에 따른 시편의 경우, 평균 길이가 2.2㎛ 이하이고, 종횡비(A/R)가 1.8 이하인 것으로부터도 알 수 있다. The results are shown in Table 2. As shown in Table 2, in the case of Comparative Examples 2 to 3 in which calcium was added and the specimen according to Example 1 in comparison with the specimen according to Comparative Example 1 in which calcium was not added, the elongation properties of inclusions were suppressed, , It can be seen that the extensibility is most suppressed. In the case of the specimen according to Example 1, the average length is 2.2 탆 or less and the aspect ratio (A / R) is 1.8 or less.

도 1 내지 도 3은 비교예 1~3 및 실시예 1에 따른 시편의 MnS 개재물 형상, MnS 개재물의 사이즈 분포도 및 MnS 개재물의 종횡비 분포도를 나타낸 것이다.Figs. 1 to 3 show the shapes of MnS inclusions, the size distribution of MnS inclusions, and the aspect ratio distribution of MnS inclusions of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.

도 1 내지 도 3을 참조하면, 칼슘이 상대적으로 많이 첨가된 경우, MnS 개재물의 연신이 상대적으로 더 억제되어, 개재물의 길이가 짧은 것이 수가 더 많아지며, 종횡비 역시 작은 것의 수가 더 많아짐을 볼 수 있다. Referring to FIGS. 1 to 3, when calcium is added in a relatively large amount, the elongation of the MnS inclusions is relatively more suppressed, the number of inclusions having a shorter length is increased, have.

도 4는 비교예 1 및 실시예 1에 따른 시편의 개재물 형상을 비교한 것이다.Fig. 4 compares the inclusion shapes of the specimens according to Comparative Example 1 and Example 1. Fig.

도 4를 참조하면, 칼슘이 첨가되지 않은 비교예 1에 따른 강재 시편의 경우, MnS 개재물이 길게 연신되어 있으나, 칼슘이 48ppm 첨가된 실시예 1에 따른 강재 시편의 경우, MnS 개재물이 구형에 가까운 형태로 되어 있는 것을 볼 수 있다. 4, in the case of the steel specimen according to Comparative Example 1 in which calcium was not added, although the MnS inclusions were elongated in length, in the case of the steel specimen according to Example 1 in which calcium was added in an amount of 48 ppm, the MnS inclusions were close to spherical It can be seen that it is in the form.

도 5는 비교예 1~3 및 실시예 1에 따른 시편의 충격 이방성 평가 결과를 나타낸 것이다. 5 shows results of impact anisotropy evaluation of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.

도 5를 참조하면, 압연방향(0ㅀ) 충격인성 대비 45ㅀ 및 90ㅀ 모두 칼슘의 함량이 높을수록 더 높은 특성을 나타내었다. Referring to FIG. 5, the higher the calcium content in the rolling direction (0 ㅀ) impact toughness than the 45 ㅀ and 90 ㅀ, the higher the characteristics were.

도 6은 비교예 1~3 및 실시예 1에 따른 시편의 HIC(Hydrogen Induced Cracking) 평가 결과를 나타낸 것이다.6 shows the results of HIC (Hydrogen Induced Cracking) evaluation of the specimens according to Comparative Examples 1 to 3 and Example 1. Fig.

도 6을 참조하면, 칼슘이 첨가되지 않았거나, 칼슘의 첨가량이 적은 경우, 수소유기크랙이 발생하는 것을 볼 수 있으나, 칼슘이 다량 첨가된 경우, 수소유기크랙이 발생하지 않는 것을 볼 수 있다. Referring to FIG. 6, it can be seen that hydrogen organic cracking occurs when calcium is not added or when calcium calcium is added in a small amount. However, when calcium is added in a large amount, hydrogen organic cracking does not occur.

따라서, 본원발명의 경우, Ca 등의 첨가에 따라서 MnS 개재물의 연신을 억제함으로써, 고경도를 가지면서도 수소성 결함을 저감시킬 수 있는 효과가 있다.
Therefore, in the case of the present invention, the addition of Ca or the like suppresses the elongation of the MnS inclusions, thereby achieving the effect of reducing the hydrolytic defects while having high hardness.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications are intended to fall within the scope of the present invention unless they depart from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

Claims (5)

삭제delete 중량%로, 탄소(C) : 0.44~0.46%, 실리콘(Si): 0.25~0.30%, 망간(Mn) : 0.8~1.2%, 인(P) : 0.02% 이하, 황(S) : 0.01~0.03%, 구리(Cu) : 0.05~0.15%, 니켈(Ni) : 0.04~0.07%, 크롬(Cr) : 0.1~0.2%, 몰리브덴(Mo) : 0.01~0.05%, 알루미늄(Al) : 0.005~0.01%, 바나듐(V) : 0.05~0.1%, 칼슘(Ca) : 0.004~0.005%, 질소(N) : 0.008~ 0.015%, 산소(O) : 0.005% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고,
브리넬 경도(HB) : 250 이상을 나타내는 것을 특징으로 하는 강재.
(P): 0.02% or less, sulfur (S): 0.01 to 0.5% by weight, carbon (C): 0.44 to 0.46%, silicon (Si): 0.25 to 0.30%, manganese (Ni): 0.04 to 0.07%, chromium (Cr): 0.1 to 0.2%, molybdenum (Mo): 0.01 to 0.05%, aluminum (Al): 0.005 to 0.03% (Fe) and unavoidable impurities (Fe) in an amount of 0.001 to 0.01%, vanadium (V) in an amount of 0.05 to 0.1%, calcium (Ca) in an amount of 0.004 to 0.005%, nitrogen (N) in an amount of 0.008 to 0.015% Lt; / RTI >
And a Brinell hardness (HB): 250 or more.
제2항에 있어서,
상기 강재는
MnS 개재물의 평균 길이가 2.2㎛ 이하이고, 종횡비가 1.8 이하인 것을 특징으로 하는 강재.
3. The method of claim 2,
The steel
An MnS inclusion having an average length of 2.2 탆 or less and an aspect ratio of 1.8 or less.
삭제delete 삭제delete
KR1020120070301A 2012-06-28 2012-06-28 Steel Active KR101467029B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120070301A KR101467029B1 (en) 2012-06-28 2012-06-28 Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120070301A KR101467029B1 (en) 2012-06-28 2012-06-28 Steel

Publications (2)

Publication Number Publication Date
KR20140002260A KR20140002260A (en) 2014-01-08
KR101467029B1 true KR101467029B1 (en) 2014-12-01

Family

ID=50139356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120070301A Active KR101467029B1 (en) 2012-06-28 2012-06-28 Steel

Country Status (1)

Country Link
KR (1) KR101467029B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129838A (en) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd Non-heat treated steel
JP2006104526A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp Manufacturing method of high-strength parts and high-strength parts
KR20100091243A (en) * 2004-09-15 2010-08-18 신닛뽄세이테쯔 카부시키카이샤 High-strength part and process for producing the same
KR20100116608A (en) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129838A (en) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd Non-heat treated steel
KR20100091243A (en) * 2004-09-15 2010-08-18 신닛뽄세이테쯔 카부시키카이샤 High-strength part and process for producing the same
JP2006104526A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp Manufacturing method of high-strength parts and high-strength parts
KR20100116608A (en) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof

Also Published As

Publication number Publication date
KR20140002260A (en) 2014-01-08

Similar Documents

Publication Publication Date Title
KR20120033235A (en) Line pipe steel with excellent hic resistance and method of manufacturing the line pipe steel
CN112912530A (en) Austenitic high-manganese steel material with excellent yield strength and preparation method thereof
KR101277807B1 (en) HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 700MPa GRADE WITH HIGH STRENGTH AND LOW YIELD RATIO AND METHOD OF MANUFACTURING THE SAME
KR20150124810A (en) High strength steel sheet and method of manufacturing the same
KR20140056765A (en) Shape steel and method of manufacturing the same
KR101758527B1 (en) Steel sheet for pipe having excellent weldability, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR101467029B1 (en) Steel
KR20140002256A (en) Micro-alloyed steel and method of manufacturing the same
KR20140042107A (en) Hot-rolled steel sheet and method of manufacturing the same
KR101246456B1 (en) High strength steel sheet and method of manufacturing the high strength steel sheet
KR101546124B1 (en) Hot-rolled steel and method of manufacturing the same
KR101505287B1 (en) Steel and method for manufacturing the same
KR20130088329A (en) Steel sheet and method of manufacturing the steel sheet
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
KR20150076888A (en) Extremely thick steel sheet and method of manufacturing the same
KR20110130972A (en) High-strength linepipe steel with excellent low temperature DTVT properties and its manufacturing method
KR101377890B1 (en) High strength hot-rolled steel sheet and method of manufacturing the same
KR101505291B1 (en) Steel and method of manufacturing the same
KR101355725B1 (en) High strength hot-rolled steel sheet and method for manufacturing the hot-rolled steel sheet
KR101149251B1 (en) HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 650MPa GRADE WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL
KR101467048B1 (en) Thick steel sheet and method of manufacturing the same
KR101648267B1 (en) High strength hot-rolled steel sheet and method of manufacturing the same
KR101290364B1 (en) Steel plate with high strength and method of manufacturing the same
KR101455464B1 (en) Extremely thick steel sheet and method of manufacturing the same
KR101344563B1 (en) High carbon steel and method of manufacturing the high carbon steel

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120628

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20121030

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20120628

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20140429

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20141030

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20141124

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20141124

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20171107

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20181017

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20181017

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20201029

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20231010

Start annual number: 10

End annual number: 10