[go: up one dir, main page]

KR101392159B1 - 미생물로부터 레티노이드를 생산하는 방법 - Google Patents

미생물로부터 레티노이드를 생산하는 방법 Download PDF

Info

Publication number
KR101392159B1
KR101392159B1 KR1020120083185A KR20120083185A KR101392159B1 KR 101392159 B1 KR101392159 B1 KR 101392159B1 KR 1020120083185 A KR1020120083185 A KR 1020120083185A KR 20120083185 A KR20120083185 A KR 20120083185A KR 101392159 B1 KR101392159 B1 KR 101392159B1
Authority
KR
South Korea
Prior art keywords
seq
retinoid
derived
microorganism
gene encoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120083185A
Other languages
English (en)
Other versions
KR20130014445A (ko
Inventor
김선원
장희정
윤상활
하보경
류희경
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to CN201280042839.0A priority Critical patent/CN103857786B/zh
Priority to PCT/KR2012/006071 priority patent/WO2013019051A2/ko
Priority to US14/235,841 priority patent/US9644217B2/en
Publication of KR20130014445A publication Critical patent/KR20130014445A/ko
Application granted granted Critical
Publication of KR101392159B1 publication Critical patent/KR101392159B1/ko
Priority to US15/180,032 priority patent/US9834794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • C12N1/28Processes using, or culture media containing, hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cosmetics (AREA)

Abstract

본 발명은 미생물로부터 레티노이드를 생산하는 방법에 관한 것으로서, 보다 상세하게는 레티노이드 생산능을 가진 미생물을 친유성 물질을 포함하는 배지 중에서 배양시키고 그 친유성 물질 상으로부터 레티노이드를 분리함으로써 안정성이 떨어지는 레티노이드를 미생물로부터 효과적으로 수득할 수 있는 방법에 관한 것이다.

Description

미생물로부터 레티노이드를 생산하는 방법{Method of producing retinoids from a microorganism}
레티노이드 생산능을 갖는 미생물로부터 레티노이드를 생산하는 방법에 관한 것이다.
레티노이드는 비타민 A와 화학적으로 관련된 친지질성 이소프레노이드 분자의 클래스이다. 레티노이드는 알코올 (예를 들면, 레티놀), 알데히드 (예를 들면, 레티날), 카르복실산 (예를 들면, 레티노산), 또는 에스테르 (예를 들면, 레티닐 아세테이트) 기능기와 함께, β-이논 고리 및 다불포화(polyunsaturated) 곁사슬로 구성된다. 이들은 시력보호, 골 발달 및 재생, 항산화 효과와 더불어 피부 노화 방지와 같은 인체 건강에 있어 필수적인 역할을 하고 특정 암의 위험을 감소시킨다고 알려져 있다.
레티노이드는 최근 수년간 주름개선 및 피부 질환 치료를 위한 효과적인 화장품 및 의약품 원료로서 큰 관심을 받아 왔다. 레티노이드 시장 규모는 세계적으로 약 160억불 정도로 추정된다. 화학적으로 합성된 레티노이드는 대표적인 상업적 원료이다. 레티놀은 펜타디엔 유도체의 환원에 의해 화학적으로 합성된 레티날의 산성화 또는 가수분해로부터 생산된다. 그러나 이러한 화학적 과정은 복잡한 정제 단계 및 원하지 않는 부산물 형성과 같은 단점을 갖는다. 동물은 과일 및 야채로부터 얻은 카로티노이드로부터 레티노이드를 생산하는 반면, 식물은 레티노이드를 합성할 수 없다. 레티노이드 합성의 전체 경로는 보조기(prosthetic group)로서 레티날을 갖는 박테리오로돕신 또는 프로테오로돕신을 포함하는 미생물에서만 가능하다. 그러나, 미생물은 레티날의 단백질 결합 형태를 생산하므로 자유 레티노이드의 대량 생산에는 적합하지 않다. 지금까지 생물학적 생산을 위해서 효소를 이용한 일부 제한적인 시도가 있었지만 성공적인 결과는 없었다. 따라서, 대사적으로 형질전환된 미생물을 사용하는, 레티노이드 생산을 위한 생명공학적 방법의 개발이 필요하다.
레티노이드는 그의 반응성 있는 콘쥬게이트된 이중 결합으로 인해 화학적으로 매우 불안정하고, 열, 산소 및 빛에 의해 쉽게 산화되고 이성체화된다. 또한 레티노이드는 생물학적으로 레티노산을 통해 쉽게 분해된다. 따라서, 레티노이드를 보다 효율적으로 생산하는 방법이 요구되고 있다.
일 양상은 미생물로부터 레티노이드를 효율적으로 생산하는 방법을 제공한다.
일 양상은 레티노이드 생산능을 가진 미생물을 친유성 물질을 포함하는 배지 중에서 배양하는 단계; 및 상기 친유성 물질 상으로부터 레티노이드를 분리하는 단계;를 포함하는, 미생물로부터 레티노이드를 생산하는 방법을 제공한다.
상기 방법은 레티노이드 생산능을 가진 미생물을 친유성 물질을 포함하는 배지 중에서 배양하는 단계를 포함한다.
용어 "미생물"은 액체 배지 중에서 배양될 수 있는 세포일 수 있다. 상기 미생물은 원핵 세포, 진핵 세포, 또는 분리된 동물세포로 액체 배지에서 배양될 수 있는 것일 수 있다. 상기 미생물은 예를 들면, 박테리아, 곰팡이, 또는 이들의 조합일 수 있다. 박테리아는 그람 양성 박테리아, 그람 음성 박테리아, 또는 이들의 조합일 수 있다. 그람 음성 박테리아는 에세리키아 (Escherichia) 속일 수 있다. 그람 양성 박테리아는 바실러스 속, 코리네박테리움 속, 유산균 또는 이들의 조합일 수 있다. 곰팡이는 효모, 클루베로마이세스, 또는 이들의 조합일 수 있다. 상기 미생물은 천연 또는 외래 유전자가 도입된 것일 수 있다. 외래 유전자는 MEP 또는 MVA 경로의 하나 이상의 유전자와 같은 레티노이드 생산에 관련된 유전자일 수 있다. 동물세포는 재조합 단백질 생산에 사용되는 것일 수 있다. 예를 들면, CHO 세포, BHK 세포, 또는 이들의 조합일 수 있다.
상기 레티노이드 생산능을 가진 에세리키아 (Escherichia) 속 미생물은 천연 에세리키아 속 미생물 또는 형질전환된 에세리키아 속 미생물일 수 있다. 천연 에세리키아 속 미생물은 내재적 레티노이드 합성의 경로로서 MEP 경로를 가지고 있는 것으로 알려져 있다. 형질전환된 에세리키아 속 미생물은 레티노이드 합성의 내재적 MEP 경로에 연관된 유전자, 외래 MVA 경로에 연관된 유전자, 또는 이들의 조합이 도입된 것일 수 있다. MVA 경로 유전자는 아세틸-CoA로부터 IPP를 생산하는데 관여하는 외래 메발로네이트 경로의 효소를 코딩하는 유전자일 수 있다. 또한, 상기 IPP로부터 β-카로틴을 합성하는데 관여하는 효소를 코딩하는 유전자가 도입된 균주일 수 있다. 두 카피 이상의 IPP 이소머라제가 도입되어 IPP로부터 DMAPP로의 전환이 촉진된 것일 수 있다. 따라서, 상기 미생물은 레티노이드를 고농도로 생산할 수 있다. 도 1은 레티날 생합성의 MEP 경로 및 외래의 MVA 경로를 도식적으로 나타낸 도면이다.
천연 에세리키아 속 미생물은 예를 들면, 대장균일 수 있다. 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합일 수 있다.
형질전환된 에세리키아 속 미생물은 예를 들면, 서열번호 1의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 아세틸-CoA 아세틸트란스퍼라제/하이드록시메틸글루타릴 (HMG)-CoA 리덕타제를 코딩하는 유전자, 서열번호 2의 엔테로코커스 패칼리스 유래의 HMG-CoA 신타제를 코딩하는 유전자, 서열번호 3의 스트렙토코커스 뉴모니애 (Streptococcus pneumoniae) 유래의 메발로네이트 키나제를 코딩하는 유전자, 서열번호 4의 스트렙토코커스 뉴모니애 유래의 포스포메발로네이트 키나제를 코딩하는 유전자, 서열번호 5의 스트렙토코커스 뉴모니애 유래의 메발로네이트 디포스페이트 데카르복실라제를 코딩하는 유전자, 서열번호 6의 대장균 유래의 이소펜테닐 디포스페이트 (IPP) 이소머라제를 코딩하는 유전자, 서열번호 7의 판토에아 아글루메란스 (Pantoea agglomerans) 유래의 제라닐제라닐 피로포스페이트 (GGPP) 신타제를 코딩하는 유전자, 서열번호 8의 판토에아 아글루메란스 유래의 피토엔 신타제를 코딩하는 유전자, 서열번호 9의 판토에아 아글루메란스 유래의 피토엔 데히드로게나제를 코딩하는 유전자, 및 서열번호 10의 판토에아 아나나티스 (Pantoea ananatis) 유래의 라이코펜-β-시클라제를 코딩하는 유전자로 형질전환된 것일 수 있다.
형질전환된 에세리키아 속 미생물은 서열번호 1 내지 10의 유전자로 형질전환되고, 또한 서열번호 13의 배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자, 서열번호 14의 생쥐 (Mus musculus) 유래의 β-카로틴 15,15'-모노옥시게나제를 코딩하는 유전자, 서열번호 15의 나트로노모나스 파라오니스 (Natronomonas pharaonis) ATCC35678 유래의 brp 유사 단백질 2 (brp-like protein 2: brp2)을 코딩하는 유전자, 및 서열번호 16 또는 17의 할로박테리움 살리나룸 (Halobacterium salinarum) ATCC700922 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자로 이루어진 군으로 선택되는 하나 이상의 유전자로 더 형질전환된 것일 수 있다.
상기 미생물은 서열번호 12의 헤마토코커스 플루비알리스 (Haematococcus pluvialis) 유래의 IPP 이소머라제를 코딩하는 유전자로 더 형질전환된, 레티노이드를 생산하는 것일 수 있다.
레티노이드 생산능을 가진 미생물은 서열번호 11의 대장균 유래 1-데옥시자일룰로즈-5-포스페이트 (DXP) 신타제(dxs)를 코딩하는 유전자로 형질전환된 것일 수 있다. DXP는 내재적 MEP 경로에서 속도 결정 단계에 해당하는 효소이므로 DXP 신타제를 코딩하는 유전자가 추가적으로 도입됨으로써 미생물은 β-카로틴을 고농도로 생산할 수 있게 된다.
본 발명의 레티노이드 생산능을 가진 미생물이 에세리키아 속에 해당되는 경우 예컨대 기탁번호 KCTC 11254BP의 대장균 DH5α/pTDHB/pSNA (KOREAN COLLECTION FOR TYPE CULTURE, 2008. 1. 2. 기탁) 또는 기탁번호 KCTC 11255BP의 대장균 DH5α/pTDHBSR/pSNA (KOREAN COLLECTION FOR TYPE CULTURE, 2008. 1. 2. 기탁)일 수 있다. 특히, 대장균 DH5α/pTDHBSR/pSNA는 배지 중의 탄소원으로부터 레티노이드를 높은 생산성으로 생산할 수 있다.
일 구체예에서, 상기 미생물은 서열번호 1의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 아세틸-CoA 아세틸트란스퍼라제/하이드록시메틸글루타릴 (HMG)-CoA 리덕타제를 코딩하는 유전자, 서열번호 2의 엔테로코커스 패칼리스 유래의 HMG-CoA 신타제를 코딩하는 유전자, 서열번호 3의 스트렙토코커스 뉴모니애 (Streptococcus pneumoniae) 유래의 메발로네이트 키나제를 코딩하는 유전자, 서열번호 4의 스트렙토코커스 뉴모니애 유래의 포스포메발로네이트 키나제를 코딩하는 유전자, 서열번호 5의 스트렙토코커스 뉴모니애 유래의 메발로네이트 디포스페이트 데카르복실라제를 코딩하는 유전자, 서열번호 6의 대장균 유래의 이소펜테닐 디포스페이트 (IPP) 이소머라제를 코딩하는 유전자, 서열번호 7의 판토에아 아글루메란스 (Pantoea agglomerans) 유래의 제라닐제라닐 피로포스페이트 (GGPP) 신타제를 코딩하는 유전자, 서열번호 8의 판토에아 아글루메란스 유래의 피토엔 신타제를 코딩하는 유전자, 서열번호 9의 판토에아 아글루메란스 유래의 피토엔 데히드로게나제를 코딩하는 유전자, 서열번호 10의 판토에아 아나나티스 (Pantoea ananatis) 유래의 라이코펜-β-시클라제를 코딩하는 유전자, 서열번호 11의 대장균 유래 1-데옥시자일룰로즈-5-포스페이트 (DXP) 신타제를 코딩하는 유전자 및 서열번호 12의 헤마토코커스 플루비알리스 (Haematococcus pluvialis) 유래의 IPP 이소머라제를 코딩하는 유전자로 형질전환된 에세리키아 속 미생물로서, 서열번호 13의 배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자, 서열번호 14의 생쥐 (Mus musculus) 유래의 β-카로틴 15,15'-모노옥시게나제를 코딩하는 유전자, 서열번호 15의 나트로노모나스 파라오니스 (Natronomonas pharaonis) ATCC35678 유래의 brp 유사 단백질 2 (brp-like protein 2)을 코딩하는 유전자, 및 서열번호 16 또는 17의 할로박테리움 살리나룸 (Halobacterium salinarum) ATCC700922 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자로 이루어진 군에서 선택되는 하나 이상의 유전자로 더 형질전환된 에세리키아 속 미생물일 수 있다. 서열번호 13의 배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자는 대장균에서 코돈 사용 최적화된 서열번호 32의 염기서열을 갖는 것일 수 있다.
본 명세서에 있어서, 용어 "레티노이드 (retinoids)"는 비타민 A에 화학적으로 관련된 화학물질의 부류를 나타낸다. 레티노이드의 구조는 시클릭 말단기, 폴리엔 측쇄 및 극성 말단기로 구성된다. 상기 폴리엔 측쇄의 C=C 이중결합이 교대로 되어 형성된 공액 시스템 (conjugated system)은 레티노이드의 색 (보통 노란색, 오렌지 또는 적색)을 띄게 한다. 많은 레티노이드는 발색소(chromophore)이다. 측쇄 및 말단기를 변화시킴으로써 다양한 레티노이드가 생성될 수 있다. 상기 레티노이드는 레티날, 레티놀, 레티노산, 레티닐 아세테이트, 또는 이들의 조합일 수 있다. 또한, 상기 레티노이드는 레티날, 레티놀, 레티노산, 레티닐 아세테이트, 또는 이들의 조합의 생체 내 분해 산물일 수 있다.
레티노이드는 기본 탄소수가 20인 물질로서, 결합하는 지방산 보조기에 따라 최종 탄소수가 달라질 수 있는데, 예컨대 아세테이트 결합시에는 최종 탄소수가 22이고 올레산 결합시에는 탄소수가 38일 수 있다.
상기 친유성 물질은 탄소수 8 내지 50의 유기 화합물로서 친유성을 갖는 것일 수 있다.
상기 친유성 물질은 탄소수 8 내지 50의 알칸 화합물, 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 또는 이들의 조합일 수 있다:
[화학식 1]
R1(CO)OR2
(식 중, R1 R2는 각각 독립적으로 탄소수 8 내지 50의 알킬을 나타내고, CO는 카르보닐기를 나타냄),
[화학식 2]
Figure 112012060841017-pat00001
(식 중, R3, R4 및 R5는 각각 독립적으로 탄소수 8 내지 50의 알킬을 나타내고, CO는 카르보닐기를 나타냄).
탄소수 8 내지 50의 알칸 화합물은 직쇄 알칸, 분지 알칸, 시클릭 알칸, 또는 이들의 조합일 수 있다. 알칸 화합물은 예를 들면, 탄소수 8 내지 46, 8 내지 40, 8 내지 36, 8 내지 30, 8 내지 26, 8 내지 20, 8 내지 16, 8 내지 12, 8 내지 10, 10 내지 50, 10 내지 46, 10 내지 40, 10 내지 36, 10 내지 30, 10 내지 26, 10 내지 20, 10 내지 16, 10 내지 12, 10 내지 50, 10 내지 46, 12 내지 50, 12 내지 46, 12 내지 36, 12 내지 30, 12 내지 26, 12 내지 20, 또는 12 내지 16의 알칸 화합물일 수 있다.
직쇄 알칸은 탄소수 8 (옥탄), 10 (데칸), 12 (도데칸), 14 (테트라데칸), 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50의 알칸, 또는 이들의 조합일 수 있다.
분지 알칸은 탄소수 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50의 알칸, 또는 이들의 조합일 수 있다. 분지 알칸은 테르펜 화합물의 포화된 유사체(analogue)일 수 있다. 예를 들면, 파이토스쿠알란일 수 있다.
직쇄 알칸, 분지 알칸, 및 시클릭 알칸의 조합은 미네랄 오일일 수 있다. 미네랄 오일은 비식물성 원료 (미네랄) 유래의 탄소 수 15 내지 40의 알칸의 혼합물일 수 있다. 탄소수 15 내지 40의 알칸은 탄소수 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40의 알칸의 2 이상의 혼합물일 수 있다.
미네랄 오일은 경량 미네랄 오일 또는 중량 미네랄 오일일 수 있다. 경량 미네랄 오일(light mineral oil)은 일반적으로 밀도가 880~920kg/m3이며 20℃에서 비중이 820~860 kg/m3, 40℃에서 유동성 점도가 14~18cst를 가지는 물질이다. 중량 미네랄 오일(heavy mineral oil)은 일반적으로 밀도가 920kg/m3이며 20℃에서 비중이 860~900 kg/m3, 40℃에서 유동성 점도가 65~85cst인 물질이다.
화학식 1의 화합물에서 R1 R2는 각각 독립적으로 직쇄, 분지쇄 또는 고리형의 탄소수 8 내지 50의 알킬이다. R1과 R2는 각각 독립적으로 탄소수 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 또는 50의 알킬일 수 있다.
R1과 R2는 각각 탄소수 8 내지 50, 예를 들면, 탄소수 8 내지 46, 8 내지 40, 8 내지 36, 8 내지 30, 8 내지 26, 8 내지 20, 8 내지 16, 8 내지 12, 8 내지 10, 10 내지 50, 10 내지 46, 10 내지 40, 10 내지 36, 10 내지 30, 10 내지 26, 10 내지 20, 10 내지 16, 10 내지 12, 10 내지 50, 10 내지 46, 12 내지 50, 12 내지 46, 12 내지 36, 12 내지 30, 12 내지 26, 12 내지 20, 또는 12 내지 16의 알킬일 수 있다. R1이 탄소수 13의 직쇄 알킬이고 R2가 이소프로필일 수 있다. 또한, R1이 에틸펜틸기이고 R2가 세틸일 수 있다.
화학식 2의 화합물에서, R3, R4 및 R5는 각각 독립적으로 직쇄, 분지쇄 또는 고리형의 탄소수 8 내지 50의 알킬이다.
R3, R4, 및 R5는 각각 탄소수 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 또는 50의 알킬일 수 있다. 상기 화합물은 예를 들면, R3, R4, 및 R5가 각각 탄소수 8 내지 50, 예를 들면, 탄소수 8 내지 46, 8 내지 40, 8 내지 36, 8 내지 30, 8 내지 26, 8 내지 20, 8 내지 16, 8 내지 12, 8 내지 10, 10 내지 50, 10 내지 46, 10 내지 40, 10 내지 36, 10 내지 30, 10 내지 26, 10 내지 20, 10 내지 16, 10 내지 12, 10 내지 50, 10 내지 46, 12 내지 50, 12 내지 46, 12 내지 36, 12 내지 30, 12 내지 26, 12 내지 20, 또는 12 내지 16의 알킬일 수 있다.
친유성 물질은 옥탄, 데칸, 도데칸, 테트라데칸, 파이토스쿠알란, 미네랄 오일, 이소프로필 미리스테이트, 세틸 에틸헥사노에이트, 디옥타노일 데카노일 글리세롤, 스쿠알란, 또는 이들의 조합일 수 있다.
친유성 물질은 생산되는 레티노이드를 안정화시키는 것뿐만 아니라, 미생물에 의한 레티노이드의 생산성을 증가시킬 수 있다. 친유성 물질은 미생물의 생장에 영향을 미치지 않거나 적게 영향을 미치는 것일 수 있다.
배양은 합성, 반합성, 또는 복합 배양 배지에서 이루어질 수 있다. 배양 배지로는 탄소원, 질소원, 비타민 및 미네랄로 구성된 배지를 사용할 수 있다. 예를 들어, MRS (Man-Rogosa-Sharp) 액체 배지 또는 우유가 첨가된 액체 배지를 사용할 수 있다.
배지의 탄소원으로는 전분, 포도당, 자당, 갈락토스, 과당, 글리세롤, 글루코스 또는 이들의 혼합물이 사용될 수 있다. 예를 들면, 글리세롤이 탄소원으로 사용될 수 있다. 질소원으로는 황산암모늄, 질산암모늄, 질산나트륨, 글루탐산, 카사미노산, 효모추출물, 펩톤, 트립톤, 대두박 또는 이들의 혼합물이 사용될 수 있다. 미네랄은 염화나트륨, 인산제이칼륨, 황산마그네슘 또는 이들의 혼합물이 사용될 수 있다.
배양이 발효조에서 이루어지는 경우 글루코스를 배지의 탄소원으로 사용하는 것이 좋다. 시험관 배양의 경우에는 글리세롤을 배지의 탄소원으로 사용하는 것이 좋다.
미생물 배양 배지 내 상기 탄소원, 질소원 및 미네랄 각각은 예를 들면, 리터당 10 내지 100 g, 5 내지 40 g 및 0.5 내지 4 g 을 이용할 수 있다.
상기의 통상의 배양 배지에 첨가되는 비타민은 비타민 A, 비타민 B, 비타민 C, 비타민 D, 비타민 E 또는 이들의 혼합물일 수 있다. 비타민은 통상의 배양 배지에 상기에서 언급된 탄소원, 질소원, 미네랄 등과 함께 첨가되거나, 멸균하여 준비된 배지에 별도로 첨가될 수 있다.
배양은 통상의 대장균 배양 조건으로 수행될 수 있다. 배양은 예를 들어 약 15-45℃, 예를 들면, 15-44℃, 15-43℃, 15-42℃, 15-41℃, 15-40℃, 15-39℃, 15-38℃, 15-37℃, 15-36℃, 15-35℃, 15-34℃, 15-33℃, 15-32℃, 15-31℃, 15-30℃, 20-45℃, 20-44℃, 20-43℃, 20-42℃, 20-41℃, 20-40℃, 20-39℃, 20-38℃, 20-37℃, 20-36℃, 20-35℃, 20-34℃, 20-33℃, 20-32℃, 20-31℃, 20-30℃, 25-45℃, 25-44℃, 25-43℃, 25-42℃, 25-41℃, 25-40℃, 25-39℃, 25-38℃, 25-37℃, 25-36℃, 25-35℃, 25-34℃, 25-33℃, 25-32℃, 25-31℃, 25-30℃, 27-45℃, 27-44℃, 27-43℃, 27-42℃, 27-41℃, 27-40℃, 27-39℃, 27-38℃, 27-37℃, 27-36℃, 27-35℃, 27-34℃, 27-33℃, 27-32℃, 27-31℃ 또는 27-30℃에서 수행될 수 있다.
배양액 중의 배양 배지를 제거하고 농축된 균체만을 회수하거나 제거하기 위해 원심분리 또는 여과과정을 거칠 수 있으며 이러한 단계는 당업자의 필요에 따라 수행할 수 있다. 농축된 균체는 통상적인 방법에 따라 냉동하거나 냉동건조하여 그 활성을 잃지 않도록 보존할 수 있다.
배양의 일 예에 있어서, 배양은 탄소원으로서 글리세롤을 포함하는 배지에서 이루어지는 것일 수 있다. 글리세롤은 배지 중의 유일한 탄소원일 수 있다. 0.5-5.0%(w/v), 예를 들면, 0.5-4.5%(w/v), 0.5-4.0%(w/v), 0.5-3.5%(w/v), 0.5-3.0%(w/v), 0.5-2.5%(w/v), 0.5-2.0%(w/v), 1-5.0%(w/v), 1-4.5%(w/v), 1-4.0%(w/v), 1-3.5%(w/v), 1-3.0%(w/v) 또는 1-2.5%(w/v)의 글리세롤을 포함하는 배지에서 이루어지는 것일 수 있다. 상기 배지는 글리세롤 및 아라비노스가 첨가된 YT 배지일 수 있다. YT 배지는 1.6중량% 트립톤, 1중량% 효모 추출물 및 0.5 중량% NaCl을 포함할 수 있다.
배양은 친유성 물질 존재 하의 배양 배지에서, 예를 들면 배지 표면에 친유성 물질인 도데칸 상(dodecane phase)을 위치시킨 상태로 수행될 수 있다. 배양은 교반되는 상태에서 수행될 수 있다.
교반되는 경우, 100 내지 300rpm, 예를 들면, 100 내지 280rpm, 100 내지 260rpm, 100 내지 240rpm, 100 내지 220rpm, 100 내지 200rpm, 100 내지 180rpm, 100 내지 160rpm, 100 내지 140rpm, 100 내지 120rpm, 120 내지 300rpm, 120 내지 280rpm, 120 내지 260rpm, 120 내지 240rpm, 120 내지 220rpm, 120 내지 200rpm, 120 내지 180rpm, 120 내지 160rpm, 120 내지 140rpm, 150 내지 300rpm, 150 내지 280rpm, 150 내지 260rpm, 150 내지 240rpm, 150 내지 220rpm, 150 내지 200rpm, 150 내지 180rpm, 140 내지 160rpm, 200 내지 300rpm, 200 내지 280rpm, 200 내지 260rpm, 200 내지 240rpm, 200 내지 220rpm, 또는 150 rpm으로 교반될 수 있다.
교반되는 경우, 상기 친유성 물질, 예컨대 도데칸은 배지 중에서 분산되어 세포와 접촉된다. 친유성 물질은 배지 중에 분산됨으로써 미생물과 접촉하는 면적이 넓어져 배양 중 레티노이드를 효율적으로 세포로부터 분리되게 하여 안정화 및/또는 용해시킬 수 있다.
친유성 물질, 예컨대 도데칸 상 없이 상기 기술한 레티노이드를 생산하는 미생물을 배양시켰을 때, 레티노이드 생산은 일정 시점에서 최고치를 나타내고 그 이후에 감소할 수 있다. 이는 미생물 성장의 정체 상태 동안 추가적인 레티노이드 합성이 중단되는 반면, 세포 내에서 그의 산화적 분해가 일어나기 때문일 수 있다.
친유성 물질, 예컨대 도데칸 상의 존재 하에 배양 배지에서 상기 미생물을 배양시키게 되면 생산된 레티노이드가 세포 내에서 분해되기 전에 친유성 물질, 예컨대 도데칸 상에 흡수되게 되어 레티노이드 생산량을 향상시킬 수 있다.
상기 친유성 물질, 예컨대 도데칸 상은 에세리키아 속 미생물의 세포 성장에 영향을 미치지 않고, 소수성 레티노이드의 추출을 위해 소수성이고, 낮은 휘발성을 갖는 것일 수 있다. 도 2는 β-카로틴의 레티날, 레티놀, 레티노산, 및 레티닐 에스테르를 포함하는 레티노이드로의 변환을 나타낸다.
배지 대 친유성 물질의 부피비는 특정 범위의 비로 한정되지 않고, 예컨대, 배지 대 친유성 물질의 부피비가 1:0.1-3.0, 1:0.2-3.0, 1:0.5-3.0, 1:1.0-3.0, 1:1.5-3.0, 1:2.0-3.0, 1:2.5-3.0, 1:0.2-2.5, 1:0.2-2.0, 1:0.2-1.5, 1:0.2-1.0, 1:0.2-0.5, 1:0.5-2.5, 1:0.5-2.0, 1:0.5-1.5, 1:0.5-1.0, 1:0.8-2.5, 1:0.8-2.0, 1:0.8-1.5, 1:0.8-1.2, 1:0.8-1.0 등이 가능하다.
일 구체예에 따르면 상기 배양하는 단계에서 상기 배지는 약 2.0% 농도의 글리세롤를 포함하고, 상기 에세리키아 속 미생물은 대장균 DH5α 또는 MG1655이고, 상기 배양하는 단계는 배양액 약 7 ml, 약 29℃에서 배양시키는 것일 수 있다.
상기 방법은 또한, 친유성 물질 상으로부터 레티노이드를 분리하는 단계를 포함한다. 상기 레티노이드, 예를 들면, 레티날, 레티놀, 레티노산, 레티닐 에스테르, 또는 이들의 조합을 분리하는 것은 당업계에 잘 알려져 있다. 예를 들면, 이온교환 크로마토그래피, HPLC 등의 방법에 의하여 분리될 수 있다. 구체적으로, 균체를 회수한 후에 아세톤 등의 용매를 이용한 추출 후에 고순도의 제품을 얻기 위해서는 HPLC 또는 결정화 작업등을 통한 분리정제가 진행될 수 있다.
일 구체예는 레티노이드 생산능을 가진 에세리키아 속 미생물을 친유성 물질을 포함하는 배지 중에서 배양하는 단계; 및 상기 친유성 물질 상으로부터 레티노이드를 분리하는 단계;를 포함하고, 상기 친유성 물질은 탄소수 8 내지 50의 알칸 화합물, 화학식 1의 화합물, 화학식 2의 화합물 또는 이들의 조합인, 에세리키아 속 미생물로부터 레티노이드를 생산하는 방법일 수 있다.
본 발명의 레티노이드를 생산하는 방법에 의하면 레티놀을 높은 효율로 생산할 수 있다.
도 1은 레티날 생합성의 MEP 경로 및 외래의 MVA 경로를 도식적으로 나타낸 도면이다.
도 2는 β-카로틴의 레티날, 레티놀, 레티노산, 및 레티닐 에스테르를 포함하는 레티노이드로의 변환을 나타낸다.
도 3은 pT-HB, pT-HBblh, pT-HBbrp, pT-HBbrp2, pT-HBBCMO1, 및 pT-HBSR를 포함하는 대장균의 레티날 생산, β-카로틴 생산 및 세포 성장을 나타낸다.
도 4는 pT-HB, pT-HBSR, pT-DHB 및 pT-DHBSR을 포함하는 대장균 및 MVA 경로 플라스미드인 pS-NA와 함께 pT-DHB, 또는 pT-DHBSR을 포함하는 대장균의 레티날 생산, β-카로틴 생산 및 세포 성장을 나타낸다.
도 5는 pT-DHBSR 및 pS-NA를 갖는 다양한 대장균 균주의 레티노이드 생산과 세포 성장을 나타낸다.
도 6은 배양액 시험 부피에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산 및 세포 성장을 나타낸다.
도 7은 배양 온도에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산 및 세포 성장을 나타낸다.
도 8은 탄소원에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산과 세포 성장을 나타낸다.
도 9 및 도 10은 pT-DHBSR 및 pS-NA를 포함하는 대장균의 탄소원인 글리세롤의 농도에 따른 레티노이드 생산 및 세포성장을 나타낸다.
도 11 및 도 12는 도데칸 존재 하에서 다양한 대장균 균주의 레티노이드 생산과 세포성장의 결과를 나타낸 도면이다.
도 13은 5 ml 배양 배지 상에 1 mL 도데칸을 포함하는 2-상 배양에서 탄소원인 글리세롤의 농도에 따른 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산 및 세포 성장을 나타낸다.
도 14는 2-상 배양에서의 대장균(pT-DHBSR/pS-NA)의 도데칸 부피에 따른 레티노이드 생산 및 세포 성장을 나타낸다.
도 15는 2-상 배양에서의 대장균(pT-DHBSR/pS-NA)의 배양 시간 및 도데칸 부피에 따른 레티노이드의 분포가 총 레티노이드에 대한 각 구성성분의 백분율로 나타낸 도면이다.
도 16은 pT-DHB 및 pS-NA를 갖는 대장균의 베타-카로틴 생산과 세포 성장에 있어 도데칸 첨가의 효과를 나타낸다.
도 17 및 도 18은 다양한 알칸 존재하에서 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산 및 세포성장 결과를 나타낸 도면이다.
도 19, 도 20 및 도 21은 다양한 부피의 경량 미네랄 오일 존재 하에서 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산, 세포성장, 균체당 레티노이드 생산량(cell specific retinoids productivity) 결과를 나타낸 도면이다.
도 22 및 도 23은 중량 미네랄 오일 존재 하에서 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산 및 세포성장 결과를 나타낸 도면이다.
도 24 및 도 25는 중량 미네랄 오일 존재 하에서 시험관을 기울여 배양한 경우 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산 및 세포성장 결과를 나타낸 도면이다.
도 26은 피부 친화적 친유성 물질 존재 하에서 대장균(pT-DHBSR/pS-NA)의 세포 성장 및 pH를 나타낸 도면이다.
도 27 및 도 28은 피부 친화적 친유성 물질의 다양한 종류와 양에 따른 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산결과를 나타낸 도면이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. 이하의 실시예에서 다음의 실험 재료 및 방법을 사용하였다.
박테리아 균주 및 배양 조건
대장균 DH5α는 유전자 클로닝 및 레티노이드 생산에 사용하였다. 대장균 MG1655, BL21 (DE3), XL1-Blue, S17-1 및 BW25113을 레티놀 생산에 최적인 균주를 찾기 위해 사용하였다. 레티노이드 생산을 위한 배양은 2YT 배지(리터 당 16g 트립톤, 10g 이스트 추출물, 및 5g NaCl)에서, 29℃ 및 250rpm의 교반 배양기를 사용하여 수행하였다. 각각 주 및 보조 탄소 원료로서 글리세롤 및 아라비노오스를 각각 0.5% 내지 2% (w/v) 및 0.2% (w/v)의 농도로 첨가하였다. 글루코오스, 갈락토오스, 자일로오스 및 말토오스를 레티노이드 생산을 위한 탄소 원료로서 글리세롤과 비교하였다. 엠피실린 (100 ㎍/mL) 및 클로람페티콜 (50 ㎍/mL)을 필요한 배양물에 첨가하였다. 배양을 7 mL 배지를 포함하는 시험관 중에서 수행하였다. 세포 성장은 600nm (OD600)에서 광학 밀도를 측정하여 결정하였다. 레티노이드 생산의 2-상 배양에서, 1 mL의 도데칸 (Cat. No. 297879, Sigma, USA)을 배양 배지 5 mL 위에 위치시켰다.
β-카로틴 및 레티노이드의 분석 조건
β-카로틴 및 레티노이드를 아세톤으로 박테리아 세포 펠렛으로부터 추출하였다. 도데칸 씌움을 갖는 2-상 배양에서, 레티노이드를 포함하는 도데칸 상을 수집하여 14,000 rpm에서 10분 동안 원심분리시켜 모든 세포 파편들을 제거하였다. 아세톤 추출물 및 도데칸 상을 검출 파장 370 nm (레티날), 340 nm (레티놀 및 레티닐 아세테이트) 및 454 nm (β-카로틴)에서 HPLC(LC-20A, Shimadzu, Kyoto, Japan)로 분석하였다. 분석은 Sentry Guard C18 (15 mm×4.6 mm, 5 m)을 갖는 Symmetry C18 (250 mm×4.6 mm, 5 m)의 HPLC 컬럼을 사용하여 수행하였다. 이동상은 레티노이드 및 β-카로틴 분석을 위한 각각 95:5 및 70:30의 메탄올 및 아세토니트릴이었다. HPLC 분석에 1.5 ml/min의 유동속도(flow rate) 및 40℃의 컬럼 온도가 적용되었다. 레티날 (Cat. No. R2500), 레티놀 (Cat. No. R7632), 레티닐 아세테이트 (Cat. No. R4632) 및 β-카로틴 (Cat. No. C4582)을 Sigma(USA)로부터 구매하고 아세톤 중에 용해시켜 표준 화합물로서 사용하였다. 결과는 세 개의 독립적인 실험으로부터 평균±SD으로 나타내었다.
실시예 1 : β-카로틴 및 레티날 고생산성 대장균의 제조용 벡터의 제조
게놈 DNA 제조, 제한효소 절단, 형질전환 및 표준 분자 생물학 기술을 포함하는 통상적인 과정은 문헌에 기재된 대로 수행하였다(Sambrook and Russell 2001). PCR은 그의 표준 프로토콜에 의해 pfu DNA 폴리머라제 (Solgent Co., Korea)를 사용하여 수행하였다. 배양되지 않은 해양 박테리아 66A03의 blh 유전자 (Genbank 허가 번호 AAY68319)를 그의 대장균에서의 발현을 위해 Gene Designer 소프트웨어 (DNA 2.0, Menlo Park, USA)에 의한 코돈-최적화에 따라 Genofocus (대전, 한국)로 합성하였다.
본 실시예에서는 MEP 경로를 가지고 있는 대장균에, 속도 결정 단계에 해당하는 효소인 DXP 신타제를 코딩하는 유전자를 대장균에 추가적으로 도입하는 동시에, 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자를 다양한 유전자원으로부터 선별하여 도입하여, β-카로틴 고생산성 대장균을 제조하였다.
(1) 탄소원으로부터 IPP 를 합성하는데 관여하는 메발로네이트 경로의 효소를 코딩하는 유전자를 포함하는 pSNA 벡터의 제조
본 절에서 사용된 탄소원으로부터 IPP를 합성하는데 관여하는 메발로네이트 경로의 효소를 코딩하는 유전자는 다음 표 1과 같다.
효소명 유전자 유전자 서열
(Genbank 허가번호)
엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 아세틸-CoA 아세틸트란스퍼라제/하이드록시메틸글루타릴 (HMG)-CoA 리덕타제 mvaE 서열번호 18(AF290092)
엔테로코커스 패칼리스 유래의 HMG-CoA 신타제 mvaS 서열번호 19(AF290092)
스트렙토코커스 뉴모니애 (Streptococcus pneumoniae) 유래의 메발로네이트 키나제 mvaK1 서열번호 20(AF290099)
스트렙토코커스 뉴모니애 유래의 포스포메발로네이트 키나제 mvaK2 서열번호 21(AF290099)
스트렙토코커스 뉴모니애 유래의 메발로네이트 디포스페이트 데카르복실라제 mvaD 서열번호 22 (AF290099)
대장균 유래의 이소펜테닐 디포스페이트(IPP) 이소머라제 idi 서열번호 23 (U00096)
표 1의 유전자를 증폭하기 위한 프라이머 및 제한 효소
유전자 프라이머 서열 제한 효소
mvaE
F 서열번호 37 SacI
R 서열번호 38 SmaI
mvaS
F 서열번호 39 SmaI
R 서열번호 40 BamHI
mvaK1, mvaK2, mvaD
F 서열번호 41 KpnI
R 서열번호 42 XbaI
idi
F 서열번호 43 SmaI
R 서열번호 44 SphI
표 2에 표 1의 유전자 클로닝에 사용된 프라이머 서열 및 제한효소를 나타내었다. mvaK1, mvaK2, mvaD는 하나의 오페론으로 염색체상에 존재해서 각각의 유전자를 PCR 클로닝하지 않고 오페론을 통째로 한번에 PCR 클로닝을 하였다.
표 1의 유전자들은 표 3에 열거된 프라이머를 사용하고, 해당 유전자를 포함하고 있는 균주의 염색체 DNA를 주형으로 한, PCR을 통하여 증폭하였다. 증폭된 산물을 표 2에 열거된 제한 효소를 이용하여 pSTV28 벡터 (Takara Korea, 한국) (서열번호 45)에 도입하여, 벡터 pSNA를 제조하였다. 벡터 pSNA는 아세틸-CoA로부터 IPP를 생산할 수 있는 메발로네이트 경로의 효소를 코딩하는 유전자를 모두 포함하고 있다.
(2) IPP 로부터 β-카로틴을 합성하는데 관여하는 효소를 코딩하는 유전자를 포함하는 벡터 pT - HB pT - DHB 의 제조
본 절에서 사용된 IPP로부터 β-카로틴을 합성하는데 관여하는 효소를 코딩하는 유전자 및 MEP 경로의 속도결정 단계의 효소인 DXP 신타제 유전자는 다음 표 3과 같다.
효소명 유전자 유전자 서열
(Genbank 허가번호)
헤마토코커스 플루비알리스 (Haematococcus pluvialis) 유래의 IPP 이소포머레제 ipiHp1 서열번호 24(AF082325)
대장균 유래 1-데옥시자일룰로즈-5-포스페이트 (DXP) 신타제 dxs 서열번호 25(U00096)
판토에아 아글루메란스 (pantoea agglomerans) 유래의 제라닐제라닐 피로포스페이트 (GGPP) 신타제 crtE 서열번호 26(M87280)
판토에아 아글루메란스 유래의 피토엔 신타제 crtB 서열번호 27(M87280)
판토에아 아글루메란스 유래의 피토엔 데히드로게나제 crtI 서열번호 28M87280
판토에아 아나나티스 (pantoea ananatis) 유래의 라이코펜-β-시클라제 crtY 서열번호 29(D90087)
유전자 프라이머 제한 효소
ipiHp1
F 서열번호 46 SmaI
SphI
R 서열번호 47
dxs
F 서열번호 48 EcoRI
SnaBI
R 서열번호 49
crtE
F 서열번호 50 BspHI
EcoRI
R 서열번호 51
crtB , crtI
F 서열번호 52 EcoRI
SacI
R 서열번호 53
crtY
F 서열번호 54 SalI
PstI
R 서열번호 55
표 3의 유전자 클로닝에 사용된 프라이머 서열 및 제한효소는 표 4와 같다. crtB, crtI는 하나의 오페론으로 염색체상에 존재해서 각각의 유전자를 PCR 클로닝하지 않고 오페론을 통째로 한번에 PCR 클로닝을 하였다.
표 3의 유전자들은 표 4에 열거된 프라이머를 사용하고, 해당 유전자를 포함하고 있는 균주의 염색체 DNA를 주형으로 한, PCR을 통하여 증폭하였다. 증폭된 산물을 표 4에 열거된 제한 효소를 이용하여 pTrc99A 벡터 (Genbank 허가 번호 M22744) (서열번호 30)에 도입하여, 벡터 pT-DHB를 제조하였다. 벡터 pTDHB는 IPP로부터 β-카로틴을 합성하는데 관여하는 효소를 코딩하는 유전자 및 MEP 경로의 속도결정 단계의 효소인 DXP 신타제 (dxs) 유전자를 모두 포함하고 있다. 또한 상기 표 3의 유전자들 중 dxs만을 제외한 모든 유전자를 상기 표 4에 열거된 제한효소를 사용하여 pTrc99A 벡터에 도입하여 벡터 pT-HB를 제조하였다.
(3) β-카로틴으로부터 레티날을 합성하는데 관여하는 효소를 코딩하는 유전자를 포함하는 벡터의 제조
본 발명에서 사용된 β-카로틴으로부터 레티날을 합성하는데 관여하는 효소를 코딩하는 유전자는 다음 표 5와 같다. 표 5에서 배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자는 blh의 대장균 코돈 최적화 서열인 SR 유전자를 사용하였다.
효소명 유전자 유전자 서열
(Genbank 허가번호)
배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제 blh 서열번호 31
(DQ065755)
배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제 SR (blh의대장균 코돈최적화 서열) 서열번호 32
생쥐 (Mus musculus) 유래의 β-카로틴 15,15'-모노옥시게나제 bcmo1 서열번호 33
(NM_021486)
나트로노모나스 파라오니스 (Natronomonas pharaonis) ATCC35678 유래의 brp 유사 단백질 2 (brp-like protein 2) brp2 서열번호 34
(CR936257)
할로박테리움 살리나룸 (Halobacterium salinarum) ATCC700922 유래의 β-카로틴 모노옥시게나제 blh 서열번호 35
(AE004437)
할로박테리움 살리나룸 (Halobacterium salinarum) ATCC700922 유래의 β-카로틴 모노옥시게나제 brp 서열번호 36
(AE004437)
유전자 프라이머 서열 제한 효소
SR
F 서열번호 56 EcoR1
SpeI
R 서열번호 57
bcmo1
F 서열번호 58 EcoR1
SpeI
R 서열번호 59
brp2
F 서열번호 60 EcoR1
SpeI
R 서열번호 61
blh
F 서열번호 62 EcoR1
SpeI
R 서열번호 63
brp
F 서열번호 64 EcoR1
SpeI
R 서열번호 65
표 5의 유전자 클로닝에 사용된 프라이머 서열 및 제한효소는 표 6과 같다. 표 5의 유전자들은 표 6에 열거된 프라이머를 사용하고, 해당 유전자를 포함하고 있는 균주의 염색체 DNA와 생쥐의 cDNA 라이브러리를 주형으로 한, PCR을 통하여 증폭하였다. 증폭된 산물을 표 6에 열거된 제한 효소를 이용하여 벡터 pT-HB에 각각 도입하여, 벡터 pT-HBSR, pT-HBBcmo1, pT-HBbrp2, pT-HBblh, pT-HBbrp를 제조하였다. 벡터 pT-HBSR, pT-HBBcmo1, pT-HBbrp2, pT-HBblh 및 pT-HBbrp는 각각 pT-HB 벡터에 SR, Bcmo1, brp2, blh, brp 유전자가 도입된 벡터로서, IPP로부터 β-카로틴을 거쳐 레티날을 합성하는데 관여하는 효소를 코딩하는 유전자를 모두 포함하고 있다. pT-HBSR로부터 SR 유전자를 SpeI으로 절단하여 pT-DHB의 상응하는 부분에 삽입하여 pT-DHBSR을 얻었다.
실시예 2: 레티날 생산에 대한 다양한 BCM (D)O 유전자의 비교
레티날은 β-카로틴을 생산하는 재조합 대장균으로 β-카로틴 모노(디)옥시게나제를 인코딩하는 BCM(D)O 유전자를 도입하는 것에 의해 생산될 수 있다. 본 발명자들은 두 개의 박테리아, 할로박테리움 종 (Halobacterium sp) NRC-1 (blhbrp 유전자) 및 나트로노모나스 파라오니스 (Natronomonas pharaonis) (brp2 유전자) 및 척추동물 무스 무스쿨루스 (Mus musculus) (Bcmo1 유전자)로부터의 BCM(D)O 유전자를 클로닝하였다. 본 발명자들은 또한 배양되지 않은 해양 박테리아 66A03 blh 유전자의 아미노산 서열에 기초하여 코돈-최적화된 BCDO 유전자(SR)을 합성하였다. BCM(D)O 유전자를 레티날 합성 플라스미드 pT-HBblh, pT-HBbrp, pT-HBbrp2, pT-HBBcmo1 및 pT-HBSR 각각을 제조하는데 사용하였다. 각 레티날 플라스미드를 포함하는 재조합 대장균 세포를 탄소 원료로서 0.5% (w/v) 글리세롤 및 0.2% (w/v) 아라비노오스를 포함하는 2YT 배지에서 48시간 동안 29℃에서 배양하였다.
도 3은 pT-HB, pT-HBblh, pT-HBbrp, pT-HBbrp2, pT-HBBCMO1, 및 pT-HBSR를 포함하는 대장균의 레티날 생산, β-카로틴 생산 및 세포 성장을 나타낸다. 흰 막대 및 회색 막대는 각각 24시간, 48시간에서의 수치를 나타낸다.
도 3에 나타낸 바와 같이, pT-HBblh, pT-HBbrp, 또는 pT-HBSR을 포함하는 재조합 대장균은 각각 24시간에서 2.2, 0.8, 또는 1.4 mg/L의 레티날을 생산하였다. 그러나, pT-HBblh 또는 pT-HBbrp을 포함하는 대장균의 레티날 생산은 48시간에서 각각 0.7 또는 0.4 mg/L로 감소한 반면, 대장균(pT-HBSR)의 레티날 생산은 약간 증가하였다. 24시간 후의 레티날 생산 감소는 레티날의 세포 내 산화 분해로 인한 것일 수 있다. 배양물로부터 얻은 레티날 양은 세포 내 합성 및 레티날의 분해 모두에 의존한다.
pT-HBblh 또는 pT-HBbrp를 포함하는 대장균에 있어 배양 시간 24시간 이후의 레티날 생산율은 그들의 분해율에 비해 낮을 것이다. pT-HBbrp2 또는 pT-HBBcmo1을 포함하는 대장균 균주 배양에서 레티날의 소량(trace amount)을 검출하였다. BCM(D)O 유전자를 갖지 않는 대장균(pT-HB)은 35 mg/L의 β-카로틴을 생산하고, 레티날은 생산하지 않았다. β-카로틴은 레티날의 바로 전 전구체이기 때문에, 만약 레티날 분해가 있었다면 BCM(D)O에 의한 β-카로틴 소비량이 레티날 생산량에 정확하게 비례할 것이다. SR을 제외한 BCM(D)O를 포함하는 대장균의 배양물에 β-카로틴이 잔존하였기 때문에, SR의 β-카로틴 절단 활성은 시험된 BCM(D)O 중에서 가장 높을 것으로 추정되었다. 따라서, SR 효소를 추가적인 실험에서 레티날 생산을 위해 선택하였다. 세포 성장은 성장 지연을 보인 N. pharaonis brp 유전자를 제외하고는, BCM(D)O 유전자의 과발현에 의해 영향받지 않았다.
실시예 3: 빌딩 블럭 공급을 위한 MEP MVA 경로로의 유전자 조작
레티날 빌딩 블럭인 IPP 및 DMAPP는 내재된 MEP 경로 및 외래의 MVA 경로를 통해 대장균에서 합성될 수 있다 (도 1). 1-데옥시-d-자일로오스-5-포스페이트 (DXP) 합성이 MEP 경로에서 중요한 속도-제한 단계라고 보고된다. 따라서, (dxs에 의해 인코딩되는)D XP 신타제의 과발현은 본 발명자들의 이전 발명에서 라이코펜 및 β-카로틴 생산을 증가시켰다. dxs 유전자를 pT-HBSR 중의 MEP 경로 앞에 도입하여 pT-DHBSR를 제조하였다.
도 4는 pT-HB, pT-HBSR, pT-DHB, 및 pT-DHBSR을 포함하는 대장균 및 MVA 경로 플라스미드인 pS-NA와 함께 pT-DHB, 또는 pT-DHBSR을 포함하는 대장균의 레티날 생산, β-카로틴 생산 및 세포 성장을 나타낸다. 흰 막대 및 회색 막대는 각각 24시간, 48시간에서의 수치를 나타낸다.
도 4에 나타낸 바와 같이, 24 시간에서 대장균(pT-DHBSR)의 레티날 생산은 대장균 (pT-HBSR)의 것보다 조금 높았으나, 48 시간에서는 차이가 없었다. 대장균(pT-DHB)으로부터의 β-카로틴 생산은 dxs 과발현에 의해 대장균(pT-HB)과 비교하여 1.5 배 증가하였다. 대장균에서의 외래 MVA 경로는 IPP 및 DMAPP 빌딩 블럭의 충분한 양을 제공하는 것에 의해 이소프레노이드 생산을 크게 증가시키는 것으로 알려져 있다. 추가적인 외래 MVA 경로를 포함하는 대장균(pT-DHBSR/pS-NA)은 48 시간에 8.7 mg/L의 레티날을 생산하였고, 이는 대장균(pT-DHBSR)의 생산량보다 4배 더 높은 것이다. SR 유전자를 포함하는 대장균 균주에서, 세포 중에 β-카로틴이 없거나 소량 잔존하였는데, 이는 SR에 의한 효과적인 β-카로틴 절단 반응으로 인한 것으로 추정된다. 소비된 β-카로틴(기질) 양과 생산된 레티날(생산물) 양 사이에 큰 차이가 있었다. 이는 레티날의 생물학적 분해 외에 대장균 내에서 레티날을 대사하는 세포 반응의 존재로 인한 것일 수 있다. 따라서, 대장균 내의 임의의 효소에 의한 레티날로부터 유래된 다른 레티노이드의 형성이 고려된다. 레티날은 세포 효소 반응에 의해 레티놀, 레티노산 및 레티닐 에스테르로 변환될 수 있기 때문에 (도 2), 대장균 배양물 중의 레티날 유도체들을 분석하였다. 레티노산을 제외한 유도체들의 형성이 확인되었고 레티날, 레티놀 및 레티닐 아세테이트의 생산이 추가적인 실험에서 측정되었다.
실시예 4: 레티노이드 생산에 있어 대장균 균주, 배양 조건 및 탄소 원료의 효과
(1) 균주
레티날, 레티놀 및 레티닐 아세테이트를 포함하는 레티노이드의 생산에 있어 대장균 균주의 효과를 조사하였다. pT-DHBSR 및 pS-NA를 포함하는 5개의 대장균 균주인 MG1655, DH5α, XL1-Blue, S17-1, 및 BL21 (DE3)를 사용하여 레티노이드 생산을 수행하였다. 표 5는 상기 5 개 균주를 포함한 6개 대장균 균주의 특성을 나타낸 것이다.
대장균 균주 설명
MG1655 K12, 야생형
DH5α F-, φf80dlacZ△M15, △(lacZYA-argF)U169, deoR , recA1endA1, hsdR17(rK -mK +), phoA, supE44, λ-, thi-1, gyrA96, relA1
XL1-Blue hsdR17,supE44,recA1,endA1,gyrA46,thi,relA1,lac/F'[proAB +,lacI q,lacZ△M15::Tn10(tetr)]
S17-1 recA pro hsdR RP4-2-Tc::Mu-Km::Tn7
BL21(DE3) F-,ompT,hsdS B(rB -mB -),gal(lcI857,ind1,Sam7,nin5,lacUV5-T7gene1),dcm(DE3)
BW25113 △(araD-araB)567, △lacZ4787(::rrnB-3), lambda-, rph -1, △(rhaD -rhaB)568, hsdR514
도 5는 pT-DHBSR 및 pS-NA를 갖는 5개 대장균 균주의 레티노이드 생산과 세포 성장을 나타낸다. 배양은 0.5%(w/v) 글리세롤 및 0.2%(w/v) 아라비노오스를 포함하는 2YT 배지에서 48시간 동안 29℃에서 수행되었다. 레티날, 레티놀, 및 레티닐 아세테이트는 밝은 회색, 어두운 회색 및 검은색으로 각각 나타내고, 세포 성장에서 MG1655, DH5α, XL1-Blue, S17-1, 및 BL21(DE3)을 각각 ■, ●, ▲, ▼, ◆로 나타내었다.
도 5에 나타낸 바와 같이, 대장균 DH5α가 36 시간에서 40 mg/L로서 가장 높은 양의 레티노이드를 나타내고, 대장균 S17-1 및 XL1-Blue가 그 다음으로 22 mg/L 정도의 레티노이드를 생산하였다. 그러나, 대장균 MG1655 및 BL21 (DE3)에서는 아주 작은 양의 레티노이드를 얻었다. 따라서 대장균 DH5α가 레티노이드 생산 균주로 선택되었다.
(2) 배양 조건
레티노이드 생산에 있어 용존 산소의 효과를 30 mm 지름 시험관에서 상이한 시험 부피로 시험하였다.
도 6은 시험 부피에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산 및 세포 성장을 나타낸다. 도 6에서, 레티날, 레티놀, 및 레티닐 아세테이트는 밝은 회색, 어두운 회색 및 검은색으로 각각 나타내고, 세포 성장에서 시험 부피 3 mL, 5 mL, 7 mL, 및 10 mL를 각각 ■, ●, ▲, ▼로 나타내었다. 배양은 0.5%(w/v) 글리세롤 및 0.2%(w/v) 아라비노오스를 포함하는 2YT 배지에서 48시간 동안 29℃에서 수행되었다.
도 6에 나타낸 바와 같이, 낮은 시험 부피를 가질 때, 레티노이드 생산이 더 빨리 최대에 이르렀고 (더 높게 용해된 산소에 상응하는), 아마도 그의 산화 분해로 인해 더 빨리 감소한 것으로 보인다. 10 mL의 시험 부피에서 세포 성장 및 레티노이드 생산 모두 지연되었으나, 작은 생산물 분해가 관찰되었다. 레티노이드 생산을 위한 최적의 시험 부피는 7 mL인 것으로 밝혀졌다.
또한, 온도에 따른 레티노이드 생산을 조사하였다. 도 7은 배양 온도에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산 및 세포 성장을 나타낸다. 도 7에서, 레티날, 레티놀, 및 레티닐 아세테이트는 밝은 회색, 어두운 회색 및 검은색으로 각각 나타내고, 세포 성장에서 배양 온도 29℃, 34℃, 37℃는 각각 ■, ●, ▲로 나타내었다. 배양은 0.5%(w/v) 글리세롤 및 0.2%(w/v) 아라비노오스를 포함하는 2YT 배지에서 48시간 동안 수행되었다.
도 7에 나타낸 바와 같이, 레티노이드 생산은 배양 온도에 의해 영향을 받았고 가장 높은 생산은 29℃에서 얻어졌다.
(3) 탄소원
상이한 탄소 원료를 레티노이드 생산에 미치는 영향을 비교하였다.
도 8은 탄소원에 따른 pT-DHBSR 및 pS-NA를 갖는 대장균의 레티노이드 생산과 세포 성장을 나타낸다. 도 8에서, 레티날, 레티놀, 및 레티닐 아세테이트는 밝은 회색, 어두운 회색 및 검은색으로 각각 나타내고, 세포 성장에서 탄소원 없음, 탄소원 글리세롤, 글루코오스, 자일로오스, 말토오스, 및 갈락토오스를 각각 ■, ●, ▲, ▼, ◆, 및 ◀로 나타내었다. 배양은 0.2%(w/v) 아라비노오스 및 0.5%(w/v) 글리세롤, 글루코오스, 자일로오스, 말토오스, 또는 갈락토오스를 포함하는 2YT 배지에서 48시간 동안 29℃에서 수행되었다.
도 8에 나타낸 바와 같이, 글리세롤이 레티노이드 생산에 가장 좋은 탄소 원료였다. 글루코오스 또는 갈락토즈를 탄소 원료로서 사용한 경우, 레티노이드의 생산량은 탄소 원료가 없을 경우보다 더 적었다.
그 후, 레티노이드 생산 및 세포 성장에 있어 글리세롤 농도의 효과를 조사하였다. 대장균 DH5α(pT-DHBSR/pSNA)를 0.0% 내지 2.0% (w/v) 글리세롤을 포함하는 2YT 배지, 29℃에서 성장시켰다.
도 9는 pT-DHBSR 및 pS-NA를 포함하는 대장균의 레티노이드(레티날, 레티놀 및 레티닐 아세테이트) 생산을 나타낸다. 레티날, 레티놀 및 레티닐 아세테이트를 각각 밝은 회색, 어두운 회색 및 검은색으로 나타내었다.
도 10은 pT-DHBSR 및 pS-NA를 포함하는 대장균의 세포 성장을 나타낸다. 제공한 글리세롤 농도 0%, 0.5%, 1%, 및 2%를 각각 ■, ●, ▲, ▼로 나타내었다.
도 9 및 도 10에 나타낸 바와 같이, 세포 성장은 글리세롤 농도에 비례하여 증가하였다. 0.5, 1.0 및 2.0 (w/v)의 글리세롤 농도에서 각각 36, 48, 및 72 시간에 정체 상태에 이르렀다. 상기 시간에서 그의 최대 레티노이드 생산을 얻었고 그 후 정체 상태 동안 생산량이 현저히 감소하였다. 레티노이드 생산은 주로 24 시간 후에 증가하는 것으로 나타났다. 레티노이드 생산은 다양한 글리세롤 농도 중, 2.0% (w/v) 글리세롤에서 95 mg/L로 가장 높았고 이는 0.5% (w/v) 글리세롤의 최대 레티노이드 생산량보다 2.4배 높았다. 글리세롤 농도의 증가는 정체 상태를 지연시켰고, 레티노이드 생산의 기간을 연장시켰다.
모든 배양물에서 세포 성장의 정체 상태에서 레티노이드 생산의 극심한 감소를 관찰하였고, 이는 정체 상태 동안 레티노이드 합성 중단 및 그의 세포 내 산화적 분해로 인한 것일 것이다.
(4) 도데칸의 존재하에서 배양
표 7의 6개 균주에 pT-DHBSR/pSNA가 형질전환된 균주를 사용하고, 5ml 배지에 1ml의 도데칸을 첨가하고 "박테리아 균주 및 배양 조건"에 기재된 조건에 따라 배양하였다. 배지는 0.2%(w/v) 아라비노스와 0.5%(w/v) 글리세롤이 첨가된 2YT 배지를 사용하였다.
도 11은 도데칸 존재하에서 서로 다른 레티노이드 생산 균주에 따른 레티노이드 생산 결과를 나타낸 도면이다. 도 11에 나타낸 바와 같이, DH5α와 MG1655에서 가장 많은 레티노이드가 생산되었다. MG1655의 경우, 도데칸이 첨가되지 않은 경우에 비하여 균체 성장 및 레티노이드 생산량이 증가하였다. MG1655의 균체 성장 속도 및 레티노이드 생산량 증가 속도는 DH5α보다 빨랐다. BL21(DE3) 균주는 균체 성장은 여전히 높았으며, 레티닐 아세테이트 생산은 거의 되지 않았다. 그 결과, 6개 균주 중에서 DH5α와 MG1655가 다른 균주에 비하여 상대적으로 더 적합하였다.
도 12는 도데칸 존재하에서 레티노이드 생산 균주의 생장 결과를 나타낸 도면이다.
도 13은 도데칸 존재하에서 탄소원인 글리세롤 농도에 따른 레티노이드 생산과 생장 결과를 나타낸 도면이다.
실시예 5: 레티노이드의 인-시추 추출을 위한 도데칸을 사용한 2-상 배양
세포 내 레티노이드 분해를 막기 위해, 소수성 용매 도데칸을 사용한 2-상 배양을 세포로부터 레티노이드의 인-시추 추출을 위해 수행하였다. 대장균에 대해 낮은 독성을 갖고, 소수성 레티노이드의 추출을 위해 높은 소수성 (log PO /W, 6.6)을 갖고, 낮은 휘발성 때문에 증발 손실이 없는 도데칸을 선택하였다.
본 실시예에서, 1 mL의 도데칸을 5 mL의 배양액 상에 첨가하였다. 도 13은 5 mL 배양 배지 상에 1 mL 도데칸을 포함하는 2-상 배양에서 대장균(pT-DHBSR/pS-NA)의 레티노이드 생산 및 세포 성장을 나타낸다. 레티노이드 생산에서 레티날, 레티놀 및 레티닐 아세테이트를 각각 밝은 회색, 어두운 회색 및 검은색으로 나타내었다. 세포 성장에서 제공한 글리세롤 농도 0.5%, 1%, 및 2%를 각각 ■, ●, ▲로 나타내었다.
레티노이드가 도데칸 상으로 추출되고 무시할 수 있는 양의 레티노이드가 세포 질량 및 배양물에서 검출되었다(데이터는 나타내지 않음). 그 결과, 도데칸 상으로부터 레티노이드 생산을 측정하였다. 도 13에 나타낸 바와 같이, 도데칸에 의해 인-시추 추출은 레티노이드의 세포 내 분해를 최소화할 수 있었다. 도데칸 상 중에 레티노이드는 상대적으로 안정한 것으로 보였고 현저한 산화적 분해 없이 잔존하였다. 도 9 및 10의 결과(도데칸 첨가 없음)와 비교할 때, 1 mL의 도데칸을 첨가한 경우 레티노이드 생산은 24 시간에서도 현저하게 증가하였고, 세포 성장이 도데칸 첨가에 의해 영향받지 않으면서 레티노이드 생산의 감소가 정체 상태에서 나타나지 않았다. 그러나 2% (w/v) 글리세롤의 배양에서의 레티노이드 생산은 1% (w/v)에서 2% (w/v)로 글리세롤 농도의 증가에 따라 세포 성장이 현저하게 증가하였음에도, 1% (w/v) 글리세롤에서 얻은 것에 비해 높지 않았다. 1 mL의 도데칸 첨가 부피는 2% (w/v) 글리세롤의 배양에서 효과적인 레티노이드 인-시추 추출에 불충분할 수 있다.
레티노이드 생산 및 세포 성장에 있어 도데칸 첨가 부피의 효과를 조사하기 위하여, 1 mL 내지 5 mL의 도데칸을 2% (w/v) 글리세롤을 포함하는 배양액 상에 초기에 첨가하였다.(도 14).
도 14는 2-상 배양에서의 대장균(pT-DHBSR/pS-NA)의 도데칸 부피에 따른 레티노이드 생산 및 세포 성장을 나타낸다. 레티노이드 생산에서 레티날, 레티놀 및 레티닐 아세테이트를 각각 밝은 회색, 어두운 회색 및 검은색으로 나타내었다. 세포 배양시에 오버레이한 도데칸 부피 0 mL, 1 mL, 2 mL, 3 mL, 4 mL, 5 mL 및 6 mL를 각각 ■, ●, ▲, □, ○, △ 및 ☆로 나타내었다.
도 15는 배양 시간 및 도데칸 부피에 따른 레티노이드의 분포가 총 레티노이드에 대한 각 구성성분의 백분율로 나타난다. 레티날, 레티놀 및 레티닐 아세테이트를 각각 밝은 회색, 어두운 회색 및 검은색으로 나타내었다.
도 14 및 도 15에 나타낸 바와 같이, 도데칸 첨가 부피가 증가함에 따라 전체 레티노이드 생산도 향상되었다. 5 mL 도데칸을 갖는 배양의 72 시간에서 136 mg/L의 가장 높은 레티노이드 생산을 얻었고 이는 1 mL 도데칸으로 할 경우(65 mg/L)보다 약 2 배 높은 수치이다. 5 mL 도데칸으로 72 시간 이상 연장된 배양을 시켰을 때 추가적인 레티노이드 생산의 증가는 없었고 그의 최고치를 분해 없이 유지하였다(데이터는 나타내지 않음). 0, 24, 및 48 시간에서 2 mL의 도데칸을 배양에 추가하는 것에 의해 도데칸 첨가 부피를 6 mL까지 증가시켰다. 6 mL 도데칸 첨가 배양에서 5 mL 도데칸을 갖는 배양에 비교하였을 때 전체 레티노이드 생산의 증가는 없었다. 6 mL 도데칸을 초기에 첨가 배양에서도 레티노이드 생산의 증가는 없었다(데이터는 나타내지 않음). 도데칸을 갖는 모든 배양액에서의 세포 성장은 도데칸이 없을 때보다 약간 높았다 (도 14).
도 15는 도데칸 첨가 부피에 따라 얻은 레티노이드들의 분포를 나타낸다. 도데칸 첨가가 있는 경우와 없는 경우 얻은 레티날 및 레티놀 비율에서 현저한 레티노이드 분포 차이가 나타난다. 48 시간에서 레티노이드 중 레티날의 비율은 도데칸 첨가 배양에서 약 51% (w/w)이고 도데칸 첨가가 없는 배양에서 23%인 반면, 레티놀 비율은 도데칸 첨가 배양에서 30% 내지 39%이고 도데칸 첨가 없는 배양에서 59%이다. 따라서, 도데칸 첨가는 레티날의 비율을 높이지만 레티놀의 비율을 감소시킨다. 세포에서 레티날로부터의 레티놀 형성의 반응 순서를 고려하였을 때, 레티날은 도데칸에 의해 그의 레티놀로의 전환 전에 세포로부터 추출되는 것으로 생각된다. 48 시간에서의 레티닐 아세테이트 비율은 도데칸 첨가 있는 배양 및 없는 배양 모두에서 20% 미만이고, 이는 레티날 및 레티놀에 비해 상대적으로 낮은 수치이다. 도데칸 첨가 배양에서 레티닐 아세테이트 비율은 배양 시간이 길어짐에 따라 감소하는데 이는 레티닐 아세테이트 형성을 위한 세포 활동이 배양 동안 감소함을 나타낸다. 결론적으로, 도데칸 첨가는 세포 성장의 정체 상태에서 레티노이드 생산의 감소를 방지하고 레티노이드 생산을 증가시켰다.
본 발명의 레티노이드의 인-시추 추출에는 세포벽 분해를 위한 리소자임이 필요하지 않다. 레티노이드(C20, 이소프레노이드 분자)는 세포벽의 손실 없이 세포로부터 효과적으로 방출될 수 있다. 레티노이드 생산의 2-상 배양에서, β-카로틴은 레티노이드의 직접적인 전구체이기 때문에 세포 내에 계속 유지되어야 한다. β-카로틴이 도데칸 상에서 추출되는 경우, 이는 시토졸에 위치한 BCD(M)O에 의해 절단될 수 있다.
β-카로틴은 분자 크기 때문에 세포로부터 방출될 수 없어 도데칸에 의해 추출되지 않으므로, β-카로틴의 2-상 배양에서 세포 내에서 계속 유지될 수 있다(도 16).
도 16은 pT-DHB 및 pS-NA를 갖는 대장균의 베타-카로틴 생산과 세포 성장에 있어 도데칸 첨가의 효과를 나타낸다. 배양은 0.5%(w/v) 글리세롤 및 0.2%(w/v) 아라비노오스를 포함하는 2YT 배지 5 mL 상에 1 mL 도데칸 첨가와 함께 48시간 동안 29℃에서 수행되었다. 회색 막대 및 검은색 막대는 각각 24 및 48시간을 나타낸다.
도 16에 나타낸 바와 같이, 무시할 만한 양의 β-카로틴이 도데칸 상에서 검출되고, 거의 모든 β-카로틴은 세포 내에 유지되었다. 도데칸 첨가가 있는 배양과 없는 배양 사이에 β-카로틴 생산 및 세포 성장의 현저한 차이는 없었다.
5 mL 도데칸 첨가가 있는 배양에서 48시간에 122 mg/L의 총 레티노이드 생산을 얻은 반면, 도데칸 첨가 없는 배양에서는 동일한 시간대에 그의 절반에 해당하는 양(60 mg/L)의 생산을 얻었다. 따라서, 도데칸-첨가 2-상 배양 시스템은 친유성 작은 분자를 생산하는 다른 형질전환 시스템에 적용될 수 있을 것이다.
실시예 6: 친유성 물질을 포함하는 배지에서 레티노이드의 생산
본 실시예에서는 다양한 친유성 물질에 대하여 레티노이드 생산 증가 효과가 있는지 확인하였다.
(1) 알칸을 포함하는 배지에서 레티노이드의 생산
DH5α에 pT-DHBSR/pSNA가 형질전환된 균주 DH5α(pT-DHBSR/pSNA)를 사용하고, 5ml 배지에 5ml의 옥탄, 데칸, 도데칸 및 테트라데칸을 각각 첨가하고 "박테리아 균주 및 배양 조건"에 기재된 조건에 따라 배양하였다. 배지는 0.2%(w/v) 아라비노스와 2.0%(w/v) 글리세롤이 첨가된 2YT 배지를 사용하였다.
도 17은 알칸 존재하에서 레티노이드 생산 결과를 나타낸 도면이다. 도 18은 알칸 존재하에서 레티노이드 생산 균주의 생장 결과를 나타낸 도면이다.
도 17에 나타낸 바와 같이, 데칸을 사용한 경우에 총 108 mg/L의 레티노이드가 생산되었다. 그 외 균체 증식, pH 및 균체 내 β-카로틴의 양은 알칸에 따라 큰 차이를 보이 않았다. 그 결과 도데칸에 비해 데칸이 레티노이드 생산에 더 유리한 것으로 여겨진다. 옥탄을 사용한 경우, 레티날 및 레티놀의 생산은 다른 알칸과 유시하였으나, 레티닐 아세테이트는 거의 생산하지 않았다. 테트라데칸은 전체 레티노이드 생산량이 다른 알칸에 비하여 낮았다.
(2) 미네랄 오일을 포함 배지에서 레티노이드의 생산
(2.1) 경량 미네랄 오일
경량 미네랄 오일은 알칸에 비하여 가격이 싸다는 장점이 있다. DH5α에 pT-DHBSR/pSNA가 형질전환된 균주 DH5α(pT-DHBSR/pSNA)를 사용하고, 5ml 배지에 다른 부피의 경량 미네랄 오일을 각각 첨가하고 "박테리아 균주 및 배양 조건"에 기재된 조건에 따라 배양하였다. 배지는 0.2%(w/v) 아라비노스와 2.0%(w/v) 글리세롤이 첨가된 2YT 배지를 사용하였다.
도 19는 경량 미네랄 오일 존재하에서 레티노이드 생산 결과를 나타낸 도면이다. 도 20은 경량 미네랄 오일 존재하에서 균주의 생장 결과를 나타낸 도면이다.
도 19에 나타낸 바와 같이, 도데칸 5ml에서 136.1mg/L이 생산될 때, 2ml 경량 미네랄 오일에서 158mg/L이 생산되었다. 도 20에 나타낸 바와 같이, pH는 도데칸 이외의 경우 큰 차이를 보지 않았다. 반면, 균체 성장은 경량 미네랄 오일의 양이 증가할수록 감소하였다. 이는 경량 미네랄 오일의 높은 점도와 비중으로 인하여 배지와 미네랄 오일이 충분히 혼합되지 않았기 때문인 것으로 예상된다. 균체 성장의 감소로 인해 레티노이드 생산도 감소하였다.
도 21은 균체당 레티노이드 생산량 (cell specific retinoids productivity)을 나타낸 도면이다. 도 21에 나타낸 바와 같이, 미네랄 오일의 양에 상관없이 약 5mg/L/OD600nm의 비생산성을 보였다.
(2.2) 중량 미네랄 오일
중량 미네랄 오일은 경량 미네랄 오일에 비하여 싸다. DH5α에 pT-DHBSR/pSNA가 형질전환된 균주 DH5α(pT-DHBSR/pSNA)를 사용하고, 5ml 배지에 2ml의 중량 미네랄 오일을 각각 첨가하고 "박테리아 균주 및 배양 조건"에 기재된 조건에 따라 배양하였다. 배지는 0.2%(w/v) 아라비노스와 2.0%(w/v) 글리세롤이 첨가된 2YT 배지를 사용하였다.
도 22는 중량 미네랄 오일 존재하에서 레티노이드 생산 결과를 나타낸 도면이다. 도 23은 중량 미네랄 오일 존재하에서 균주의 생장 결과를 나타낸 도면이다. 도 22 및 도 23에 나타낸 바와 같이, 경량 미네랄 오일, 및 도데칸에 비하여 중량 미네랄 오일의 경우 세포 성장이 적었다. 또한, 레티노이드 104.6mg/L을 생산하였다. 이는 중량 미네랄 오일의 점도에 의하여 배지와 미네랄 오일이 잘 혼합되지 않았기 때문인 것으로 예측된다.
사용된 시험관 (test tube)를 기울여서 배양기에 배치시키는 것을 제외하고는 위와 동일하게 세포를 배양하였다. 시험관을 기울임으로써 교반의 효과가 더 증대되어 배지와 미네랄 오일이 더 잘 혼합될 수 있었다.
도 24는 시험관을 기울여 배양한 경우 레티노이드 생산 결과를 나타낸 도면이다. 도 25는 시험관을 기울여 배양한 경우 균주 생장 결과를 나타낸 도면이다. 도 24 및 도 25에 나타낸 바와 같이, 기울여 배양한 경우 세포 성장 및 레티노이드 생산이 증가하였다. 구체적으로, 시험관을 수직으로 한 경우, 96시간에서 88.2mg/L의 레티노이드가 생산되었으나, 시험관을 기울인 경우, 173.9mg/L이 생산되었다.
이는 경량 및 중량 미네랄 오일은 높은 점도로 인하여 배지와의 혼합이 레티노이드 생산에 중요한 인자라는 것을 나타낸다. 따라서, 배양 중 적절한 교반을 제공함으로써 레티노이드에 사용될 수 있다.
(3) 피부 친화적 친유성 물질을 포함 배지에서 레티노이드의 생산
피부 친화적 친유성 물질을 포함하는 배지에서 레티노이드를 생산하였다. 피부 친화적 친유성 물질은 이소프로필 미리스테이트 (IPM), 디옥타노일-데카노일 글리세롤(ODO), 세틸 에틸헥사노에이트 (CEH), 및 피토스쿠알란을 사용하였다.
DH5α에 pT-DHBSR/pSNA가 형질전환된 균주 DH5α(pT-DHBSR/pSNA)를 사용하고, 5ml 배지에 2ml의 중량 미네랄 오일을 각각 첨가하고 "박테리아 균주 및 배양 조건"에 기재된 조건에 따라 배양하였다. 배지는 0.2%(w/v) 아라비노스와 2.0%(w/v) 글리세롤이 첨가된 2YT 배지를 사용하였다. 대조군은 도데칸 5ml을 첨가하였다.
도 26은 피부 친화적 친유성 물질 존재하에서 세포 성장 및 pH를 나타낸 도면이다. 도 27 및 도 28은 피부 친화적 친유성 물질의 양에 따른 레티노이드 생산결과를 나타낸 도면이다. 도 27 및 도 28에 나타낸 바와 같이, 도데칸을 제외한 친유성 물질에서 5mL에 비하여 2mL에서 레티노이드 생산량이 많았다. 즉, 경량 미네랄 오일, IPM, ODO, CEH, 및 피토스쿠알란의 배지 5mL에 대하여 약 2mL을 사용한 경우, 레티노이드 생산량이 많았다. IPM, ODO, CEH 및 피토스쿠알란 중 IPM에서 가장 많은 레티노이드가 생산되었다. 특히, IPM 2mL를 첨가한 경우, 180mg/L의 레티노이드가 생산되었다. IPM의 경우, 균체 성장이 비슷한 것을 고려하면, 균체당 비생산성이 높은 것으로 예측된다.
한국생명공학연구원 KCTC11254BP 20080107 한국생명공학연구원 KCTC11255BP 20080107
서열목록 전자파일 첨부

Claims (19)

  1. 레티노이드 생산능을 가진 미생물을 친유성 물질을 포함하는 배지 중에서 배양하는 단계; 및
    상기 친유성 물질 상으로부터 레티노이드를 분리하는 단계;
    를 포함하는, 미생물로부터 레티노이드를 생산하는 방법.
  2. 청구항 제1항에 있어서, 상기 미생물은 박테리아, 곰팡이 또는 이들의 조합인, 방법.
  3. 청구항 제1항에 있어서, 상기 미생물은 에세리키아 속, 바실러스 속, 코리네박테리움 속, 효모, 클루베로마이세스 또는 이들의 조합인, 방법.
  4. 청구항 제1항에 있어서, 상기 친유성 물질은 탄소수 8 내지 50의 알칸 화합물; 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 또는 이들의 조합인, 방법:
    [화학식 1]
    R1(CO)OR2
    (식 중, R1 R2는 각각 독립적으로 탄소수 8 내지 50의 알킬을 나타내고, CO는 카르보닐기를 나타냄),
    [화학식 2]
    Figure 112014016172400-pat00002

    (식 중, R3, R4 및 R5는 각각 독립적으로 탄소수 8 내지 50의 알킬을 나타내고, CO는 카르보닐기를 나타냄).
  5. 청구항 제1항에 있어서, 상기 친유성 물질은 옥탄, 데칸, 도데칸, 테트라데칸, 파이토스쿠알란, 미네랄 오일, 이소프로필 미리스테이트, 세틸 에틸헥사노에이트, 디옥타노일 데카노일 글리세롤, 스쿠알란, 또는 이들의 조합인, 방법.
  6. 청구항 제1항에 있어서, 상기 배지 대 친유성 물질의 부피비는 1:0.2-3.0인, 방법.
  7. 청구항 제1항에 있어서, 배양은 교반하면서 이루어지는 것인, 방법.
  8. 청구항 제1항에 있어서, 상기 배지는 글리세롤을 포함하는 것인 방법.
  9. 청구항 제1항에 있어서, 상기 배지는 글루코스를 포함하는 것인 방법.
  10. 청구항 제1항에 있어서, 상기 분리하는 단계는 배양물로부터 세포를 제거한 후 도데칸으로부터 레티노이드를 분리하는 것인, 방법.
  11. 청구항 제1항에 있어서, 상기 레티노이드는 레티날, 레티놀, 레티닐에스테르 및 레티노산으로 이루어진 군에서 선택되는 하나 이상인, 방법.
  12. 청구항 제1항에 있어서, 상기 미생물은 대장균인, 방법.
  13. 청구항 제12항에 있어서, 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합인, 방법.
  14. 청구항 제1항에 있어서, 상기 미생물은 서열번호 1의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 아세틸-CoA 아세틸트란스퍼라제/하이드록시메틸글루타릴 (HMG)-CoA 리덕타제를 코딩하는 유전자; 서열번호 2의 엔테로코커스 패칼리스 유래의 HMG-CoA 신타제를 코딩하는 유전자; 서열번호 3의 스트렙토코커스 뉴모니애 (Streptococcus pneumoniae) 유래의 메발로네이트 키나제를 코딩하는 유전자; 서열번호 4의 스트렙토코커스 뉴모니애 유래의 포스포메발로네이트 키나제를 코딩하는 유전자; 서열번호 5의 스트렙토코커스 뉴모니애 유래의 메발로네이트 디포스페이트 데카르복실라제를 코딩하는 유전자; 서열번호 6의 대장균 유래의 이소펜테닐 디포스페이트 (IPP) 이소머라제를 코딩하는 유전자; 서열번호 7의 판토에아 아글루메란스 (Pantoea agglomerans) 유래의 제라닐제라닐 피로포스페이트 (GGPP) 신타제를 코딩하는 유전자; 서열번호 8의 판토에아 아글루메란스 유래의 피토엔 신타제를 코딩하는 유전자; 서열번호 9의 판토에아 아글루메란스 유래의 피토엔 데히드로게나제를 코딩하는 유전자; 및 서열번호 10의 판토에아 아나나티스 (Pantoea ananatis) 유래의 라이코펜-β-시클라제를 코딩하는 유전자로 형질전환된 것인, 방법.
  15. 청구항 제14항에 있어서, 상기 미생물은 서열번호 13의 배양되지 않은 해양 박테리아 (uncultured marine bacterium) 66A03 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자; 서열번호 14의 생쥐 (Mus musculus) 유래의 β-카로틴 15,15'-모노옥시게나제를 코딩하는 유전자; 서열번호 15의 나트로노모나스 파라오니스 (Natronomonas pharaonis) ATCC35678 유래의 brp 유사 단백질 2 (brp-like protein 2)를 코딩하는 유전자; 및 서열번호 16 또는 17의 할로박테리움 살리나룸 (Halobacterium salinarum) ATCC700922 유래의 β-카로틴 모노옥시게나제를 코딩하는 유전자로 이루어진 군으로 선택되는 하나 이상의 유전자로 더 형질전환된 것인, 방법.
  16. 청구항 제14항에 있어서, 상기 미생물은 대장균에서 코돈 사용 최적화된 서열번호 32의 염기서열을 갖는 유전자로 더 형질전환된 것인, 방법.
  17. 청구항 제1항에 있어서, 상기 미생물은 서열번호 11의 대장균 유래 1-데옥시자일룰로즈-5-포스페이트 (DXP) 신타제를 코딩하는 유전자로 형질전환된 것인, 방법.
  18. 청구항 제1항에 있어서, 상기 미생물은 서열번호 12의 헤마토코커스 플루비알리스 (Haematococcus pluvialis) 유래의 IPP 이소머라제를 코딩하는 유전자로 형질전환된 것인, 방법.
  19. 청구항 제1항에 있어서, 상기 미생물은 기탁번호 KCTC 11254BP의 대장균 DH5α/pTDHB/pSNA 또는 기탁번호 KCTC 11255BP의 대장균 DH5α/pTDHBSR/pSNA인, 방법.
KR1020120083185A 2011-07-29 2012-07-30 미생물로부터 레티노이드를 생산하는 방법 Active KR101392159B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280042839.0A CN103857786B (zh) 2011-07-29 2012-07-30 从微生物中制造类视黄醇的方法
PCT/KR2012/006071 WO2013019051A2 (ko) 2011-07-29 2012-07-30 미생물로부터 레티노이드를 생산하는 방법
US14/235,841 US9644217B2 (en) 2011-07-29 2012-07-30 Method for producing retinoid from microorganism
US15/180,032 US9834794B2 (en) 2011-07-29 2016-06-12 Method for producing retinoid from microorganism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110075715 2011-07-29
KR1020110075715 2011-07-29

Publications (2)

Publication Number Publication Date
KR20130014445A KR20130014445A (ko) 2013-02-07
KR101392159B1 true KR101392159B1 (ko) 2014-05-12

Family

ID=47894611

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020120083186A Active KR101440922B1 (ko) 2011-07-29 2012-07-30 YbbO 유전자가 결실 또는 증폭된 에세리키아 속 미생물 및 그를 이용한 레티노이드의 생산 방법
KR1020120083188A Active KR101359484B1 (ko) 2011-07-29 2012-07-30 EutE 유전자 또는 PuuC 유전자가 결실된 에세리키아 속 미생물 및 그를 이용한 레티노이드 생산 방법
KR1020120083185A Active KR101392159B1 (ko) 2011-07-29 2012-07-30 미생물로부터 레티노이드를 생산하는 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020120083186A Active KR101440922B1 (ko) 2011-07-29 2012-07-30 YbbO 유전자가 결실 또는 증폭된 에세리키아 속 미생물 및 그를 이용한 레티노이드의 생산 방법
KR1020120083188A Active KR101359484B1 (ko) 2011-07-29 2012-07-30 EutE 유전자 또는 PuuC 유전자가 결실된 에세리키아 속 미생물 및 그를 이용한 레티노이드 생산 방법

Country Status (3)

Country Link
US (2) US9644217B2 (ko)
KR (3) KR101440922B1 (ko)
CN (1) CN103857786B (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147982A (ko) * 2013-06-20 2014-12-31 경상대학교산학협력단 레티노이드 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 레티노이드의 생산 방법
WO2017036495A1 (de) * 2015-08-28 2017-03-09 Phytowelt Greentechnologies Gmbh Verfahren zur fermentativen alpha-ionen produktion
KR101724992B1 (ko) * 2016-01-27 2017-04-11 경상대학교산학협력단 레티노이드 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 레티노이드의 생산 방법
WO2019058000A1 (en) * 2017-09-25 2019-03-28 Dsm Ip Assets B.V. BIOSYNTHESIS OF RETINOIDS
US12049658B2 (en) 2017-09-25 2024-07-30 Dsm Ip Assets B.V. Production of retinyl esters
US20200277644A1 (en) * 2017-09-25 2020-09-03 Dsm Ip Assets B.V. Production of trans-retinal
CN111108194A (zh) * 2017-09-25 2020-05-05 帝斯曼知识产权资产管理有限公司 视黄醇的生产
KR102202606B1 (ko) * 2018-11-30 2021-01-15 (주)바이오스플래시 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법
EP3906305A1 (en) * 2018-12-31 2021-11-10 DSM IP Assets B.V. Novel acetyl-transferases
KR102282663B1 (ko) * 2019-10-07 2021-07-28 아주대학교 산학협력단 레티노이드 생성능을 가지는 재조합 미생물 및 이를 이용한 레티노이드 제조방법
EP4237570A1 (en) * 2020-10-30 2023-09-06 DSM IP Assets B.V. Fermentative production of isoprenoids
US20240122837A1 (en) * 2021-03-19 2024-04-18 Givaudan Sa Process
BR112023020933A2 (pt) * 2021-04-16 2023-12-12 Capra Biosciences Inc Organismo geneticamente modificado, gene de retinol desidrogenase (rdh12), vetor de expressão, célula hospedeira, retinol desidrogenase 12 (rdh12), biofilme, biorreator e reator de biofilme, e método para produzir um isoprenoide em um biorreator de biofilme
KR102646404B1 (ko) * 2021-07-15 2024-03-08 아주대학교산학협력단 레티노익산의 미생물 생합성
KR102518841B1 (ko) * 2021-11-09 2023-04-10 경상국립대학교산학협력단 레티노이드 제조용 조성물 및 이를 이용한 레티노이드의 제조 방법
WO2024050080A2 (en) * 2022-09-01 2024-03-07 Amyris Inc. Methods of biomanufacturing and purifying retinoids
KR20240159748A (ko) * 2023-04-28 2024-11-06 씨제이제일제당 (주) 레티노이드 및 지방산을 포함하는 미생물 오일 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112466A (ja) * 1999-10-18 2001-04-24 Taiyo Corp 新規乳酸菌発酵代謝物を含有する化粧料
KR20060093779A (ko) * 2005-02-22 2006-08-25 경상대학교산학협력단 라이코펜 생산능이 향상된 대장균 및 그를 이용한 라이코펜의 생산방법
KR20090078113A (ko) * 2008-01-14 2009-07-17 경상대학교산학협력단 이소프레노이드 생산성이 향상된 에세리키아 속 미생물 및그를 이용하여 이소프레노이드를 생산하는 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1543139B1 (en) * 2002-09-27 2007-06-13 DSM IP Assets B.V. Recombinant microorganism for the production of vitamin b6
CN1914326B (zh) * 2004-01-30 2012-04-18 帝斯曼知识产权资产管理有限公司 维生素c的微生物生产方法
US20110111458A1 (en) 2008-03-18 2011-05-12 Kyowa Hakko Kirin Co., Ltd. Industrially useful microorganism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112466A (ja) * 1999-10-18 2001-04-24 Taiyo Corp 新規乳酸菌発酵代謝物を含有する化粧料
KR20060093779A (ko) * 2005-02-22 2006-08-25 경상대학교산학협력단 라이코펜 생산능이 향상된 대장균 및 그를 이용한 라이코펜의 생산방법
KR20090078113A (ko) * 2008-01-14 2009-07-17 경상대학교산학협력단 이소프레노이드 생산성이 향상된 에세리키아 속 미생물 및그를 이용하여 이소프레노이드를 생산하는 방법

Also Published As

Publication number Publication date
CN103857786A (zh) 2014-06-11
KR20130014674A (ko) 2013-02-08
US9644217B2 (en) 2017-05-09
KR20130014445A (ko) 2013-02-07
KR20130014673A (ko) 2013-02-08
US20140170720A1 (en) 2014-06-19
CN103857786B (zh) 2016-04-06
KR101359484B1 (ko) 2014-02-13
KR101440922B1 (ko) 2014-09-18
US9834794B2 (en) 2017-12-05
US20160362709A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
KR101392159B1 (ko) 미생물로부터 레티노이드를 생산하는 방법
EP1778843B1 (en) Production of isoprenoids
Tsuchiya et al. The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis
EP1942185A1 (en) Method for production of carotenoid-synthesizing microorganism and method for production of carotenoid
CN105308172A (zh) 包含编码参与产生类视色素的酶的基因的微生物和使用其生产类视色素的方法
Li et al. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method
KR101965330B1 (ko) 라이코펜을 생산하는 재조합 미생물 및 이를 이용한 라이코펜의 생산방법
US9562220B2 (en) Method for producing carotenoids each having 50 carbon atoms
US20090226986A1 (en) Production of Coenzyme Q-10
Hartz et al. Characterization and engineering of a carotenoid biosynthesis operon from Bacillus megaterium
US20090093015A1 (en) Beta-cryptoxanthin production using a novel lycopene beta-monocyclase gene
KR101677899B1 (ko) 카로티노이드 과생산능을 가지는 돌연변이주, 및 이를 이용한 카로티노이드의 생산방법
KR20150006097A (ko) 메발론산의 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 메발론산의 생산 방법
WO2013019051A9 (ko) 미생물로부터 레티노이드를 생산하는 방법
Lee et al. Enhancement of retinal production by supplementing the surfactant Span 80 using metabolically engineered Escherichia coli
WO2022003130A2 (en) Yeast expression system
KR101724992B1 (ko) 레티노이드 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 레티노이드의 생산 방법
US20220340949A1 (en) Methods of Isoprenoid Synthesis Using a Genetically Engineered Hydrocarbonoclastic Organism in a Biofilm Bioreactor
EP3034610A1 (en) Novel terpenoid compound and method for producing same
KR20080042387A (ko) 이소프레노이드와 카로티노이드 생합성 유전자로 형질전환된 대장균 및 이를 이용한 아스타잔틴의 대량 생산방법
JP5965932B2 (ja) α−カロテン骨格を持ったカロテノイドの生産方法
KR101223816B1 (ko) 폐글리세롤 환경 하에서 생장 및 유용물질의 생산이 가능한 미생물
JP5023474B2 (ja) カロテノイド合成微生物の作製方法およびカロテノイドの製造方法
CN118272421A (zh) 一种工程改造解脂耶氏酵母生产虾青素的方法
CN119799832A (zh) 产生微生物代谢产物的表达盒及其用途

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120730

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20131219

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140424

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140429

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140430

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180409

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20190327

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20210331

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20220329

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20240327

Start annual number: 11

End annual number: 11