[go: up one dir, main page]

KR101405845B1 - Method for manufacturing of valve train parts using with metal powder injection molding - Google Patents

Method for manufacturing of valve train parts using with metal powder injection molding Download PDF

Info

Publication number
KR101405845B1
KR101405845B1 KR1020120088032A KR20120088032A KR101405845B1 KR 101405845 B1 KR101405845 B1 KR 101405845B1 KR 1020120088032 A KR1020120088032 A KR 1020120088032A KR 20120088032 A KR20120088032 A KR 20120088032A KR 101405845 B1 KR101405845 B1 KR 101405845B1
Authority
KR
South Korea
Prior art keywords
metal powder
injection molding
valve train
sintered body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020120088032A
Other languages
Korean (ko)
Other versions
KR20140021443A (en
Inventor
차성철
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020120088032A priority Critical patent/KR101405845B1/en
Priority to DE102012222840.3A priority patent/DE102012222840A1/en
Priority to US13/715,882 priority patent/US9085028B2/en
Priority to CN201210591070.XA priority patent/CN103567451B/en
Publication of KR20140021443A publication Critical patent/KR20140021443A/en
Application granted granted Critical
Publication of KR101405845B1 publication Critical patent/KR101405845B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

본 발명은 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것으로, 밸브 트레인 부품의 제조방법에 있어서, 금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계; 상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계; 상기 형성된 성형체를 용매 추출하는 단계; 상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계; 상기 형성된 소결체를 사이징(sizing) 가공하는 단계; 상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계; 및 상기 진공 침탄 처리된 소결체를 연마하는 단계; 를 포함하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a valve train component using a metal powder injection molding method, the method comprising the steps of: mixing a metal powder and a binder to obtain a raw material for injection molding; Injecting the obtained injection molding raw material into a mold having a valve train component shape to form a molded body; Solvent extraction of the formed body; Degassing and sintering the solvent-extracted shaped body to form a sintered body; Sizing the formed sintered body; Subjecting the sizing sintered body to a vacuum carburizing treatment; And polishing the sintered body subjected to the vacuum carburization treatment; To a method of manufacturing a valve train component using metal powder injection molding.

Description

금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법{Method for manufacturing of valve train parts using with metal powder injection molding}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing a valve train component using metal powder injection molding,

본 발명은 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것으로, 보다 상세하게는 종래 정밀주조법을 치수정밀도가 우수하여 원가가 절감되는 금속분말 사출 성형으로 대체하고, 분말 조성과 세부 공정 조건을 조절함으로써 물성을 개선한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법에 관한 것이다.
The present invention relates to a method of manufacturing a valve train component using metal powder injection molding, and more particularly, to a method of manufacturing a valve train component by metal powder injection molding, To a method of manufacturing a valve train component using metal powder injection molding in which the physical properties are improved.

내연기관 엔진은 외부로부터 공기 및 연료를 흡입하여 연소실에서 연소시킴으로써 동력을 발생시키는 장치로서, 상기 공기 및 연료를 연소실로 흡입하기 위한 흡기밸브 및 상기 연소실에서 연소된 폭발 가스를 배출하기 위한 배기밸브를 구비하는데, 이러한 흡배기 밸브는 크랭크축의 회전에 연동하여 회전하는 캠축에 의해 개폐된다.An internal combustion engine engine is a device for generating power by sucking air and fuel from the outside and burning it in a combustion chamber. The engine includes an intake valve for sucking the air and fuel into the combustion chamber, and an exhaust valve for exhausting the explosive gas burned in the combustion chamber The intake and exhaust valve is opened and closed by a camshaft rotating in conjunction with the rotation of the crankshaft.

이 때, 구동캠, 캠샤프트, 태핏, 로커암 및 로커암 링크 등 상기 흡배기 밸브를 작동하기 위한 일련의 부품들을 밸브 트레인이라고 한다.At this time, a series of parts for operating the intake and exhaust valves, such as a drive cam, a camshaft, a tappet, a rocker arm, and a rocker arm link, are referred to as a valve train.

한편, 자동차 업계는 2020년까지 이산화탄소 배출량을 현재 대비 35 ~ 50 % 수준인 50 g/km 로 저감하는 것을 목표로 하여 다양한 친환경 차량을 개발하고 있으며, 연비의 경우 2025년 미국 기업평균연비 규제치(Corporate Average Fuel Econmomy)인 23.2 km/l (54.5 mpg)를 만족하기 위해 기술 개발에 매진하고 있다.Meanwhile, the automobile industry is developing various eco-friendly vehicles with the target of reducing carbon dioxide emissions to 50g / km, which is 35-50% of current level, by 2020. In case of fuel economy, Average Fuel Econmomy) of 23.2 km / l (54.5 mpg).

최근에는 차량의 엔진에 엔진 회전 속도에 따라 흡기 밸브의 높이를 제어하여 흡입되는 공기량을 최적화함으로써 엔진의 연료소비효율 및 성능을 극대화하는 연속 가변 밸브리프터(Continuous Variable Valve Lifter, CVVL) 기구가 적용되고 있다.Recently, a continuous variable valve lifter (CVVL) mechanism has been applied to maximize the fuel consumption efficiency and performance of the engine by optimizing the intake air amount by controlling the height of the intake valve according to the engine rotation speed of the vehicle have.

도 1은 로커암을 나타낸 사시도이고, 도 2는 로커암 링크를 나타낸 사시도이며, 도 3은 로커암 및 로커암 링크가 체결된 구조를 나타낸 사시도이고, 도 4는 상기 연속 가변 밸브 리프터를 나타낸 사시도인데, 도시된 바와 같이 정교한 형상을 가진 상기 로커암(100) 및 로커암 링크(110)는 상기 연속 가변 밸브 리프터(120)의 구성의 일부로서 작동된다.FIG. 1 is a perspective view showing a rocker arm, FIG. 2 is a perspective view showing a rocker arm link, FIG. 3 is a perspective view showing a structure in which a rocker arm and a rocker arm link are fastened, The rocker arm 100 and the rocker arm link 110 having a sophisticated shape as shown in the drawing operate as a part of the configuration of the continuously variable valve lifter 120. [

이 때, 상기 로커암(100) 및 로커암 링크(110) 등의 밸브 트레인 부품은 가혹한 조건에서 장시간 사용되어야 하기 때문에 강도, 내마모성, 내충격성 등의 우수한 내구성 및 정밀도가 요구된다.At this time, since the valve train components such as the rocker arm 100 and the rocker arm link 110 must be used for a long time under severe conditions, excellent durability and precision such as strength, abrasion resistance and impact resistance are required.

이를 위해 종래에는 통상적인 주조법과 대비하여 비교적 치수정밀도가 높은 정밀주조법을 사용하여 제조하였는데, 상기 밸브 트레인 부품의 형상이 정교하기에, 주조 후에도 최종 형상을 갖추기 위한 다수의 추가적인 가공이 필요하였다. For this purpose, a conventional precision casting method has been used in comparison with a conventional casting method. However, since the shape of the valve train parts is precise, a large number of additional machining steps are required to achieve the final shape even after casting.

즉, 상기 정밀주조법에 의해 제조하는 경우 기계적 강도는 우수하나 치수정밀도가 떨어져 추가 가공으로 인한 공정 비용 및 재료의 손실이 부가적으로 발생됨에 따라 제품 원가가 크게 상승되는 문제가 있었다.
That is, in the case of manufacturing by the above-mentioned precision casting method, there is a problem that the cost of the product is greatly increased because the mechanical strength is excellent but the dimensional accuracy is poor and the process cost and material loss due to additional processing are additionally generated.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 종래 밸브 트레인 부품의 일반적인 제조방법인 정밀주조법 대신에 금속분말 사출 성형을 이용함으로써 치수정밀도가 개선되어 경제성이 우수하고, 최적 분말 조성과 공정 조건을 설정함으로써 엔진 등의 가혹한 조건에서도 적용 가능한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 제공하고자 함에 있다.
It is an object of the present invention to solve the above problems and to provide a method of manufacturing a valve train, The present invention provides a method of manufacturing a valve train component using metal powder injection molding applicable even in a severe condition such as an engine.

상기와 같은 목적을 달성하기 위하여, 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법은 밸브 트레인 부품의 제조방법에 있어서, 금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계; 상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계; 상기 형성된 성형체를 용매 추출하는 단계; 상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계; 상기 형성된 소결체를 사이징(sizing) 가공하는 단계; 상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계; 및 상기 진공 침탄 처리된 소결체를 연마하는 단계; 를 포함하며, 상기 사출성형용 원료를 수득하는 단계(S100)는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하되, 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것을 특징으로 한다.In order to achieve the above object, a method for manufacturing a valve train component using metal powder injection molding according to the present invention is a method for manufacturing a valve train component, which comprises mixing metal powder and a binder, ; Injecting the obtained injection molding raw material into a mold having a valve train component shape to form a molded body; Solvent extraction of the formed body; Degassing and sintering the solvent-extracted shaped body to form a sintered body; Sizing the formed sintered body; Subjecting the sizing sintered body to a vacuum carburizing treatment; And polishing the sintered body subjected to the vacuum carburization treatment; (S100), the metal powder is mixed with 93% by weight of the metal powder and 7% by weight of the binder. The metal powder may include 2% by weight of nickel (Ni), molybdenum 0.5% by weight of Mo), 0.25% by weight of carbon (C) and the balance of iron (Fe).

또한, 본 발명의 일실시예로 상기 사출성형용 원료를 수득하는 단계는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하는 것이 바람직하다.According to an embodiment of the present invention, it is preferable that the step of obtaining the raw material for injection molding is such that the metal powder is 93% by weight and the binder is 7% by weight.

또한, 본 발명의 일실시예로 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것이 바람직하다.In one embodiment of the present invention, the metal powder preferably contains 2% by weight of nickel (Ni), 0.5% by weight of molybdenum (Mo), 0.25% by weight of carbon (C) and the balance of iron (Fe).

또한, 본 발명의 일실시예로 상기 소결체를 형성하는 단계는 진공 분위기에서 아르곤 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 것이 바람직하다.According to an embodiment of the present invention, the step of forming the sintered body may include supplying argon gas in a vacuum atmosphere, heating the degreased shaped body to a temperature of 1250 ° C or higher, and then soaking the temperature for 2 hours desirable.

또한, 본 발명의 일실시예로 상기 진공 침탄 처리하는 단계는 상기 사이징 가공된 소결체를 890 ℃ 로 승온시킨 다음 아세틸렌(C2H2) 가스를 이용하여 1시간 동안 침탄 처리한 후, 상기 890 ℃에서 10 분 동안 탄소를 확산시킨 다음 820 ℃로 하온시킨 후 동일 온도에서 20분 동안 탄소를 확산시키는 것이 바람직하다.Further, the step of processing the vacuum carburization to an embodiment of the present invention, after the sizing was heated to the processed sintered body into 890 ℃ following acetylene carburizing treatment for 1 hour by using a (C 2 H 2) gas, the 890 ℃ For 10 minutes, then warmed to 820 占 폚, and then spread carbon for 20 minutes at the same temperature.

또한, 본 발명의 일실시예로 상기 진공 침탄 처리하는 단계는 상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 80 ℃ 의 온도로 담금질한 다음 180℃ 로 승온하여 90분 동안 유지한 후 냉각하는 뜨임을 추가적으로 실시하는 것이 바람직하다.According to an embodiment of the present invention, in the vacuum carburizing step, the carbon-diffused sintered body is quenched by using an oil bath at a temperature of 80 ° C., heated to 180 ° C. and held for 90 minutes It is preferable to further perform a cooling tempering.

또한, 본 발명의 일실시예로 상기 밸브 트레인 부품은 로커암 또는 로커암 링크인 것이 더 바람직하다.
Further, in an embodiment of the present invention, it is more preferable that the valve train component is a rocker arm or a rocker arm link.

상기와 같은 구성을 가지는 본 발명의 효과는, 종래 정밀주조법을 치수정밀도가 우수한 금속분말 사출 성형으로 대체하여 추가 가공으로 인한 공정 비용 및 재료 손실을 줄임으로써 이에 상응하는 원가를 절감할 수 있다. The effect of the present invention having the above-described structure can be achieved by replacing the conventional precision casting method with a metal powder injection molding having excellent dimensional accuracy, thereby reducing the process cost and the material loss due to the additional processing, thereby reducing the cost.

또한, 금속분말 사출 성형으로 제조함에도 불구하고, 금속분말 조성 및 공정조건을 조절하여 탄소 제어를 용이하게 함에 따라 균일한 침탄을 가능하여 강도 및 표면조도가 향상되는 등 종래 정밀주조법과 대등한 물성이 확보되는 장점이 있다.
In addition, although it is manufactured by metal powder injection molding, the carbon powder can be easily controlled by adjusting the metal powder composition and the process conditions, so that uniform carburization is possible, and the strength and surface roughness are improved. There is an advantage to be secured.

도 1은 상기 연속 가변 밸브 리프터를 나타낸 사시도.
도 2는 로커암을 나타낸 사시도.
도 3은 로커암 링크를 나타낸 사시도.
도 4는 로커암 및 로커암 링크가 체결된 구조를 나타낸 사시도.
도 5는 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 나타낸 흐름도.
도 6은 본 발명의 일실시예에 의한 탈지 및 소결 공정을 나타낸 그래프.
도 7은 본 발명의 일실시예에 의한 진공 침탄 및 담금질 공정을 나타낸 그래프.
도 8은 본 발명의 일실시예에 의한 밸브 트레인 부품(로커암)의 경도 시험 결과를 나타낸 그래프.
1 is a perspective view of the continuously variable valve lifter.
2 is a perspective view showing the rocker arm;
3 is a perspective view showing a rocker arm link;
4 is a perspective view showing a structure in which a rocker arm and a rocker arm link are engaged;
5 is a flowchart illustrating a method of manufacturing a valve train component using metal powder injection molding according to the present invention.
6 is a graph showing a degreasing and sintering process according to an embodiment of the present invention.
7 is a graph showing a vacuum carburization and quenching process according to an embodiment of the present invention.
8 is a graph showing a hardness test result of a valve train component (rocker arm) according to an embodiment of the present invention.

이하, 첨부된 도면에 의거하여 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

종래 정밀주조에 의해 제조된 부품은 밸브 트레인 사용 환경에 의해 요구되는 물성은 만족하나 치수정밀도가 우수하지 못해, 후가공 및 재료 손실로 인한 비용 상승으로 원가적인 측면에서 사용에 한계가 있었다. Conventionally, parts manufactured by precision casting satisfies the physical properties required by the valve train operating environment, but it is not excellent in dimensional accuracy, and there is a limit in the cost because of cost increase due to post-processing and material loss.

따라서, 본 발명의 목적은 상기 밸브 트레인 부품의 제조에 관련된 종래 정밀주조법을 치수정밀도가 우수한 금속분말 사출 성형으로 대체하는 것과 관련이 있다.Accordingly, it is an object of the present invention to replace conventional precision casting processes involved in the manufacture of valve train components with metal powder injection molding with excellent dimensional accuracy.

금속분말 사출 성형(Metal powder Injection Molding, MIM)은 분말야금 기술및 정밀한 플라스틱 부품의 대량생산기술인 사출성형법이 접목된 신분말야금 성형기술인데, 일반적으로 미세한 금속 분말과 유동의 주체가 되는 바인더를 혼합하여 이를 금형 내로 사출성형한 후 사출성형체에서 상기 바인더를 제거하고 분말만을 최종 고온 소결하여 부품을 제조하는 공정으로 구성된다.Metal Powder Injection Molding (MIM) is a metal molding technology that combines powder metallurgy technology and injection molding, which is a mass production technology of precision plastic parts. In general, metal powder is mixed with fine metal powders and binder Injecting the mixture into a mold, removing the binder from the injection-molded body, and sintering only the powder to obtain a component.

여기서, 상기 금속분말 사출 성형은 일반적으로 정밀주조와 대비하여 치수정밀도가 우수하나 결과물의 물성이 낮은바, 표면 열처리에 의한 물성을 향상시키는 등의 후처리 공정이 요구되며, 종래에는 소재 내 탄소 제어가 어려워 원하는 물성을 얻기가 어려운 단점이 있었다.Here, the metal powder injection molding generally requires better post-treatment such as improvement of physical properties by surface heat treatment, which is superior in dimensional precision as compared with precision casting but has low physical properties of the resulting product. Conventionally, It is difficult to obtain desired physical properties.

즉, 금속분말 사출 성형이 가지는 장점에도 불구하고, 엔진 밸브 트레인 등의 가혹한 환경에서 작동되는 부품의 제조방법으로 사용하기에는 부적합한 면이 있었다. That is, despite the advantages of metal powder injection molding, there is a problem in that it is not suitable for use as a method for manufacturing a component that operates in a harsh environment such as an engine valve train.

따라서, 본 발명은 금속분말 사출 성형에 있어서, 합금 조성 및 제조공정 조건을 최적화하여 상기 단점을 해소하는 동시에 우수한 치수정밀도를 확보하여 후가공 공정 및 재료 손실을 줄임으로써 원가 절감의 효과를 얻는 것을 목적으로 한다.Therefore, the object of the present invention is to obtain the effect of cost reduction by optimizing the alloy composition and the manufacturing process conditions in the metal powder injection molding to solve the above-mentioned disadvantages and to secure the excellent dimensional accuracy and to reduce the post- do.

도 5는 본 발명에 의한 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법을 나타낸 흐름도인데, 이하의 실시예를 통해 상세히 설명한다.
FIG. 5 is a flowchart illustrating a method of manufacturing a valve train component using metal powder injection molding according to the present invention, which will be described in detail with reference to the following examples.

1. 혼합 단계(S100)1. Mixing step (S100)

먼저 금속분말과 바인더(binder)를 혼합하여 사출성형용 원료를 수득하였는데, 상기 바인더는 사출성형 시에 상기 금속분말의 유동성 및 형상 유지를 위해 첨가되는 것으로서 통상의 유기 바인더가 사용되는바, 폴리에틸렌(Polyethylene) 등의 결합제나 파라핀 왁스(Paraffin wax), 스테아릭산(Stearic acid) 등의 윤활제로 구성될 수 있다. First, a metal powder and a binder are mixed to obtain a raw material for injection molding. The binder is added to maintain the flowability and shape of the metal powder during injection molding, and a conventional organic binder is used. Polyethylene, or a lubricant such as paraffin wax and stearic acid.

구체적으로 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 균질하게 혼합하여 사출성형용 원료를 수득하였다.Specifically, raw materials for injection molding were obtained by mixing homogeneously such that the metal powder was 93% by weight and the binder was 7% by weight.

상기 금속분말이 93 중량% 보다 적은 경우에는 사출시 유동성이 좋으나 탈지시 장시간이 소요되며, 93 중량% 보다 큰 경우에는 사출시 성형체가 충분한 강도를 갖지 못하는바, 상기의 중량비를 갖도록 혼합하는 것이 바람직하다.When the metal powder is less than 93% by weight, the fluidity at the time of injection is good but it takes a long time at the time of degreasing. When the metal powder is more than 93% by weight, the molded body at injection does not have sufficient strength, Do.

또한, 상기 금속분말은 각 금속 원소를 별도로 수급하고, 몰리브덴(Mo)을 첨가하여 혼합하는 것이 바람직한데, 구체적으로 카보닐 Fe(1)(탄소(C) 0.76 중량% 함유), 카보닐 Fe(2)(탄소(C) 0.03 중량% 함유), 니켈(Ni) 및 몰리브덴(Mo)을 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe) 의 중량비가 되도록 배합하였다.The metal powder is preferably mixed with molybdenum (Mo) by separately supplying each metal element. Specifically, the metal powder is mixed with carbonyl Fe (1) (containing 0.76 wt% of carbon (C)), carbonyl Fe 2) (containing 0.03% by weight of carbon (C), nickel (Ni) and molybdenum (Mo) in an amount of 2% by weight of nickel, 0.5% by weight of molybdenum, 0.25% by weight of carbon, (Fe).

종래에는 Fe-2wt%Ni-0.9wt%C 를 구입 후 탈탄함에 따라 탄소제어가 난이한 문제가 있었는데(박육부/후육부 상이), 이와 달리 본 발명은 금속분말 조성 및 바인더의 최적 조성을 확보함에 따라 탄소제어가 용이하고, 강성 확보 및 경화용 침탄이 가능해지는 이점이 있다.In the prior art, there is a problem that carbon control is difficult due to decarburization after purchasing Fe-2wt% Ni-0.9wt% C (thin-walled / deep-walled). In contrast, the present invention provides a metal powder composition and an optimal composition of a binder Accordingly, carbon control is easy, rigidity is ensured, and carburization for curing becomes possible.

또한, 상기 혼합은 160 ℃에서 3시간 동안 30 rpm 의 조건으로 실시되었는데, 상기 조건보다 낮은 온도 또는 짧은 시간 동안 이루어지면 바인더가 충분한 유동성을 가짐에 따라 혼합되지 않을 수 있으며, 상기 조건보다 높은 온도 또는 긴 시간 동안 이루어지면 혼합 도중에 바인더가 탈지될 수 있으므로, 상기 혼합 조건을 만족하는 것이 바람직하다.
The mixing was carried out at 160 캜 for 3 hours at 30 rpm. If the temperature is lower than the above-mentioned condition or the mixing time is shortened, the binder may not be mixed as it has sufficient fluidity, If the mixing is carried out for a long period of time, the binder may be degreased during mixing, so that it is preferable to satisfy the mixing condition.

2. 사출 단계(S110)2. In the injection step S110,

상기 수득된 사출성형용 원료를 노즐 온도 145 ℃, 사출 속도 33 mm/s, 사출압력 3.5 MPa, 금형 온도 30℃ 의 조건으로 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하였다.The obtained injection molding raw material was injected into a mold having a valve train component shape under conditions of a nozzle temperature of 145 占 폚, an injection speed of 33 mm / s, an injection pressure of 3.5 MPa, and a mold temperature of 30 占 폚 to form a molded article.

이 때, 상기 노즐 온도 및 금형 온도는 상기 사출성형용 원료의 유동성 및 바인더의 기화를 고려한 것이고, 상기 사출압력 및 사출 속도는 원활한 사출 및 사출성형장치의 과부하를 고려한 것이다.
At this time, the nozzle temperature and the mold temperature are considered in consideration of the fluidity of the raw material for injection molding and the vaporization of the binder, and the injection pressure and injection speed consider smooth injection and overloading of the injection molding apparatus.

3. 용매 추출 단계(S120)3. Solvent extraction step (S120)

상기와 같은 방법으로 형성된 성형체를 하기 탈지 시간을 단축하기 위해 미리 노멀헵탄(n-heptane)용액에 침지하여 약 40 ℃에서 10 시간 내지 12 시간 동안 용매 추출(Solvent extraction) 함으로써 성형체 내 대부분의 바인더를 제거하였다.In order to shorten the degreasing time, the formed body thus formed is immersed in a n-heptane solution in advance and subjected to solvent extraction at about 40 ° C for 10 hours to 12 hours to remove most of the binder in the molded body. Respectively.

이 때, 상기 온도가 40 ℃ 를 초과하는 경우에는 성형체 내부에 적절한 추출통로가 형성되기 전에 바인더 제거 반응속도가 너무 빠르게 되어 성형체 내부에 응력이 집중됨으로써 균열이 발생된다.At this time, if the temperature exceeds 40 ° C, the binder removal reaction rate becomes too fast before an appropriate extraction passage is formed in the formed body, so that stress is concentrated inside the formed body, thereby generating cracks.

또한, 상기 온도가 40 ℃ 미만인 경우에는 균열은 발생되지 않지만 용매 추출에 장시간이 소요되기 때문에 공정비용이 증가되므로, 상기 조건을 만족하는 것이 바람직하다.
If the temperature is less than 40 캜, cracking does not occur, but solvent extraction requires a long time, and therefore, the process cost is increased. Therefore, it is preferable that the above condition is satisfied.

4. 탈지 및 소결 단계(S130)4. Degreasing and Sintering Step (S130)

도 6은 본 발명의 일실시예에 의한 탈지 및 소결 공정을 나타낸 그래프이다.6 is a graph illustrating a degreasing and sintering process according to an embodiment of the present invention.

탈지는 소결 전에 성형체 내의 바인더를 완전히 제거하는 공정인데, 용매 추출이 끝난 상기 성형체에 잔존하는 바인더를 제거하기 위해 열분해 탈지를 실시하였다.Degreasing is a step of completely removing the binder in the formed body before sintering. In order to remove the binder remaining in the molded body after the solvent extraction, pyrolysis and degreasing were performed.

바인더를 제거하는 가장 일반적인 방법은 성형체를 서서히 가열함으로써 열분해를 통해 바인더를 기화 증발시키는 것이다.The most common method of removing the binder is to slowly evaporate the binder through pyrolysis by slowly heating the shaped body.

그러나 바인더를 가열 증발시키면 대부분의 바인더들이 낮은 온도에서는 서서히 증발하다가 임의의 온도에 이르면 급격하게 증발하는 특성을 가지기에 비틀림이나 휘어짐 등 성형체의 변형이 생길 수 있다.However, when the binder is heated and evaporated, most of the binders evaporate slowly at a low temperature, and when the binder reaches a certain temperature, the binder evaporates rapidly, resulting in distortion of the molded article such as twisting or warpage.

따라서, 상기 도 6에서 도시된 바와 같이 이를 방지하기 위해 25 ℃에서 10 분 동안 진공 펌핑(Vacuum Pumping)을 실시한 다음, 8 L/min 속도로 질소(N2) 가스를 충진하고, 승온 및 온도 유지를 여러 단계로 실시하여 바인더를 각 단계별로 제거함에 따라 성형체의 변형을 최소화하였다.Accordingly, as shown in FIG. 6, vacuum pumping is performed at 25 ° C. for 10 minutes to prevent the above-mentioned problems, and then nitrogen (N 2 ) gas is charged at a rate of 8 L / min. To remove the binder in each step, thereby minimizing the deformation of the molded body.

즉, 승온 초기 온도 범위에서는 바인더가 탈지되기 위한 통로가 성형체 내에 형성되고, 중간 온도 범위에서는 저온용 바인더의 탈지가 이루어지며, 고온 온도 범위에서는 고온용 바인더의 탈지가 순차적으로 이루어진다.That is, in the initial temperature raising temperature range, passages for degreasing the binder are formed in the molded body, the low temperature binder is degreased at a middle temperature range, and degreasing is performed sequentially for the high temperature binder at a high temperature range.

그 다음, 펌핑하여 진공 상태를 만든 후 5 L/min 속도로 아르곤(Ar) 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 소결을 실시하여 소결체를 형성하였다. Subsequently, purging was performed to make a vacuum state, argon (Ar) gas was supplied at a rate of 5 L / min, the degreased compact was heated to a temperature of 1250 ° C or higher, To form a sintered body.

상기 소결 중에 치밀화 및 입자 성장이 진행되어 성형체가 고결되는데, 소결은 별도의 소결로에서 실시될 수 있지만, 상기와 같이 진공 탈지 소결로에서 탈지에 이어 연속적으로 실시될 수도 있다.During the sintering, densification and grain growth progress to consolidate the formed body. The sintering may be performed in a separate sintering furnace, but may be performed continuously after degreasing in the vacuum degreasing sintering furnace as described above.

종래에는 수소 가스 및 질소 가스가 혼합된 복합 가스 분위기 및 1250 ℃ 미만의 온도에서 소결을 실시함에 따라 소재 내 탄소가 불균일한 문제가 있었는데, 이와 달리 본 발명은 성형체 내 탄소(C) 및 니켈(Ni)이 균일화되는 이점이 있다.
In the past, sintering was performed at a temperature of less than 1250 占 폚 in a mixed gas atmosphere in which a hydrogen gas and a nitrogen gas were mixed. In this case, carbon in the material was uneven. In contrast, ) Is uniformized.

5. 사이징(sizing) 가공 단계(S140)5. Sizing (sizing) processing step (S140)

상기 소결체를 소결체의 치수 결정을 위해 100 kgf/cm2 의 압력으로 사이징 가공을 실시하였다.
The sintered body was subjected to sizing at a pressure of 100 kgf / cm 2 to determine the dimensions of the sintered body.

6. 진공 침탄 처리 단계(S150)6. Vacuum Carburizing Treatment Step (S150)

도 7은 본 발명의 일실시예에 의한 진공 침탄 및 담금질 공정을 나타낸 그래프이다.7 is a graph showing a vacuum carburizing and quenching process according to an embodiment of the present invention.

도시된 바와 같이, 진공 분위기에서 상기 사이징 가공된 소결체를 침탄 온도인 약 890 ℃ 로 약 30분 동안 승온시킨 다음 탄소원으로서 아세틸렌(C2H2) 가스를 이용하여 약 1시간 동안 침탄 처리를 실시하였다Was carried out as shown, about one hour carburizing treatment while using approximately 30 minutes was then carbon acetylene (C 2 H 2) as the temperature was raised during the gas to the processed sintered compact sizing said to be about 890 ℃ the carburizing temperature in a vacuum environment as shown

그 다음, 상기 890 ℃에서 약 10분 동안 유지하고, 약 820 ℃ 로 약 10분 동안 하온시킨 후 상기 820 ℃에서 약 20분 동안 유지하면서 총 40분 동안 침탄된 탄소를 확산시켰다.Then, the temperature was maintained at 890 캜 for about 10 minutes, the temperature was lowered to about 820 캜 for about 10 minutes, and the carburized carbon was diffused for a total of 40 minutes while maintaining the temperature at 820 캜 for about 20 minutes.

그 후 상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 약 80 ℃ 의 온도로 담금질(quenching)하여 경도 및 강도를 확보하고, 인성을 향상시키기 위해 약 180℃ 로 승온하여 약 90분 동안 유지한 다음 냉각하는 뜨임(tempering)을 추가적으로 실시하였다.The carbon-diffused sintered body was then quenched at a temperature of about 80 ° C. using an oil bath to secure hardness and strength. The temperature of the sintered body was raised to about 180 ° C. for about 90 minutes to improve toughness Followed by additional cooling and tempering.

종래에는 침탄 가스로 일산화탄소(CO), 메탄(CH4)을 사용하고 탄소 퍼텐셜(Carbon Potential)이 일정하여 경화층의 깊이가 상이하거나 전경화가 발생하는 문제가 있었지만, 본 공정은 침탄 가스로 아세틸렌(C2H2) 가스를 사용하고 진공 분위기에서 침탄시켜 탄소 퍼텐셜 펄스를 제어함에 따라 두께와 무관하게 균일한 깊이의 경화층을 얻을 수 있다.
Conventionally, carbon monoxide (CO) and methane (CH 4 ) are used as the carburizing gas, and the carbon potential is constant. Thus, there is a problem that the depth of the cured layer is different or the precure is generated. However, C 2 H 2 ) gas and carburized in a vacuum atmosphere to control the carbon potential pulse, a uniform layer of depth can be obtained irrespective of the thickness.

7. 연마 단계(S160)7. Polishing step (S160)

상기 진공 침탄된 소결체의 표면을 매끈하게 하기 위해 2시간 동안 연삭을 실시하였다.
The surface of the vacuum-sintered sintered body was ground for 2 hours to smooth it.

깊이 (mm)Depth (mm) 로커암 경도 (Hv 0.3)Rocker arm hardness (Hv 0.3) 00 684.9684.9 0.050.05 707.1707.1 0.10.1 675.4675.4 0.20.2 670.7670.7 0.30.3 586.3586.3 0.40.4 560560 0.50.5 557.1557.1 0.60.6 529.9529.9 0.70.7 475.6475.6 1One 385.3385.3 1.51.5 385.3385.3 22 395.6395.6

도 8 및 상기 표 1은 본 발명의 일실시예에 의한 밸브 트레인 부품(로커암)의 경도 시험 결과를 나타낸 그래프 및 표이다.
8 and Table 1 are graphs and tables showing the hardness test results of valve train parts (rocker arms) according to one embodiment of the present invention.

도시된 바와 같이, 침탄 열처리 결과 로커암(100)의 표면은 약 700 Hv, 표면에서 심부까지 약 400 Hv 이상의 경도를 가지며, 유효 경화층의 깊이는 약 0.52 mm 으로 측정되었고, 밀도를 측정한 결과 7.6 g/cc 로 나타났다.As shown in the figure, the surface of the rocker arm 100 has a hardness of about 700 Hv, a surface hardness of about 400 Hv or more, and an effective hardening layer depth of about 0.52 mm as a result of the carburizing heat treatment. 7.6 g / cc.

각종 시험 결과 로커암(100)이 기본적으로 갖추어야 할 물성은 밀도 7.5 g/cc, 표면 경도 650 Hv 이상, 표면에서 심부까지 경도 300 Hv 이상, 유효 경화층의 깊이 0.3 내지 0.6 mm 인데, 본 발명에 의한 로커암(100)은 상기 기본 조건을 모두 만족함을 알 수 있다.As a result of various tests, the physical properties that the rocker arm 100 should have basically have a density of 7.5 g / cc, a surface hardness of 650 Hv or more, a hardness of 300 Hv or more from the surface to the deep portion, and a depth of 0.3 to 0.6 mm of the effective hardening layer. It can be seen that the rocker arm 100 according to the present invention satisfies all of the above basic conditions.

또한, 본 발명에 의해 제조된 로커암(100)의 기계적 강도를 측정한 결과 인장강도 940 MPa, 연신률 0.5 %, 충격강도 9.1 J/cm2 를 얻었는데, 이는 종래 정밀주조법과 거의 동등한 수준의 물성을 가지는 것을 의미한다.The mechanical strength of the rocker arm 100 produced by the present invention was measured. As a result, a tensile strength of 940 MPa, an elongation of 0.5%, and an impact strength of 9.1 J / cm 2 were obtained. ≪ / RTI >

뿐만 아니라, 치수정밀도가 우수한 금속분말 사출 성형을 이용함에 따라 종래 정밀주조보다 가공부위가 60 내지 80 % 절감되어 상기 추가 가공으로 인한 공정 비용 및 재료의 손실을 줄임으로써 원가 절감의 효과를 얻을 수 있다.(종래 정밀주조법에 의한 로커암(100) 치수정밀도 0.65%, 본 발명에 의한 로커암(100) 치수정밀도 0.13% 로 약 5배 정도 우수)
In addition, since the metal powder injection molding having excellent dimensional accuracy is used, the machining area is reduced by 60 to 80% compared to the conventional precision casting, thereby reducing the process cost and material loss due to the additional machining, thereby achieving cost reduction effect (Accuracy of 0.65% in the dimension accuracy of the rocker arm 100 according to the conventional precision casting method, and 0.13% in the dimension accuracy of the rocker arm 100 according to the present invention)

로커암 : 100 로커암 링크 : 110
연속 가변 밸브 리프터 : 120
Rocker Arm: 100 Rocker Arm Link: 110
Continuous variable valve lifter: 120

Claims (7)

밸브 트레인 부품의 제조방법에 있어서,
금속분말 및 바인더(binder)를 혼합하여 사출성형용 원료를 수득하는 단계(S100);
상기 수득된 사출성형용 원료를 밸브 트레인 부품 형상의 금형 내로 사출하여 성형체를 형성하는 단계(S110);
상기 형성된 성형체를 용매 추출하는 단계(S120);
상기 용매 추출된 성형체를 탈지 및 소결하여 소결체를 형성하는 단계(S130);
상기 형성된 소결체를 사이징(sizing) 가공하는 단계(S140);
상기 사이징 가공된 소결체를 진공 침탄 처리하는 단계(S150); 및
상기 진공 침탄 처리된 소결체를 연마하는 단계(S160); 를 포함하며,
상기 사출성형용 원료를 수득하는 단계(S100)는 상기 금속분말이 93 중량% 및 상기 바인더가 7 중량% 가 되도록 혼합하되, 상기 금속분말은 니켈(Ni) 2 중량%, 몰리브덴(Mo) 0.5 중량 %, 탄소(C) 0.25 중량 % 및 잔부의 철(Fe)을 포함하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
A method of manufacturing a valve train component,
Mixing the metal powder and the binder to obtain a raw material for injection molding (S100);
Forming a molded body by injecting the obtained injection molding raw material into a mold having a valve train component shape (S110);
Solvent extraction of the formed body (S120);
A step (S130) of forming a sintered body by degreasing and sintering the solvent-extracted molded body;
Sizing the formed sintered body (S140);
A step (S150) of vacuum carburizing the sintered body subjected to the sizing process; And
Polishing the sintered body subjected to the vacuum carburization (S160); / RTI >
The metal powder is mixed with 2 wt% of nickel (Ni), 0.5 wt% of molybdenum (Mo), 0.5 wt% of molybdenum (Mo), and the metal powder is mixed so that the metal powder is 93 wt% and the binder is 7 wt% %, Carbon (C) of 0.25% by weight, and the balance of iron (Fe).
삭제delete 삭제delete 제1항에 있어서,
상기 소결체를 형성하는 단계(S130)는 진공 분위기에서 아르곤 가스를 공급하고, 상기 탈지된 성형체를 1250 ℃이상의 온도로 가열한 다음 상기 온도를 2시간 동안 유지(soaking)하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
The method according to claim 1,
The step of forming the sintered body (S130) comprises supplying argon gas in a vacuum atmosphere, heating the degreased molded body to a temperature of 1250 占 폚 or more, and then soaking the metal body for 2 hours Method of manufacturing valve train parts using molding.
제1항에 있어서,
상기 진공 침탄 처리하는 단계(S150)는,
상기 사이징 가공된 소결체를 890 ℃ 로 승온시킨 다음 아세틸렌(C2H2) 가스를 이용하여 1시간 동안 침탄 처리한 후,
상기 890 ℃에서 10 분 동안 탄소를 확산시킨 다음 820 ℃로 하온시킨 후 동일 온도에서 20분 동안 탄소를 확산시키는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
The method according to claim 1,
The vacuum carburizing step (S150)
The sizing sintered body was heated to 890 캜 and carburized with acetylene (C 2 H 2 ) gas for 1 hour,
Wherein the carbon is diffused at 890 캜 for 10 minutes and then cooled to 820 캜 and carbon is diffused at the same temperature for 20 minutes, thereby producing a valve train component using the metal powder injection molding.
제5항에 있어서,
상기 진공 침탄 처리하는 단계(S150)는,
상기 탄소가 확산된 소결체를 유욕(oil bath)을 이용하여 80 ℃ 의 온도로 담금질한 다음 180 ℃ 로 승온하여 90분 동안 유지한 후 냉각하는 뜨임을 추가적으로 실시하는 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
6. The method of claim 5,
The vacuum carburizing step (S150)
Wherein the carbon-diffused sintered body is quenched by heating in an oil bath at a temperature of 80 ° C, then heated to 180 ° C, held for 90 minutes, and then cooled to form a metal powder injection molding. A method of manufacturing a valve train component using the same.
제1항 및 제4항 내지 제6항 중 어느 한 항에 있어서,
상기 밸브 트레인 부품은 로커암(100) 또는 로커암 링크(110)인 것을 특징으로 하는 금속분말 사출 성형을 이용한 밸브 트레인 부품의 제조방법.
7. The method according to any one of claims 1 and 4 to 6,
Wherein the valve train component is a rocker arm (100) or a rocker arm link (110).
KR1020120088032A 2012-08-10 2012-08-10 Method for manufacturing of valve train parts using with metal powder injection molding Expired - Fee Related KR101405845B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020120088032A KR101405845B1 (en) 2012-08-10 2012-08-10 Method for manufacturing of valve train parts using with metal powder injection molding
DE102012222840.3A DE102012222840A1 (en) 2012-08-10 2012-12-12 Method for producing valve control components by means of metal powder injection molding
US13/715,882 US9085028B2 (en) 2012-08-10 2012-12-14 Method for manufacturing valve train parts using metal powder injection molding
CN201210591070.XA CN103567451B (en) 2012-08-10 2012-12-31 The method that valve actuating mechanism parts are manufactured using metal powder injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120088032A KR101405845B1 (en) 2012-08-10 2012-08-10 Method for manufacturing of valve train parts using with metal powder injection molding

Publications (2)

Publication Number Publication Date
KR20140021443A KR20140021443A (en) 2014-02-20
KR101405845B1 true KR101405845B1 (en) 2014-06-11

Family

ID=49999255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120088032A Expired - Fee Related KR101405845B1 (en) 2012-08-10 2012-08-10 Method for manufacturing of valve train parts using with metal powder injection molding

Country Status (4)

Country Link
US (1) US9085028B2 (en)
KR (1) KR101405845B1 (en)
CN (1) CN103567451B (en)
DE (1) DE102012222840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230168909A (en) 2022-06-08 2023-12-15 주식회사 현대케피코 Method of manufacturing carburized part and carburized part thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028885B2 (en) 2014-03-28 2021-06-08 Keystone Powdered Metal Company Two-way clutch assembly
CN104128609A (en) * 2014-07-21 2014-11-05 苏州科瓴精密机械科技有限公司 Four-stroke engine rocker mechanism and manufacturing method thereof
WO2017050324A1 (en) * 2015-09-22 2017-03-30 Schaeffler Technologies AG & Co. KG Lever which can be loaded by a cam for actuating gas exchange valves of an internal combustion engine
CN105665714A (en) * 2016-02-01 2016-06-15 罗松文 Safe, environment-friendly and efficient catalytic degreasing furnace and process thereof
DE102017221996A1 (en) * 2017-12-06 2019-06-06 Aktiebolaget Skf Cam follower roller device, in particular for a fuel injection pump
DE102018208947A1 (en) 2018-06-06 2019-12-12 Aktiebolaget Skf Rolling ring by means of a metal injection molding process
CN112963221B (en) * 2021-03-15 2022-01-14 潍柴动力股份有限公司 Braking rocker arm and engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279202A (en) * 1996-04-18 1997-10-28 Daido Steel Co Ltd Metal powder for metal injection molding, sintered carburized product using this powder, and method for producing the same
JP2000310103A (en) 1999-04-26 2000-11-07 Nippon Piston Ring Co Ltd Rocker arm
KR20080040270A (en) * 2006-11-02 2008-05-08 주식회사 만도 Spool manufacturing method using metal powder injection molding and spool using the same
KR20110088554A (en) * 2008-11-07 2011-08-03 메탈딘 엘엘씨 Powdered Metal Rocker Arm

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH554559A (en) * 1973-01-05 1974-09-30
JPS60169501A (en) 1984-02-15 1985-09-03 Toyota Motor Corp Iron-based alloy powder for sintering and forging
US6143240A (en) * 1997-11-14 2000-11-07 Stackpole Limited High density forming process with powder blends
JP4054649B2 (en) 2002-10-01 2008-02-27 日立粉末冶金株式会社 Method for producing ferrous sintered alloy exhibiting quenched structure
US20050163645A1 (en) * 2004-01-28 2005-07-28 Borgwarner Inc. Method to make sinter-hardened powder metal parts with complex shapes
US7887747B2 (en) * 2005-09-12 2011-02-15 Sanalloy Industry Co., Ltd. High strength hard alloy and method of preparing the same
CN100406610C (en) * 2006-05-11 2008-07-30 上海交通大学 Carburizing method without internal oxidation under the protection of pre-vacuum nitrogen-based atmosphere
CN101205949B (en) * 2006-12-22 2010-12-29 富准精密工业(深圳)有限公司 Method for manufacturing hydrodynamic bearing and rotating shaft
US7803313B2 (en) * 2007-02-15 2010-09-28 Precision Castparts Corp. Method for bonding powder metallurgical parts
ES2424869T3 (en) * 2007-03-21 2013-10-09 Höganäs Ab (Publ) Composite materials of metal powder polymers
US20100267542A1 (en) * 2007-12-26 2010-10-21 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
EP2285996B1 (en) * 2008-06-06 2017-08-23 Höganäs Ab (publ) Iron- based pre-alloyed powder
KR101076785B1 (en) * 2008-07-24 2011-10-25 박영석 Injection molding method using powder
CN101670438A (en) * 2008-09-12 2010-03-17 深圳市注成科技有限公司 Metal injection molding product and carbon control method thereof in manufacturing process
JP4269091B1 (en) * 2008-11-25 2009-05-27 株式会社テクネス Manufacturing method of shaft for turbine rotor
EP2454041A4 (en) * 2009-07-17 2017-02-08 Boston Electronic Materials LLC Manufacturing and applications of metal powders and alloys
CN101774020B (en) * 2010-01-20 2012-10-03 中南大学 Method for preparing molybdenum-copper component
US20120073303A1 (en) * 2010-09-23 2012-03-29 General Electric Company Metal injection molding process and components formed therewith
KR101735438B1 (en) 2010-10-18 2017-05-15 한국전자통신연구원 Apparatus and method for automatic detection/verification of real time translation knowledge
DE102010061958A1 (en) * 2010-11-25 2012-05-31 Rolls-Royce Deutschland Ltd & Co Kg Process for producing engine components with a geometrically complex structure
CN102107282A (en) * 2011-01-11 2011-06-29 山东金聚粉末冶金有限公司 Automobile oil way joint and manufacturing method thereof
US20120251377A1 (en) * 2011-03-29 2012-10-04 Kuen-Shyang Hwang Method for enhancing strength and hardness of powder metallurgy stainless steel
CN102454715B (en) * 2011-08-12 2014-04-23 万向钱潮股份有限公司 Cardan universal joint, and manufacturing method for shaft sleeve for cardan universal joint
KR101350944B1 (en) * 2011-10-21 2014-01-16 포항공과대학교 산학협력단 Ferrous-alloys for powder injection molding
DE102011089260A1 (en) * 2011-12-20 2013-06-20 Rolls-Royce Deutschland Ltd & Co Kg Method for producing a component by metal powder injection molding
US20130315774A1 (en) * 2012-05-24 2013-11-28 Cheng Uei Precision Industry Co., Ltd. Metal injection molding method
KR20140048428A (en) * 2012-10-15 2014-04-24 현대자동차주식회사 Method for manufacturing of control finger using with metal powder injection molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279202A (en) * 1996-04-18 1997-10-28 Daido Steel Co Ltd Metal powder for metal injection molding, sintered carburized product using this powder, and method for producing the same
JP2000310103A (en) 1999-04-26 2000-11-07 Nippon Piston Ring Co Ltd Rocker arm
KR20080040270A (en) * 2006-11-02 2008-05-08 주식회사 만도 Spool manufacturing method using metal powder injection molding and spool using the same
KR20110088554A (en) * 2008-11-07 2011-08-03 메탈딘 엘엘씨 Powdered Metal Rocker Arm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230168909A (en) 2022-06-08 2023-12-15 주식회사 현대케피코 Method of manufacturing carburized part and carburized part thereof

Also Published As

Publication number Publication date
US9085028B2 (en) 2015-07-21
KR20140021443A (en) 2014-02-20
CN103567451B (en) 2017-12-22
DE102012222840A1 (en) 2014-02-13
US20140041222A1 (en) 2014-02-13
CN103567451A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
KR101405845B1 (en) Method for manufacturing of valve train parts using with metal powder injection molding
JP3784926B2 (en) Ferrous sintered alloy for valve seat
CN1865469A (en) Hard particle dispersed iron-based sintered alloy
US9095905B2 (en) Method of manufacturing control finger using metal powder injection molding
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
JP4166041B2 (en) Sintered sprocket and manufacturing method thereof
US20060042081A1 (en) High-precision sintered cam lobe material
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
KR20060040570A (en) Camshaft manufacturing method, camshaft and cam lobe material used for this
KR101227616B1 (en) Manufacturing method of high strength connecting rod for High pressure combustion engine
KR102180531B1 (en) Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures
KR20120125817A (en) Manufacturing method for valve seat of gas fuel car
KR950008687B1 (en) Making method of sintering tappet for diesel and gasoline engine and tip composite
KR102599427B1 (en) A method of manufacturing a cam piece for continuously variable valve duration and a cam piece manufactured therefrom
EP1663550B1 (en) Iron-based sintered alloy and manufacturing method thereof
KR101063216B1 (en) Heat treatment method for vanadium carbide hardening
KR101074164B1 (en) Method for nitriding by post-plasma
US20240110265A1 (en) Sintered material for aluminum die casting and manufacturing method thereof
JPH1150210A (en) Iron-based sintered alloy component and method of manufacturing the same
JPH059508A (en) Sintered alloy
CN114164394A (en) Method for hardening a sintered component
KR20020080876A (en) a manufacturing method of valve seat for engine
KR100521578B1 (en) Wear resist sintering alloy for valve seat and method for manufacturing the same
CN118996270A (en) Preparation process of wear-resistant steel powder and complex wear-resistant steel part
JP2003119544A (en) Steel for die-casting die for carburization, die-casting die, and method for manufacturing die-casting die

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120810

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20131218

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140522

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140603

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140603

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180530

Start annual number: 5

End annual number: 5

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20200314