KR101460279B1 - STAINLESS STEEL BASED ON Cr-Mn - Google Patents
STAINLESS STEEL BASED ON Cr-Mn Download PDFInfo
- Publication number
- KR101460279B1 KR101460279B1 KR1020120152424A KR20120152424A KR101460279B1 KR 101460279 B1 KR101460279 B1 KR 101460279B1 KR 1020120152424 A KR1020120152424 A KR 1020120152424A KR 20120152424 A KR20120152424 A KR 20120152424A KR 101460279 B1 KR101460279 B1 KR 101460279B1
- Authority
- KR
- South Korea
- Prior art keywords
- stainless steel
- content
- present
- less
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 14
- 239000010935 stainless steel Substances 0.000 title claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 239000011572 manganese Substances 0.000 claims description 53
- 230000007797 corrosion Effects 0.000 claims description 35
- 238000005260 corrosion Methods 0.000 claims description 35
- 239000011651 chromium Substances 0.000 claims description 12
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000009736 wetting Methods 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 229910001566 austenite Inorganic materials 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910018648 Mn—N Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 Cr-Mn계 스테인리스강에 관한 것으로, 중량%로, 탄소(C): 0.25% 이하, 질소(N): 0.5% 이하, 실리콘(Si): 1.0~5.0%, 망간(Mn): 8.0~16.0%, 인(P): 0.045% 이하, 황(S): 0.03% 이하, 크롬(Cr): 16.0~19.0%, 니켈(Ni): 1.0% 이하를 포함하고, 나머지는 철 및 불순물로 이루어지고, Si 및 Mn의 함량이 하기 식 (1)을 만족하는 Cr-Mn계 스테인리스강이 개시된다.
0.13 ≤ Si/Mn ≤ 0.63 ----------------(1)The present invention relates to a Cr-Mn-based stainless steel, which comprises 0.25% or less of carbon (C), 0.5% or less of nitrogen (N), 1.0 to 5.0% of silicon (Si) (P): 0.045% or less, S: not more than 0.03%, Cr: 16.0 to 19.0%, and nickel (Ni): not more than 1.0% And a content of Si and Mn satisfies the following formula (1): " (1) "
0.13? Si / Mn? 0.63 (1)
Description
본 발명은 Cr-Mn계 스테인리스강에 관한 것으로, 보다 상세하게는 Ni함량을 제어한 저원가 Cr-Mn계 오스테나이트계 스테인리스강에서 내공식성 및 임계부식전위를 동시에 향상시킬 수 있는 Cr-Mn계 스테인리스강에 관한 것이다.The present invention relates to a Cr-Mn-based stainless steel, and more particularly, to a Cr-Mn-based stainless steel which can simultaneously improve pitting corrosion resistance and critical corrosion potential in a low cost Cr-Mn austenitic stainless steel, It is about the river.
일반적으로 Ni 자원의 부족에 근거한 수요 밸런스 및 가격 등의 불안정성은 Cr-Ni계 오스테나이트계 스테인리스강을 공업생산하는데 있어서, 항상 직면하는 문제 중의 하나이다. 이 때문에 Ni을 Mn으로 치환하는 연구가 오랜 기간 연구되어 왔다.Generally, instability such as demand balance and price based on lack of Ni resources is one of the problems always encountered in industrial production of Cr-Ni austenitic stainless steel. For this reason, studies for replacing Ni with Mn have been studied for a long time.
일본에서는 미국, 독일에 이어 Cr-Mn계 내열강을 연구하여 항공규격에 등록한 사례가 있으며, 미국철강협회(AISI)규격에 저Ni-Cr-Mn-N계 스테인리스강인 201, 202가 채택된 이후로 다양한 Mn계 오스테나이트계 스테인리스강의 제품화가 이루어지고 있다. In Japan, there is an example of studying Cr-Mn heat-resistant steel following the US and Germany and registered in aviation specification. Since the adoption of low Ni-Cr-Mn-N stainless steels 201 and 202 in the American Iron and Steel Institute (AISI) Various Mn-based austenitic stainless steels have been commercialized.
상기 강종은 Cr-Ni계 오스테나이트계 강의 Ni을 Mn과 N으로 치환하는 것으로 Ni 자원 문제 대책 및 저 비용화 측면에서 상당히 유리한 작업이다. 그러나, Cr-Mn-N계 강종은 해결해야 할 제조 및 특성상의 문제점들이 많다. 일례로, Mn은 용해시 내화물의 침식을 쉽게 하여 내화물 수명을 저하시키며, 냉간변형 저항성이 높기 때문에 압연능력의 저하를 가져오며, 내식성이 Cr-Ni계와 본질적으로 동등하지 못한 특성 등의 문제가 있다. The above steel type is a favorable work in terms of Ni resource countermeasure and lower cost by replacing Ni of Cr-Ni austenitic steel with Mn and N. [ However, Cr-Mn-N type steels have many problems in manufacturing and characteristics to be solved. For example, Mn has a problem in that the corrosion resistance of the refractory is lowered due to easy erosion of the refractory during melting, the resistance to cold deformation is high due to the high resistance to cold deformation, and the property that the corrosion resistance is essentially not equal to that of the Cr-Ni system have.
특히, 내식성 문제는 Ni함량 조절로 내식성을 대처해 오는 강종을 설계하는 방향으로 Cr-Mn계 오스테나이트계 스테인리스강의 개발이 진행되어 왔다. In particular, the development of Cr-Mn austenitic stainless steels has been proceeding in the direction of designing steel grades to cope with corrosion resistance by adjusting Ni content.
즉, Mn을 다량 함유하는 오스테나이트계 스테인리스강은 내식성이 떨어지는 문제점으로 Ni을 첨가하여 내식성을 보완해 왔지만, 고가의 Ni을 다량 함유하는 것은 제품 가격이 올라가는 문제점이 있었다.That is, the austenitic stainless steel containing a large amount of Mn has been problematic in that the corrosion resistance is poor, and Ni is added to supplement the corrosion resistance. However, a product containing a large amount of expensive Ni has a problem in that the product price is increased.
따라서, Cr-Mn계에서 내공식성 향상 및 임계부식전위가 개선된 저원가 Cr-Mn계 고내식 강재 개발이 필요한 실정이다. Therefore, it is necessary to develop a low-cost Cr-Mn high corrosion resistant steel material with improved corrosion resistance and critical corrosion potential in Cr-Mn system.
상기와 같은 문제를 해결하기 위한 본 발명은 Ni을 1%이하 함유하는 Cr-Mn계 오스테나이트계 스테인리스강에 Si, Sn, Cu를 첨가하여 내식성을 보완한 Cr-Mn계 스테인리스강 및 그 제조방법을 제공하고자 한다.In order to solve the above problems, the present invention provides a Cr-Mn-based stainless steel in which corrosion resistance is improved by adding Si, Sn and Cu to Cr-Mn austenitic stainless steels containing not more than 1% .
본 발명의 하나 또는 다수의 실시예에서는 중량%로, 탄소(C): 0.25% 이하, 질소(N): 0.5% 이하, 실리콘(Si): 1.0~5.0%, 망간(Mn): 8.0~16.0%, 인(P): 0.045% 이하, 황(S): 0.03% 이하, 크롬(Cr): 16.0~19.0%, 니켈(Ni): 1.0% 이하를 포함하고, 나머지는 철 및 불순물로 이루어지고, Si 및 Mn의 함량이 하기 식 (1)을 만족하는 Cr-Mn계 스테인리스강이 제공될 수 있다.(C): not more than 0.25%, nitrogen (N): not more than 0.5%, silicon (Si): 1.0 to 5.0%, manganese (Mn): 8.0 to 16.0 (P): not more than 0.045%, sulfur (S): not more than 0.03%, chromium (Cr): 16.0 to 19.0%, nickel (Ni): not more than 1.0% , And a Cr-Mn-based stainless steel in which the content of Si and Mn satisfies the following formula (1).
0.13 ≤ Si/Mn ≤ 0.63 ----------------(1)0.13? Si / Mn? 0.63 (1)
상기 스테인리스강은 Sn 및 Cu의 함량이 하기 식 (2) 및 (3)을 만족할 수 있다.In the stainless steel, the content of Sn and Cu may satisfy the following formulas (2) and (3).
0.2 ≤ (Sn+Cu/10) ≤ 0.45 ----------------(2)0.2? (Sn + Cu / 10)? 0.45 (2)
0.1 ≤ Sn ≤ 0.3 --------------(3)0.1? Sn? 0.3 - (3)
또한, 35℃의 5% NaCl용액을 2시간 동안 분사하고, 60℃에서 4시간 건조 후, 50℃에서 습윤과정을 거치는 복합사이클을 9회 실시한 후의 부식 면적율이 10% 미만인 것을 특징으로 한다. Further, the corrosion area ratio after 9 times of spraying a 5% NaCl solution at 35 占 폚 for 2 hours, drying at 60 占 폚 for 4 hours, and wetting at 50 占 폚 for 9 times is less than 10%.
본 발명의 실시예에 따르면 저가의 Si을 적정 범위로 첨가하여 Cr-Mn계 스테인리스강의 내식성을 향상시킬 수 있고, Cu, Sn의 적정 비율로 최적화함으로써 Cr-Mn계 스테인리스강의 임계전류밀도를 낮출 수 있다. According to the embodiment of the present invention, the corrosion resistance of Cr-Mn-based stainless steel can be improved by adding low-cost Si to an appropriate range, and the critical current density of the Cr-Mn-based stainless steel can be lowered by optimizing the appropriate ratio of Cu and Sn have.
도 1은 본 발명의 실시예에 따른 [Si/Mn]비와 [Sn+Cu/10]비에 따른 [부식 면적율]을 나타낸 도면이다.
도 2는 본 발명의 실시예에 따라 Si와 Si/Mn비의 관계에 따른 내식성 및 성형성을 평가한 결과를 나타내는 그래프이다.
도 3은 본 발명의 실시예에 따른 Sn, Cu 함량과 전류밀도와의 관계를 나타내는 그래프이다.1 is a view showing a corrosion area ratio according to the ratio of [Si / Mn] to [Sn + Cu / 10] according to an embodiment of the present invention.
2 is a graph showing the results of evaluation of corrosion resistance and moldability according to the relationship between Si and Si / Mn ratio according to an embodiment of the present invention.
3 is a graph showing the relationship between Sn and Cu contents and current density according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.
본 발명에 따른 실시예에서의 Cr-Mn계 오스테나이트 스테인리스강은 중량%로, 탄소(C): 0.25% 이하, 질소(N): 0.5% 이하, 실리콘(Si): 1.0~5.0%, 망간(Mn): 8.0~16.0%, 인(P): 0.045% 이하, 황(S): 0.03% 이하, 크롬(Cr): 16.0~19.0%, 니켈(Ni): 1.0% 이하를 포함하고, 나머지는 철 및 불순물로 이루어진다.
The Cr-Mn type austenitic stainless steel according to the embodiment of the present invention contains 0.25% or less of carbon (C), 0.5% or less of nitrogen (N), 1.0 to 5.0% of silicon (Si) (P): 0.045% or less, S: not more than 0.03%, Cr: 16.0 to 19.0%, and nickel (Ni): not more than 1.0% Is made of iron and impurities.
먼저, 본 발명에 따른 실시예에서의 성분 함량에 대한 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 함량의 단위는 중량%이다.
First, the reason for limiting the numerical value of the component content in the examples according to the present invention will be described. Unless otherwise stated, the unit of the content is% by weight.
탄소(C): 0.25 중량% 이하Carbon (C): not more than 0.25% by weight
탄소는 질소와 함께 오스테나이트계 스테인리스강의 가공경화를 일으키는 원소로 0.25 중량%를 초과할 경우, 냉간압연 저항성을 올려 냉연 생산성을 저하시키므로 본 발명에 따른 실시예에서는 탄소의 함량을 상기 범위로 한정한다.
Carbon is an element that causes work hardening of the austenitic stainless steel together with nitrogen, and when it exceeds 0.25% by weight, the cold rolling resistance is increased to lower the productivity of the cold rolled steel, so that the carbon content in the examples according to the present invention is limited to the above range .
질소(N): 0.5중량% 이하Nitrogen (N): not more than 0.5% by weight
질소는 탄소와 함께 오스테나이트계 스테인리스강의 가공경화를 일으키며, Cr-Mn계 오스테나이트계에서는 통상 오스테나이트상의 안정도를 높여 전 온도 영역에서 오스테나이트 단상을 가질 수 있도록 하는 역할을 한다. 그러나, 다량 함유시 질소 기공(pore) 등의 주조결함을 발생시킬 수 있기 때문에 질소의 양은 0.5중량%이하로 제어한다.
Nitrogen causes work hardening of the austenitic stainless steel together with the carbon, and in the Cr-Mn austenitic system, the stability of the austenitic phase is usually increased, and the austenite phase can be obtained in the entire temperature range. However, since the casting defects such as nitrogen pores can be generated in a large amount, the amount of nitrogen is controlled to 0.5 wt% or less.
실리콘(Si): 1.0~5.0중량%Silicon (Si): 1.0 to 5.0 wt%
실리콘은 내공식성 및 내산화성 향상에 효과가 있다. 그러나, 5.0중량%를 초과하여 함유시 성형성 열위 및 열간가공시 젖음성(sticking) 등의 표면결함을 유발하기 쉽다. 또한, 실리콘의 함량이 1%미만의 경우, 내산화성 및 내공식 향상 효과가 급격하게 저하되기 때문에, 본 발명에 따른 실시예에서의 실리콘의 함량은 상기 범위로 제어한다.
Silicon is effective for improving the pitting resistance and oxidation resistance. However, when it is contained in an amount exceeding 5.0% by weight, it is liable to cause surface defects such as moldability during hot forming and sticking during hot working. In addition, when the content of silicon is less than 1%, the oxidation resistance and the effect of improving the internal formula sharply decrease. Therefore, the content of silicon in the examples according to the present invention is controlled within the above range.
망간(Mn): 8.0~16.0중량%Manganese (Mn): 8.0 to 16.0 wt%
망간은 고가의 Ni 대신에 첨가되어 오스테나이트상의 안정화도를 높이는 역할을 한다. 그러나, 많이 첨가할수록 내식성 열위가 발생하기 때문에 다른 원소로 보완할 필요성이 있다. Mn이 8%미만일 경우, 오스테나이트 상안정도가 떨어져 페라이트계+오스테나이트계 2상 강종이 되어 성형성 저하를 가져올 우려가 있으며, 16%를 초과하는 경우에는 MnS 등의 개재물 다량 형성으로 급격한 내식성 저하를 가져오기 때문에 본 발명에 따른 실시예에서는 망간의 함량을 상기 범위로 한정한다.
Manganese is added instead of expensive Ni to enhance the stabilization of the austenite phase. However, it is necessary to supplement with other elements because the more the addition, the lower the corrosion resistance. If the Mn content is less than 8%, the degree of austenite reduction may fall and the ferrite-type austenite-based two-phase type steel may be formed, resulting in a reduction in formability. When the Mn content exceeds 16%, a large amount of inclusions such as MnS The content of manganese is limited to the above range in the examples according to the present invention.
인(P): 0.045중량% 이하Phosphorus (P): 0.045% by weight or less
인(P)은 강 중에 포함되는 불가피한 불순물로 산세시 입계부식을 일으키거나 열간가공성을 저해시키기 때문에 그 함유량을 상기 범위로 한정한다.
Phosphorus (P) is an unavoidable impurity contained in steel, which causes intergranular corrosion during pickling or inhibits hot workability, so the content is limited to the above range.
황(S): 0.03중량% 이하Sulfur (S): 0.03 wt% or less
황(S)은 강중에 포함되는 불가피한 불순물로 결정입계에 편석되어 열간가공성을 저해시키기 때문에 본 발명에 따른 실시예에서는 황의 함유량을 상기 범위로 한정한다.
Sulfur (S) is an unavoidable impurity contained in steel and is segregated in crystal grain boundaries to inhibit hot workability. Therefore, in the examples according to the present invention, the content of sulfur is limited to the above range.
크롬(Cr): 16.0~19.0중량% Cr (Cr): 16.0 to 19.0 wt%
크롬(Cr)은 강의 내식성을 향상시키기 위해 첨가하는 합금원소로 크롬의 임계함량은 11중량% 이다. Cr함량이 16%미만일 경우에는 내식성 저하를 가져오며, 19%를 초과하는 경우에는 응고시 델타 페라이트상이 석출되기 때문에 2상계 성분계로 되며 이로 인하여 성형성 저하를 가져오기 때문에 본 발명에 따른 실시예에서는 16.0~19.0중량%로 한정한다.
Chromium (Cr) is an alloy element added to improve the corrosion resistance of steel, and the critical content of chromium is 11% by weight. When the Cr content is less than 16%, the corrosion resistance is deteriorated. When the Cr content exceeds 19%, the delta ferrite phase is precipitated at the time of solidification, resulting in a two-phase system. 16.0 to 19.0% by weight.
니켈(Ni): 1.0 중량% 이하Nickel (Ni): 1.0 wt% or less
니켈은 오스테나이트 조직을 만드는 원소로 상 밸런스(balance)를 유지하기 위하여 사용하며, Mn보다 강력한 오스테나이트 형성제(former) 역할을 한다. 그러나, 니켈은 고가(high cost)이므로 본 발명에 따른 실시예에서는 니켈의 함량을 상기 범위로 한정한다.
Nickel is an austenitic element used to maintain phase balance and acts as a more austenite former than Mn. However, since nickel is high cost, the content of nickel in the embodiment according to the present invention is limited to the above range.
또한, 본 발명에 따른 실시예에서의 고내식 오스테나이트계 스레인레스강은 하기의 수학식 (1)을 만족한다. In addition, the high corrosion resistant austenitic stainless steel according to the embodiment of the present invention satisfies the following expression (1).
0.13 ≤ Si/Mn ≤ 0.63-------------------(1)
0.13? Si / Mn? 0.63 (1)
상기 수학식 (1)에서 Si/Mn비를 0.63이하로 지정한 이유는 해당 강종이 상온 및 고온에서 2상 영역(페라이트상+오스테나이트상)으로 변태가 발생하지 않도록 유지하여 즉 오스테나이트계 단상조직을 얻어 성형성을 확보하기 위함이고, Si/Mn비를 0.13이상으로 유지하는 이유는 오스테나이트계 단상영역 범위내에서 Si첨가에 의한 내식성을 확보를 이루기 위함이다. The reason why the Si / Mn ratio is set to 0.63 or less in the above formula (1) is that the steel sheet is kept from being transformed into a two-phase region (ferrite phase + austenite phase) at room temperature and high temperature, To ensure moldability. The reason for keeping the Si / Mn ratio at 0.13 or more is to secure the corrosion resistance by adding Si within the austenite single phase region.
또한, 상기 수학식 1에서 임계부식전위를 낮추기 위해서는 하기의 수학식 (2) 및 (3)을 만족해야 한다. 보다 구체적으로는 Sn의 함량이 0.1~0.3중량%를 만족해야 하며, Sn+Cu/10의 값이 0.2~0.45%를 만족해야 한다.
In order to lower the critical corrosion potential in Equation (1), the following equations (2) and (3) must be satisfied. More specifically, the content of Sn should satisfy 0.1 to 0.3% by weight, and the value of Sn + Cu / 10 should satisfy 0.2 to 0.45%.
0.1 ≤ Sn ≤ 0.3 --------------------(2) 0.1? Sn? 0.3 - (2)
0.2 ≤ (Sn+Cu/10) ≤ 0.45 ------------(3)
0.2? (Sn + Cu / 10)? 0.45 (3)
이하에서는 본 발명의 실시예에 따른 실시예에 대하여 설명한다.Hereinafter, embodiments according to the present invention will be described.
상기 수학식 (2)에서 Sn을 0.1~0.3로 함유하도록 하는데, Sn은 일반적으로 황산 등의 산성 분위기에서 부식 저항성이 우수한 원소로, 일반 부식성(산성 분위기에서의 부식성)에 대한 내식 향상 원소로 활용되고 있다. Sn을 0.1%이상의 미량 첨가시에도 내식 향상 효과가 우수하나, Sn은 Ni가격과 동등하거나 그 이상이므로 다량 함유시 제품의 비용상의 문제가 있다. 또한, 0.3%를 초과하여 첨가시에는 열간압연시 에지 크랙(edge crack) 발생 등의 문제를 일으킬 수 있는데, 이는 Sn의 낮은 융점에 기인한 것이다. 따라서, 본 발명에 따른 실시예에서의 Sn의 함량을 상기 범위로 한정한다.In the above formula (2), Sn is contained in an amount of 0.1 to 0.3. Sn is an element having excellent corrosion resistance in an acidic atmosphere such as sulfuric acid, and is used as an element for improving corrosion resistance against general corrosion (corrosiveness in an acidic atmosphere) . The effect of improving corrosion resistance is excellent even when a trace amount of Sn is added in an amount of 0.1% or more. However, since Sn is equal to or higher than the Ni price, there is a problem in cost of the product when contained in a large amount. In addition, when added in an amount exceeding 0.3%, edge cracking can occur during hot rolling, which is due to the low melting point of Sn. Therefore, the content of Sn in the examples according to the present invention is limited to the above range.
또한, 수학식 (3)에서 Cu 또한 Sn과 유사한 특징을 나타내는 원소로 다량 포함시 열간압연시 에지 크랙을 발생시킬 수 있으므로 (Sn+Cu/10)값을 0.45로 제한한다. 반면, (Sn+Cu/10)이 0.2미만인 경우에는 Sn, Cu의 함유 효과가 미미하므로 본 발명에 따른 실시예에서는 (Sn+Cu/10)의 값을 상기 범위로 한정한다. In addition, in the equation (3), Cu is an element showing similar characteristics to Sn, and an edge crack can be generated in hot rolling when a large amount of elements are included. Therefore, the value of (Sn + Cu / 10) is limited to 0.45. On the other hand, in the case where (Sn + Cu / 10) is less than 0.2, the effect of containing Sn and Cu is small, so the value of (Sn + Cu / 10) is limited to the above range in the embodiment of the present invention.
[실시예][Example]
하기 표 1은 Cr-Mn계 오스테나이트강에 있어서, Si, Mn 및 [Si/Mn]를 제어하여 오스테나이트상의 안정도를 유지하면서 성형성 저해가 없이 내식성을 향상시킬 수 있는 성분계를 나타낸다. Table 1 below shows a composition system capable of controlling Si, Mn and [Si / Mn] in a Cr-Mn type austenitic steel to improve the corrosion resistance without inhibiting moldability while maintaining the stability of the austenite phase.
또한, 표 2는 Sn, Cu 함량을 제어하여 일반 부식저항성(임계부식 전류)을 향상시키면서, 열간압연시 에지 크랙(edge crack)을 저감할 수 있는 [Sn+Cu/10]범위를 나타낸다. 표 1과 2에서 나타내는 품질특성인 공식전위(mV), 임계전류밀도(mA/cm2), 연신율(%)은 모두 냉연소둔재 1mm 두께 기준에서 평가된 결과를 나타낸 것이다.Table 2 also shows the range of [Sn + Cu / 10] which can reduce the edge crack during hot rolling while controlling the Sn and Cu contents to improve the general corrosion resistance (critical corrosion current). The qualitative characteristics (mV), critical current density (mA / cm 2) and elongation (%) of the quality characteristics shown in Tables 1 and 2 were evaluated on the basis of the thickness of 1 mm of cold rolled annealed material.
Cu/10Sn +
Cu / 10
밀도
(mA/cm2)electric current
density
(mA / cm 2 )
도 1은 본 발명의 실시예에 따른 35℃의 5% NaCl용액을 2시간 동안 분사 후 60℃에서 4시간 동안 건조 후, 50℃에서 습윤과정을 거치는 복합사이클부식(Cyclic Corrosion Test, CCT)에서 9 사이클 후의 [Si/Mn]비와 [Sn+Cu/10]비에 따른 [부식 면적율]을 나타낸 사진인데, 도 1을 참조하면, 부식 면적율이 10% 미만인 것을 알 수 있다.FIG. 1 is a graph showing the results of a Cyclic Corrosion Test (CCT) in which a 5% NaCl solution at 35 ° C. according to an embodiment of the present invention is sprayed for 2 hours, dried at 60 ° C. for 4 hours, FIG. 1 is a photograph showing the corrosion area ratio according to the ratio of [Si / Mn] and [Sn + Cu / 10] after 9 cycles, wherein the corrosion area ratio is less than 10%.
또한, 도 2는 본 발명의 실시예에 따른 Si, Mn 및 Si/Mn비를 제어하여 오스테나이트상의 안정도를 유지하면서 Cr-Mn계에 있어서 성형성 저해가 없이 내식성을 향상 시킬 수 있는 [Si], [Mn], [Si/Mn]의 파라메터의 본 발명에 따른 실시예의 범위를 나타내는 그래프인데, 도 2를 참조하면, Si/Mn의 값이 0.13~0.63의 범위 내에서 오스테나이트상의 안정도내식성 및 성형성이 우수하게 나타난 것을 알 수 있다.2 is a graph showing the relationship between the Si content, the Si content, and the Si content in the Cr-Mn system, while maintaining the stability of the austenite phase by controlling the Si, Mn and Si / Mn ratios according to the embodiment of the present invention, 2 is a graph showing the range of the embodiment according to the present invention of the parameters of [Mn] and [Si / Mn], wherein the value of Si / Mn is in the range of 0.13 to 0.63, And the moldability was excellent.
도 3은 본 발명에 따른 실시예의 Sn, Cu 함량을 제어하여 일반 부식저항성(임계부식 전류)을 향상시키면서 열간압연시 에지 크랙(edge crack)을 저감할 수 있는 [Sn+Cu/10]의 범위를 나타내는 그래프이다. 도 3을 참조하면, 내식성 및 열간가공성이 우수한 [Sn+Cu/10]의 범위는 0.2~0.45임을 알 수 있다.FIG. 3 is a graph showing the relationship between Sn and Cu content in the range of [Sn + Cu / 10], which can reduce edge cracks during hot rolling while improving the general corrosion resistance (critical corrosion current) FIG. Referring to FIG. 3, it can be seen that the range of [Sn + Cu / 10], which is excellent in corrosion resistance and hot workability, is 0.2 to 0.45.
이상 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been described in connection with certain exemplary embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .
Claims (4)
Si 및 Mn의 함량이 하기 식 (1)을 만족하고,
Sn 및 Cu의 함량이 하기 식 (2)를 만족하는 Cr-Mn계 오스테나이트계 스테인리스강.
0.13 ≤ Si/Mn ≤ 0.63 ----------------(1)
0.2 ≤ (Sn+Cu/10) ≤ 0.45 ----------------(2)(C): not more than 0.25% (excluding 0%), nitrogen (N): not more than 0.5% (excluding 0%), silicon (Si): 1.0 to 5.0%, manganese (Mn): 8.0 to 16.0 (P): not more than 0.045% (excluding 0%), sulfur (S): not more than 0.03% (excluding 0%), chromium (Cr): 16.0 to 19.0%, nickel (Ni): not more than 1.0% %), The remainder being composed of iron and impurities,
Wherein the content of Si and Mn satisfies the following formula (1)
And a content of Sn and Cu satisfies the following formula (2).
0.13? Si / Mn? 0.63 (1)
0.2? (Sn + Cu / 10)? 0.45 (2)
상기 스테인리스강은 Sn의 함량이 하기 식 (3)을 만족하는 Cr-Mn계 오스테나이트계 스테인리스강
0.1 ≤ Sn ≤ 0.3 --------------(3)The method according to claim 1,
Wherein said stainless steel is a Cr-Mn-based austenitic stainless steel having a Sn content satisfying the following formula (3)
0.1? Sn? 0.3 - (3)
35℃의 5% NaCl용액을 2시간 동안 분사하고, 60℃에서 4시간 건조 후, 50℃에서 습윤과정을 거치는 복합사이클을 9회 실시한 후의 부식 면적율이 10% 미만인 것을 특징으로 하는 Cr-Mn계 오스테나이트계 스테인리스강.4. The method according to claim 1 or 3,
Wherein the corrosion area ratio after 9 cycles of spraying 5% NaCl solution at 35 ° C for 2 hours, drying at 60 ° C for 4 hours and wetting at 50 ° C is less than 10% Austenitic stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120152424A KR101460279B1 (en) | 2012-12-24 | 2012-12-24 | STAINLESS STEEL BASED ON Cr-Mn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120152424A KR101460279B1 (en) | 2012-12-24 | 2012-12-24 | STAINLESS STEEL BASED ON Cr-Mn |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140083167A KR20140083167A (en) | 2014-07-04 |
KR101460279B1 true KR101460279B1 (en) | 2014-11-11 |
Family
ID=51733637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120152424A Expired - Fee Related KR101460279B1 (en) | 2012-12-24 | 2012-12-24 | STAINLESS STEEL BASED ON Cr-Mn |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101460279B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09195007A (en) * | 1996-01-19 | 1997-07-29 | Kawasaki Steel Corp | Cr-Mn-N austenitic stainless steel with excellent corrosion resistance |
WO2002027056A1 (en) * | 2000-09-27 | 2002-04-04 | Avestapolarit Aktiebolag (Publ) | Ferritic-austenitic stainless steel |
EP1352982B1 (en) | 2002-04-10 | 2005-10-05 | Thyssenkrupp Nirosta GmbH | Stainless steel, method for manufacturing of stress cracking free workpieces and product made thereof |
KR20110052749A (en) * | 2008-09-11 | 2011-05-18 | 티센크룹 니로스타 게엠베하 | Stainless steel, cold strips produced from the stainless steel, and methods for producing flat steel products from the stainless steel |
-
2012
- 2012-12-24 KR KR1020120152424A patent/KR101460279B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09195007A (en) * | 1996-01-19 | 1997-07-29 | Kawasaki Steel Corp | Cr-Mn-N austenitic stainless steel with excellent corrosion resistance |
WO2002027056A1 (en) * | 2000-09-27 | 2002-04-04 | Avestapolarit Aktiebolag (Publ) | Ferritic-austenitic stainless steel |
EP1352982B1 (en) | 2002-04-10 | 2005-10-05 | Thyssenkrupp Nirosta GmbH | Stainless steel, method for manufacturing of stress cracking free workpieces and product made thereof |
KR20110052749A (en) * | 2008-09-11 | 2011-05-18 | 티센크룹 니로스타 게엠베하 | Stainless steel, cold strips produced from the stainless steel, and methods for producing flat steel products from the stainless steel |
Also Published As
Publication number | Publication date |
---|---|
KR20140083167A (en) | 2014-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102173302B1 (en) | Non-magnetic austenitic stainless steel and manufacturing method thereof | |
TWI496899B (en) | Ferritic stainless steel | |
KR20160140897A (en) | Austenitic stainless-steel sheet for gasket, and gasket | |
KR20190066737A (en) | Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof | |
KR20180073878A (en) | Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same | |
KR101735003B1 (en) | Lean duplex stainless steel with improved corrosion resistance and method of manufacturing the same | |
KR20150074697A (en) | Low-nickel containing stainless steels | |
KR101419878B1 (en) | Method for cold rolling for duplex stainless steel | |
KR101665949B1 (en) | Austenite stainless steel and the manufacture method | |
KR20180074322A (en) | Austenite stainless steel excellent in corrosion resistance and hot workability | |
KR101987665B1 (en) | Utility ferritic stainless steel excellent in hot workability and method of manufacturing the same | |
KR101460279B1 (en) | STAINLESS STEEL BASED ON Cr-Mn | |
KR101554787B1 (en) | Super duplex stainless steel having an excellent corrosion resistance and hot workability | |
KR102260262B1 (en) | High corrosion resistance austenitic stainless thick steel plate and method of manufacturing the same | |
KR102326046B1 (en) | LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF | |
KR101650258B1 (en) | Austenitic stainless and manufacturing method thereof | |
KR20060110103A (en) | High Manganese and Nitrogen Austenitic Stainless Steels | |
KR102143076B1 (en) | Austenitic stainless steel with excellent resistance to stress corrosion cracking and surfuric acid dew point corrosion | |
KR102003225B1 (en) | Aluminium plated ferritic stainless steel with improved corrosion resistance for water condensation and method for manufacturing the same | |
KR20180018908A (en) | Duplex stainless steel having low content of ni and method of manufacturing the same | |
KR20170074260A (en) | Ferritic stainless steel for automotive exhaust system with improved pitting corrosion resistance and corrosion resistance for water condensation and method of manufacturing the same | |
KR101844577B1 (en) | Ferritic stainless steel for automotive exhaust system with improved heat resistance and corrosion resistance for water condensation and method of manufacturing the same | |
CN114080462B (en) | Austenitic stainless steel with excellent weld corrosion resistance | |
KR101560921B1 (en) | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same | |
KR101991000B1 (en) | High corrosion resistant austenitic stainless steel and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20121224 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20140623 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140930 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20141104 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20141104 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20171106 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20171106 Start annual number: 4 End annual number: 4 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20210815 |