KR101446491B1 - Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same - Google Patents
Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same Download PDFInfo
- Publication number
- KR101446491B1 KR101446491B1 KR1020120027119A KR20120027119A KR101446491B1 KR 101446491 B1 KR101446491 B1 KR 101446491B1 KR 1020120027119 A KR1020120027119 A KR 1020120027119A KR 20120027119 A KR20120027119 A KR 20120027119A KR 101446491 B1 KR101446491 B1 KR 101446491B1
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- lithium
- complex
- precursor
- metal oxide
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 63
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 239000002243 precursor Substances 0.000 title claims abstract description 59
- 229910000314 transition metal oxide Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000002131 composite material Substances 0.000 title claims description 6
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 70
- 150000003624 transition metals Chemical class 0.000 claims abstract description 65
- 150000003623 transition metal compounds Chemical class 0.000 claims abstract description 27
- 150000001450 anions Chemical class 0.000 claims abstract description 25
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 230000003647 oxidation Effects 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 32
- -1 CO 3 Inorganic materials 0.000 claims description 28
- 239000011572 manganese Substances 0.000 claims description 17
- 239000006182 cathode active material Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000011734 sodium Substances 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 3
- 229940044175 cobalt sulfate Drugs 0.000 claims description 3
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 3
- 229940099596 manganese sulfate Drugs 0.000 claims description 3
- 239000011702 manganese sulphate Substances 0.000 claims description 3
- 235000007079 manganese sulphate Nutrition 0.000 claims description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229940053662 nickel sulfate Drugs 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 6
- 229910016482 Ni0.4Co0.2Mn0.4 Inorganic materials 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 2
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical compound [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical group [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- LECKFEZRJJNBNI-UHFFFAOYSA-N 4-fluoro-5-methyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1F LECKFEZRJJNBNI-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 241000551547 Dione <red algae> Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007969 Li-Co-Ni Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910006555 Li—Co—Ni Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910016486 Ni0.4Mn0.4Co0.2 Inorganic materials 0.000 description 1
- 229910015207 Ni1/3Co1/3Mn1/3O Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- YQOXCVSNNFQMLM-UHFFFAOYSA-N [Mn].[Ni]=O.[Co] Chemical compound [Mn].[Ni]=O.[Co] YQOXCVSNNFQMLM-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- ONCCWDRMOZMNSM-FBCQKBJTSA-N compound Z Chemical compound N1=C2C(=O)NC(N)=NC2=NC=C1C(=O)[C@H]1OP(O)(=O)OC[C@H]1O ONCCWDRMOZMNSM-FBCQKBJTSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- BLBBMBKUUHYSMI-UHFFFAOYSA-N furan-2,3,4,5-tetrol Chemical compound OC=1OC(O)=C(O)C=1O BLBBMBKUUHYSMI-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical group [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910001317 nickel manganese cobalt oxide (NMC) Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/36—Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/20—Compounds containing manganese, with or without oxygen or hydrogen, and containing one or more other elements
- C01G45/22—Compounds containing manganese, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/80—Compounds containing cobalt, with or without oxygen or hydrogen, and containing one or more other elements
- C01G51/82—Compounds containing cobalt, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
본 발명은 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 하기 화학식 1로 표현되는 복합 전이금속 화합물을 포함하고 있는 것을 특징으로 하는 전이금속 전구체 및 그 제조방법을 제공한다.
M(OH1 -x)2- yAy /n (1)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고; A는 OH1 -x를 제외한 하나 이상의 음이온이고; 0<x<0.5: 0.01 y 0.5; n은 A의 산화수이다.
본 발명에 따른 전이금속 전구체는 특정 음이온을 포함하므로, 이를 사용하여 리튬 복합 전이금속 산화물을 제조하는 경우, 상기 음이온이 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있다.The present invention provides a transition metal precursor for use in the preparation of a lithium complex transition metal oxide, which comprises a complex transition metal compound represented by the following general formula (1), and a process for producing the transition metal precursor.
M (OH 1 -x) 2- y A y / n (1)
Wherein M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and two period transition metals; A is at least one anion other than OH < 1 >-x; 0 < x < 0.5: 0.01 y 0.5; n is the oxidation number of A.
Since the transition metal precursor according to the present invention includes a specific anion, when the lithium complex transition metal oxide is prepared using the same, the anion can be uniformly contained on the surface and inside of the lithium complex transition metal oxide. The secondary battery exhibits excellent output characteristics and life characteristics, and can exhibit high charging / discharging efficiency.
Description
본 발명은 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법에 관한 것으로, 더욱 상세하게는, 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 특정한 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체 및 그 제조방법에 관한 것이다.The present invention relates to a precursor for the production of lithium complex transition metal oxides and a process for preparing the same, and more particularly, to a transition metal precursor used for preparing lithium complex transition metal oxides, which comprises a specific complex transition metal compound Transition metal precursors and methods for their preparation.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices are increasing, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life and low self- It has been commercialized and widely used.
리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of the lithium secondary battery. In addition, a lithium-containing manganese oxide such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, (LiNiO 2 ) is also being considered.
상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가라는 문제가 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 그러나, 이들 리튬 망간 산화물은 용량이 작고, 사이클 특성 등이 나쁘다는 단점을 가지고 있다.Of the above cathode active materials, LiCoO 2 has excellent properties such as excellent cycle characteristics and is widely used at present. However, LiCoO 2 has low safety and high cost due to the resource limit of cobalt as a raw material. Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have attracted much attention as a cathode active material capable of replacing LiCoO 2 because they have the advantage of using manganese rich in resources and environment friendly as a raw material. However, these lithium manganese oxides have disadvantages such as small capacity and poor cycle characteristics.
또한, LiNiO2 등의 리튬 니켈계 산화물은 상기 코발트계 산화물보다 비용이 저렴하면서도 4.25V로 충전되었을 때, 높은 방전 용량을 나타내는 바, 도핑된 LiNiO2의 가역 용량은 LiCoO2의 용량(약 153 mAh/g)을 초과하는 약 200 mAh/g에 근접한다. 따라서, 약간 낮은 평균 방전 전압과 체적 밀도(volumetric density)에도 불구하고, LiNiO2 양극 활물질을 포함하는 상용화 전지는 개선된 에너지 밀도를 가지므로, 최근 고용량 전지를 개발하기 위하여 이러한 니켈계 양극 활물질에 대한 연구가 활발하게 진행되고 있다.In addition, the lithium nickel oxide such as LiNiO 2 has a lower discharge capacity than that of the cobalt oxide when it is charged at 4.25 V, and the reversible capacity of the doped LiNiO 2 has a capacity of LiCoO 2 (about 153 mAh / g) < / RTI > to about 200 mAh / g. Therefore, in spite of a slightly low average discharge voltage and volumetric density, the compatibilized battery including LiNiO 2 cathode active material has an improved energy density. Therefore, in order to develop a high capacity battery, Research is actively under way.
따라서, 많은 종래기술들은 LiNiO2계 양극 활물질의 특성과 LiNiO2의 제조공정을 개선하는데 초점을 맞추고 있고, 니켈의 일부를 Co, Mn 등의 다른 전이금속으로 치환한 형태의 리튬 전이금속 산화물이 제안되었다. 그러나, LiNiO2계 양극 활물질의 높은 생산비용, 전지에서의 가스발생에 의한 스웰링, 낮은 화학적 안정성, 높은 pH 등의 문제들은 충분히 해결되지 못하고 있다.Therefore, many prior arts focus on improving the characteristics of the LiNiO 2 based cathode active material and the manufacturing process of LiNiO 2 , and suggest that a lithium transition metal oxide in which a part of nickel is substituted with another transition metal such as Co, Mn . However, problems such as a high production cost of a LiNiO 2 -based cathode active material, swelling due to gas generation in a battery, low chemical stability, and high pH are not sufficiently solved.
이에, 일부 선행문헌에서 리튬 니켈-망간-코발트 산화물 표면에 LiF, Li2SO4, Li3PO4 등과 같은 물질을 도포하여 전지의 성능을 향상시키기 위한 시도가 있었지만, 이 경우, 상기 물질이 리튬 니켈-망간-코발트 산화물 표면에만 위치하게 되므로, 소망하는 수준의 효과를 발휘하는데 한계가 있을 뿐만 아니라, 상기 물질을 리튬 니켈-망간-코발트 산화물 표면에 도포하는 별도의 공정이 필요하다는 문제점이 있다.Therefore, in some prior arts, there has been an attempt to improve the performance of a battery by applying a material such as LiF, Li 2 SO 4 , Li 3 PO 4 or the like to the surface of the lithium nickel-manganese-cobalt oxide. In this case, Nickel-manganese-cobalt oxide. Therefore, there is a limitation in exerting a desired level of effect, and a separate process of coating the material on the surface of lithium nickel-manganese-cobalt oxide is required.
그러나, 이러한 다양한 시도들에도 불구하고 만족스러운 성능의 리튬 복합 전이금속 산화물은 아직 개발되지 못하고 있는 실정이다.However, despite these various attempts, satisfactory lithium complex transition metal oxides have not yet been developed.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems of the prior art and the technical problems required from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 특정 음이온을 갖는 복합 전이금속 화합물을 포함하는 전구체를 개발하였고, 그러한 전구체로부터 제조되는 리튬 복합 전이금속 산화물을 기반으로 한 이차전지가 우수한 출력 특성 및 수명 특성을 발휘하고, 높은 충방전 효율을 나타내는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments and have developed a precursor containing a complex transition metal compound having a specific anion and found that a secondary battery based on a lithium complex transition metal oxide produced from such a precursor has excellent Discharge characteristics and life span characteristics and exhibited a high charging / discharging efficiency, thereby completing the present invention.
따라서, 본 발명은 리튬 이차전지용 전극 활물질인 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 하기 화학식 1로 표현되는 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체를 제공한다.Accordingly, the present invention provides a transition metal precursor for use in the production of a lithium complex transition metal oxide which is an electrode active material for a lithium secondary battery, which comprises a complex transition metal compound represented by the following general formula (1).
M(OH1 -x)2- yAy /n (1) M (OH 1 -x) 2- y A y / n (1)
상기 식에서,In this formula,
M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고; M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and two period transition metals;
A는 OH1 -x를 제외한 하나 이상의 음이온이고;A is at least one anion other than OH < 1 >-x;
0<x<0.5;0 < x <0.5;
0.01≤y≤ 0.5;0.01? Y? 0.5;
n은 A의 산화수이다.n is the oxidation number of A.
종래 리튬 이차전지의 전극 활물질을 F- , PO4 3 -, CO3 2 - 등과 같은 특정 음이온을 포함하는 리튬 화합물로 도핑 또는 표면처리 하거나 그것과 리튬 화합물을 혼합하는 일부 기술들이 알려져 있다. 예를 들어, 일부 선행기술은 기존의 리튬 니켈계 산화물에 특정한 구조의 인산 리튬염을 혼합하여 전극 활물질로 사용하는 이차전지를 제시하고 있고, 또 다른 선행기술은 인산 리튬염으로 피복한 리튬 망간계 산화물을 전극 활물질로 사용하여 망간 이온의 전해액에서의 용출을 방지하는 기술을 제시하고 있다.The electrode active material of the conventional lithium secondary battery is classified into F - , PO 4 3 - , CO 3 2 - Some techniques for doping or surface treating lithium compounds containing the same specific anion or mixing lithium compounds with it are known. For example, some prior art discloses a secondary battery using an existing lithium nickel oxide as a electrode active material by mixing a lithium phosphate salt having a specific structure, and another prior art is a lithium manganese- Oxide is used as an electrode active material to prevent elution of manganese ions from the electrolyte solution.
그러나, 이들 선행기술은 전극 활물질을 제조 후, 리튬 화합물로 표면처리 등을 하는 추가 공정이 필요하므로, 결과적으로 리튬 이차전지의 제조 단가를 상승시키는 요인이 될 수 있다. 또한, 특정 음이온이 전극 활물질의 표면에만 존재하게 되므로 소망하는 수준의 효과를 발휘하는데 있어 한계가 있다. However, these prior art processes require an additional step of surface-treating the electrode active material with a lithium compound after the preparation of the electrode active material, and as a result, the manufacturing cost of the lithium secondary battery may be increased. In addition, since a specific anion is present only on the surface of the electrode active material, there is a limit in exerting a desired level of effect.
이에, 본 발명에 따른 전이금속 전구체는 OH1 -x를 제외한 하나 이상의 음이온이 특정한 양으로 치환되어 있으며, 본 출원의 발명자들은 이러한 음이온이 치환되어 있는 전구체를 사용하여 리튬 복합 전이금속 산화물을 제조할 경우, 리튬 복합 전이금속 산화물의 표면과 내부에 상기 음이온이 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있음을 새롭게 확인하였다.Accordingly, the transition metal precursor according to the present invention has at least one anion other than OH 1 -x substituted in a specific amount, and the inventors of the present application have found that by using such anion-substituted precursor, a lithium complex transition metal oxide can be prepared , The anion can be uniformly contained on the surface and inside of the lithium complex transition metal oxide. Therefore, it has been newly confirmed that the secondary battery based thereon exhibits excellent output characteristics and lifetime characteristics and can exhibit a high charge / discharge efficiency .
즉, 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함된 특정 음이온이 그레인(grain) 간의 이온 전도도 향상에 기여하고, 그레인 또는 결정 성장(crystal growth)을 작게 유도하여, 활성화 단계에서 산소 발생시 구조 변화를 줄여 주고 표면적을 넓힐 수 있어서, 레이트(rate) 특성 등 전지의 제반 성능을 향상시킬 수 있다.That is, a specific anion uniformly contained in the surface and inside of the lithium complex transition metal oxide contributes to enhancement of ion conductivity between grains and induces a small amount of grain or crystal growth, It is possible to reduce the change and increase the surface area, thereby improving the performance of the battery such as the rate characteristic.
상기 화학식 1에서 M은 앞서 정의한 바와 같은 원소들에서 선택되는 둘 또는 그 이상으로 이루어져 있다. In Formula 1, M is composed of two or more members selected from the above-mentioned elements.
하나의 바람직한 예에서, 상기 M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 하나 이상의 전이금속을 포함하고 있어서, 상기 전이금속들 중의 적어도 하나의 물성이 리튬 복합 전이금속 산화물에서 발현될 수 있도록 구성할 수 있다. 특히 바람직하게는, Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하는 구성으로 이루어질 수 있다.In one preferred embodiment, the M includes at least one transition metal selected from the group consisting of Ni, Co and Mn, so that at least one physical property of the transition metals can be expressed in the lithium complex transition metal oxide can do. Particularly preferably, it may be composed of two kinds of transition metals selected from the group consisting of Ni, Co and Mn, or both of them.
또한, 상기 화학식 1에서 음이온 A는 그레인(grain) 간의 이온 전도도 향상에 기여할 수 있는 것이라면 제한되지 않는다.The anion A in the above formula (1) is not limited as long as it can contribute to enhancement of ion conductivity between grains.
하나의 바람직한 예에서, 상기 A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이 중 PO4 이온의 경우 리튬과 결합할 경우 매우 안정한 구조를 가지면서 높은 리튬 확산계수를 가지므로, 리튬 복합 전이금속 산화물의 안정성을 높여줄 수 있어, 특히 바람직하다.In one preferred example, A may be at least one selected from the group consisting of PO 4 , CO 3 , BO 3 and F, and PO 4 Ions have a very stable structure and have a high lithium diffusion coefficient when they are combined with lithium, so that the stability of the lithium complex transition metal oxide can be enhanced, which is particularly preferable.
이러한 음이온 A의 함량은, 지나치게 많은 경우, 이를 포함하는 리튬 복합 전이금속 산화물의 결정화를 방해하여 활물질의 성능을 향상시키는 것이 어려울 수 있고, 지나치게 적을 경우, 소망하는 효과를 발휘하기 어려울 수 있기 때문에, 복합 전이금속 화합물에서 A의 함량은 상기 정의한 바와 같이 전체량을 기준(몰 기준)으로 0.01 내지 0.5 몰%의 범위가 바람직하고, 0.03 이상 내지 0.2 몰%이하인 것이 특히 바람직하다. If the content of the anion A is excessively large, it may be difficult to improve the performance of the active material by interfering with the crystallization of the lithium complex transition metal oxide containing the anion A, and if it is too small, the desired effect may not be exhibited, The content of A in the complex transition metal compound is preferably 0.01 to 0.5 mol%, more preferably 0.03 to 0.2 mol%, based on the total amount as defined above on a molar basis, as defined above.
참고로, 이러한 음이온 A의 함량은 앞서 정의한 바와 같이 음이온의 산화수에 따라 상기 범위에서 결정됨은 물론이다.As a matter of course, the content of the anion A is determined in the above range depending on the oxidation number of the anion as defined above.
상기 복합 전이금속 화합물의 바람직한 예로서, 하기 화학식 2로 표현되는 복합 전이금속 화합물을 들 수 있다. Preferable examples of the complex transition metal compound include a complex transition metal compound represented by the following general formula (2).
NibMncCo1 -(b+c+d)M'd(OH1 -x) 2- yAy /n (2) Ni b Mn c Co 1 - ( b + c + d) M 'd (OH 1 -x) 2- y A y / n (2)
상기 식에서, 0.3≤b≤0.9, 0.1≤c≤0.6, 0≤d≤0.1, b+c+d≤1이고, M'는 Al, Mg, Cr, Ti, Si, Cu, Fe 및 Zr로 이루어진 군에서 선택되는 하나 또는 둘 이상이며, A, x, y 및 n은 상기 화학식 1에서 정의한 바와 같다.Wherein M is at least one selected from the group consisting of Al, Mg, Cr, Ti, Si, Cu, Fe and Zr, wherein 0.3? B? 0.9, 0.1? C? 0.6, 0? D? And A, x, y and n are the same as defined in the above formula (1).
상기 복합 전이금속 화합물은 니켈을 고함량으로 포함하고 있어서, 고용량의 리튬 이차전지용 양극 활물질을 제조하는데 특히 바람직하게 사용될 수 있다. 즉 상기 니켈의 함량(b)은 전체량을 기준(몰 기준)으로, 망간 및 코발트에 비해 상대적으로 니켈 과잉의 조성으로서 상기 정의된 바와 같이 0.3 ~ 0.9이다. 이러한 니켈의 함량이 0.3 미만인 경우에는 높은 용량을 기대하기 어렵고, 반대로 0.9를 초과하는 경우에는 안전성이 크게 저하되는 문제가 있다. 더욱 바람직한 함량은 0.33 내지 0.8일 수 있다The complex transition metal compound contains nickel in a high content and can be particularly preferably used for producing a high capacity cathode active material for a lithium secondary battery. That is, the content (b) of nickel is 0.3 to 0.9, as defined above, based on the total amount (molar basis), as a nickel excess composition relative to manganese and cobalt. When the content of nickel is less than 0.3, it is difficult to expect a high capacity. On the other hand, when the content exceeds 0.9, there is a problem that the safety is significantly lowered. A more preferred content may be from 0.33 to 0.8
또한, 상기 망간의 함량(c)는 상기 정의된 바와 같이, 0.1 ~ 0.6이고, 바람직하게는 0.1 내지 0.5 일 수 있다. The content (c) of manganese may be 0.1 to 0.6, preferably 0.1 to 0.5, as defined above.
경우에 따라서는, 금속 M'는 0.1 이하의 범위에서 Al, Mg, Cr, Ti 및 Si로 이루어진 군에서 선택되는 하나 또는 둘 이상으로 치환될 수 있으며, 바람직하게는 0.08 이하의 범위에서 치환될 수 있다.In some cases, the metal M 'may be substituted with one or more than one selected from the group consisting of Al, Mg, Cr, Ti and Si within a range of 0.1 or less, preferably 0.08 or less have.
코발트의 함량(1-(b+c+d))은 상기 니켈, 망간, 금속 M'의 함량(b+c+d)에 따라 달라지는 바, 코발트의 함량이 지나치게 높은 경우, 코발트의 높은 함량으로 인해 원료 물질의 비용이 전체적으로 증가하고 가역 용량이 다소 감소하며, 코발트의 함량이 지나치게 낮은 경우에는 충분한 레이트 특성과 전지의 높은 분말 밀도를 동시에 달성하기 어려울 수 있다. 따라서, 상기 니켈, 망간, 금속 M'의 함량(b+c+d)은 바람직하게는 0.05 내지 0.4 일 수 있다.The content of cobalt (1- (b + c + d)) varies depending on the content (b + c + d) of the nickel, manganese and metal M '. When the content of cobalt is excessively high, The cost of raw materials as a whole increases, the reversible capacity decreases slightly, and when the content of cobalt is excessively low, it may be difficult to achieve sufficient rate characteristics and high powder density of the battery at the same time. Therefore, the content (b + c + d) of the nickel, manganese and metal M 'may be preferably 0.05 to 0.4.
이러한 전이금속 화합물은 음이온 A를 포함하므로, 높은 탭 밀도를 가지며, 하나의 바람직한 예로 1.5 내지 2.5 g/cc의 탭 밀도를 가질 수 있다.Such a transition metal compound contains anion A, and thus has a high tap density, and one preferred example may have a tap density of 1.5 to 2.5 g / cc.
본 발명에 따른 전이금속 전구체는 적어도 화학식 1의 복합 전이금속 화합물을 포함하고 있으며, 하나의 바람직한 예에서, 상기 복합 전이금속 화합물을 30 중량% 이상, 더욱 바람직하게는 50 중량% 이상의 함량으로 포함하는 것으로 구성될 수 있다.The transition metal precursor according to the present invention comprises at least a complex transition metal compound represented by the general formula (1). In one preferred example, the transition metal precursor comprises the complex transition metal compound in an amount of 30 wt% or more, more preferably 50 wt% ≪ / RTI >
이러한 전이금속 전구체는, 화학식 1의 복합 전이금속 화합물을 포함하지 않는 전이금속 전구체와 비교하여, 우수한 물성의 리튬 복합 전이금속 산화물로 제조될 수 있음을 이후 설명하는 실시예 및 실험예에서 확인할 수 있다.This transition metal precursor can be confirmed in Examples and Experimental Examples which will be described below, as compared with the transition metal precursor not including the complex transition metal compound represented by the general formula (1), as the lithium complex transition metal oxide having excellent physical properties .
상기에서 전이금속 전구체의 나머지 성분들은 다양할 수 있으며, 예를 들어, M(OH1 -x)2 (여기서, M 및 x는 화학식 1에서와 동일하다)일 수 있다.The remainder of the components of the transition metal precursor may be varied and may be, for example, M (OH 1 -x ) 2 wherein M and x are the same as in formula (1).
본 발명은 또한 상기 화학식 1의 복합 전이금속 화합물을 제공하는 바, 상기 화학식 1의 복합 전이금속 화합물은 그 자체로 당업계에 신규 물질이다.The present invention also provides a complex transition metal compound of Formula 1, wherein the complex transition metal compound of Formula 1 is itself a novel substance in the art.
이러한 복합 전이금속 화합물을 포함하는 전이금속 전구체는, 바람직하게는, 제조 단계에서 음이온 A를 포함하는 화합물을 첨가하여 제조될 수 있는 바, 앞서 설명한 바와 같이, 리튬 복합 전이금속 산화물을 제조한 후 음이온 A를 포함하는 화합물과 반응시키는 추가 공정 등이 필요 없으므로, 공정이 간단하고 용이하며, 경제성이 높다는 장점이 있다. 또한, 그로부터 제조된 리튬 복합 전이금속 산화물은, 그렇지 않은 경우에 비해, 양극 활물질로서 우수한 성능을 발휘할 수 있다.The transition metal precursor containing such a complex transition metal compound is preferably prepared by adding a compound containing anion A in the production step. As described above, after the lithium complex transition metal oxide is prepared, A, it is advantageous in that the process is simple, easy, and economical. Further, the lithium composite transition metal oxide produced therefrom can exert excellent performance as a cathode active material, as compared with the case where it is not.
이하에서는 본 발명에 따른 전이금속 전구체를 제조하는 방법을 설명한다.Hereinafter, a method for preparing a transition metal precursor according to the present invention will be described.
상기 전이금속 전구체는 전이금속 함유 염과 음이온 A가 포함된 화합물 특정량이 용해된 염기성 물질을 사용하여 공침법에 의해 제조될 수 있다. The transition metal precursor may be prepared by coprecipitation using a basic material in which a specified amount of a compound containing a transition metal-containing salt and an anion A is dissolved.
상기 공침법은 수용액 중에서 침전 반응을 이용하여 2종 이상의 전이금속 원소를 동시에 침전시켜 제조하는 방법이다. 구체적인 예에서, 2종 이상의 전이금속을 포함하는 복합 전이금속 화합물은, 전이금속의 함량을 고려하여 전이금속 함유 염들을 소망하는 몰비로 혼합하여 수용액을 제조한 뒤, 수산화나트륨 등의 강염기와, 경우에 따라서는 암모니아 공급원 등의 첨가제 등을 부가하여, pH를 염기성으로 유지하면서 공침하여 제조될 수 있다. 이 때, 온도, pH, 반응 시간, 슬러리의 농도, 이온 농도 등을 적절히 제어함으로써, 소망하는 평균 입자 지름, 입자지름 분포, 입자 밀도를 조절할 수 있다. pH 범위는 9 내지 13이고 바람직하게는 10 내지 12이며, 경우에 따라서는, 반응은 다단으로 수행될 수도 있다.The coprecipitation method is a method of simultaneously precipitating two or more transition metal elements by using a precipitation reaction in an aqueous solution. In a specific example, a complex transition metal compound containing two or more transition metals may be prepared by mixing an appropriate transition metal-containing salt at a desired molar ratio in consideration of the content of the transition metal to prepare an aqueous solution, then adding a strong base such as sodium hydroxide, An ammonia supply source or the like may be added, and the mixture may be coprecipitated while keeping pH at a basic level. At this time, desired average particle diameter, particle diameter distribution, and particle density can be controlled by appropriately controlling the temperature, pH, reaction time, slurry concentration, ion concentration and the like. The pH range is from 9 to 13, preferably from 10 to 12, and in some cases the reaction may be carried out in multiple stages.
상기 전이금속 함유 염은 소성시 용이하게 분해되고 휘발되기 쉬운 음이온을 갖는 것이 바람직한 바, 황산염 또는 질산염일 수 있으며, 특히 바람직하게는 황산염일 수 있다. 예를 들어, 황산 니켈, 황산 코발트, 황산 망간, 질산 니켈, 질산 코발트, 질산 망간 등을 들 수 있으나, 이에 한정되는 것은 아니다.The transition metal-containing salt preferably has an anion which is easily decomposed upon firing and easily volatilized, and may be a sulfate or nitrate, and particularly preferably a sulfate. Examples thereof include, but are not limited to, nickel sulfate, cobalt sulfate, manganese sulfate, nickel nitrate, cobalt nitrate, and manganese nitrate.
상기 염기성 물질은 수산화나트륨, 수산화칼륨, 수산화리튬 등을 들 수 있고, 바람직하게는 수산화나트륨이 사용될 수 있으나, 이에 한정되는 것은 아니다.Examples of the basic substance include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like, preferably sodium hydroxide, but are not limited thereto.
또한, 상기 음이온 A가 포함된 화합물은 Zx'Ay'의 화학식으로 표현될 수 있으며, 상기 식에서, Z는 Na, NH4, H로 이루어진 군에서 선택되는 하나 이상이고, A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상이며, 0<x'<4 및 0<y'<4의 범위에서, Z의 산화수×x' + A의 산화수×y' = 0인 조건을 만족한다. 하나의 바람직한 예에서, 상기 Zx'Ay'는 Na3PO4, (NH4)3PO4, (NH4)2HPO4, (NH4)2H2PO4로 이루어진 군에서 선택되는 하나 이상일 수 있다.The compound containing an anion A may be represented by the formula Z x ' A y' , wherein Z is at least one member selected from the group consisting of Na, NH 4 and H, A is PO 4 , CO 3 , BO 3 , and F, and the number of oxidation of Z x O x + A in the range of 0 <x '<4 and 0 <y'<4 x y '= 0 Condition. In one preferred example, Z x ' A y' is selected from the group consisting of Na 3 PO 4 , (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 2 H 2 PO 4 It can be more than one.
이러한 화합물 Zx'Ay'는 물에 용해될 수 있으며, 바람직하게는, 0.01 내지 0.5 몰%의 범위에서, 앞서 정의된 염기성 물질에 용해된 상태로 반응조에 투입되어 상기 전구체 제조용 전이금속 염과 반응할 수 있으며, 바람직하게는 수산화나트튬 용액에 용해된 상태로 투입될 수 있다. 경우에 따라서는, 전이금속 함유 염과 함께 투입될 수도 있다.Such a compound Z x ' A y' may be dissolved in water, preferably in a range of 0.01 to 0.5 mol%, in a state dissolved in a basic substance as defined above, to form a transition metal salt for producing the precursor And may be added in a dissolved state, preferably in a sodium hydroxide solution. In some cases, it may be added with a transition metal-containing salt.
하나의 바람직한 예에서, 상기 공침 과정에서 전이금속과 착체를 형성할 수 있는 첨가제 및/또는 탄산 알칼리를 추가로 첨가할 수 있다. 상기 첨가제는, 예를 들어, 암모늄 이온 공급체, 에틸렌 디아민류 화합물, 구연산류 화합물 등이 사용될 수 있다. 상기 암모늄 이온 공급체는, 예를 들어, 암모니아수, 황산암모늄염 수용액, 질산암모늄염 수용액 등을 들 수 있다. 상기 탄산 알칼리는 탄산 암모늄,탄산나트륨,탄산 칼륨 및 탄산 리튬으로 이루어진 군에서 선택될 수 있다. 경우에 따라서는, 이들을 2 이상 혼합하여 사용할 수도 있다.In one preferred example, an additive capable of forming a complex with the transition metal in the coprecipitation step and / or alkali carbonate may be further added. The additive may be, for example, an ammonium ion supplier, an ethylenediamine compound, a citric acid compound or the like. Examples of the ammonium ion supplier include ammonia water, ammonium sulfate aqueous solution, ammonium nitrate aqueous solution and the like. The alkali carbonate may be selected from the group consisting of ammonium carbonate, sodium carbonate, potassium carbonate, and lithium carbonate. In some cases, two or more of these may be mixed and used.
상기 첨가제와 탄산 알칼리의 첨가량은 전이금속 함유 염의 양, pH 등을 고려하여 적절히 결정할 수 있다.The addition amount of the additive and the alkali carbonate may be appropriately determined in consideration of the amount of the transition metal-containing salt, the pH, and the like.
반응 조건들에 따라, 화학식 1에 따른 복합 전이금속 화합물만을 포함하는 전이금속 전구체가 제조될 수도 있고, 또는 기타 복합 전이금속 화합물을 동시에 포함하는 전이금속 전구체가 제조될 수도 있다. 그에 대한 자세한 내용은 이후의 실시예들을 참조할 수 있다.According to the reaction conditions, a transition metal precursor containing only a complex transition metal compound according to Formula (1) may be prepared, or a transition metal precursor including other complex transition metal compounds simultaneously may be prepared. For further details, reference can be made to the following embodiments.
본 발명은 또한 상기 전이금속 전구체로부터 제조되는 리튬 복합 전이금속 산화물을 제공한다. 구체적으로, 상기 전이금속 전구체와 리튬 함유 물질을 소성 반응시켜, 리튬 이차전지용 양극 활물질인 리튬 복합 전이금속 산화물을 제조할 수 있다.The present invention also provides a lithium complex transition metal oxide prepared from the transition metal precursor. Specifically, the transition metal precursor and the lithium-containing material are subjected to a calcination reaction to produce a lithium complex transition metal oxide as a cathode active material for a lithium secondary battery.
이와 같이 제조된 리튬 복합 전이금속 산화물은 음이온 A를 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함하므로 우수한 전기 화학적 특성을 나타낸다. 상기 음이온 A의 함량은 복합 전이금속 화합물에 치환된 A의 몰 수에 따라 달라질 수 있으나, 바람직하게는 리튬 복합 전이금속 산화물 전체 중량을 기준으로 0.05 내지 3 중량% 포함되어 있을 수 있다.The lithium complex transition metal oxide thus prepared exhibits excellent electrochemical characteristics because it uniformly contains the anion A on the surface and inside of the lithium complex transition metal oxide. The content of the anion A may vary depending on the number of moles of A substituted in the complex transition metal compound, and preferably 0.05 to 3% by weight based on the total weight of the lithium complex transition metal oxide.
이러한 리튬 복합 전이금속 산화물은 리튬 이차전지용 전극 활물질로서 바람직하게 사용될 수 있으며, 이들은 단독으로 사용될 수도 있고, 다른 공지의 리튬 이차전지용 전극 활물질과 혼합되어 사용될 수도 있다.These lithium complex transition metal oxides can be preferably used as electrode active materials for lithium secondary batteries, and they may be used alone or in combination with other known electrode active materials for lithium secondary batteries.
또한, 상기 리튬 복합 전이금속 산화물은 2 이상의 전이금속을 포함하는 것으로서, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물 Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ne (여기서, -0.5≤z≤0.5, 0.3≤b≤0.9, 0.1≤c≤0.9, 0≤d≤0.1, 0≤e≤0.05, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y이고, N = F, P 또는 Cl임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The lithium composite transition metal oxide includes two or more transition metals. For example, the lithium complex transition metal oxide may be a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ) substituted with one or more transition metals ; Lithium manganese oxide substituted with one or more transition metals; Formula LiNi 1-y M y O 2 ( where, M = Co, Mn, Al , Cu, Fe, Mg, B, Cr, Zn or Ga and Lim, 0.01≤y≤0.7 include one or more elements of the element) Li 1 + z Ni b Mn c Co 1, such as lithium nickel-based oxide Li 1 + z Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li 1 + z Ni 0.4 Mn 0.4 Co 0.2 O 2 , - (b + c + d) M d O (2-e) N e ( here, -0.5≤z≤0.5, 0.3≤b≤0.9, 0.1≤c≤0.9, 0≤d≤0.1 , 0≤e≤ 0.05, b + c + d < 1, M = Al, Mg, Cr, Ti, Si or Y and N = F, P or Cl); , But the present invention is not limited to these.
상기 리튬 복합 전이금속 산화물은 특히 바람직하게는 Co, Ni 및 Mn를 모두 포함하는 리튬 복합 전이금속 산화물일 수 있다.The lithium complex transition metal oxide may particularly preferably be a lithium complex transition metal oxide including both Co, Ni and Mn.
리튬 복합 전이금속 산화물의 제조를 위한 전이금속 전구체와 리튬 함유 물질의 반응 조건은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.The conditions for the reaction of the transition metal precursor with the lithium-containing material for the preparation of the lithium complex transition metal oxide are well known in the art, and a detailed description thereof will be omitted herein.
본 발명은 또한, 상기 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공한다. The present invention also provides a positive electrode comprising the lithium composite transition metal oxide as a positive electrode active material, and a lithium secondary battery comprising the same.
상기 양극은, 예를 들어, 양극 집전체 상에 본 발명에 따른 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.The positive electrode is prepared, for example, by applying a mixture of a positive electrode active material, a conductive material and a binder according to the present invention on a positive electrode current collector, followed by drying. If necessary, a filler may be further added to the mixture.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and may be formed of a material such as stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface of aluminum or stainless steel Treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 20 wt% based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component which assists in bonding of the active material and the conductive material and bonding to the collector, and is usually added in an amount of 1 to 20% by weight based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
상기 리튬 이차전지는 일반적으로 양극, 음극, 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 본 발명에 따른 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.The lithium secondary battery generally comprises a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt, and other components of the lithium secondary battery according to the present invention will be described below.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.The negative electrode is manufactured by applying a negative electrode material on the negative electrode collector and drying the same, and if necessary, the above-described components may further be included.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.The negative electrode material may be, for example, carbon such as non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1 - x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 < x < Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and may be formed of a material such as copper, stainless steel, aluminum, nickel, titanium, fired carbon, surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
리튬 함유 비수계 전해질은 비수 전해질과 리튬염으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.The lithium-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte and the like are used.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the nonaqueous electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, Nitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives , Tetrahydrofuran derivatives, ether, methyl pyrophosphate, ethyl propionate and the like can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene Sultone), FPC(Fluoro-Propylene Carbonate) 등을 더 포함시킬 수 있다.For the purpose of improving charge / discharge characteristics, flame retardancy, etc., non-aqueous electrolytes may be used in the form of, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like are added It is possible. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene Sultone), FPC (Fluoro-Propylene Carbonate), and the like.
이하, 본 발명에 따른 일부 실시예들을 참조하여 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to some embodiments thereof, but the scope of the present invention is not limited thereto.
<실시예 1>≪ Example 1 >
3L 습식 반응기용 탱크에 증류수 2L를 채운 뒤 질소가스를 탱크에 1 L/min의 속도로 연속적으로 투입하여 용존 산소를 제거하였다. 이때, 탱크 안의 증류수 온도를 온도 유지장치를 이용하여 45 ~ 50℃로 유지하였다. 또한, 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여, 탱크 내부의 증류수를 1000 ~ 1200 rpm의 속도로 교반하였다. The tank for the 3L wet reactor was filled with 2 liters of distilled water and nitrogen gas was continuously introduced into the tank at a rate of 1 L / min to remove dissolved oxygen. At this time, the temperature of the distilled water in the tank was maintained at 45 to 50 ° C by using a temperature holding device. The distilled water in the tank was stirred at a speed of 1000 to 1200 rpm using an impeller connected to a motor provided outside the tank.
니켈 황산염, 코발트 황산염, 및 망간 황산염을 0.40.: 0.20: 0.40의 비율(몰비)로 혼합하여 1.5M 농도의 전이금속 수용액을 준비하였고, 그와 별도로 0.1 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액은 0.18 L/hr으로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑 하였다. 상기 수산화나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜, 습식 반응기 탱크 내부의 증류수를 pH 11.0 ~ 11.5가 유지되도록, 가변식 펌핑 하였다. 이때, 첨가물로서 30% 농도의 암모니아 용액을 0.035L ~ 0.04 L/hr의 속도로 반응기에 연속적으로 함께 펌핑하였다.Nickel sulfate, cobalt sulfate, and manganese sulfate 0.40 .: 0.20: a mixture in a ratio (molar ratio) of 0.40 was prepared by a transition metal aqueous solution of a 1.5M concentration, and that the separate addition of 0.1 mol% Na 3 PO 4 3M Sodium hydroxide aqueous solution was prepared. The transition metal aqueous solution was continuously pumped by a metering pump into the tank for the wet reactor at 0.18 L / hr. The aqueous sodium hydroxide solution was pumped with a control device to adjust the pH of the distilled water in the tank so that the distilled water in the wet reactor tank was maintained at a pH of 11.0 to 11.5. At this time, a 30% ammonia solution as an additive was continuously pumped into the reactor at a rate of 0.035 L to 0.04 L / hr.
전이금속 수용액, 수산화나트륨 수용액, 암모니아 용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류 시간은 5 ~ 6 시간 정도가 되도록 하였으며, 탱크 내의 반응이 정상 상태(steady state)에 도달한 후, 지속 시간을 주어 좀더 밀도 높은 복합 전이금속 전구체를 합성하였다.The average retention time in the wet reactor tank of the solution was adjusted to 5 to 6 hours by adjusting the flow rate of the transition metal aqueous solution, sodium hydroxide aqueous solution and ammonia solution. After the reaction in the tank reached the steady state, Time to yield a more dense complex transition metal precursor.
정상 상태의 도달 후, 전이금속 수용액의 전이금속 이온, 수산화나트륨의 수산화 이온, 및 암모니아 용액의 암모니아 이온이 20 시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합 전이금속 전구체를, 탱크 옆 상단에 설치되어 있는 오버플로 파이프를 통해 연속적으로 얻는다.After reaching a steady state, the nickel-cobalt-manganese complex transition metal precursor prepared by continuously reacting the transition metal ions, the hydroxide ions of sodium hydroxide, and the ammonia solution of the ammonia solution for 20 hours, Through an overflow pipe installed in the pipe.
이렇게 얻어진 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24 시간 건조시켜, 니켈-코발트-망간 복합 전이금속 전구체를 얻었다.
The complex transition metal precursor thus obtained was washed several times with distilled water and dried in a constant temperature drier at 120 ° C for 24 hours to obtain a nickel-cobalt-manganese complex transition metal precursor.
<실시예 2>≪ Example 2 >
0.2 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
A transition metal precursor was prepared in the same manner as in Example 1, except that a 3M sodium hydroxide aqueous solution to which 0.2 mol% Na 3 PO 4 was added was used.
<실시예 3>≪ Example 3 >
0.5 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
A transition metal precursor was prepared in the same manner as in Example 1 except that a 3M sodium hydroxide aqueous solution to which 0.5 mol% of Na 3 PO 4 was added was used.
<실시예 4><Example 4>
Na3PO4 대신 0.1 mol%의 (NH4)2HPO4을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
Na 3 PO 4 instead A transition metal precursor was prepared in the same manner as in Example 1 except that 0.1 mol% (NH 4 ) 2 HPO 4 was used.
<비교예 1> ≪ Comparative Example 1 &
Na3PO4을 첨가하지 않은 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
A transition metal precursor was prepared in the same manner as in Example 1, except that a 3M aqueous sodium hydroxide solution without Na 3 PO 4 was used.
<실험예 1> PO4 이온 함량 분석EXPERIMENTAL EXAMPLE 1 Analysis of PO 4 ion content
상기 실시예 1 내지 4 및 비교예 1에서 각각 제조된 전이금속 전구체 0.01 g을 50ml Corning tube에 정확히 측정하여 넣고, 소량의 산을 적가한 후, 흔들어 혼합하였다. 혼합된 시료가 맑게 용해되었을 때 Ion Chromatograph (Diones 사 모델 DX500)로 시료의 PO4 이온의 농도를 측정한다. 그 결과를 하기 표 1에 나타내었다.0.01 g of the transition metal precursor prepared in each of Examples 1 to 4 and Comparative Example 1 was precisely measured in a 50 ml Corning tube, and a small amount of acid was added dropwise, followed by shaking and mixing. When the mixed sample is dissolved, the concentration of the PO 4 ion in the sample is measured with an Ion Chromatograph (Diones model DX500). The results are shown in Table 1 below.
<표 1><Table 1>
상기 표 1에 따르면 Ion Chromatograph 분석 결과, 전구체가 함유하는 PO4 이온 함량은 그 양이 증가함에 따라 선형적으로 증가함을 확인할 수 있다.
According to the Ion Chromatograph analysis of Table 1, it can be confirmed that the content of PO 4 ions contained in the precursor increases linearly as the amount thereof increases.
<실험예 2> 탭 밀도(Tap Density) 측정<Experimental Example 2> Tap Density Measurement
상기 실시예 1 내지 4 및 비교예 1에서 각각 제조된 전이금속 전구체를 Powder Multi Tester(SEISHIN 사)에서 1000회 이상 탭 핑(tappling) 후 탭밀도를 측정하였다.The transition metal precursors prepared in each of Examples 1 to 4 and Comparative Example 1 were taped with a Powder Multi Tester (SEISHIN Co., Ltd.) for 1000 times or more, and then the tap density was measured.
<표 2><Table 2>
상기 표 2에 따르면 PO4 이온을 포함하는 실시예들의 전구체는 비교예의 전구체에 비하여 탭 밀도가 크게 향상됨을 확인할 수 있다.
It can be seen from Table 2 that the precursor of the PO 4 ion-containing precursors has a much higher tap density than the precursor of the comparative example.
<실시예 5 내지 8>≪ Examples 5 to 8 >
실시예 1 내지 4에서 각각 제조된 니켈-코발트-망간 복합 전이금속 전구체들을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2의 양극 활물질 분말을 제조하였다. The nickel-cobalt-manganese complex transition metal precursors prepared in Examples 1 to 4 were mixed with Li 2 CO 3 in a ratio of 1: 1 (weight ratio), and then heated at a rate of 5 ° C / min. and fired for a time to prepare a Li [Ni 0 .4 Co 0 .2 Mn 0 .4] O 2 of the positive electrode active material powder.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.The cathode active material powder thus prepared was mixed with Denka as a conductive material and KF1100 as a binder in a weight ratio of 95: 2.5: 2.5 to prepare a slurry, which was uniformly coated on an aluminum foil having a thickness of 20 탆. This was dried at 130 캜 to prepare a positive electrode for a lithium secondary battery.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
A lithium metal foil as a counter electrode (cathode), a polyethylene film (Celgard, thickness: 20 m) as a separator, and a 1: 2: 1 mixture of ethylene carbonate, dimethyl carbonate, and diethyl carbonate as a separator, 1, a 2016 coin cell was manufactured using a liquid electrolyte in which 1 M of LiPF 6 was dissolved.
<비교예 2>≪ Comparative Example 2 &
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체를 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조한 후, 이렇게 제조된 Li[Ni0 .4Co0 .2Mn0 .4]O2에 Li3PO4 1 중량%을 혼합하여 양극 활물질 분말을 제조하였다.The nickel-cobalt-manganese complex transition metal precursor prepared in Comparative Example 1 was mixed with Li 2 CO 3 in a ratio of 1: 1 (weight ratio), followed by heating at a heating rate of 5 ° C / min and calcining at 950 ° C for 10 hours by Li [Ni 0 .4 Co 0 .2 Mn 0 .4] after preparing the O 2, thus prepared Li [Ni 0 .4 Co 0 .2 Mn 0 .4] Li 3 PO 4 1 a O 2 By weight were mixed to prepare a cathode active material powder.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.The cathode active material powder thus prepared was mixed with Denka as a conductive material and KF1100 as a binder in a weight ratio of 95: 2.5: 2.5 to prepare a slurry, which was uniformly coated on an aluminum foil having a thickness of 20 탆. This was dried at 130 캜 to prepare a positive electrode for a lithium secondary battery.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
A lithium metal foil as a counter electrode (cathode), a polyethylene film (Celgard, thickness: 20 m) as a separator, and a 1: 2: 1 mixture of ethylene carbonate, dimethyl carbonate, and diethyl carbonate as a separator, 1, a 2016 coin cell was manufactured using a liquid electrolyte in which 1 M of LiPF 6 was dissolved.
<비교예 3>≪ Comparative Example 3 &
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조하였다. 이렇게 제조된 Li[Ni0 .4Co0 .2Mn0 .4]O2의 표면 전체에, 메카노 퓨전(mechano fusion)을 이용하여 Li3PO4 1 중량%을 코팅하여 양극 활물질 분말을 제조한 후, 비교예 2과 동일한 방법을 사용하여, 2016 코인 전지를 제조하였다.
The nickel-cobalt-manganese complex transition metal precursor prepared in Comparative Example 1 was mixed with Li 2 CO 3 in a ratio of 1: 1 (weight ratio), and then heated at a heating rate of 5 ° C / min and calcined at 950 ° C for 10 hours Li was prepared [Ni 0 .4 Co 0 .2 Mn 0 .4] O 2. The so prepared Li [Ni 0 .4 Co 0 .2 Mn 0 .4] over the entire surface of the O 2, mechanochemical fusion (mechano fusion) to produce a positive electrode active material powder coated with the Li 3 PO 4 1% by weight Thereafter, a 2016 coin cell was produced using the same method as in Comparative Example 2.
<비교예 4>≪ Comparative Example 4 &
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조한 후, 비교예 2과 동일한 방법을 사용하여, 2016 코인 전지를 제조하였다.
The nickel-cobalt-manganese complex transition metal precursor prepared in Comparative Example 1 was mixed with Li 2 CO 3 in a ratio of 1: 1 (weight ratio), and then heated at a heating rate of 5 ° C / min and calcined at 950 ° C for 10 hours Li after producing the [Ni 0 .4 Co 0 .2 Mn 0 .4] O 2, using the same method as in Comparative example 2 was prepared in a 2016 coin cell.
<실험예 3><Experimental Example 3>
상기에서 실시예 5 내지 8 및 비교예 2 내지 4에서 각각 제조된 코인 전지들에 대해 전기 화학 분석 장치(Toyo System, Toscat 3100U)를 사용하여 3.0 ~ 4.25 V 영역에서 양극 활물질 전기적 특성을 평가하였다.Coin batteries prepared in Examples 5 to 8 and Comparative Examples 2 to 4 were evaluated for their electrical characteristics in a 3.0 to 4.25 V range using an electrochemical analyzer (Toyo System, Toscat 3100U).
그 결과를 하기 표 3에 나타내었다. The results are shown in Table 3 below.
<표 3><Table 3>
상기 표 3에 따르면 전구체에 PO4 처리를 한 실시예들의 전지의 경우, 충방전 효율이 향상되고 이에 따라 방전용량이 상승함을 확인할 수 있다. 비교예들의 전지의 경우, 실시예들의 전지에 비하여 충방전 용량 및 효율이 떨어지는 것을 확인할 수 있다.
According to Table 3, it can be seen that the charge / discharge efficiency of the battery of the embodiments in which the PO 4 treatment is performed on the precursor is improved and thus the discharge capacity is increased. In the case of the batteries of the comparative examples, it can be confirmed that the charge-discharge capacity and efficiency are lower than those of the batteries of the examples.
<실험예 4><Experimental Example 4>
상기 실시예 5 내지 8 및 비교예 2 내지 4에서 각각 제조된 코인 전지들을 0.2 C로 충전하고, 0.2 C 및 2 C로 방전하여 율 특성을 평가하였다.The coin cells prepared in each of Examples 5 to 8 and Comparative Examples 2 to 4 were charged at 0.2 C and discharged at 0.2 C and 2 C to evaluate the rate characteristics.
<표 4><Table 4>
상기 표 4에 따르면 전구체에 PO4 처리를 한 실시예들의 전지의 경우, 율 특성이 향상되며, 0.2 mol%의 PO4 처리를 한 실시예 6의 전지가 최적의 성능을 발휘하는 것을 확인할 수 있다. 전구체에 PO4 처리를 하지 않은 비교예들의 전지의 경우, 실시예들의 전지에 비하여 2C 율 특성이 떨어지는 것을 확인할 수 있다.
According to Table 4, in the case of the batteries of the Examples in which the PO 4 treatment was applied to the precursor, the rate characteristics were improved, and it was confirmed that the battery of Example 6, which was treated with PO 4 of 0.2 mol%, exhibited the optimum performance . In the case of the battery of the comparative example in which the PO 4 treatment was not performed on the precursor, the 2C rate characteristic is lower than that of the batteries of the examples.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
Those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Claims (16)
M(OH1 -x)2- yAy /n (1)
상기 식에서,
M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고;
A는 OH1 -x를 제외한 하나 이상의 음이온이고;
0<x<0.5:
0.01≤y≤ 0.5;
n은 A의 산화수이다.A transition metal precursor for use in the production of a lithium complex transition metal oxide, the transition metal precursor comprising a complex transition metal compound represented by the following formula (1)
M (OH 1 -x) 2- y A y / n (1)
In this formula,
M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and two period transition metals;
A is at least one anion other than OH < 1 >-x;
0 < x < 0.5:
0.01? Y? 0.5;
n is the oxidation number of A.
NibMncCo1 -(b+c+d)M'd(OH1 -x) 2- yAy /n (2)
상기 식에서,
0.3≤b≤0.9;
0.1≤c≤0.6;
0≤d≤0.1;
b+c+d≤1;
M'는 Al, Mg, Cr, Ti Si, Cu, Fe 및 Zr로 이루어진 군에서 선택되는 하나 또는 둘 이상이고;
A, x, y 및 n은 제 1 항에서와 정의한 바와 같다.The transition metal precursor according to claim 1, wherein the complex transition metal compound is a complex transition metal compound represented by the following general formula (2)
Ni b Mn c Co 1 - ( b + c + d) M 'd (OH 1 -x) 2- y A y / n (2)
In this formula,
0.3? B? 0.9;
0.1? C? 0.6;
0? D? 0.1;
b + c + d? 1;
M 'is one or two or more selected from the group consisting of Al, Mg, Cr, Ti, Si, Cu, Fe and Zr;
A, x, y and n are as defined in claim 1.
M(OH1 -x)2- yAy /n (1)
상기 식에서, M, A, x 및 y는 제 1 항에서 정의한 바와 같다.1. A complex transition metal compound represented by the following formula (1): < EMI ID =
M (OH 1 -x) 2- y A y / n (1)
Wherein M, A, x and y are as defined in claim 1.
상기에서,
Z는 Na, NH4, H 로 이루어진 군에서 선택되는 하나 이상이고;
A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상이며;
0<x'<4 및 0<y'<4의 범위에서, Z의 산화수×x' + A의 산화수×y' = 0인 조건을 만족한다.A method for producing a complex transition metal compound represented by the general formula (1) of claim 1, which comprises reacting a transition metal salt for producing a precursor with Z x ' A y' in an amount of 0.01 to 0.5 mol% Lt; RTI ID = 0.0 >
In the above,
Z is Na, NH 4, one or more selected from the group consisting of H;
A is at least one selected from the group consisting of PO 4 , CO 3 , BO 3 and F;
The number of oxidation of Z x x '+ the number of oxidation of A x y' = 0 in the range of 0 <x '<4 and 0 <y'<4.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120027119A KR101446491B1 (en) | 2012-03-16 | 2012-03-16 | Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same |
CN201380008999.8A CN104106159B (en) | 2012-03-16 | 2013-03-05 | For the precursor for preparing lithium composite transition metal oxide and the method for preparing the precursor |
PCT/KR2013/001722 WO2013137577A1 (en) | 2012-03-16 | 2013-03-05 | Precursor for preparing lithium composite transition metal oxide and method for preparing same |
EP13760602.6A EP2802030B1 (en) | 2012-03-16 | 2013-03-05 | Precursor for preparing lithium composite transition metal oxide and method for preparing same |
JP2014557578A JP6104945B2 (en) | 2012-03-16 | 2013-03-05 | Precursor for producing lithium composite transition metal oxide and method for producing the same |
TW102107821A TWI464947B (en) | 2012-03-16 | 2013-03-06 | Precursor for preparing lithium composite transition metal oxide and preparation method thereof |
US14/452,833 US9431143B2 (en) | 2012-03-16 | 2014-08-06 | Precursor for preparing lithium composite transition metal oxide and method for preparing the same |
US15/219,483 US9905325B2 (en) | 2012-03-16 | 2016-07-26 | Precursor for preparing lithium composite transition metal oxide and method for preparing the same |
JP2016215053A JP6345218B2 (en) | 2012-03-16 | 2016-11-02 | Precursor for producing lithium composite transition metal oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120027119A KR101446491B1 (en) | 2012-03-16 | 2012-03-16 | Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130105030A KR20130105030A (en) | 2013-09-25 |
KR101446491B1 true KR101446491B1 (en) | 2014-10-06 |
Family
ID=49161426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120027119A KR101446491B1 (en) | 2012-03-16 | 2012-03-16 | Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same |
Country Status (7)
Country | Link |
---|---|
US (2) | US9431143B2 (en) |
EP (1) | EP2802030B1 (en) |
JP (2) | JP6104945B2 (en) |
KR (1) | KR101446491B1 (en) |
CN (1) | CN104106159B (en) |
TW (1) | TWI464947B (en) |
WO (1) | WO2013137577A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016068681A1 (en) * | 2014-10-31 | 2016-05-06 | 주식회사 엘지화학 | Transition metal oxide precursor, method for preparing same, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery |
WO2016068682A1 (en) * | 2014-10-31 | 2016-05-06 | 주식회사 엘지화학 | Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI634695B (en) | 2013-03-12 | 2018-09-01 | 美商蘋果公司 | High voltage, high volumetric energy density li-ion battery using advanced cathode materials |
KR101608632B1 (en) | 2013-08-20 | 2016-04-05 | 주식회사 엘지화학 | Precursor for Preparation of Lithium Composite Transition Metal Oxide, Method for Preparation of the Same and Lithium Composite Transition Metal Oxide Obtained from the Same |
KR20150050459A (en) * | 2013-10-31 | 2015-05-08 | 주식회사 엘지화학 | Manufacturing method of precursor for cathode active material, and cathode active materials and lithium secondary battery using the same |
US9716265B2 (en) | 2014-08-01 | 2017-07-25 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
KR102484028B1 (en) * | 2014-11-28 | 2023-01-02 | 바스프 에스이 | Process for making lithiated transition metal oxides |
WO2017058650A1 (en) | 2015-09-30 | 2017-04-06 | Hongli Dai | Cathode-active materials, their precursors, and methods of preparation |
KR102088508B1 (en) * | 2015-10-22 | 2020-03-12 | 주식회사 엘지화학 | Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same |
JP6583069B2 (en) * | 2016-03-14 | 2019-10-02 | トヨタ自動車株式会社 | Method for producing lithium ion secondary battery |
CN113149083A (en) | 2016-03-14 | 2021-07-23 | 苹果公司 | Cathode active material for lithium ion battery |
CN112158891B (en) | 2016-09-20 | 2023-03-31 | 苹果公司 | Cathode active material having improved particle morphology |
CN109715562B (en) | 2016-09-21 | 2022-03-11 | 苹果公司 | Surface stable cathode material for lithium ion battery and synthesis method thereof |
JP6721799B2 (en) * | 2017-03-15 | 2020-07-15 | ユミコア | Nitrate process for producing transition metal hydroxide precursors |
EP3496185A1 (en) * | 2017-12-08 | 2019-06-12 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Low-temperature preparation of cathode active material |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
US12206100B2 (en) | 2019-08-21 | 2025-01-21 | Apple Inc. | Mono-grain cathode materials |
JP7535867B2 (en) * | 2020-03-27 | 2024-08-19 | 株式会社田中化学研究所 | Method for producing nickel-containing hydroxide |
CN114242970A (en) * | 2021-11-19 | 2022-03-25 | 广东邦普循环科技有限公司 | Composite coated ternary precursor and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073127A (en) | 2001-08-29 | 2003-03-12 | Tosoh Corp | Nickel-manganese compound, method for producing the same, and use using the same |
KR20090066291A (en) * | 2006-10-13 | 2009-06-23 | 토다 고교 유럽 게엠베하 | Fine powder compounds, methods for their preparation and use in electrochemical applications |
KR100927244B1 (en) | 2007-10-13 | 2009-11-16 | 주식회사 엘지화학 | Cathode Active Material for Lithium Secondary Battery |
JP2011057518A (en) | 2009-09-11 | 2011-03-24 | Kansai Shokubai Kagaku Kk | High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0793138B2 (en) * | 1987-01-29 | 1995-10-09 | 日本電池株式会社 | Positive electrode plate for battery and manufacturing method thereof |
DE3811717A1 (en) | 1988-04-08 | 1989-10-19 | Varta Batterie | POSITIVE COLLECTOR ELECTRODE FOR BATTERIES WITH ALKALINE ELECTROLYTE |
JP3441107B2 (en) * | 1992-05-18 | 2003-08-25 | 三菱電線工業株式会社 | Lithium secondary battery |
US5591548A (en) * | 1995-06-05 | 1997-01-07 | Motorola, Inc. | Electrode materials for rechargeable electrochemical cells and method of making same |
KR100373721B1 (en) * | 1995-11-17 | 2003-04-26 | 삼성에스디아이 주식회사 | Nickel electrode active material and nickel electrode employing it |
JPH11345613A (en) * | 1998-06-02 | 1999-12-14 | Sanyo Electric Co Ltd | Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery using the same and alkaline storage battery |
JP2003313030A (en) * | 2002-04-23 | 2003-11-06 | Sumitomo Metal Mining Co Ltd | High tap density basic cobalt carbonate powder and production method thereof |
DE102006049098B4 (en) | 2006-10-13 | 2023-11-09 | Toda Kogyo Corp. | Powdered compounds, process for their production and their use in lithium secondary batteries |
DE102007039471A1 (en) * | 2007-08-21 | 2009-02-26 | H.C. Starck Gmbh | Powdered compounds, process for their preparation and their use in lithium secondary batteries |
JP4968945B2 (en) * | 2008-02-01 | 2012-07-04 | 日本化学工業株式会社 | Composite carbonate and method for producing the same |
US8277683B2 (en) * | 2008-05-30 | 2012-10-02 | Uchicago Argonne, Llc | Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries |
JP5460979B2 (en) * | 2008-07-09 | 2014-04-02 | 住友化学株式会社 | Transition metal phosphate, positive electrode for sodium secondary battery using the same, and secondary battery using the positive electrode |
JP5311922B2 (en) | 2008-08-19 | 2013-10-09 | キヤノン株式会社 | Imaging apparatus and control method thereof |
DE102009009674A1 (en) | 2009-02-19 | 2010-08-26 | Daimler Ag | Fuel cell system with at least one fuel cell |
BRPI1008625A2 (en) | 2009-02-20 | 2016-03-01 | Umicore Nv | Lithium metal oxide powder for use as a cathode material in a rechargeable battery, use, and process for the manufacture thereof. |
WO2012070012A1 (en) * | 2010-11-25 | 2012-05-31 | Basf Se | Process for preparing precursors for transition metal mixed oxides |
US8883350B2 (en) * | 2010-11-25 | 2014-11-11 | Basf Se | Process for preparing precursors for transition metal mixed oxides |
US9630842B2 (en) * | 2011-01-10 | 2017-04-25 | Basf Se | Process for preparing transition metal hydroxides |
-
2012
- 2012-03-16 KR KR1020120027119A patent/KR101446491B1/en active IP Right Grant
-
2013
- 2013-03-05 EP EP13760602.6A patent/EP2802030B1/en active Active
- 2013-03-05 CN CN201380008999.8A patent/CN104106159B/en active Active
- 2013-03-05 JP JP2014557578A patent/JP6104945B2/en active Active
- 2013-03-05 WO PCT/KR2013/001722 patent/WO2013137577A1/en active Application Filing
- 2013-03-06 TW TW102107821A patent/TWI464947B/en active
-
2014
- 2014-08-06 US US14/452,833 patent/US9431143B2/en active Active
-
2016
- 2016-07-26 US US15/219,483 patent/US9905325B2/en active Active
- 2016-11-02 JP JP2016215053A patent/JP6345218B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073127A (en) | 2001-08-29 | 2003-03-12 | Tosoh Corp | Nickel-manganese compound, method for producing the same, and use using the same |
KR20090066291A (en) * | 2006-10-13 | 2009-06-23 | 토다 고교 유럽 게엠베하 | Fine powder compounds, methods for their preparation and use in electrochemical applications |
KR100927244B1 (en) | 2007-10-13 | 2009-11-16 | 주식회사 엘지화학 | Cathode Active Material for Lithium Secondary Battery |
JP2011057518A (en) | 2009-09-11 | 2011-03-24 | Kansai Shokubai Kagaku Kk | High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016068681A1 (en) * | 2014-10-31 | 2016-05-06 | 주식회사 엘지화학 | Transition metal oxide precursor, method for preparing same, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery |
WO2016068682A1 (en) * | 2014-10-31 | 2016-05-06 | 주식회사 엘지화학 | Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery |
US10090522B2 (en) | 2014-10-31 | 2018-10-02 | Lg Chem, Ltd. | Precursor of transition metal oxide, preparation method thereof, lithium composite transition metal oxide, and positive electrode and secondary battery including the same |
US10811676B2 (en) | 2014-10-31 | 2020-10-20 | Lg Chem, Ltd. | Precursor of transition metal oxide, composite of lithium and transition metal oxide, positive electrode comprising same, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
TWI464947B (en) | 2014-12-11 |
JP6345218B2 (en) | 2018-06-20 |
WO2013137577A1 (en) | 2013-09-19 |
US9905325B2 (en) | 2018-02-27 |
CN104106159B (en) | 2017-03-08 |
JP6104945B2 (en) | 2017-03-29 |
US20140346393A1 (en) | 2014-11-27 |
JP2017043540A (en) | 2017-03-02 |
KR20130105030A (en) | 2013-09-25 |
EP2802030A4 (en) | 2015-09-30 |
US9431143B2 (en) | 2016-08-30 |
US20160336584A1 (en) | 2016-11-17 |
CN104106159A (en) | 2014-10-15 |
EP2802030A1 (en) | 2014-11-12 |
TW201342695A (en) | 2013-10-16 |
JP2015513513A (en) | 2015-05-14 |
EP2802030B1 (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101446491B1 (en) | Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same | |
KR101497909B1 (en) | Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same | |
US8268198B2 (en) | Precursor for preparation of lithium transition metal oxide | |
KR100959589B1 (en) | New precursors for the production of lithium composite transition metal oxides | |
KR101490852B1 (en) | Precursor for Preparation of Lithium Composite Transition Metal Oxide, Method for Preparation of the Same, and Lithium Composite Transition | |
KR20170046921A (en) | Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same | |
KR101778243B1 (en) | Transition metal oxide precursor, method for preparation of the same, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same | |
KR101673118B1 (en) | Manufacturing method of precursor for cathode active material, and cathode active materials and lithium secondary battery using the same | |
KR101541347B1 (en) | Cathode Active Material and Lithium Secondary Battery Containing The Same | |
KR100938623B1 (en) | Precursor for preparing lithium transition metal oxide | |
KR101848979B1 (en) | Transition metal oxide precursor, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same | |
KR101608632B1 (en) | Precursor for Preparation of Lithium Composite Transition Metal Oxide, Method for Preparation of the Same and Lithium Composite Transition Metal Oxide Obtained from the Same | |
KR101570970B1 (en) | Precursor for Preparation of Lithium Composite Transition Metal Oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120316 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20130312 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20120316 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140829 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140925 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140926 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170718 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20170718 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180619 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20180619 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20190625 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200618 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20210719 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20220824 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230627 Start annual number: 10 End annual number: 10 |