KR101381115B1 - Steel pipe strut - Google Patents
Steel pipe strut Download PDFInfo
- Publication number
- KR101381115B1 KR101381115B1 KR1020120051893A KR20120051893A KR101381115B1 KR 101381115 B1 KR101381115 B1 KR 101381115B1 KR 1020120051893 A KR1020120051893 A KR 1020120051893A KR 20120051893 A KR20120051893 A KR 20120051893A KR 101381115 B1 KR101381115 B1 KR 101381115B1
- Authority
- KR
- South Korea
- Prior art keywords
- curvature
- radius
- brace
- square steel
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 49
- 239000010959 steel Substances 0.000 title claims abstract description 49
- 230000000694 effects Effects 0.000 claims abstract description 12
- 238000013461 design Methods 0.000 description 16
- 238000009412 basement excavation Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/02—Foundation pits
- E02D17/04—Bordering surfacing or stiffening the sides of foundation pits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/06—Foundation trenches ditches or narrow shafts
- E02D17/08—Bordering or stiffening the sides of ditches trenches or narrow shafts for foundations
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2200/00—Geometrical or physical properties
- E02D2200/16—Shapes
- E02D2200/1628—Shapes rectangular
- E02D2200/1635—Shapes rectangular made from single element
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2220/00—Temporary installations or constructions
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2300/00—Materials
- E02D2300/0026—Metals
- E02D2300/0029—Steel; Iron
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Joining Of Building Structures In Genera (AREA)
Abstract
본 발명은 모서리 라운딩부의 곡률반경을 변화시켜 버팀보로서의 성능을 향상시킨 각형강관 버팀보에 관한 것이다. 본 발명 곡률반경 조정효과를 이용한 각형강관 버팀보는 정사각형의 단면을 가지며 모서리가 라운딩된 사각강관이며, 모서리 라운딩부의 곡률반경(R)이 8~20t이다. 본 발명 곡률반경 조정효과를 이용한 각형강관 버팀보에 따르면, 규격화된 각형강관과 동일한 중량을 기준으로 각형강관의 모서리 라운딩부 곡률반경(R)을 변화시킴으로써 전체좌굴 및 국부좌굴에 대한 각형강관의 압축 저항성능을 향상시킬 수 있다. 각형강관의 압축 저항성능을 향상시킴으로써 강재의 사용중량을 줄여 경제적 효과까지 얻을 수 있다.The present invention relates to a square steel tube brace to improve the performance as a brace by changing the radius of curvature of the corner rounding. The square steel tube brace using the curvature radius adjustment effect of the present invention has a square cross-section and rounded corners, and the radius of curvature R of the corner rounding part is 8 to 20t. According to the present invention, the curvature of the square steel tube using the curvature radius adjustment effect is to change the corner radius of curvature R of the square steel pipe based on the same weight as that of the standardized square steel pipe, thereby compressing the rectangular steel pipe against total buckling and local buckling. It can improve performance. By improving the compressive resistance performance of the square steel pipe, it is possible to reduce the working weight of the steel and to obtain economic effects.
Description
본 발명은 각형강관 버팀보에 관한 것으로, 모서리 라운딩부의 곡률반경을 변화시켜 버팀보로서의 성능을 향상시킨 각형강관 버팀보에 관한 것이다.The present invention relates to a square steel tube brace, and to a square steel tube brace to improve the performance as a brace by changing the radius of curvature of the corner rounding.
버팀보(Strut)란 흙막이벽을 지지하는 지보공 중의 하나로써 벽체에 작용하는 하중을 반대편 벽체로 전달하여 흙막이벽을 지지하는 구조물이다. 다양한 흙막이 벽체를 사용하더라도 버팀보를 지보공으로 사용할 경우에는 벽체에 띠장을 설치하고 띠장에 버팀보를 설치하여 반대편 벽체와 동일한 방법으로 연결을 하는 구조를 갖고 있다.The strut is one of the supporting balls for supporting the retaining wall. The strut is a structure supporting the retaining wall by transferring the load acting on the wall to the opposite wall. Even if a variety of earth walls are used, when the support is used as the support, the belt is installed on the wall and the support is installed on the wall to connect in the same way as the opposite wall.
버팀보의 중간에는 중간말뚝을 설치하며 이는 버팀보의 좌굴길이를 조절하는 기능과 흙막이벽 상부에 도로통행, 사무실, 장비이동통로 등의 하중을 지지할 주형보를 받쳐주는 기능을 갖고 있다.The middle pile is installed in the middle of the brace, and it has the function of adjusting the buckling length of the brace and supporting the mold beam to support the load of road, office, and equipment moving passage on the top of the retaining wall.
지보공의 종류에는 크게 버팀보(Strut), 레이커(raker), 타이로드(tie-rod), 어스앵커(earth anchor), 쏘일네일(soil nail)이 있다.There are three types of jibo ball: strut, raker, tie-rod, earth anchor, and soil nail.
버팀보는 레이커에 비해 굴착심도에 제한을 받지 않으며 굴착면 안에 설치함으로써 재료의 응력 및 변형 등의 확인이 쉬우므로 안전관리가 용이한 공법에 속한다. 비교적 시공이 간편하고 지반조건에 크게 구애를 받지 않으므로 가장 광범위하게 사용되는 공법이다. 그러나 굴착폭이 50m 이상으로 클 경우에는 사용하기 부적합하며 지반굴착에 여러 장애물들이 발생하는 단점을 갖고 있다.The brace is not limited to the depth of excavation compared to the raker, and it is easy to check the stress and deformation of materials by installing in the excavation surface, so it belongs to the easy method of safety management. It is the most widely used method because it is relatively easy to construct and does not depend on the ground conditions. However, when the excavation width is larger than 50m, it is unsuitable to use and has various disadvantages of the ground excavation.
H형강의 특성상 강축과 약축을 갖게 되는데, 버팀보와 같은 압축부재로 사용할 경우에는 약축방향으로 좌굴에 대해서 불리하게 되며 이를 위해 브레이싱과 같은 보강재를 병행해서 설계되어야 한다. 이러한 보강재는 모든 버팀보들을 상호 연결해 주는 장점도 있으나, 버팀보 위에 작업자가 올라가서 직접 설치하는 위험한 작업이 발생되고 갑작스러운 약축방향 파괴에 의해 타 버팀보까지 그 영향을 미치게 되는 단점을 갖고 있다. 더불어 보강재는 지반굴착 및 본 구조물 시공시에 작업에 대한 장애물로 작용했으며 다양한 작업량에 의해 가설공사의 공사비를 높이는 원인이 되었다.Due to the characteristics of the H-beam, it has a weak axis and a weak axis. When it is used as a compression member such as a brace, it is disadvantageous to the buckling in the weak axis direction. For this purpose, a reinforcement such as a bracing should be designed in parallel. This reinforcement also has the advantage of interconnecting all the braces, but has the disadvantage that the dangerous work of the worker is installed directly up on the braces and the impact to other braces due to sudden weak axial destruction. In addition, the reinforcement acted as an obstacle to the work during the ground excavation and the construction of this structure, and caused various construction costs to increase the construction cost.
이에 비해 강관 버팀보는 강축, 약축의 구분이 없어 좌굴 및 비틀림에 유리한 구조단면을 갖고 있고 수평, 수직 브레이싱이 필요없어 공사비, 공사기간, 시공성(버팀보 설치/해체, 지반굴착, 본 구조물 시공) 등이 H형강 보다 상대적으로 유리함으로써 해외에서 대부분의 버팀보 형식으로 사용되고 있다.On the other hand, steel pipe brace has no structural division between steel shaft and weak shaft, so it has a structural cross section that is advantageous for buckling and torsion. It does not need horizontal and vertical bracing, so construction cost, construction period, and constructability (support / disassembly, ground excavation, construction of main structure) Due to its relative advantage over H-beams, it is used in most bracing forms overseas.
종래에 흙막이 가시설에서 버팀보로 주로 사용되는 강관 버팀보 중 각형강관 버팀보(10)의 모서리 라운딩부(11) 곡률반경은 도 1에 도시된 바와 같이 2~3t이다(t는 각형강관 버팀보의 일측변의 두께). 이러한 라운딩부 곡률반경은 최적의 압축저항성능을 고려하지 않은 것이며, 최적의 압축저항성능을 발휘하도록 함으로써 강재의 사용량을 줄이고 경제적 효과를 얻기 위해서는 각형강관 버팀보의 라운딩부 곡률반경이 최적화될 필요성이 있다.The radius of curvature of the
본 발명은 전술한 바와 같은 종래의 문제점을 해소하기 위하여 안출된 것으로, 버팀보로서 최적의 압축저항성능을 발휘하도록 모서리 라운딩부 곡률반경을 최적화하는 곡률반경조정효과를 이용한 각형강관 버팀보를 제공하는데 있다.The present invention has been made to solve the conventional problems as described above, to provide a square steel tube brace using the curvature radius adjustment effect of optimizing the radius of curvature of the corner rounded portion to exhibit the optimal compression resistance performance as a brace.
본 발명 곡률반경 조정효과를 이용한 각형강관 버팀보는 사각형의 단면을 가지며 모서리가 라운딩된 사각강관이며, 모서리 라운딩부의 곡률반경(R)이 8~20t이다. 여기서, t는 한 변의 두께(mm)이고 R은 곡률반경(mm)이다The square steel tube brace using the present invention's curvature radius adjustment effect is a rectangular steel pipe with a rounded corner and rounded corners, and the radius of curvature R of the corner rounding part is 8 to 20t. Where t is the thickness of one side (mm) and R is the radius of curvature (mm)
사각강관 버팀보의 바람직한 라운딩부 곡률반경(R)은 8~15t이다.The rounding radius of curvature R of the square steel brace is preferably 8 to 15 t.
본 발명 곡률반경 조정효과를 이용한 각형강관 버팀보에 따르면, 규격화된 각형강관과 동일한 중량을 기준으로 각형강관의 라운딩부 곡률반경(R)을 변화시킴으로써 전체좌굴 및 국부좌굴에 대한 각형강관의 압축 저항성능을 향상시킬 수 있다. 각형강관의 압축 저항성능을 향상시킴으로써 강재의 사용중량을 줄여 경제적 효과까지 얻을 수 있다.According to the present invention, according to the square steel pipe support using the curvature radius adjustment effect, the compression resistance performance of the square steel pipe against total buckling and local buckling by changing the radius of curvature (R) of the rounded portion of the square steel pipe based on the same weight as the standardized square steel pipe Can improve. By improving the compressive resistance performance of the square steel pipe, it is possible to reduce the working weight of the steel and to obtain economic effects.
도 1은 종래기술에 따른 각형강관 버팀보의 단면도.
도 2는 본 발명 곡률반경조정효과를 이용한 각형강관 버팀보의 단면도.
도 3은 버팀보의 길이가 5m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 4는 버팀보의 길이가 6m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 5는 버팀보의 길이가 7m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 6은 버팀보의 길이가 8m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 7은 버팀보의 길이가 9m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 8은 버팀보의 길이가 10m일 때 곡률반경에 따른 축력을 나타낸 그래프.
도 9는 버팀보의 길이가 11m일 때 곡률반경에 따른 축력을 나타낸 그래프.1 is a cross-sectional view of a square steel tube brace according to the prior art.
Figure 2 is a cross-sectional view of the square steel tube brace using the present invention curvature radius adjustment effect.
Figure 3 is a graph showing the axial force according to the radius of curvature when the length of the brace is 5m.
Figure 4 is a graph showing the axial force according to the radius of curvature when the length of the brace is 6m.
5 is a graph showing the axial force according to the radius of curvature when the length of the brace is 7m.
6 is a graph showing the axial force according to the radius of curvature when the length of the brace is 8m.
7 is a graph showing the axial force according to the radius of curvature when the length of the brace is 9m.
8 is a graph showing the axial force according to the radius of curvature when the length of the brace is 10m.
9 is a graph showing the axial force according to the radius of curvature when the length of the brace is 11m.
이하에서는 본 발명 곡률반경조정효과를 이용한 각형강관 버팀보를 첨부된 도면을 참조로 상세히 설명하기로 한다.
Hereinafter will be described in detail with reference to the accompanying drawings, a rectangular steel tube brace using the present invention curvature radius adjustment effect.
본 발명 곡률반경조정효과를 이용한 각형강관 버팀보(100)는 정사각형의 단면을 가지는 사각강관으로 형성된다. 이 때, 사각강관의 네 모서리는 라운딩되며, 각 라운딩부(110)가 갖는 곡률반경(R)은 8~20t일 때 전체좌굴 및 국부좌굴에 대한 각형강관의 압축 저항성능을 향상시킬 수 있다. 여기서, t는 사각강관의 한 변이 갖는 두께(mm)이다.The square steel tube support 100 using the curvature radius adjustment effect of the present invention is formed as a square steel tube having a square cross section. At this time, the four corners of the square steel pipe is rounded, the radius of curvature (R) of each
본 발명 각형강관 버팀보(100)의 설계과정은 굴착지역의 지반조사 자료, 지장물 등을 확인하는 과정을 거치고 단계별 굴착에 따른 벽체의 변형 및 부재의 축력 및 모멘트를 계산하는 가시설 프로그램을 적용하여 가정한 단면에 대한 안정성 여부를 검토한다.The design process of the square
버팀보는 띠장에서부터 전달되는 축력과 자중 및 경우에 따라서는 적재하중에 의한 모멘트를 갖는 휨압축부재로서 검토하여야 한다. The brace is to be considered as a flexural compressive member having axial force and self-weight transmitted from the band and, in some cases, moments due to loading.
각형강관 버팀보의 단면을 검토하는 과정을 살펴보면, ① 단면력 산정, ② 작용응력 산정, ③ 허용응력 산정, ④ 응력검토의 순으로 이루어진다.
The process of examining the cross section of the square steel brace is as follows: ① section force calculation, ② working stress calculation, ③ allowable stress calculation, and ④ stress review.
① 단면력 산정① Section force calculation
설계압축력(Pmax)은 토압에 의한 축력(Rmax)과 온도하중(T)을 합한 값이다.The design compressive force (P max ) is the sum of the axial force (R max ) and the temperature load (T) due to earth pressure.
즉, Pmax = Rmax + T ……………… 식1That is, P max = R max + T... ... ... ... ... ... Equation 1
설계휨모멘트(Mmax)는 버팀보와 간격재 등의 자중과 작업하중을 합한 값(W)과 버팀보의 길이(L)를 통해 계산된다.The design bending moment (M max ) is calculated from the sum of the work loads (W) and the length of the support beams (L).
즉, Mmax = W × L2 / 8 ……………… 식2
That is, M max = W × L 2 /8 ... ... ... ... ... ...
② 작용응력 산정② Calculation of working stress
흼응력(fb)는 설계휨모멘트(Mmax)를 단면계수(Zx)로 나눈 값이다.Stress (f b ) is the design bending moment (M max ) divided by the section modulus (Z x ).
즉, fb = Mmax / Zx ……………… 식3
I.e. f b = M max / Z x . ... ... ... ... ... Equation 3
압축응력(fc)는 설계압축력(Pmax)를 단면적(A)으로 나눈 값이다.Compressive stress (f c ) is the design compression force (P max ) divided by the cross-sectional area (A).
즉, fC = Pmax / A ……………… 식4
That is, f C = P max / A. ... ... ... ... ... Equation 4
③ 허용응력 산정③ Calculation of allowable stress
허용응력 산정은 각형강관 버팀보의 한변을 이루는 판의 두께가 40mm 이하일 경우 적용한다. 가시설구조물의 허용응력 증가계수는 1.5이며(가설 흙막이 구조물에서는 일반 시방서에서 규정하고 있는 허용응력에 50% 할증을 적용), 강재의 허용응력 보정계수는 0.9이다(강재의 재사용 및 부식을 고려한 허용응력 저감계수 적용).
Allowable stress calculation is applied when the plate thickness of one side of the square steel brace is less than 40mm. The allowable stress increase factor of the temporary structure is 1.5 (50% premium is applied to the allowable stress specified in the general specifications for temporary cladding structures), and the allowable stress correction factor for steel is 0.9 (allowed stress considering steel reuse and corrosion). Reduction factor).
허용축방향압축응력(fca)은 국부좌굴을 고려하지 않은 허용축방향압축응력(fcag)과 국부좌굴에 대한 허용응력(fcal)을 곱한 값에서 국부좌굴을 고려하지 않은 허용축방향압축응력의 상한값(fcao)을 나눈 것이다.Permissible axial compressive stress (f ca ) is multiplied by permissible axial compressive stress (f cag ) not considering local buckling and permissible stress (f cal ) for local buckling. The upper limit of stress (f cao ) divided by
즉, fca = fcag · fcal / fcao ……………… 식5
That is, f ca = f cag f cal / f cao … ... ... ... ... ... Equation 5
허용휨압축응력(fba)은 국부좌굴에 대한 허용응력(fcal)과 허용휨압축응력의 상한값(fbao)의 관계로부터 도출된다. 상자형 단면과 같이 횡자굴이 일어나기 어려운 경우 허용휨압축응력은 국부좌굴에 대한 허용응력 값보다 클 수 없다.It allows bending compression stress (f ba) is derived from the relationship between the allowable stress (f cal) and the upper limit value of the allowable bending compression stress to the local buckling (f bao). If transverse buckling is difficult to occur, such as a box-shaped cross section, the allowable bending compressive stress cannot be greater than the allowable stress value for local buckling.
즉, fba = min.(fcal, fbao) ……………… 식6
That is, f ba = min. (F cal , f bao ). ... ... ... ... ... Equation 6
오일러(Euler)의 좌굴응력(fea)은 장주와 같이 긴 버팀보에서 작용한다.Euler's buckling stress (f ea ) acts on long braces, such as jangju.
fea = 1.5 × 0.9 × 1,2000,000 ÷(L/R)2 ……………… 식7f ea = 1.5 × 0.9 × 1,2000,000 ÷ (L / R) 2 . ... ... ... ... ... Formula 7
여기서, L은 유효좌굴장(㎝)이고 R은 부재의 총단면 2차 반경(㎝)이다.
Where L is the effective buckling length (cm) and R is the total cross-sectional secondary radius (cm) of the member.
④ 응력검토④ Stress Review
압축응력을 검토하여 허용축방향 압축응력(fca)이 축방향 압축응력보다 크면 설계기준에 적합하며, 허용휨압축응력(fba)이 휨압축응력보다 크면 설계기준에 적합하다. If the allowable axial compressive stress (f ca ) is greater than the axial compressive stress, the design criterion is considered. If the allowable flexural compressive stress (f ba ) is greater than the flexural compressive stress, the design criterion is satisfied.
축방향과 휨모멘트를 동시에 받는 버팀보의 조합응력을 검토하여 1보다 작거나 같으면 설계기준에 적합하다.If the combined stress of the brace that receives both the axial direction and the bending moment is examined, it is suitable for the design criteria.
즉, 조합응력 = fba / fba + fba /(fba×(1-(fba/fba))) ≤ 1.0 ……………… 식8
That is, combined stress = f ba / f ba + f ba / (f ba x (1- (f ba / f ba ))) <1.0 ... ... ... ... ...
[실시예][Example]
동일한 하중과 단면적을 갖으며 각 변의 단면두께가 9mm인 정사각형 단면을 갖는 사각강관 STKT590의 모서리 라운딩부 곡률반경(R)과 버팀보의 길이를 변화시키면서 설계축력을 계산하여 아래의 [표 1]에 나타내었다. 설계축력은 조합응력을 1.0이라고 설정할 때 상기 식1 내지 식8을 이용하여 계산하였다. 이 때, 버팀보의 간격은 5.5m로 하였다.
Calculate the design axial force while changing the curvature radius (R) of the corner rounding part and the length of the brace of the square steel tube STKT590 with the same load and cross-sectional area and a square cross-section of 9 mm on each side. It was. The design axial force was calculated using Equations 1 to 8 above when setting the combined stress to 1.0. At this time, the spacing of the braces was 5.5 m.
R : 각부곡률반지름(mm)R: Angular Curvature Radius (mm)
W : 중량(㎏/m)W: weight (kg / m)
A : 단면적(㎠)A: cross-sectional area (cm 2)
B×H×t : 사각강관 제원(mm)
B × H × t: Square steel pipe specification (mm)
이와 같은 결과를 나타내는 [표 1]을 참조로 버팀보의 길이별로 곡률반경에 따른 설계축력값을 도 3 내지 도 9에 그래프 형태로 나타내었다.Referring to [Table 1] showing the results, the design axial force value according to the radius of curvature for each length of the support beam is shown in the form of a graph in FIGS.
각 그래프의 X축은 버팀보의 곡률반경 R(mm)을 나타내며, Y축은 버팀보의 축력(ton)을 나타낸다. 여기서, t는 버팀보의 각 변의 두께로 9mm이다.The X axis of each graph represents the radius of curvature R (mm) of the brace and the Y axis represents the axial force (ton) of the brace. Here, t is 9 mm in thickness of each side of the brace.
각 그래프에서 보는 바와 같이 최대설계축력값과 최소설계축력값의 차를 1로 보았을 때 곡률반경 R이 8~20t의 범위일 때 버팀보가 가지는 설계축력의 백분율은 85% 이상이며, 곡률반경 R이 8~15t일 때 버팀보가 가지는 설계축력의 백분율은 95% 이상이다.As shown in each graph, when the difference between the maximum design force value and the minimum design force value is 1, the percentage of the design force of the brace has more than 85% when the radius of curvature R is in the range of 8 to 20t. When it is 8 ~ 15t, the percentage of design force of props is over 95%.
곡률반경 R이 5t 이하인 경우, 버팀보의 각 길이별로 나타난 설계축력의 백분율은 각각 67%, 66.9%, 66.6%, 66.4%, 66.3%, 65.6%, 65.9% 이내이다. 따라서, 곡률반경 R이 8~20t일 때와 비교하여 설계축력값이 18% 이상 차이가 난다.When the radius of curvature R is 5t or less, the percentage of design axial force for each length of the brace is within 67%, 66.9%, 66.6%, 66.4%, 66.3%, 65.6%, and 65.9%, respectively. Therefore, the design axial force difference is more than 18% compared with the curvature radius R of 8 to 20t.
이러한 차이는 구조물의 안정성에 있어서 큰 차이를 초래한다. 따라서, 최적의 버팀보로서의 기능을 발휘하기 위해서는 곡률반경(R)이 8~20t인 사각강관 버팀보를 사용하는 것이 바람직하며, 곡률반경(R)이 8~15t인 사각강관 버팀보를 사용하는 것이 더욱 바람직하다.This difference leads to a large difference in the stability of the structure. Therefore, in order to exhibit the function as the optimum brace, it is preferable to use a square steel pipe brace having a radius of curvature R of 8 to 20t, and more preferably to use a square steel brace that has a radius of curvature R of 8 to 15t. Do.
이러한 기술적 특징은 고강도 강재를 각형강관 버팀보로 이용할 경우 두드러지게 나타난다.
This technical feature is prominent when using high strength steel as a square steel tube brace.
이상에서 설명한 바와 같이 본 발명에 따른 바람직한 실시예를 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에 기재된 범주 내에서 변경할 수 있다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
10, 110 : 각형강관 버팀보 11, 110 : 모서리 라운딩부10, 110: square
Claims (2)
여기서, t는 한 변의 두께(mm), R은 곡률반경(mm)Square steel pipe with rounded corners and rounded corners, and the radius of curvature of the rounded corners using the curvature radius adjustment effect, characterized in that the curvature radius (R) of 8 ~ 20t.
Where t is the thickness of one side (mm) and R is the radius of curvature (mm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120051893A KR101381115B1 (en) | 2012-05-16 | 2012-05-16 | Steel pipe strut |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120051893A KR101381115B1 (en) | 2012-05-16 | 2012-05-16 | Steel pipe strut |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130128106A KR20130128106A (en) | 2013-11-26 |
KR101381115B1 true KR101381115B1 (en) | 2014-04-04 |
Family
ID=49855366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120051893A Active KR101381115B1 (en) | 2012-05-16 | 2012-05-16 | Steel pipe strut |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101381115B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102349869B1 (en) * | 2021-05-11 | 2022-01-10 | 이승원 | Circular and square strut beam and temporary facility using thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06534A (en) * | 1992-06-18 | 1994-01-11 | Nippon Steel Corp | Ultra high-tension electric resistance-welded tube excellent in bending characteristic |
JP2000282202A (en) | 1999-03-29 | 2000-10-10 | Nippon Steel Corp | Alloyed hot-dip galvanized square steel pipe |
KR20050033455A (en) * | 2003-10-03 | 2005-04-12 | 신닛뽄세이테쯔 카부시키카이샤 | Automobile strength member |
KR20100038880A (en) * | 2008-10-07 | 2010-04-15 | (주)피에스테크 | Square steel strut for temporary soil sheathing work |
-
2012
- 2012-05-16 KR KR1020120051893A patent/KR101381115B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06534A (en) * | 1992-06-18 | 1994-01-11 | Nippon Steel Corp | Ultra high-tension electric resistance-welded tube excellent in bending characteristic |
JP2000282202A (en) | 1999-03-29 | 2000-10-10 | Nippon Steel Corp | Alloyed hot-dip galvanized square steel pipe |
KR20050033455A (en) * | 2003-10-03 | 2005-04-12 | 신닛뽄세이테쯔 카부시키카이샤 | Automobile strength member |
KR20100038880A (en) * | 2008-10-07 | 2010-04-15 | (주)피에스테크 | Square steel strut for temporary soil sheathing work |
Also Published As
Publication number | Publication date |
---|---|
KR20130128106A (en) | 2013-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104895249B (en) | It is a kind of can in-situ immobilization combination suspension column | |
KR101206441B1 (en) | Steel frame structure and this construction technique | |
CN209873846U (en) | Can have enough to meet need construction elevator basis and return reinforcing apparatus | |
WO2016064249A1 (en) | Round shear panel damper | |
CN211257911U (en) | A combined reinforcement structure of viscous damper and outer steel for building | |
KR101381115B1 (en) | Steel pipe strut | |
Liu et al. | Structural behavior of steel tube and coupler scaffolds with stability strengthening details | |
CN204098314U (en) | Steel plate combination floor | |
CN112069584A (en) | A design method for ductile structural piers for railways | |
CN200992750Y (en) | Combined hot-rolled angle steel huckling-proof support | |
CN111910834B (en) | A design method of beam end reinforcement structure of frame structure bent by long longitudinal reinforcement | |
CN217812521U (en) | Reinforcing structure of wall door opening | |
CN215167210U (en) | A profiled steel concrete column enhanced by local connection and anchoring | |
KR100534079B1 (en) | Construction method of strut | |
KR101381784B1 (en) | Octogonal steel strut | |
KR101070043B1 (en) | Column-type damper for improving earthquake-proof efficiency | |
HOSEN | Seismic vulnerability and rehabilitation strategies for industrial RC structures | |
CN114182843A (en) | Buckling restrained brace adopting W-M fractal function | |
Priestley | Ductility of unconfined masonry shear walls | |
CN206928162U (en) | Concrete ground surface expansion joint force transferring structure | |
CN219491814U (en) | Wall reinforcing structure | |
CN212957244U (en) | Assembled room roof beam antidetonation bearing structure | |
KR102625763B1 (en) | Variable type steel composite girder bridge structure in which the number of girders is variable according to member force distribution and construction method thereof | |
CN219240925U (en) | Steel member with damping device for concrete structure | |
CN115199071B (en) | Edge steel protection device for secondary operation and use method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120516 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130910 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140103 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140328 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140328 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170310 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20170310 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180326 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20180326 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190325 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20190325 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200325 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20210302 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20220228 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230228 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20240115 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20250325 Start annual number: 12 End annual number: 12 |