KR101405845B1 - Method for manufacturing of valve train parts using with metal powder injection molding - Google Patents
Method for manufacturing of valve train parts using with metal powder injection molding Download PDFInfo
- Publication number
- KR101405845B1 KR101405845B1 KR1020120088032A KR20120088032A KR101405845B1 KR 101405845 B1 KR101405845 B1 KR 101405845B1 KR 1020120088032 A KR1020120088032 A KR 1020120088032A KR 20120088032 A KR20120088032 A KR 20120088032A KR 101405845 B1 KR101405845 B1 KR 101405845B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal powder
- injection molding
- valve train
- sintered body
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 44
- 239000002184 metal Substances 0.000 title claims abstract description 44
- 239000000843 powder Substances 0.000 title claims abstract description 43
- 238000001746 injection moulding Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000011230 binding agent Substances 0.000 claims abstract description 30
- 238000005255 carburizing Methods 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 238000004513 sizing Methods 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000000638 solvent extraction Methods 0.000 claims abstract description 7
- 238000005498 polishing Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 238000005238 degreasing Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 238000007872 degassing Methods 0.000 abstract description 2
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000005495 investment casting Methods 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Polyethylene Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- PDHXHYRJLUNSDZ-UHFFFAOYSA-N [C].C#C Chemical group [C].C#C PDHXHYRJLUNSDZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/20—Making machine elements valve parts
- B21K1/22—Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0063—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49298—Poppet or I.C. engine valve or valve seat making
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Abstract
본 발명은 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것으로, 밸브 트레인 부품의 제조방법에 있어서, 금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계; 상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계; 상기 형성된 성형체를 용매 추출하는 단계; 상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계; 상기 형성된 소결체를 사이징(sizing) 가공하는 단계; 상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계; 및 상기 진공 침탄 처리된 소결체를 연마하는 단계; 를 포함하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a valve train component using a metal powder injection molding method, the method comprising the steps of: mixing a metal powder and a binder to obtain a raw material for injection molding; Injecting the obtained injection molding raw material into a mold having a valve train component shape to form a molded body; Solvent extraction of the formed body; Degassing and sintering the solvent-extracted shaped body to form a sintered body; Sizing the formed sintered body; Subjecting the sizing sintered body to a vacuum carburizing treatment; And polishing the sintered body subjected to the vacuum carburization treatment; To a method of manufacturing a valve train component using metal powder injection molding.
Description
본 발명은 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것으로, 보다 상세하게는 종래 정밀주조법을 치수정밀도가 우수하여 원가가 절감되는 금속분말 사출 성형으로 대체하고, 분말 조성과 세부 공정 조건을 조절함으로써 물성을 개선한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것이다.
The present invention relates to a method of manufacturing a valve train component using metal powder injection molding, and more particularly, to a method of manufacturing a valve train component by metal powder injection molding, To a method of manufacturing a valve train component using metal powder injection molding in which the physical properties are improved.
내연기관 엔진은 외부로부터 공기 및 연료를 흡입하여 연소실에서 연소시킴으로써 동력을 발생시키는 장치로서, 상기 공기 및 연료를 연소실로 흡입하기 위한 흡기밸브 및 상기 연소실에서 연소된 폭발 가스를 배출하기 위한 배기밸브를 구비하는데, 이러한 흡배기 밸브는 크랭크축의 회전에 연동하여 회전하는 캠축에 의해 개폐된다.An internal combustion engine engine is a device for generating power by sucking air and fuel from the outside and burning it in a combustion chamber. The engine includes an intake valve for sucking the air and fuel into the combustion chamber, and an exhaust valve for exhausting the explosive gas burned in the combustion chamber The intake and exhaust valve is opened and closed by a camshaft rotating in conjunction with the rotation of the crankshaft.
이 때, 구동캠, 캠샤프트, 태핏, 로커암 및 로커암 링크 등 상기 흡배기 밸브를 작동하기 위한 일련의 부품들을 밸브 트레인이라고 한다.At this time, a series of parts for operating the intake and exhaust valves, such as a drive cam, a camshaft, a tappet, a rocker arm, and a rocker arm link, are referred to as a valve train.
한편, 자동차 업계는 2020년까지 이산화탄소 배출량을 현재 대비 35 ~ 50 % 수준인 50 g/km 로 저감하는 것을 목표로 하여 다양한 친환경 차량을 개발하고 있으며, 연비의 경우 2025년 미국 기업평균연비 규제치(Corporate Average Fuel Econmomy)인 23.2 km/l (54.5 mpg)를 만족하기 위해 기술 개발에 매진하고 있다.Meanwhile, the automobile industry is developing various eco-friendly vehicles with the target of reducing carbon dioxide emissions to 50g / km, which is 35-50% of current level, by 2020. In case of fuel economy, Average Fuel Econmomy) of 23.2 km / l (54.5 mpg).
최근에는 차량의 엔진에 엔진 회전 속도에 따라 흡기 밸브의 높이를 제어하여 흡입되는 공기량을 최적화함으로써 엔진의 연료소비효율 및 성능을 극대화하는 연속 가변 밸브리프터(Continuous Variable Valve Lifter, CVVL) 기구가 적용되고 있다.Recently, a continuous variable valve lifter (CVVL) mechanism has been applied to maximize the fuel consumption efficiency and performance of the engine by optimizing the intake air amount by controlling the height of the intake valve according to the engine rotation speed of the vehicle have.
도 1은 로커암을 나타낸 사시도이고, 도 2는 로커암 링크를 나타낸 사시도이며, 도 3은 로커암 및 로커암 링크가 체결된 구조를 나타낸 사시도이고, 도 4는 상기 연속 가변 밸브 리프터를 나타낸 사시도인데, 도시된 바와 같이 정교한 형상을 가진 상기 로커암(100) 및 로커암 링크(110)는 상기 연속 가변 밸브 리프터(120)의 구성의 일부로서 작동된다.FIG. 1 is a perspective view showing a rocker arm, FIG. 2 is a perspective view showing a rocker arm link, FIG. 3 is a perspective view showing a structure in which a rocker arm and a rocker arm link are fastened, The
이 때, 상기 로커암(100) 및 로커암 링크(110) 등의 밸브 트레인 부품은 가혹한 조건에서 장시간 사용되어야 하기 때문에 강도, 내마모성, 내충격성 등의 우수한 내구성 및 정밀도가 요구된다.At this time, since the valve train components such as the
이를 위해 종래에는 통상적인 주조법과 대비하여 비교적 치수정밀도가 높은 정밀주조법을 사용하여 제조하였는데, 상기 밸브 트레인 부품의 형상이 정교하기에, 주조 후에도 최종 형상을 갖추기 위한 다수의 추가적인 가공이 필요하였다. For this purpose, a conventional precision casting method has been used in comparison with a conventional casting method. However, since the shape of the valve train parts is precise, a large number of additional machining steps are required to achieve the final shape even after casting.
즉, 상기 정밀주조법에 의해 제조하는 경우 기계적 강도는 우수하나 치수정밀도가 떨어져 추가 가공으로 인한 공정 비용 및 재료의 손실이 부가적으로 발생됨에 따라 제품 원가가 크게 상승되는 문제가 있었다.
That is, in the case of manufacturing by the above-mentioned precision casting method, there is a problem that the cost of the product is greatly increased because the mechanical strength is excellent but the dimensional accuracy is poor and the process cost and material loss due to additional processing are additionally generated.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 종래 밸브 트레인 부품의 일반적인 제조방법인 정밀주조법 대신에 금속분말 사출 성형을 이용함으로써 치수정밀도가 개선되어 경제성이 우수하고, 최적 분말 조성과 공정 조건을 설정함으로써 엔진 등의 가혹한 조건에서도 적용 가능한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 제공하고자 함에 있다.
It is an object of the present invention to solve the above problems and to provide a method of manufacturing a valve train, The present invention provides a method of manufacturing a valve train component using metal powder injection molding applicable even in a severe condition such as an engine.
상기와 같은 목적을 달성하기 위하여, 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법은 밸브 트레인 부품의 제조방법에 있어서, 금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계; 상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계; 상기 형성된 성형체를 용매 추출하는 단계; 상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계; 상기 형성된 소결체를 사이징(sizing) 가공하는 단계; 상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계; 및 상기 진공 침탄 처리된 소결체를 연마하는 단계; 를 포함하며, 상기 사출성형용 원료를 수득하는 단계(S100)는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하되, 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것을 특징으로 한다.In order to achieve the above object, a method for manufacturing a valve train component using metal powder injection molding according to the present invention is a method for manufacturing a valve train component, which comprises mixing metal powder and a binder, ; Injecting the obtained injection molding raw material into a mold having a valve train component shape to form a molded body; Solvent extraction of the formed body; Degassing and sintering the solvent-extracted shaped body to form a sintered body; Sizing the formed sintered body; Subjecting the sizing sintered body to a vacuum carburizing treatment; And polishing the sintered body subjected to the vacuum carburization treatment; (S100), the metal powder is mixed with 93% by weight of the metal powder and 7% by weight of the binder. The metal powder may include 2% by weight of nickel (Ni), molybdenum 0.5% by weight of Mo), 0.25% by weight of carbon (C) and the balance of iron (Fe).
또한, 본 발명의 일실시예로 상기 사출성형용 원료를 수득하는 단계는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하는 것이 바람직하다.According to an embodiment of the present invention, it is preferable that the step of obtaining the raw material for injection molding is such that the metal powder is 93% by weight and the binder is 7% by weight.
또한, 본 발명의 일실시예로 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것이 바람직하다.In one embodiment of the present invention, the metal powder preferably contains 2% by weight of nickel (Ni), 0.5% by weight of molybdenum (Mo), 0.25% by weight of carbon (C) and the balance of iron (Fe).
또한, 본 발명의 일실시예로 상기 소결체를 형성하는 단계는 진공 분위기에서 아르곤 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 것이 바람직하다.According to an embodiment of the present invention, the step of forming the sintered body may include supplying argon gas in a vacuum atmosphere, heating the degreased shaped body to a temperature of 1250 ° C or higher, and then soaking the temperature for 2 hours desirable.
또한, 본 발명의 일실시예로 상기 진공 침탄 처리하는 단계는 상기 사이징 가공된 소결체를 890 ℃ 로 승온시킨 다음 아세틸렌(C2H2) 가스를 이용하여 1시간 동안 침탄 처리한 후, 상기 890 ℃에서 10 분 동안 탄소를 확산시킨 다음 820 ℃로 하온시킨 후 동일 온도에서 20분 동안 탄소를 확산시키는 것이 바람직하다.Further, the step of processing the vacuum carburization to an embodiment of the present invention, after the sizing was heated to the processed sintered body into 890 ℃ following acetylene carburizing treatment for 1 hour by using a (C 2 H 2) gas, the 890 ℃ For 10 minutes, then warmed to 820 占 폚, and then spread carbon for 20 minutes at the same temperature.
또한, 본 발명의 일실시예로 상기 진공 침탄 처리하는 단계는 상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 80 ℃ 의 온도로 담금질한 다음 180℃ 로 승온하여 90분 동안 유지한 후 냉각하는 뜨임을 추가적으로 실시하는 것이 바람직하다.According to an embodiment of the present invention, in the vacuum carburizing step, the carbon-diffused sintered body is quenched by using an oil bath at a temperature of 80 ° C., heated to 180 ° C. and held for 90 minutes It is preferable to further perform a cooling tempering.
또한, 본 발명의 일실시예로 상기 밸브 트레인 부품은 로커암 또는 로커암 링크인 것이 더 바람직하다.
Further, in an embodiment of the present invention, it is more preferable that the valve train component is a rocker arm or a rocker arm link.
상기와 같은 구성을 가지는 본 발명의 효과는, 종래 정밀주조법을 치수정밀도가 우수한 금속분말 사출 성형으로 대체하여 추가 가공으로 인한 공정 비용 및 재료 손실을 줄임으로써 이에 상응하는 원가를 절감할 수 있다. The effect of the present invention having the above-described structure can be achieved by replacing the conventional precision casting method with a metal powder injection molding having excellent dimensional accuracy, thereby reducing the process cost and the material loss due to the additional processing, thereby reducing the cost.
또한, 금속분말 사출 성형으로 제조함에도 불구하고, 금속분말 조성 및 공정조건을 조절하여 탄소 제어를 용이하게 함에 따라 균일한 침탄을 가능하여 강도 및 표면조도가 향상되는 등 종래 정밀주조법과 대등한 물성이 확보되는 장점이 있다.
In addition, although it is manufactured by metal powder injection molding, the carbon powder can be easily controlled by adjusting the metal powder composition and the process conditions, so that uniform carburization is possible, and the strength and surface roughness are improved. There is an advantage to be secured.
도 1은 상기 연속 가변 밸브 리프터를 나타낸 사시도.
도 2는 로커암을 나타낸 사시도.
도 3은 로커암 링크를 나타낸 사시도.
도 4는 로커암 및 로커암 링크가 체결된 구조를 나타낸 사시도.
도 5는 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 나타낸 흐름도.
도 6은 본 발명의 일실시예에 의한 탈지 및 소결 공정을 나타낸 그래프.
도 7은 본 발명의 일실시예에 의한 진공 침탄 및 담금질 공정을 나타낸 그래프.
도 8은 본 발명의 일실시예에 의한 밸브 트레인 부품(로커암)의 경도 시험 결과를 나타낸 그래프.1 is a perspective view of the continuously variable valve lifter.
2 is a perspective view showing the rocker arm;
3 is a perspective view showing a rocker arm link;
4 is a perspective view showing a structure in which a rocker arm and a rocker arm link are engaged;
5 is a flowchart illustrating a method of manufacturing a valve train component using metal powder injection molding according to the present invention.
6 is a graph showing a degreasing and sintering process according to an embodiment of the present invention.
7 is a graph showing a vacuum carburization and quenching process according to an embodiment of the present invention.
8 is a graph showing a hardness test result of a valve train component (rocker arm) according to an embodiment of the present invention.
이하, 첨부된 도면에 의거하여 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
종래 정밀주조에 의해 제조된 부품은 밸브 트레인 사용 환경에 의해 요구되는 물성은 만족하나 치수정밀도가 우수하지 못해, 후가공 및 재료 손실로 인한 비용 상승으로 원가적인 측면에서 사용에 한계가 있었다. Conventionally, parts manufactured by precision casting satisfies the physical properties required by the valve train operating environment, but it is not excellent in dimensional accuracy, and there is a limit in the cost because of cost increase due to post-processing and material loss.
따라서, 본 발명의 목적은 상기 밸브 트레인 부품의 제조에 관련된 종래 정밀주조법을 치수정밀도가 우수한 금속분말 사출 성형으로 대체하는 것과 관련이 있다.Accordingly, it is an object of the present invention to replace conventional precision casting processes involved in the manufacture of valve train components with metal powder injection molding with excellent dimensional accuracy.
금속분말 사출 성형(Metal powder Injection Molding, MIM)은 분말야금 기술및 정밀한 플라스틱 부품의 대량생산기술인 사출성형법이 접목된 신분말야금 성형기술인데, 일반적으로 미세한 금속 분말과 유동의 주체가 되는 바인더를 혼합하여 이를 금형 내로 사출성형한 후 사출성형체에서 상기 바인더를 제거하고 분말만을 최종 고온 소결하여 부품을 제조하는 공정으로 구성된다.Metal Powder Injection Molding (MIM) is a metal molding technology that combines powder metallurgy technology and injection molding, which is a mass production technology of precision plastic parts. In general, metal powder is mixed with fine metal powders and binder Injecting the mixture into a mold, removing the binder from the injection-molded body, and sintering only the powder to obtain a component.
여기서, 상기 금속분말 사출 성형은 일반적으로 정밀주조와 대비하여 치수정밀도가 우수하나 결과물의 물성이 낮은바, 표면 열처리에 의한 물성을 향상시키는 등의 후처리 공정이 요구되며, 종래에는 소재 내 탄소 제어가 어려워 원하는 물성을 얻기가 어려운 단점이 있었다.Here, the metal powder injection molding generally requires better post-treatment such as improvement of physical properties by surface heat treatment, which is superior in dimensional precision as compared with precision casting but has low physical properties of the resulting product. Conventionally, It is difficult to obtain desired physical properties.
즉, 금속분말 사출 성형이 가지는 장점에도 불구하고, 엔진 밸브 트레인 등의 가혹한 환경에서 작동되는 부품의 제조방법으로 사용하기에는 부적합한 면이 있었다. That is, despite the advantages of metal powder injection molding, there is a problem in that it is not suitable for use as a method for manufacturing a component that operates in a harsh environment such as an engine valve train.
따라서, 본 발명은 금속분말 사출 성형에 있어서, 합금 조성 및 제조공정 조건을 최적화하여 상기 단점을 해소하는 동시에 우수한 치수정밀도를 확보하여 후가공 공정 및 재료 손실을 줄임으로써 원가 절감의 효과를 얻는 것을 목적으로 한다.Therefore, the object of the present invention is to obtain the effect of cost reduction by optimizing the alloy composition and the manufacturing process conditions in the metal powder injection molding to solve the above-mentioned disadvantages and to secure the excellent dimensional accuracy and to reduce the post- do.
도 5는 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 나타낸 흐름도인데, 이하의 실시예를 통해 상세히 설명한다.
FIG. 5 is a flowchart illustrating a method of manufacturing a valve train component using metal powder injection molding according to the present invention, which will be described in detail with reference to the following examples.
1. 혼합 단계(S100)1. Mixing step (S100)
먼저 금속분말과 바인더(binder)를 혼합하여 사출성형용 원료를 수득하였는데, 상기 바인더는 사출성형 시에 상기 금속분말의 유동성 및 형상 유지를 위해 첨가되는 것으로서 통상의 유기 바인더가 사용되는바, 폴리에틸렌(Polyethylene) 등의 결합제나 파라핀 왁스(Paraffin wax), 스테아릭산(Stearic acid) 등의 윤활제로 구성될 수 있다. First, a metal powder and a binder are mixed to obtain a raw material for injection molding. The binder is added to maintain the flowability and shape of the metal powder during injection molding, and a conventional organic binder is used. Polyethylene, or a lubricant such as paraffin wax and stearic acid.
구체적으로 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 균질하게 혼합하여 사출성형용 원료를 수득하였다.Specifically, raw materials for injection molding were obtained by mixing homogeneously such that the metal powder was 93% by weight and the binder was 7% by weight.
상기 금속분말이 93 중량% 보다 적은 경우에는 사출시 유동성이 좋으나 탈지시 장시간이 소요되며, 93 중량% 보다 큰 경우에는 사출시 성형체가 충분한 강도를 갖지 못하는바, 상기의 중량비를 갖도록 혼합하는 것이 바람직하다.When the metal powder is less than 93% by weight, the fluidity at the time of injection is good but it takes a long time at the time of degreasing. When the metal powder is more than 93% by weight, the molded body at injection does not have sufficient strength, Do.
또한, 상기 금속분말은 각 금속 원소를 별도로 수급하고, 몰리브덴(Mo)을 첨가하여 혼합하는 것이 바람직한데, 구체적으로 카보닐 Fe(1)(탄소(C) 0.76 중량% 함유), 카보닐 Fe(2)(탄소(C) 0.03 중량% 함유), 니켈(Ni) 및 몰리브덴(Mo)을 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe) 의 중량비가 되도록 배합하였다.The metal powder is preferably mixed with molybdenum (Mo) by separately supplying each metal element. Specifically, the metal powder is mixed with carbonyl Fe (1) (containing 0.76 wt% of carbon (C)), carbonyl Fe 2) (containing 0.03% by weight of carbon (C), nickel (Ni) and molybdenum (Mo) in an amount of 2% by weight of nickel, 0.5% by weight of molybdenum, 0.25% by weight of carbon, (Fe).
종래에는 Fe-2wt%Ni-0.9wt%C 를 구입 후 탈탄함에 따라 탄소제어가 난이한 문제가 있었는데(박육부/후육부 상이), 이와 달리 본 발명은 금속분말 조성 및 바인더의 최적 조성을 확보함에 따라 탄소제어가 용이하고, 강성 확보 및 경화용 침탄이 가능해지는 이점이 있다.In the prior art, there is a problem that carbon control is difficult due to decarburization after purchasing Fe-2wt% Ni-0.9wt% C (thin-walled / deep-walled). In contrast, the present invention provides a metal powder composition and an optimal composition of a binder Accordingly, carbon control is easy, rigidity is ensured, and carburization for curing becomes possible.
또한, 상기 혼합은 160 ℃에서 3시간 동안 30 rpm 의 조건으로 실시되었는데, 상기 조건보다 낮은 온도 또는 짧은 시간 동안 이루어지면 바인더가 충분한 유동성을 가짐에 따라 혼합되지 않을 수 있으며, 상기 조건보다 높은 온도 또는 긴 시간 동안 이루어지면 혼합 도중에 바인더가 탈지될 수 있으므로, 상기 혼합 조건을 만족하는 것이 바람직하다.
The mixing was carried out at 160 캜 for 3 hours at 30 rpm. If the temperature is lower than the above-mentioned condition or the mixing time is shortened, the binder may not be mixed as it has sufficient fluidity, If the mixing is carried out for a long period of time, the binder may be degreased during mixing, so that it is preferable to satisfy the mixing condition.
2. 사출 단계(S110)2. In the injection step S110,
상기 수득된 사출성형용 원료를 노즐 온도 145 ℃, 사출 속도 33 mm/s, 사출압력 3.5 MPa, 금형 온도 30℃ 의 조건으로 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하였다.The obtained injection molding raw material was injected into a mold having a valve train component shape under conditions of a nozzle temperature of 145 占 폚, an injection speed of 33 mm / s, an injection pressure of 3.5 MPa, and a mold temperature of 30 占 폚 to form a molded article.
이 때, 상기 노즐 온도 및 금형 온도는 상기 사출성형용 원료의 유동성 및 바인더의 기화를 고려한 것이고, 상기 사출압력 및 사출 속도는 원활한 사출 및 사출성형장치의 과부하를 고려한 것이다.
At this time, the nozzle temperature and the mold temperature are considered in consideration of the fluidity of the raw material for injection molding and the vaporization of the binder, and the injection pressure and injection speed consider smooth injection and overloading of the injection molding apparatus.
3. 용매 추출 단계(S120)3. Solvent extraction step (S120)
상기와 같은 방법으로 형성된 성형체를 하기 탈지 시간을 단축하기 위해 미리 노멀헵탄(n-heptane)용액에 침지하여 약 40 ℃에서 10 시간 내지 12 시간 동안 용매 추출(Solvent extraction) 함으로써 성형체 내 대부분의 바인더를 제거하였다.In order to shorten the degreasing time, the formed body thus formed is immersed in a n-heptane solution in advance and subjected to solvent extraction at about 40 ° C for 10 hours to 12 hours to remove most of the binder in the molded body. Respectively.
이 때, 상기 온도가 40 ℃ 를 초과하는 경우에는 성형체 내부에 적절한 추출통로가 형성되기 전에 바인더 제거 반응속도가 너무 빠르게 되어 성형체 내부에 응력이 집중됨으로써 균열이 발생된다.At this time, if the temperature exceeds 40 ° C, the binder removal reaction rate becomes too fast before an appropriate extraction passage is formed in the formed body, so that stress is concentrated inside the formed body, thereby generating cracks.
또한, 상기 온도가 40 ℃ 미만인 경우에는 균열은 발생되지 않지만 용매 추출에 장시간이 소요되기 때문에 공정비용이 증가되므로, 상기 조건을 만족하는 것이 바람직하다.
If the temperature is less than 40 캜, cracking does not occur, but solvent extraction requires a long time, and therefore, the process cost is increased. Therefore, it is preferable that the above condition is satisfied.
4. 탈지 및 소결 단계(S130)4. Degreasing and Sintering Step (S130)
도 6은 본 발명의 일실시예에 의한 탈지 및 소결 공정을 나타낸 그래프이다.6 is a graph illustrating a degreasing and sintering process according to an embodiment of the present invention.
탈지는 소결 전에 성형체 내의 바인더를 완전히 제거하는 공정인데, 용매 추출이 끝난 상기 성형체에 잔존하는 바인더를 제거하기 위해 열분해 탈지를 실시하였다.Degreasing is a step of completely removing the binder in the formed body before sintering. In order to remove the binder remaining in the molded body after the solvent extraction, pyrolysis and degreasing were performed.
바인더를 제거하는 가장 일반적인 방법은 성형체를 서서히 가열함으로써 열분해를 통해 바인더를 기화 증발시키는 것이다.The most common method of removing the binder is to slowly evaporate the binder through pyrolysis by slowly heating the shaped body.
그러나 바인더를 가열 증발시키면 대부분의 바인더들이 낮은 온도에서는 서서히 증발하다가 임의의 온도에 이르면 급격하게 증발하는 특성을 가지기에 비틀림이나 휘어짐 등 성형체의 변형이 생길 수 있다.However, when the binder is heated and evaporated, most of the binders evaporate slowly at a low temperature, and when the binder reaches a certain temperature, the binder evaporates rapidly, resulting in distortion of the molded article such as twisting or warpage.
따라서, 상기 도 6에서 도시된 바와 같이 이를 방지하기 위해 25 ℃에서 10 분 동안 진공 펌핑(Vacuum Pumping)을 실시한 다음, 8 L/min 속도로 질소(N2) 가스를 충진하고, 승온 및 온도 유지를 여러 단계로 실시하여 바인더를 각 단계별로 제거함에 따라 성형체의 변형을 최소화하였다.Accordingly, as shown in FIG. 6, vacuum pumping is performed at 25 ° C. for 10 minutes to prevent the above-mentioned problems, and then nitrogen (N 2 ) gas is charged at a rate of 8 L / min. To remove the binder in each step, thereby minimizing the deformation of the molded body.
즉, 승온 초기 온도 범위에서는 바인더가 탈지되기 위한 통로가 성형체 내에 형성되고, 중간 온도 범위에서는 저온용 바인더의 탈지가 이루어지며, 고온 온도 범위에서는 고온용 바인더의 탈지가 순차적으로 이루어진다.That is, in the initial temperature raising temperature range, passages for degreasing the binder are formed in the molded body, the low temperature binder is degreased at a middle temperature range, and degreasing is performed sequentially for the high temperature binder at a high temperature range.
그 다음, 펌핑하여 진공 상태를 만든 후 5 L/min 속도로 아르곤(Ar) 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 소결을 실시하여 소결체를 형성하였다. Subsequently, purging was performed to make a vacuum state, argon (Ar) gas was supplied at a rate of 5 L / min, the degreased compact was heated to a temperature of 1250 ° C or higher, To form a sintered body.
상기 소결 중에 치밀화 및 입자 성장이 진행되어 성형체가 고결되는데, 소결은 별도의 소결로에서 실시될 수 있지만, 상기와 같이 진공 탈지 소결로에서 탈지에 이어 연속적으로 실시될 수도 있다.During the sintering, densification and grain growth progress to consolidate the formed body. The sintering may be performed in a separate sintering furnace, but may be performed continuously after degreasing in the vacuum degreasing sintering furnace as described above.
종래에는 수소 가스 및 질소 가스가 혼합된 복합 가스 분위기 및 1250 ℃ 미만의 온도에서 소결을 실시함에 따라 소재 내 탄소가 불균일한 문제가 있었는데, 이와 달리 본 발명은 성형체 내 탄소(C) 및 니켈(Ni)이 균일화되는 이점이 있다.
In the past, sintering was performed at a temperature of less than 1250 占 폚 in a mixed gas atmosphere in which a hydrogen gas and a nitrogen gas were mixed. In this case, carbon in the material was uneven. In contrast, ) Is uniformized.
5. 사이징(sizing) 가공 단계(S140)5. Sizing (sizing) processing step (S140)
상기 소결체를 소결체의 치수 결정을 위해 100 kgf/cm2 의 압력으로 사이징 가공을 실시하였다.
The sintered body was subjected to sizing at a pressure of 100 kgf / cm 2 to determine the dimensions of the sintered body.
6. 진공 침탄 처리 단계(S150)6. Vacuum Carburizing Treatment Step (S150)
도 7은 본 발명의 일실시예에 의한 진공 침탄 및 담금질 공정을 나타낸 그래프이다.7 is a graph showing a vacuum carburizing and quenching process according to an embodiment of the present invention.
도시된 바와 같이, 진공 분위기에서 상기 사이징 가공된 소결체를 침탄 온도인 약 890 ℃ 로 약 30분 동안 승온시킨 다음 탄소원으로서 아세틸렌(C2H2) 가스를 이용하여 약 1시간 동안 침탄 처리를 실시하였다Was carried out as shown, about one hour carburizing treatment while using approximately 30 minutes was then carbon acetylene (C 2 H 2) as the temperature was raised during the gas to the processed sintered compact sizing said to be about 890 ℃ the carburizing temperature in a vacuum environment as shown
그 다음, 상기 890 ℃에서 약 10분 동안 유지하고, 약 820 ℃ 로 약 10분 동안 하온시킨 후 상기 820 ℃에서 약 20분 동안 유지하면서 총 40분 동안 침탄된 탄소를 확산시켰다.Then, the temperature was maintained at 890 캜 for about 10 minutes, the temperature was lowered to about 820 캜 for about 10 minutes, and the carburized carbon was diffused for a total of 40 minutes while maintaining the temperature at 820 캜 for about 20 minutes.
그 후 상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 약 80 ℃ 의 온도로 담금질(quenching)하여 경도 및 강도를 확보하고, 인성을 향상시키기 위해 약 180℃ 로 승온하여 약 90분 동안 유지한 다음 냉각하는 뜨임(tempering)을 추가적으로 실시하였다.The carbon-diffused sintered body was then quenched at a temperature of about 80 ° C. using an oil bath to secure hardness and strength. The temperature of the sintered body was raised to about 180 ° C. for about 90 minutes to improve toughness Followed by additional cooling and tempering.
종래에는 침탄 가스로 일산화탄소(CO), 메탄(CH4)을 사용하고 탄소 퍼텐셜(Carbon Potential)이 일정하여 경화층의 깊이가 상이하거나 전경화가 발생하는 문제가 있었지만, 본 공정은 침탄 가스로 아세틸렌(C2H2) 가스를 사용하고 진공 분위기에서 침탄시켜 탄소 퍼텐셜 펄스를 제어함에 따라 두께와 무관하게 균일한 깊이의 경화층을 얻을 수 있다.
Conventionally, carbon monoxide (CO) and methane (CH 4 ) are used as the carburizing gas, and the carbon potential is constant. Thus, there is a problem that the depth of the cured layer is different or the precure is generated. However, C 2 H 2 ) gas and carburized in a vacuum atmosphere to control the carbon potential pulse, a uniform layer of depth can be obtained irrespective of the thickness.
7. 연마 단계(S160)7. Polishing step (S160)
상기 진공 침탄된 소결체의 표면을 매끈하게 하기 위해 2시간 동안 연삭을 실시하였다.
The surface of the vacuum-sintered sintered body was ground for 2 hours to smooth it.
도 8 및 상기 표 1은 본 발명의 일실시예에 의한 밸브 트레인 부품(로커암)의 경도 시험 결과를 나타낸 그래프 및 표이다.
8 and Table 1 are graphs and tables showing the hardness test results of valve train parts (rocker arms) according to one embodiment of the present invention.
도시된 바와 같이, 침탄 열처리 결과 로커암(100)의 표면은 약 700 Hv, 표면에서 심부까지 약 400 Hv 이상의 경도를 가지며, 유효 경화층의 깊이는 약 0.52 mm 으로 측정되었고, 밀도를 측정한 결과 7.6 g/cc 로 나타났다.As shown in the figure, the surface of the
각종 시험 결과 로커암(100)이 기본적으로 갖추어야 할 물성은 밀도 7.5 g/cc, 표면 경도 650 Hv 이상, 표면에서 심부까지 경도 300 Hv 이상, 유효 경화층의 깊이 0.3 내지 0.6 mm 인데, 본 발명에 의한 로커암(100)은 상기 기본 조건을 모두 만족함을 알 수 있다.As a result of various tests, the physical properties that the
또한, 본 발명에 의해 제조된 로커암(100)의 기계적 강도를 측정한 결과 인장강도 940 MPa, 연신률 0.5 %, 충격강도 9.1 J/cm2 를 얻었는데, 이는 종래 정밀주조법과 거의 동등한 수준의 물성을 가지는 것을 의미한다.The mechanical strength of the
뿐만 아니라, 치수정밀도가 우수한 금속분말 사출 성형을 이용함에 따라 종래 정밀주조보다 가공부위가 60 내지 80 % 절감되어 상기 추가 가공으로 인한 공정 비용 및 재료의 손실을 줄임으로써 원가 절감의 효과를 얻을 수 있다.(종래 정밀주조법에 의한 로커암(100) 치수정밀도 0.65%, 본 발명에 의한 로커암(100) 치수정밀도 0.13% 로 약 5배 정도 우수)
In addition, since the metal powder injection molding having excellent dimensional accuracy is used, the machining area is reduced by 60 to 80% compared to the conventional precision casting, thereby reducing the process cost and material loss due to the additional machining, thereby achieving cost reduction effect (Accuracy of 0.65% in the dimension accuracy of the
로커암 : 100 로커암 링크 : 110
연속 가변 밸브 리프터 : 120Rocker Arm: 100 Rocker Arm Link: 110
Continuous variable valve lifter: 120
Claims (7)
금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계(S100);
상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계(S110);
상기 형성된 성형체를 용매 추출하는 단계(S120);
상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계(S130);
상기 형성된 소결체를 사이징(sizing) 가공하는 단계(S140);
상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계(S150); 및
상기 진공 침탄 처리된 소결체를 연마하는 단계(S160); 를 포함하며,
상기 사출성형용 원료를 수득하는 단계(S100)는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하되, 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
A method of manufacturing a valve train component,
Mixing the metal powder and the binder to obtain a raw material for injection molding (S100);
Forming a molded body by injecting the obtained injection molding raw material into a mold having a valve train component shape (S110);
Solvent extraction of the formed body (S120);
A step (S130) of forming a sintered body by degreasing and sintering the solvent-extracted molded body;
Sizing the formed sintered body (S140);
A step (S150) of vacuum carburizing the sintered body subjected to the sizing process; And
Polishing the sintered body subjected to the vacuum carburization (S160); / RTI >
The metal powder is mixed with 2 wt% of nickel (Ni), 0.5 wt% of molybdenum (Mo), 0.5 wt% of molybdenum (Mo), and the metal powder is mixed so that the metal powder is 93 wt% and the binder is 7 wt% %, Carbon (C) of 0.25% by weight, and the balance of iron (Fe).
상기 소결체를 형성하는 단계(S130)는 진공 분위기에서 아르곤 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
The method according to claim 1,
The step of forming the sintered body (S130) comprises supplying argon gas in a vacuum atmosphere, heating the degreased molded body to a temperature of 1250 占 폚 or more, and then soaking the metal body for 2 hours Method of manufacturing valve train parts using molding.
상기 진공 침탄 처리하는 단계(S150)는,
상기 사이징 가공된 소결체를 890 ℃ 로 승온시킨 다음 아세틸렌(C2H2) 가스를 이용하여 1시간 동안 침탄 처리한 후,
상기 890 ℃에서 10 분 동안 탄소를 확산시킨 다음 820 ℃로 하온시킨 후 동일 온도에서 20분 동안 탄소를 확산시키는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
The method according to claim 1,
The vacuum carburizing step (S150)
The sizing sintered body was heated to 890 캜 and carburized with acetylene (C 2 H 2 ) gas for 1 hour,
Wherein the carbon is diffused at 890 캜 for 10 minutes and then cooled to 820 캜 and carbon is diffused at the same temperature for 20 minutes, thereby producing a valve train component using the metal powder injection molding.
상기 진공 침탄 처리하는 단계(S150)는,
상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 80 ℃ 의 온도로 담금질한 다음 180 ℃ 로 승온하여 90분 동안 유지한 후 냉각하는 뜨임을 추가적으로 실시하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
6. The method of claim 5,
The vacuum carburizing step (S150)
Wherein the carbon-diffused sintered body is quenched by heating in an oil bath at a temperature of 80 ° C, then heated to 180 ° C, held for 90 minutes, and then cooled to form a metal powder injection molding. A method of manufacturing a valve train component using the same.
상기 밸브 트레인 부품은 로커암(100) 또는 로커암 링크(110)인 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
7. The method according to any one of claims 1 and 4 to 6,
Wherein the valve train component is a rocker arm (100) or a rocker arm link (110).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120088032A KR101405845B1 (en) | 2012-08-10 | 2012-08-10 | Method for manufacturing of valve train parts using with metal powder injection molding |
DE102012222840.3A DE102012222840A1 (en) | 2012-08-10 | 2012-12-12 | Method for producing valve control components by means of metal powder injection molding |
US13/715,882 US9085028B2 (en) | 2012-08-10 | 2012-12-14 | Method for manufacturing valve train parts using metal powder injection molding |
CN201210591070.XA CN103567451B (en) | 2012-08-10 | 2012-12-31 | The method that valve actuating mechanism parts are manufactured using metal powder injection molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120088032A KR101405845B1 (en) | 2012-08-10 | 2012-08-10 | Method for manufacturing of valve train parts using with metal powder injection molding |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140021443A KR20140021443A (en) | 2014-02-20 |
KR101405845B1 true KR101405845B1 (en) | 2014-06-11 |
Family
ID=49999255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120088032A Expired - Fee Related KR101405845B1 (en) | 2012-08-10 | 2012-08-10 | Method for manufacturing of valve train parts using with metal powder injection molding |
Country Status (4)
Country | Link |
---|---|
US (1) | US9085028B2 (en) |
KR (1) | KR101405845B1 (en) |
CN (1) | CN103567451B (en) |
DE (1) | DE102012222840A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230168909A (en) | 2022-06-08 | 2023-12-15 | 주식회사 현대케피코 | Method of manufacturing carburized part and carburized part thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028885B2 (en) | 2014-03-28 | 2021-06-08 | Keystone Powdered Metal Company | Two-way clutch assembly |
CN104128609A (en) * | 2014-07-21 | 2014-11-05 | 苏州科瓴精密机械科技有限公司 | Four-stroke engine rocker mechanism and manufacturing method thereof |
WO2017050324A1 (en) * | 2015-09-22 | 2017-03-30 | Schaeffler Technologies AG & Co. KG | Lever which can be loaded by a cam for actuating gas exchange valves of an internal combustion engine |
CN105665714A (en) * | 2016-02-01 | 2016-06-15 | 罗松文 | Safe, environment-friendly and efficient catalytic degreasing furnace and process thereof |
DE102017221996A1 (en) * | 2017-12-06 | 2019-06-06 | Aktiebolaget Skf | Cam follower roller device, in particular for a fuel injection pump |
DE102018208947A1 (en) | 2018-06-06 | 2019-12-12 | Aktiebolaget Skf | Rolling ring by means of a metal injection molding process |
CN112963221B (en) * | 2021-03-15 | 2022-01-14 | 潍柴动力股份有限公司 | Braking rocker arm and engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279202A (en) * | 1996-04-18 | 1997-10-28 | Daido Steel Co Ltd | Metal powder for metal injection molding, sintered carburized product using this powder, and method for producing the same |
JP2000310103A (en) | 1999-04-26 | 2000-11-07 | Nippon Piston Ring Co Ltd | Rocker arm |
KR20080040270A (en) * | 2006-11-02 | 2008-05-08 | 주식회사 만도 | Spool manufacturing method using metal powder injection molding and spool using the same |
KR20110088554A (en) * | 2008-11-07 | 2011-08-03 | 메탈딘 엘엘씨 | Powdered Metal Rocker Arm |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH554559A (en) * | 1973-01-05 | 1974-09-30 | ||
JPS60169501A (en) | 1984-02-15 | 1985-09-03 | Toyota Motor Corp | Iron-based alloy powder for sintering and forging |
US6143240A (en) * | 1997-11-14 | 2000-11-07 | Stackpole Limited | High density forming process with powder blends |
JP4054649B2 (en) | 2002-10-01 | 2008-02-27 | 日立粉末冶金株式会社 | Method for producing ferrous sintered alloy exhibiting quenched structure |
US20050163645A1 (en) * | 2004-01-28 | 2005-07-28 | Borgwarner Inc. | Method to make sinter-hardened powder metal parts with complex shapes |
US7887747B2 (en) * | 2005-09-12 | 2011-02-15 | Sanalloy Industry Co., Ltd. | High strength hard alloy and method of preparing the same |
CN100406610C (en) * | 2006-05-11 | 2008-07-30 | 上海交通大学 | Carburizing method without internal oxidation under the protection of pre-vacuum nitrogen-based atmosphere |
CN101205949B (en) * | 2006-12-22 | 2010-12-29 | 富准精密工业(深圳)有限公司 | Method for manufacturing hydrodynamic bearing and rotating shaft |
US7803313B2 (en) * | 2007-02-15 | 2010-09-28 | Precision Castparts Corp. | Method for bonding powder metallurgical parts |
ES2424869T3 (en) * | 2007-03-21 | 2013-10-09 | Höganäs Ab (Publ) | Composite materials of metal powder polymers |
US20100267542A1 (en) * | 2007-12-26 | 2010-10-21 | Seoul National University Industry Foundation | Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature |
EP2285996B1 (en) * | 2008-06-06 | 2017-08-23 | Höganäs Ab (publ) | Iron- based pre-alloyed powder |
KR101076785B1 (en) * | 2008-07-24 | 2011-10-25 | 박영석 | Injection molding method using powder |
CN101670438A (en) * | 2008-09-12 | 2010-03-17 | 深圳市注成科技有限公司 | Metal injection molding product and carbon control method thereof in manufacturing process |
JP4269091B1 (en) * | 2008-11-25 | 2009-05-27 | 株式会社テクネス | Manufacturing method of shaft for turbine rotor |
EP2454041A4 (en) * | 2009-07-17 | 2017-02-08 | Boston Electronic Materials LLC | Manufacturing and applications of metal powders and alloys |
CN101774020B (en) * | 2010-01-20 | 2012-10-03 | 中南大学 | Method for preparing molybdenum-copper component |
US20120073303A1 (en) * | 2010-09-23 | 2012-03-29 | General Electric Company | Metal injection molding process and components formed therewith |
KR101735438B1 (en) | 2010-10-18 | 2017-05-15 | 한국전자통신연구원 | Apparatus and method for automatic detection/verification of real time translation knowledge |
DE102010061958A1 (en) * | 2010-11-25 | 2012-05-31 | Rolls-Royce Deutschland Ltd & Co Kg | Process for producing engine components with a geometrically complex structure |
CN102107282A (en) * | 2011-01-11 | 2011-06-29 | 山东金聚粉末冶金有限公司 | Automobile oil way joint and manufacturing method thereof |
US20120251377A1 (en) * | 2011-03-29 | 2012-10-04 | Kuen-Shyang Hwang | Method for enhancing strength and hardness of powder metallurgy stainless steel |
CN102454715B (en) * | 2011-08-12 | 2014-04-23 | 万向钱潮股份有限公司 | Cardan universal joint, and manufacturing method for shaft sleeve for cardan universal joint |
KR101350944B1 (en) * | 2011-10-21 | 2014-01-16 | 포항공과대학교 산학협력단 | Ferrous-alloys for powder injection molding |
DE102011089260A1 (en) * | 2011-12-20 | 2013-06-20 | Rolls-Royce Deutschland Ltd & Co Kg | Method for producing a component by metal powder injection molding |
US20130315774A1 (en) * | 2012-05-24 | 2013-11-28 | Cheng Uei Precision Industry Co., Ltd. | Metal injection molding method |
KR20140048428A (en) * | 2012-10-15 | 2014-04-24 | 현대자동차주식회사 | Method for manufacturing of control finger using with metal powder injection molding |
-
2012
- 2012-08-10 KR KR1020120088032A patent/KR101405845B1/en not_active Expired - Fee Related
- 2012-12-12 DE DE102012222840.3A patent/DE102012222840A1/en not_active Withdrawn
- 2012-12-14 US US13/715,882 patent/US9085028B2/en not_active Expired - Fee Related
- 2012-12-31 CN CN201210591070.XA patent/CN103567451B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279202A (en) * | 1996-04-18 | 1997-10-28 | Daido Steel Co Ltd | Metal powder for metal injection molding, sintered carburized product using this powder, and method for producing the same |
JP2000310103A (en) | 1999-04-26 | 2000-11-07 | Nippon Piston Ring Co Ltd | Rocker arm |
KR20080040270A (en) * | 2006-11-02 | 2008-05-08 | 주식회사 만도 | Spool manufacturing method using metal powder injection molding and spool using the same |
KR20110088554A (en) * | 2008-11-07 | 2011-08-03 | 메탈딘 엘엘씨 | Powdered Metal Rocker Arm |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230168909A (en) | 2022-06-08 | 2023-12-15 | 주식회사 현대케피코 | Method of manufacturing carburized part and carburized part thereof |
Also Published As
Publication number | Publication date |
---|---|
US9085028B2 (en) | 2015-07-21 |
KR20140021443A (en) | 2014-02-20 |
CN103567451B (en) | 2017-12-22 |
DE102012222840A1 (en) | 2014-02-13 |
US20140041222A1 (en) | 2014-02-13 |
CN103567451A (en) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101405845B1 (en) | Method for manufacturing of valve train parts using with metal powder injection molding | |
JP3784926B2 (en) | Ferrous sintered alloy for valve seat | |
CN1865469A (en) | Hard particle dispersed iron-based sintered alloy | |
US9095905B2 (en) | Method of manufacturing control finger using metal powder injection molding | |
JP6929313B2 (en) | Iron-based sintered alloy for high-temperature wear resistance | |
JP4166041B2 (en) | Sintered sprocket and manufacturing method thereof | |
US20060042081A1 (en) | High-precision sintered cam lobe material | |
JP4301507B2 (en) | Sintered sprocket for silent chain and manufacturing method thereof | |
KR20060040570A (en) | Camshaft manufacturing method, camshaft and cam lobe material used for this | |
KR101227616B1 (en) | Manufacturing method of high strength connecting rod for High pressure combustion engine | |
KR102180531B1 (en) | Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures | |
KR20120125817A (en) | Manufacturing method for valve seat of gas fuel car | |
KR950008687B1 (en) | Making method of sintering tappet for diesel and gasoline engine and tip composite | |
KR102599427B1 (en) | A method of manufacturing a cam piece for continuously variable valve duration and a cam piece manufactured therefrom | |
EP1663550B1 (en) | Iron-based sintered alloy and manufacturing method thereof | |
KR101063216B1 (en) | Heat treatment method for vanadium carbide hardening | |
KR101074164B1 (en) | Method for nitriding by post-plasma | |
US20240110265A1 (en) | Sintered material for aluminum die casting and manufacturing method thereof | |
JPH1150210A (en) | Iron-based sintered alloy component and method of manufacturing the same | |
JPH059508A (en) | Sintered alloy | |
CN114164394A (en) | Method for hardening a sintered component | |
KR20020080876A (en) | a manufacturing method of valve seat for engine | |
KR100521578B1 (en) | Wear resist sintering alloy for valve seat and method for manufacturing the same | |
CN118996270A (en) | Preparation process of wear-resistant steel powder and complex wear-resistant steel part | |
JP2003119544A (en) | Steel for die-casting die for carburization, die-casting die, and method for manufacturing die-casting die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120810 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20131218 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140522 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140603 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140603 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20180530 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20180530 Start annual number: 5 End annual number: 5 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20200314 |