[go: up one dir, main page]

KR101374818B1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
KR101374818B1
KR101374818B1 KR1020120054279A KR20120054279A KR101374818B1 KR 101374818 B1 KR101374818 B1 KR 101374818B1 KR 1020120054279 A KR1020120054279 A KR 1020120054279A KR 20120054279 A KR20120054279 A KR 20120054279A KR 101374818 B1 KR101374818 B1 KR 101374818B1
Authority
KR
South Korea
Prior art keywords
thermoplastic resin
resin composition
polysilicon
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120054279A
Other languages
Korean (ko)
Other versions
KR20130130449A (en
Inventor
백운선
김명욱
황윤만
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020120054279A priority Critical patent/KR101374818B1/en
Publication of KR20130130449A publication Critical patent/KR20130130449A/en
Application granted granted Critical
Publication of KR101374818B1 publication Critical patent/KR101374818B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 수지 및 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물을 포함하는 열가소성 수지 조성물과, 이를 이용하여 제조되는 발열 재료에 관한 것으로, 이에 따르면 인장 강도, 굴곡 탄성율 또는 충격 강도 등의 기계적 물성이 우수하고 높은 열전도도 및 방열 특성을 나타내는 열가소성 수지 조성물과 이를 이용한 방열 재료가 제공될 수 있다. The present invention relates to a thermoplastic resin composition comprising a thermoplastic resin and a polysilicon compound having an average particle size of 1 μm to 10,000 μm, and a heat generating material manufactured using the same, and thus, tensile strength, flexural modulus or impact strength, and the like. A thermoplastic resin composition having excellent mechanical properties and exhibiting high thermal conductivity and heat dissipation properties and a heat dissipation material using the same may be provided.

Description

열가소성 수지 조성물{THERMOPLASTIC RESIN COMPOSITION}[0001] THERMOPLASTIC RESIN COMPOSITION [0002]

본 발명은 열가소성 수지 조성물에 관한 것으로서, 인장 강도, 굴곡 탄성율 또는 충격 강도 등의 기계적 물성이 우수하고 높은 열전도도 및 방열 특성을 나타내는 열가소성 수지 조성물에 관한 것이다. The present invention relates to a thermoplastic resin composition, and relates to a thermoplastic resin composition having excellent mechanical properties such as tensile strength, flexural modulus or impact strength, and exhibiting high thermal conductivity and heat dissipation characteristics.

최근 LED 등의 발광 소자가 조명 장치, 디스플레이 장치, 자동차 헤드 램프 등의 다양한 분야에 적용되고 있는데, 이러한 발광 소자들이 상용화되기 위해서는 하기 위해서는 고휘도의 면광원으로 변경할 수 있는 광확산판 또는 발광 소자에서 발생하는 열을 배출하기 위한 방열 시트 등이 필요하다. Recently, light emitting devices such as LEDs have been applied to various fields such as lighting devices, display devices, automobile head lamps, and the like. In order to commercialize these light emitting devices, light emitting devices or light emitting devices that can be changed into high luminance surface light sources can be used. A heat dissipation sheet or the like for dissipating heat is required.

기존에는 알루미나, graphite, 유리섬유, carbon-fiber, talc, 비철금속분말, 철금속분말 등의 열전도성물질들을 고분자 수지와 혼합하여 방열 시트를 제조하였으나, 이러한 열전도성물질을 과도하게 첨가하면 전기전도에 의한 파단현상, 가격상승, 비중증가, 생산성저하, 성형성능 저하 등의 문제가 발생하였다.Conventionally, heat conductive sheets such as alumina, graphite, glass fiber, carbon-fiber, talc, nonferrous metal powder, and ferrous metal powder were mixed with a polymer resin to produce a heat dissipation sheet. However, when excessively adding these thermal conductive materials to electrical conductivity, Problems such as breakage, price increase, specific gravity increase, productivity decrease, and moldability deterioration occurred.

구체적으로, 무기계 열전도성물질과 열가소성 수지를 혼합하는 경우, 최종 제품의 외관 및 표면 상태가 열악해지거나 충격 강도가 저하되는 문제점이 있었다. Specifically, when the inorganic thermal conductive material and the thermoplastic resin are mixed, there is a problem that the appearance and surface state of the final product is poor or the impact strength is lowered.

그리고, 실리콘 카바이드 등의 실로콘계 열전도성 물질을 열가소성 수지와 혼합하여는 경우, 생산 설비의 교환 비율이 높아져서 생산 비용이 크게 상승하였으며, 실리콘 카바이드와 열가소성 수지의 상용성이 높지 않기 때문에 제품 제조시 분산 및 혼합이 용이하지 않으며, 최종 제품의 열전도도 또한 상용 제품에 적용되기에는 충분하지 않았다. In addition, in the case of mixing a silica-based thermal conductive material, such as silicon carbide with a thermoplastic resin, the production cost is greatly increased due to the high exchange rate of the production equipment, and the dispersion during the manufacture of the product because the compatibility of the silicon carbide and thermoplastic resin is not high And the mixing is not easy, and the thermal conductivity of the final product was also not enough to be applied to commercial products.

그리고, 열전도성이 높은 것으로 알려진 탄소계 화합물의 경우, 열가소성 수지와의 상용성이나 과량으로 사용시 발생하는 물성 및 품질의 저하로 인하여 첨가량을 높이는데 일정한 한계가 있었으며, 물질 자체가 고가여서 생산 단가가 높아져 실질적으로 상업적 적용이 용이하지 않았다. In addition, in the case of carbon-based compounds known to have high thermal conductivity, there is a certain limit to increase the amount of additives due to compatibility with thermoplastic resins or deterioration of physical properties and quality generated when used in excess, and the production cost is high because the material itself is expensive. Higher practically not easy for commercial application.

또한, 비철금속 또는 금속 등의 화합물의 경우, 열가소성 수지와 혼합시 열전도성은 크게 높일 수 있으나, 성형성이 좋지 않으며, 최종 제품의 비중이 높아지는 문제점이 있었다. In addition, in the case of a compound such as a non-ferrous metal or a metal, the thermal conductivity when mixed with the thermoplastic resin can be greatly increased, but the moldability is not good, there is a problem that the specific gravity of the final product is increased.

한편, LED점등 상태에서 LED PCB기판과 기존 알루미늄 다이케스팅 방열판사이의 온도는 약 80℃이하(점등 후 1시간이내)이기 때문에, 이 조건을 맞추기 위해서는 방열수지의 열전도도가 최소 0.5 W/mk이상이어야 하고, 성형방법에 따른 열전도성물질의 수지 내 배향에 따라서, 방열성능의 차가 크다.On the other hand, the temperature between the LED PCB substrate and the existing aluminum die-casting heat sink in LED lighting is about 80 ℃ or less (within 1 hour after lighting), so that the thermal conductivity of the heat dissipating resin should be at least 0.5 W / mk to meet this condition. The difference in heat dissipation performance is large depending on the orientation of the thermally conductive material in the resin according to the molding method.

이에 따라, 종래에 알려진 방법들의 한계를 해결하면서도, 높은 기계적 물성과 함께 높은 열전도도 및 방열 특성을 나타내는 방열 재료에 대한 개발이 필요한 실정이다. Accordingly, while addressing the limitations of conventionally known methods, development of a heat dissipation material exhibiting high thermal conductivity and heat dissipation characteristics with high mechanical properties is required.

본 발명은 인장 강도, 굴곡 탄성율 또는 충격 강도 등의 기계적 물성이 우수하고 높은 열전도도 및 방열 특성을 나타내는 열가소성 수지 조성물을 제공하기 위한 것이다. The present invention is to provide a thermoplastic resin composition excellent in mechanical properties such as tensile strength, flexural modulus or impact strength and exhibiting high thermal conductivity and heat dissipation characteristics.

또한, 본 발명은 상기 열가소성 수지 조성물로부터 제조된 방열 재료를 제공하기 위한 것이다. Moreover, this invention is providing the heat radiating material manufactured from the said thermoplastic resin composition.

본 발명은 열가소성 수지; 및 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물을 포함하는 열가소성 수지 조성물을 제공한다. The present invention is a thermoplastic resin; And it provides a thermoplastic resin composition comprising a polysilicon compound having an average particle size of 1㎛ to 10,000㎛.

또한, 본 발명은 상기 열가소성 수지 조성물의 성형물을 포함하는 방열 재료를 제공한다. Moreover, this invention provides the heat radiation material containing the molded object of the said thermoplastic resin composition.

이하 발명의 구체적인 구현예에 따른 열가소성 수지 조성물과 이러한 열가소성 수지 조성물을 포함하는 방열 재료에 관하여 보다 상세하게 설명하기로 한다.
Hereinafter, the thermoplastic resin composition and the heat dissipating material including the thermoplastic resin composition according to specific embodiments of the present invention will be described in more detail.

발명의 일 구현예에 따르면, 열가소성 수지; 및 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물을 포함하는 열가소성 수지 조성물이 제공될 수 있다. According to one embodiment of the invention, a thermoplastic resin; And a polysilicon compound having an average particle size of 1 μm to 10,000 μm.

본 발명자들은, 열가소성수지에 특정의 폴리실리콘 화합물을 혼합하여 제조되는 열가소성 수지 조성물이, 우수한 인장 강도, 굴곡 탄성율 또는 충격 강도 등의 기계적 물성과 함께 높은 열전도도 및 방열 특성을 나타낸다는 점을 실험을 통하여 확인하고 발명을 완성하였다. 특히, 상기 열가소성 수지 조성물은 외관 특성, 성형성 및 절연 특성 등이 상용화에 충분할 정도로 확보되어 최종 제품 적용시 코팅 또는 절연 처리 등의 추가적인 공정 등을 적용하지 않고도 우수한 품질을 확보할 수 있다.The inventors have tested that thermoplastic resin compositions prepared by mixing certain polysilicon compounds with thermoplastic resins exhibit high thermal conductivity and heat dissipation properties along with mechanical properties such as excellent tensile strength, flexural modulus or impact strength. Confirmed through and completed the invention. In particular, the thermoplastic resin composition is secured enough to commercialize the appearance characteristics, moldability, and insulation properties can be ensured excellent quality without applying additional processes such as coating or insulation treatment in the final product application.

상기 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물은 100W/mk이상의 열전도도를 가질 수 있는데, 이러한 열전도도는 기존에 알려진 열전도성 물질과 크게 다르지 않으나, 상기 열가소성 수지와 혼합되었었을 때 인장 강도, 굴곡강도, 굴곡탄성율, 충격 강도, 열변형온도 등을 크게 향상시킬 수 있고, 성형 방법 또는 성형 조건 등에 크게 제한 받지 않으며, 방열 성능 및 열전도 성능을 크게 향상시킬 수 있는 것을 특징으로 한다. The polysilicon compound having an average particle size of 1 μm to 10,000 μm may have a thermal conductivity of 100 W / mk or more. The thermal conductivity is not significantly different from conventionally known thermal conductive materials, but is tensile when mixed with the thermoplastic resin. Strength, flexural strength, flexural modulus, impact strength, heat deflection temperature, etc. can be greatly improved, and are not limited to the molding method or molding conditions, and the like, and the heat dissipation performance and heat conduction performance can be greatly improved.

구체적으로, 상기 폴리실리콘계 화합물은 1㎛ 내지 10,000㎛, 바람직하게는 10㎛ 내지 300㎛의 평균입자크기를 가질 수 있다. 이러한 폴리실리콘계 화합물의 평균입자크기는 시편의 단면을 전자현미경으로 측정할 수 있다. Specifically, the polysilicon compound may have an average particle size of 1 ㎛ to 10,000 ㎛, preferably 10 ㎛ to 300 ㎛. The average particle size of the polysilicon compound may be measured by electron microscope in the cross section of the specimen.

상기 폴리실리콘계 화합물은 단결정 폴리실리콘, 다결정 폴리실리콘, 비결정 폴리실리콘, 이들의 2이상의 공중합체를 포함할 수 있으며, 이러한 고분자를 2 이상으로 혼합하여 포함할 수도 있다. The polysilicon compound may include monocrystalline polysilicon, polycrystalline polysilicon, amorphous polysilicon, two or more copolymers thereof, and a mixture of two or more of these polymers.

그리고, 상기 폴리실리콘 화합물은 100W/mk이상의 열전도도를 갖는 판상 또는 입상의 입자를 포함할 수 있다. 이러한 폴리실리콘계 화합물은 방열 수지 제조 시 용해되지 않고 최종 수지 내에서 존재하여, 열전달물질로서의 기능을 충실히 수행할 수 있다.In addition, the polysilicon compound may include plate-like or granular particles having a thermal conductivity of 100 W / mk or more. Such a polysilicon compound is present in the final resin without dissolving during the production of the heat dissipating resin, and can faithfully perform a function as a heat transfer material.

한편, 상기 열가소성 수지로는 방열 재료 등에 사용 가능한 것으로 알려진 열가소성 수지이면 별 다른 제한없이 사용할 수 있으나, 바람직하게는 -30℃ 내지 315℃의 유리전이온도(Tg)를 갖는 열가소성 수지를 포함할 수 있다. Meanwhile, the thermoplastic resin may be any thermoplastic resin known to be usable in a heat dissipating material, and the like, but may be used without limitation. Preferably, the thermoplastic resin may include a thermoplastic resin having a glass transition temperature (Tg) of -30 ° C to 315 ° C. .

이러한 열가소성 수지의 구체적인 예로는, 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리스티렌(PS), 아크릴레이트계 수지(MMA 또는 PMMA), 폴리아마이드, 아크릴로니트릴-부타디엔-스티렌수지(ABS), 폴리아미드이미드(PAI), 폴리벤조미다졸(PBI), 폴리에테르아마이드(PEI), 폴리페닐렌설파이드(PPS), 열가소성 우레탄(TPU), 폴리테크라플로로에틸렌(PTFE), 폴리비닐리덴 플로라이드(PVDF), 폴리에틸렌테레프탈레이트(PET), 폴리옥시메틸렌(POM), 폴리이서이서케톤(PEEK), 폴리아릴이서케톤(PAEK), 리퀴드크리스탈폴리머(LCP), 폴리이미드(PI), 셀프레인포스트폴리페닐렌(SPR) 또는 이들의 2종 이상의 혼합물을 들 수 있다. Specific examples of such thermoplastic resins include polycarbonate (PC), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylate resin (MMA or PMMA), polyamide, Acrylonitrile-butadiene-styrene resin (ABS), polyamideimide (PAI), polybenzomidazole (PBI), polyetheramide (PEI), polyphenylene sulfide (PPS), thermoplastic urethane (TPU), polytech Lafluoroethylene (PTFE), Polyvinylidene Floride (PVDF), Polyethylene Terephthalate (PET), Polyoxymethylene (POM), Polyacer Iketone (PEEK), Polyaryl Iseketone (PAEK), Liquid Crystal Polymer (LCP), polyimide (PI), self-prene polyphenylene (SPR), or a mixture of two or more thereof.

상기 열가소성 수지 조성물에서, 상기 열가소성 수지와 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물의 함량은 크게 제한 되는 것은 아니며, 상기 2개 성분만을 포함하는 경우 각각 1 내지 99중량%를 포함할 수 있다. In the thermoplastic resin composition, the content of the thermoplastic resin and the polysilicon compound having an average particle size of 1 μm to 10,000 μm is not particularly limited, and may include 1 to 99 wt% of each of only two components. have.

한편, 상기 열가소성 수지 조성물은 열전도 보조제를 더 포함할 수 있다. 이러한 열전도 보조제로는 이전에 알려진 다양한 화합물, 예를 들어 무기계 열전도도 보조제, 실리콘계 열전도도 보조제, 탄소계 열전도도 보조제, 비철금속 또는 철금속 열전도도 보조제를 사용할 수 있다. On the other hand, the thermoplastic resin composition may further include a heat conduction aid. As such thermally conductive aids, various previously known compounds, for example, inorganic thermal conductivity aids, silicone thermal conductivity aids, carbon-based thermal conductivity aids, nonferrous metals or ferrous metal thermal conductivity aids may be used.

이러한 열전도도 보조제의 바람직한 예로는, 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 판상 그라파이트, 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 구상 그라파이트, 또는 이들의 혼합물을 들 수 있다. 구체적으로, 상기 열전도도 보조제는 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 판상 그라파이트 및 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 구상 그라파이트를 1:0.5 내지 1:2의 비율로 포함할 수 있다. Preferred examples of such thermal conductivity aids include platelet graphite having an average particle size of 50 μm to 150 μm, spherical graphite having an average particle size of 50 μm to 150 μm, or mixtures thereof. Specifically, the thermal conductivity aid may include a plate-like graphite having an average particle size of 50 μm to 150 μm and a spherical graphite having an average particle size of 50 μm to 150 μm in a ratio of 1: 0.5 to 1: 2. .

한편, 상기 열가소성 수지가 열전도도 보조제를 더 포함하는 경우, 이들의 함량 범위는 열가소성 수지 20 내지 97중량%; 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물 1 내지 75중량%; 및 열전도 보조제 0.1 내지 70중량%일 수 있다. On the other hand, when the thermoplastic resin further comprises a thermal conductivity aid, their content range is 20 to 97% by weight of the thermoplastic resin; 1 to 75% by weight of a polysilicon compound having an average particle size of 1 μm to 10,000 μm; And 0.1 to 70% by weight of heat conduction aid.

한편, 상기 열가소성 수지는 자외선 안정제, 장기열안정제, 단기열안정제, 가소제, 이형제, 착색제, 대전방지제, 난연제, 형광증백제 및 충격보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다.
On the other hand, the thermoplastic resin may further include at least one additive selected from the group consisting of UV stabilizers, long-term heat stabilizers, short-term heat stabilizers, plasticizers, release agents, colorants, antistatic agents, flame retardants, fluorescent brighteners and impact modifiers.

상기 발명의 일 구현예에 따른 열가소성 수지 조성물의 제조 방법은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 방법에 따라 제조할 수 있다.The manufacturing method of the thermoplastic resin composition according to the embodiment of the present invention is not particularly limited, and may be prepared according to conventional methods known in the art.

예를 들어, 상기 열가소성 수지 조성물은, 상기 열가소성 수지와 평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물, 및 선택적으로 상기 열전도 보조제나 기타 첨가제를 배합하여 예비 혼합한 후, 단축 또는 이축 압출기에 의해 용융 혼연에 의해 배합하여 제조될 수 있다. 사용 가능한 혼합 장치로는 특별한 제한이 없으나, 헨젤 믹서기, 텀블러, 리본 블렌더, 고속믹서 등을 사용할 수 있다. For example, the thermoplastic resin composition may be premixed with the thermoplastic resin, a polysilicon compound having an average particle size of 1 μm to 10,000 μm, and optionally the heat conduction aid or other additives, and then pre-mixed to a single screw or twin screw extruder. Can be prepared by blending by melt kneading. There is no particular limitation on the mixing apparatus that can be used, but a Hansel mixer, a tumbler, a ribbon blender, a high speed mixer, or the like can be used.

또한, 상기 열가소성 수지 조성물을 가공하는 방법 또한 크게 한정되는 것은 아니며, 통상적으로 알려진 열가소성 수지 조성물의 성형 방법을 사용할 수 있고, 예를 들어, 상술한 바와 같이 제조된 열가소성 수지 조성물을 사출성형, 압출 성형, 블로우 성형, 프레스 성형 등에 의해 소성(燒成) 형상으로 성형할 수 있다. In addition, the method of processing the thermoplastic resin composition is also not particularly limited, and commonly known molding methods of the thermoplastic resin composition may be used. For example, injection molding and extrusion molding of the thermoplastic resin composition prepared as described above may be performed. It can shape | mold to plastic shape by blow molding, press molding, etc.

상기 열가소성 수지 조성물은 용융, 혼합 또는 사출 등의 고정 과정에서도 열가소성 수지 및 상기 폴리실리콘계 화합물의 특성을 손상시키지 않으면서도, 우수한 열전도도, 기계적 특성, 내열성, 충격강도 등을 확보하여 방열판 또는 방열 시트 등의 방열 재료로 용이하게 적용할 수 있다. The thermoplastic resin composition ensures excellent thermal conductivity, mechanical properties, heat resistance, impact strength, etc., without damaging the properties of the thermoplastic resin and the polysilicon compound even during fixing, such as melting, mixing, or injection, such as a heat sink or a heat dissipation sheet. It can be easily applied as a heat dissipating material.

한편, 상기 열가소성 수지 조성물은 흡습이 쉽게 될 수 있기 때문에, 사출 전에 건조된 상태에서 성형이 이루어지는 것이 바람직하다. 또한 열가소성 방열수지 조성물의 두께 및 발열량에 따라, 폴리실리콘계 열전도물질과 상기에 언급된 열전도 보조물질의 함량을 조절하는 것이 바람직하다.
On the other hand, the thermoplastic resin composition can be easily hygroscopic, it is preferable that the molding is made in a dried state before injection. In addition, it is preferable to adjust the content of the polysilicon-based thermal conductive material and the above-mentioned thermal conductive auxiliary material according to the thickness and calorific value of the thermoplastic heat dissipating resin composition.

한편, 발명의 다른 구현예에 따르면, 상기 열가소성 수지 조성물의 성형물을 포함하는 방열 재료를 제공할 수 있다.On the other hand, according to another embodiment of the invention, it is possible to provide a heat dissipation material comprising a molding of the thermoplastic resin composition.

상기 성형품은 방열 시트, 프로파일 또는 사출물 등일 수 있으며, 특히 방열성, 내충격성, 기계적강도 및 내열성 특성이 중요하게 요구되는 분야의 성형제품, 일례로 휴대용 이동통신 기기, 자동차 부품, 기계부품, 전기전자 제품, 컴퓨터 등의 사무기기, 또는 잡화 등의 용도로 사용될 수 있다. The molded article may be a heat dissipation sheet, a profile or an injection molded product, and in particular, a molded product in a field where heat dissipation, impact resistance, mechanical strength, and heat resistance characteristics are important, for example, portable mobile communication devices, automotive parts, mechanical parts, and electrical and electronic products. It can be used for office equipment such as computer, or miscellaneous goods.

본 발명에 따르면, 인장 강도, 굴곡 탄성율 또는 충격 강도 등의 기계적 물성이 우수하고 높은 열전도도 및 방열 특성을 나타내는 열가소성 수지 조성물과 이러한 수지 조성물을 이용하여 제조된 발열 재료가 제공될 수 있다. According to the present invention, a thermoplastic resin composition having excellent mechanical properties such as tensile strength, flexural modulus or impact strength, and exhibiting high thermal conductivity and heat dissipation characteristics, and a heat generating material manufactured using the resin composition can be provided.

발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
The invention will be described in more detail in the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

[[ 실시예Example  And 비교예Comparative Example : 열가소성 수지 조성물의 제조]: Preparation of Thermoplastic Resin Composition]

상기 표1 내지 3기재된 성분들을 혼합하여 실시예, 참고예 및 비교예의 열가소성 수지 조성물을 제조하였다. 각각 성분에 구체적인 내용은 표4에 기재된 바와 같다.
The thermoplastic resin compositions of Examples, Reference Examples and Comparative Examples were prepared by mixing the components described in Tables 1 to 3. Details of each component are as described in Table 4.

[[ 실험예Experimental Example : 물성 평가]Property evaluation]

상기 실시예, 참고예 및 비교예에서 얻어진 수지 조성물을 Toshiba사 TEM-26SS 이축압출기를 이용하여 압출하였다. 그리고, 우진세렉스 120MT사출기 및 ASTM시편 모양을 가진 금형과 LED MR16형 방열판금형으로 기계적물성, 열전도도, 방열특성을 측정할 수 있는 시편을 각각 제작하였다.The resin composition obtained in the said Example, the reference example, and the comparative example was extruded using the Toshiba TEM-26SS twin screw extruder. In addition, the Ujin Serex 120MT injection machine, a mold having an ASTM specimen shape, and a LED MR16 type heat sink mold were fabricated to measure mechanical properties, thermal conductivity, and heat dissipation characteristics, respectively.

1. 열전도도 측정1. Thermal conductivity measurement

상기 얻어진 시편에 대하여 Tci사의 C-therm열전도측정장비를 이용하여, 열전도도를 측정하였다.The thermal conductivity of the obtained specimen was measured using a C-therm thermal conductivity measuring apparatus manufactured by Tci.

2. 2. 방열성Heat dissipation 측정 Measure

상기 얻어진 시편에 대하여 ASP반도체사의 MR16조명등을 사용하여, PCB기판과 방열판사이의 온도를 약 1시간 동안 측정하였다.With respect to the obtained specimen, the temperature between the PCB substrate and the heat sink was measured for about 1 hour using MR16 lighting of ASP Semiconductor.

3. 3. 이형압출표면Release Extrusion Surface

기존 직관형 LED전등용 알루미늄 방열판 모형의 다이를 이용하여 이형압출 시, 성형품의 표면을 관찰하였다.
The surface of the molded product was observed when demold extrusion using the die of the aluminum heat sink model for the conventional LED tube light.

실시예 1 내지 7의 조성Compositions of Examples 1-7 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 성분
ingredient
폴리카보네이트 수지
(PC-1100S)
Polycarbonate resin
(PC-1100S)
8080 8080 7070 7070 7070 7070 7070
단결정폴리실리콘Single crystal polysilicon 3030 1010 다결정폴리실리콘Polycrystalline polysilicon 2020 3030 1010 비결정폴리실리콘Amorphous polysilicon 2020 3030 탄소계 graphite
(판상 60%+구상 40%)
Carbon-based graphite
(60% on plate + 40% of thought)
2020 2020
물성Properties 열전도도(W/mk)Thermal Conductivity (W / mk) 0.650.65 0.650.65 1.001.00 1.051.05 0.710.71 0.700.70 1.001.00 MR16방열온도(℃)MR16 heat radiation temperature (℃) 7777 7979 7474 7373 7575 7676 7575 인장강도-항복응력(kgf/cm2)Tensile Strength-Yield Stress (kgf / cm 2 ) 590590 590590 700700 700700 600600 610610 750750 굴곡탄성율(kgf/cm2)Flexural modulus (kgf / cm 2 ) 5500055000 5500055000 6000060000 6500065000 6000060000 6000060000 6000060000 충격강도
(kg·cm/cm)
Impact strength
(kg · cm / cm)
1414 1414 1515 1515 1010 1111 1414
이형압출표면Release Extrusion Surface 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good

실시예 8 내지 14의 조성Compositions of Examples 8-14 실시예8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 실시예14Example 14 성분
ingredient
폴리카보네이트 수지
(PC-1100S)
Polycarbonate resin
(PC-1100S)
7070 6060 6060 6060 5050 5050 5050
단결정폴리실리콘Single crystal polysilicon 2020 3030 다결정폴리실리콘Polycrystalline polysilicon 2020 3030 비결정폴리실리콘Amorphous polysilicon 1010 2020 3030 탄소계 graphite
(판상 60%+구상 40%)
Carbon-based graphite
(60% on plate + 40% of thought)
2020 2020 2020 2020 2020 2020 2020
물성Properties 열전도도(W/mk)Thermal Conductivity (W / mk) 0.700.70 1.051.05 1.021.02 1.001.00 1.251.25 1.301.30 1.271.27 MR16방열온도(℃)MR16 heat radiation temperature (℃) 7676 7373 7272 7474 7171 7171 7272 인장강도-항복응력(kgf/cm2)Tensile Strength-Yield Stress (kgf / cm 2 ) 605605 700700 690690 710710 750750 725725 750750 굴곡탄성율(kgf/cm2)Flexural modulus (kgf / cm 2 ) 6000060000 7000070000 7000070000 7100071000 8000080000 8500085000 8600086000 충격강도
(kg·cm/cm)
Impact strength
(kg · cm / cm)
1212 1111 1313 1212 1212 1313 1414
이형압출표면Release Extrusion Surface 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good

참고예 및 비교예 1 내지 4의 조성Compositions of Reference Examples and Comparative Examples 1 to 4 참고예Reference Example 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 성분
ingredient
MR16알루미늄방열판MR16 aluminum heat sink 100100
폴리카보네이트 수지
(PC-1100S)
Polycarbonate resin
(PC-1100S)
100100 9090 8080 7070
단결정폴리실리콘Single crystal polysilicon 다결정폴리실리콘Polycrystalline polysilicon 비결정폴리실리콘Amorphous polysilicon 탄소계 graphite
(판상 60%+구상 40%)
Carbon-based graphite
(60% on plate + 40% of thought)
1010 2020 3030
물성Properties 열전도도(W/mk)Thermal Conductivity (W / mk) -- 0.20.2 0.30.3 0.350.35 0.40.4 MR16방열온도(℃)MR16 heat radiation temperature (℃) 8080 9595 8989 8585 8383 인장강도-항복응력
(kgf/cm2)
Tensile Strength - Yield Stress
(kgf / cm 2 )
-- 500500 550550 570570 605605
굴곡탄성율(kgf/cm2)Flexural modulus (kgf / cm 2 ) -- 3500035000 3600036000 3800038000 4000040000 충격강도
(kg·cm/cm)
Impact strength
(kg · cm / cm)
-- 8080 55 44 22
이형압출표면Release Extrusion Surface 양호Good 양호Good 불량Bad 불량Bad 불량Bad

실시예 및 비교예에 사용한 각 성분Each component used for the Example and the comparative example 품목subject 제품명/ 조성Product Name / Composition 비고Remarks 폴리카보네이트 수지Polycarbonate resin Hopelex PC-1100S (호남석유화학)Hopelex PC-1100S (Honam Petrochemical) 유리전이온도: 145 Glass transition temperature: 145 폴리실리콘Polysilicon 단결정폴리실리콘Single crystal polysilicon 평균입자크기: 약 100㎛Average particle size: about 100㎛ 다결정폴리실리콘Polycrystalline polysilicon 평균입자크기: 약 100㎛Average particle size: about 100㎛ 비결정폴리실리콘Amorphous polysilicon 평균입자크기: 약 100㎛Average particle size: about 100㎛ GraphiteGraphite 판상 60%60% of plate 평균입자크기: 약 100㎛Average particle size: about 100㎛ 구상 40%Concept 40% 평균입자크기: 약 100㎛Average particle size: about 100㎛

상기 표1 내지 2에 나타난 바와 같이, 실시예의 열가소성 수지 조성물을 사용하여 얻어진 수지 성형품(시편)은 높은 열전도도, 낮은 방열온도, 높은 기계적물성, 충격강도, 양호한 이형압출표면을 갖는다는 점을 확인할 수 있다. As shown in Tables 1 to 2, it was confirmed that the resin molded article (sample) obtained using the thermoplastic resin composition of the example had high thermal conductivity, low heat dissipation temperature, high mechanical properties, impact strength, and good release extrusion surface. Can be.

특히, 열가소성 수지, 폴리실리콘계 화합물 및 graphite(판상 60%+구상 40%)를 혼용하는 실시예 5 내지 14의 경우, 비교예에 비하여 월등히 우수한 열전도도, 낮은 방열온도, 높은 기계적물성, 충격강도, 양호한 이형압출표면 특성을 나타내었으며, 상기 실시예의 열가소성 수지 조성물은 적용 분야에서 요구되는 모든 방열 특성이 우수하게 발휘된다는 것을 확인할 수 있었다.In particular, in Examples 5 to 14, in which a thermoplastic resin, a polysilicon compound, and graphite (plate 60% + spherical 40%) are used, thermal conductivity, low heat dissipation temperature, high mechanical properties, impact strength, It showed good release extrusion surface properties, it was confirmed that the thermoplastic resin composition of the above embodiment exhibits excellent heat dissipation properties required in the application field.

표3에 나타난 바와 같이, 참고예의 알루미늄 방열판은 LED점등 후 80℃로 유지하는데 반하여, 폴리카보네이트만을 포함하는 비교예1이나 폴리카보네이트와 그라파이트를 포함하는 비교예 2 내지 4는 상대적으로 낮은 열전도도를 나타내며 높은 방열 온도를 나타내어 방열성도 낮은 것으로 확인되었다. As shown in Table 3, while the aluminum heat sink of the reference example is maintained at 80 ℃ after LED light, Comparative Example 1 containing only polycarbonate or Comparative Examples 2 to 4 containing polycarbonate and graphite has a relatively low thermal conductivity It showed high heat dissipation temperature and was confirmed to have low heat dissipation.

Claims (10)

열가소성 수지; 및
100W/mk이상의 열전도도를 가지며 평균입자크기가 1㎛ 내지 10,000㎛인 판상 또는 입상의 입자를 포함하는 폴리실리콘계 화합물을 포함하는 열가소성 수지 조성물.
Thermoplastic resin; And
A thermoplastic resin composition comprising a polysilicon compound having a thermal conductivity of 100 W / mk or more and including plate-shaped or granular particles having an average particle size of 1 μm to 10,000 μm.
제1항에 있어서,
상기 폴리실리콘계 화합물은 단결정 폴리실리콘, 다결정 폴리실리콘, 비결정 폴리실리콘 및 이들의 2이상의 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 열가소성 수지 조성물.
The method of claim 1,
The polysilicon compound is a thermoplastic resin composition comprising at least one selected from the group consisting of monocrystalline polysilicon, polycrystalline polysilicon, amorphous polysilicon and two or more copolymers thereof.
삭제delete 제1항에 있어서,
상기 열가소성 수지는 -30℃ 내지 315℃의 유리전이온도(Tg)를 갖는 열가소성 수지 조성물.
The method of claim 1,
The thermoplastic resin has a glass transition temperature (Tg) of -30 ℃ to 315 ℃.
제1항에 있어서,
상기 열가소성 수지는 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리스티렌(PS), 아크릴레이트계 수지, 폴리아마이드, 아크릴로니트릴-부타디엔-스티렌수지(ABS), 폴리아미드이미드(PAI), 폴리벤조미다졸(PBI), 폴리에테르아마이드(PEI), 폴리페닐렌설파이드(PPS), 열가소성 우레탄(TPU), 폴리테크라플로로에틸렌(PTFE), 폴리비닐리덴 플로라이드(PVDF), 폴리에틸렌테레프탈레이트(PET), 폴리옥시메틸렌(POM), 폴리이서이서케톤(PEEK), 폴리아릴이서케톤(PAEK), 리퀴드크리스탈폴리머(LCP), 폴리이미드(PI) 및 셀프레인포스트폴리페닐렌(SPR)로 이루어진 군에서 선택된 1종 이상을 포함하는 열가소성 수지 조성물.
The method of claim 1,
The thermoplastic resin is polycarbonate (PC), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylate resin, polyamide, acrylonitrile-butadiene-styrene resin ( ABS), polyamideimide (PAI), polybenzomidazole (PBI), polyetheramide (PEI), polyphenylenesulfide (PPS), thermoplastic urethane (TPU), polytechlafluoroethylene (PTFE), poly Vinylidene fluoride (PVDF), polyethylene terephthalate (PET), polyoxymethylene (POM), polyacer ketone (PEEK), polyaryl isoketone (PAEK), liquid crystal polymer (LCP), polyimide (PI) And one or more selected from the group consisting of self-preserved polyphenylene (SPR) thermoplastic resin composition.
제1항에 있어서,
열전도 보조제를 더 포함하는 열가소성 수지 조성물.
The method of claim 1,
A thermoplastic resin composition further comprising a heat conduction aid.
제6항에 있어서,
상기 열전도 보조제는 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 판상 그라파이트 및 50㎛ 내지 150㎛의 평균 입자 크기를 갖는 구상 그라파이트로 이루어진 군에서 선택된 1종 이상을 포함하는 열가소성 수지 조성물.
The method according to claim 6,
The thermal conductive auxiliary agent comprises at least one member selected from the group consisting of plate-like graphite having an average particle size of 50 μm to 150 μm and spherical graphite having an average particle size of 50 μm to 150 μm.
제6항에 있어서,
열가소성 수지 20 내지 97중량%;
평균입자크기가 1㎛ 내지 10,000㎛인 폴리실리콘계 화합물 1 내지 75중량%; 및
열전도 보조제 0.1 내지 70중량%를 포함하는 열가소성 수지 조성물.
The method according to claim 6,
20 to 97% by weight of thermoplastic resin;
1 to 75% by weight of a polysilicon compound having an average particle size of 1 μm to 10,000 μm; And
A thermoplastic resin composition comprising 0.1 to 70% by weight of the heat conduction aid.
제1항에 있어서,
자외선 안정제, 장기열안정제, 단기열안정제, 가소제, 이형제, 착색제, 대전방지제, 난연제, 형광증백제 및 충격보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함하는 열가소성 수지 조성물.
The method of claim 1,
A thermoplastic resin composition further comprising at least one additive selected from the group consisting of UV stabilizers, long-term heat stabilizers, short-term heat stabilizers, plasticizers, mold release agents, colorants, antistatic agents, flame retardants, fluorescent brighteners, and impact modifiers.
제1항의 열가소성 수지 조성물의 성형물을 포함하는 방열 재료.A heat radiation material comprising the molded article of the thermoplastic resin composition of claim 1.
KR1020120054279A 2012-05-22 2012-05-22 Thermoplastic resin composition Active KR101374818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120054279A KR101374818B1 (en) 2012-05-22 2012-05-22 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120054279A KR101374818B1 (en) 2012-05-22 2012-05-22 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
KR20130130449A KR20130130449A (en) 2013-12-02
KR101374818B1 true KR101374818B1 (en) 2014-03-17

Family

ID=49980128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120054279A Active KR101374818B1 (en) 2012-05-22 2012-05-22 Thermoplastic resin composition

Country Status (1)

Country Link
KR (1) KR101374818B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160061803A (en) 2014-11-24 2016-06-01 도레이첨단소재 주식회사 Thermally conductive adhesive composition and thermally conductive adhesive thin sheet therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090043596A (en) * 2006-08-25 2009-05-06 스미토모 다우 가부시키가이샤 Polycarbonate resin composition having flame retardancy and light diffusivity and a light diffusing plate comprising the composition
KR20100054716A (en) * 2008-11-14 2010-05-25 후지쯔 가부시끼가이샤 Heat radiation material, electronic device and method of manufacturing electronic device
JP4514164B2 (en) * 2008-05-08 2010-07-28 富士高分子工業株式会社 Thermally conductive resin composition
JP4962662B2 (en) 2010-09-28 2012-06-27 東レ株式会社 Thermoplastic resin composition and molded article comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090043596A (en) * 2006-08-25 2009-05-06 스미토모 다우 가부시키가이샤 Polycarbonate resin composition having flame retardancy and light diffusivity and a light diffusing plate comprising the composition
JP4514164B2 (en) * 2008-05-08 2010-07-28 富士高分子工業株式会社 Thermally conductive resin composition
KR20100054716A (en) * 2008-11-14 2010-05-25 후지쯔 가부시끼가이샤 Heat radiation material, electronic device and method of manufacturing electronic device
JP4962662B2 (en) 2010-09-28 2012-06-27 東レ株式会社 Thermoplastic resin composition and molded article comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160061803A (en) 2014-11-24 2016-06-01 도레이첨단소재 주식회사 Thermally conductive adhesive composition and thermally conductive adhesive thin sheet therefrom

Also Published As

Publication number Publication date
KR20130130449A (en) 2013-12-02

Similar Documents

Publication Publication Date Title
KR100706653B1 (en) Thermally Conductive Resin Compositions and Plastic Molded Articles
US20140080954A1 (en) Methods for making thermally conductve compositions containing boron nitride
EP3110876B1 (en) Thermally conductive polyamide compositions containing laser direct structuring additives
JP2006328352A (en) Insulating thermally conductive resin composition, molded article, and method for producing the same
CN101432364A (en) Polyamide resin composition and molded article
CN104987677A (en) Hollow glass bead modified PBT (Polybutylene Terephthalate) composite material and preparation method therefor
CN104151805A (en) Carbon fiber reinforced thermoplastic resin composite material with superior heat dissipation performance and preparation method
CN104968727B (en) Electronic apparatus
CN102993669A (en) High-performance and low-warpage IMD (In-Mold Decoration) injection molding material and preparation method thereof
KR20140132961A (en) Thermally conductive polymer compositions based on hybrid system, methods for preparing the same and shaped articles using the same
WO2007149783A1 (en) Thermally conductive polymer compounds containing zinc sulfide and thermal carbon black
JP5029344B2 (en) Thermoplastic resin molded product
KR101924351B1 (en) Thin wall moldable conductive compositions with improved physical properties and uses thereof
KR101446707B1 (en) Electrically insulating and thermally conducting polymer compositions containing excellent dispersive filler, methods for preparing the same, and mold product using the same
KR20190058198A (en) Electrically conductive resin composition and method of preparing the same
KR101374818B1 (en) Thermoplastic resin composition
KR20130078154A (en) Thermal conductive polyphenylene sulfide resin composition having a good surface gloss and article using the same
CN104448806A (en) Low-warping-rate halogen-free flame retardant carbon fiber-reinforced nylon alloy material and preparation method
KR101321098B1 (en) Composition of film for dissipating heat, and manufacturing method of film for dissipating heat using thereof
KR20140126907A (en) Heat radiating macromolecular resin material, heat radiating resin composition, plastic heat radiating material, and method for preparing thereof
KR20210082708A (en) Polycarbonate resin composition and article produced therefrom
CN107286447A (en) A kind of etfe film and preparation method thereof
JP6404604B2 (en) Polystyrene film having rough surface and method for producing the same
KR20140134756A (en) Macromolecular resin composition, method for preparing thereof, and injection molded plastics
CN108504061A (en) Low-temperature impact-resistant PC/ABS composite materials and products thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120522

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20131014

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140226

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140310

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140310

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20161228

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180226

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20190304

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20200302

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20210202

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20240205

Start annual number: 11

End annual number: 11