KR101338107B1 - Method of fabricating liquid crystal display device - Google Patents
Method of fabricating liquid crystal display device Download PDFInfo
- Publication number
- KR101338107B1 KR101338107B1 KR1020060128197A KR20060128197A KR101338107B1 KR 101338107 B1 KR101338107 B1 KR 101338107B1 KR 1020060128197 A KR1020060128197 A KR 1020060128197A KR 20060128197 A KR20060128197 A KR 20060128197A KR 101338107 B1 KR101338107 B1 KR 101338107B1
- Authority
- KR
- South Korea
- Prior art keywords
- forming
- electrode
- substrate
- region
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136277—Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0231—Manufacture or treatment of multiple TFTs using masks, e.g. half-tone masks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
본 발명의 액정표시장치의 제조방법은 액티브패턴과 스토리지전극을 한번의 마스크공정을 통해 형성하고 화소전극과 드레인전극의 접속을 위한 콘택홀 마스크공정을 제거함으로써 마스크수를 감소시켜 제조공정을 단순화하는 동시에 블랙매트릭스를 어레이 기판의 하부층에 형성함으로써 상기 어레이 기판과 컬러필터 기판 사이의 얼라인 마진(align margin)을 줄여 개구율을 향상시키기 위한 것으로, 단위 화소들이 매트릭스 형태로 배치된 화소부와 상기 화소부의 외곽에 위치한 제 1 회로부 및 제 2 회로부로 구분되는 제 1 기판을 제공하는 단계; 상기 화소부의 화소들의 경계영역에 블랙매트릭스를 형성하는 단계; 상기 블랙매트릭스가 형성된 제 1 기판 위에 버퍼층을 형성하는 단계; 상기 버퍼층이 형성된 제 1 기판의 화소부 및 제 1, 2 회로부에 액티브패턴과 제 1 게이트절연막을 형성하며, 상기 화소부의 액티브패턴의 소정영역 상부에 스토리지전극을 형성하는 단계; 상기 제 1 기판 위에 제 2 게이트절연막을 형성하는 단계; 상기 제 2 게이트절연막이 형성된 제 1 기판의 제 1 회로부에 게이트전극을 형성하며, 상기 제 1 회로부의 액티브패턴의 소정영역에 p+ 소오스/드레인영역을 형성하는 단계; 상기 제 2 게이트절연막이 형성된 제 1 기판의 화소부와 제 2 회로부에 게이트전극을 형성하며, 상기 화소부에 공통라인을 형성하는 단계; 상기 화소부와 제 2 회로부의 액티브패턴의 소정영역에 n+ 소오스/드레인영역을 형성하는 단계; 상기 제 1 기판 위에 층간절연막을 형성하는 단계; 상기 제 1 게이트절연막과 제 2 게이트절연막 및 층간절연막을 선택적으로 제거하여 상기 액티브패턴의 소오스영역과 드레인영역을 각각 노출시키는 제 1 콘택홀과 제 2 콘택홀을 형성하는 단계; 상기 제 1 콘택홀을 통해 상기 액티브패턴의 소오스영역과 전기적으로 접속하는 소오스전극을 형성하며, 상기 제 2 콘택홀을 통해 상기 액티브패턴의 드레인영역과 전기적으로 접속하는 드레인전극을 형성하는 단계; 상기 드레인전극과 전기적으로 접속하는 화소전극을 형성하는 단계; 컬러필터가 형성된 제 2 기판을 제공하는 단계; 상기 제 1 기판 또는 제 2 기판 중 어느 하나의 기판상에 액정층을 형성하는 단계; 및 상기 제 1 기판과 제 2 기판을 합착하는 단계를 포함한다.The manufacturing method of the liquid crystal display device of the present invention reduces the number of masks by simplifying the manufacturing process by forming the active pattern and the storage electrode through one mask process and eliminating the contact hole mask process for connecting the pixel electrode and the drain electrode. At the same time, by forming a black matrix on the lower layer of the array substrate to reduce the alignment margin between the array substrate and the color filter substrate to improve the aperture ratio, the pixel portion and the pixel portion in which the unit pixels are arranged in a matrix form Providing a first substrate which is divided into a first circuit portion and a second circuit portion located at an outer edge thereof; Forming a black matrix in a boundary region of pixels of the pixel portion; Forming a buffer layer on the first substrate on which the black matrix is formed; Forming an active pattern and a first gate insulating layer on the pixel portion of the first substrate on which the buffer layer is formed and on the first and second circuit portions, and forming a storage electrode on a predetermined region of the active pattern of the pixel portion; Forming a second gate insulating film on the first substrate; Forming a gate electrode on a first circuit portion of the first substrate on which the second gate insulating film is formed, and forming a p + source / drain region on a predetermined region of the active pattern of the first circuit portion; Forming a gate electrode on the pixel portion and the second circuit portion of the first substrate on which the second gate insulating film is formed, and forming a common line on the pixel portion; Forming an n + source / drain region in a predetermined region of an active pattern of the pixel portion and the second circuit portion; Forming an interlayer insulating film on the first substrate; Selectively removing the first gate insulating layer, the second gate insulating layer, and the interlayer insulating layer to form first and second contact holes exposing source and drain regions of the active pattern, respectively; Forming a source electrode electrically connected to the source region of the active pattern through the first contact hole, and forming a drain electrode electrically connected to the drain region of the active pattern through the second contact hole; Forming a pixel electrode electrically connected to the drain electrode; Providing a second substrate having a color filter formed thereon; Forming a liquid crystal layer on any one of the first substrate and the second substrate; And bonding the first substrate and the second substrate to each other.
액티브패턴, 스토리지전극, 화소전극, 마스크수, 블랙매트릭스 Active pattern, storage electrode, pixel electrode, number of masks, black matrix
Description
도 1은 일반적인 구동회로 일체형 액정표시장치의 구조를 개략적으로 나타내는 평면도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view schematically showing the structure of a liquid crystal display device with a built-in drive circuit. Fig.
도 2는 본 발명의 제 1 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도.2 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a first exemplary embodiment of the present invention.
도 3a 내지 도 3i는 도 2에 도시된 어레이 기판의 IIa-IIa'선에 따른 제조공정을 순차적으로 나타내는 단면도.3A to 3I are cross-sectional views sequentially showing a manufacturing process along the line IIa-IIa 'of the array substrate shown in FIG.
도 4는 도 2에 도시된 어레이 기판의 IIb-IIb'선에 따른 액정표시장치의 단면구조를 개략적으로 나타내는 도면.4 is a schematic cross-sectional view of a liquid crystal display device taken along a line IIb-IIb 'of the array substrate shown in FIG.
도 5는 본 발명의 제 2 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도.5 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a second exemplary embodiment of the present invention.
도 6a 내지 도 6j는 도 5에 도시된 어레이 기판의 Va-Va'선에 따른 제조공정을 순차적으로 나타내는 단면도.6A to 6J are cross-sectional views sequentially illustrating a manufacturing process along a Va-Va ′ line of the array substrate illustrated in FIG. 5.
도 7a 내지 도 7e는 도 5에 도시된 어레이 기판의 Va-Va'선에 따른 제조공정을 순차적으로 나타내는 평면도.7A to 7E are plan views sequentially illustrating a manufacturing process along a line Va—Va ′ of the array substrate illustrated in FIG. 5.
도 8a 내지 도 8f는 도 6b 및 도 7b에 도시된 제 1 마스크공정을 구체적으로 나타내는 단면도.8A to 8F are cross-sectional views illustrating in detail the first mask process illustrated in FIGS. 6B and 7B.
도 9는 도 5에 도시된 어레이 기판의 Vb-Vb'선에 따른 액정표시장치의 단면구조를 개략적으로 나타내는 도면.9 is a schematic cross-sectional view of a liquid crystal display device taken along a line Vb-Vb 'of the array substrate shown in FIG.
도 10은 본 발명의 제 3 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도.10 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a third exemplary embodiment of the present invention.
도 11a 내지 도 11f는 도 10에 도시된 어레이 기판의 X-X'선에 따른 제조공정을 순차적으로 나타내는 단면도.11A to 11F are cross-sectional views sequentially illustrating a manufacturing process along the line X-X 'of the array substrate shown in FIG.
도 12a 내지 도 12f는 도 11f에 도시된 제 5 마스크공정을 구체적으로 나타내는 단면도.12A to 12F are cross-sectional views specifically showing a fifth mask process shown in FIG. 11F.
** 도면의 주요부분에 대한 부호의 설명 **DESCRIPTION OF REFERENCE NUMERALS
108,208,308 : 공통라인 110,210,310 : 어레이 기판108,208,308: Common line 110,210,310: Array board
116,216,316 : 게이트라인 117,217,317 : 데이터라인116,216,316: Gate line 117,217,317: Data line
118,218,318 : 화소전극 124',224',324' : 액티브패턴118,218,318 Pixel electrodes 124 ', 224', 324 ': Active pattern
207,307 : 블랙매트릭스 230",330" : 스토리지전극207,307:
본 발명은 액정표시장치의 제조방법에 관한 것으로, 보다 상세하게는 마스크수를 감소시켜 제조공정을 단순화하고 수율을 향상시키는 동시에 개구율을 확보하여 휘도를 향상시킨 액정표시장치의 제조방법에 관한 것이다The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly, to a method for manufacturing a liquid crystal display device in which the number of masks is reduced to simplify the manufacturing process, improve the yield, and secure the aperture ratio to improve luminance.
최근의 정보화 사회에서 디스플레이는 시각정보 전달매체로서 그 중요성이 더 한층 강조되고 있으며, 향후 주요한 위치를 점하기 위해서는 저소비전력화, 박형화, 경량화, 고화질화 등의 요건을 충족시켜야 한다. 현재 평판 디스플레이(Flat Panel Display; FPD)의 주력 제품인 액정표시장치(Liquid Crystal Display; LCD)는 디스플레이의 이러한 조건들을 만족시킬 수 있는 성능뿐만 아니라 양산성까지 갖추었기 때문에, 이를 이용한 각종 신제품 창출이 급속도로 이루어지고 있으며 기존의 브라운관(Cathode Ray Tube; CRT)을 점진적으로 대체할 수 있는 핵심부품 산업으로서 자리 잡았다.In today's information society, display is more important as a visual information transmission medium, and in order to gain a major position in the future, it is necessary to satisfy requirements such as low power consumption, thinness, light weight, and high definition. Liquid Crystal Display (LCD), which is the flagship product of Flat Panel Display (FPD), is not only capable of satisfying these conditions of display but also has mass productivity. Therefore, And has become a core parts industry that can gradually replace conventional cathode ray tubes (CRTs).
일반적으로, 액정표시장치는 매트릭스(matrix) 형태로 배열된 액정셀들에 화상정보에 따른 데이터신호를 개별적으로 공급하여, 상기 액정셀들의 광투과율을 조절함으로써 원하는 화상을 표시할 수 있도록 한 표시장치이다.In general, a liquid crystal display device displays a desired image by individually supplying data signals according to image information to liquid crystal cells arranged in a matrix form to adjust a light transmittance of the liquid crystal cells. to be.
상기 액정표시장치에 주로 사용되는 구동 방식인 능동 매트릭스(Active Matrix; AM) 방식은 비정질 실리콘 박막 트랜지스터(Amorphous Silicon Thin Film Transistor; a-Si TFT)를 스위칭소자로 사용하여 화소부의 액정을 구동하는 방식이다.An active matrix (AM) method, which is a driving method mainly used in the liquid crystal display, is a method of driving a liquid crystal of a pixel portion by using an amorphous silicon thin film transistor (a-Si TFT) to be.
상기 비정질 실리콘 박막 트랜지스터는 저온 공정이 가능하여 저가의 절연기판을 사용할 수 있기 때문에 활발히 이용되고 있다.The amorphous silicon thin film transistor is actively used because a low-temperature process is possible and an inexpensive insulating substrate can be used.
그러나, 일반적으로 상기 비정질 실리콘 박막 트랜지스터의 전기적 이동도로는 1MHz 이상의 고속 동작을 요구하는 주변회로에 이용하는데는 한계가 있다. 이에 따라 전계효과 이동도(field effect mobility)가 상기 비정질 실리콘 박막 트랜지 스터에 비해 큰 다결정 실리콘(Polycrystalline Silicon; poly-Si) 박막 트랜지스터를 이용하여 유리기판 위에 화소부와 구동회로부를 동시에 집적하는 연구가 활발히 진행되고 있다.However, in general, the electric migration path of the amorphous silicon thin film transistor has a limitation in use for a peripheral circuit requiring a high-speed operation of 1 MHz or more. Therefore, the field effect mobility is larger than that of the amorphous silicon thin film transistor using a polycrystalline silicon (poly-Si) thin film transistor to integrate the pixel portion and the driving circuit portion on the glass substrate at the same time Is actively underway.
상기 다결정 실리콘 박막 트랜지스터 기술은 낮은 감광도와 높은 전계효과 이동도를 가지고 있어 구동회로를 기판에 직접 제작할 수 있다는 장점이 있다.The polycrystalline silicon thin film transistor technology has a low sensitivity and a high field effect mobility, so that the driving circuit can be directly manufactured on a substrate.
이동도의 증가는 구동 화소수를 결정하는 구동회로부의 동작 주파수를 향상시킬 수 있으며 이로 인한 표시장치의 고정세화가 용이해진다. 또한, 화소부의 신호 전압의 충전 시간의 감소로 전달 신호의 왜곡이 줄어들어 화질 향상을 기대할 수 있다.Increasing the mobility may improve the operating frequency of the driving circuit unit that determines the number of driving pixels, thereby facilitating high definition of the display device. In addition, the distortion of the transmission signal is reduced due to the reduction of the charging time of the signal voltage of the pixel portion, thereby improving the picture quality.
이하, 도 1을 참조하여 액정표시장치의 구조에 대해서 자세히 살펴본다.Hereinafter, the structure of the liquid crystal display device will be described in detail with reference to FIG.
도 1은 일반적인 액정표시장치의 구조를 개략적으로 나타내는 평면도로서, 어레이 기판에 구동회로부를 집적시킨 구동회로 일체형 액정표시장치를 나타내고 있다.FIG. 1 is a plan view schematically showing the structure of a general liquid crystal display device, and shows a liquid crystal display device with a drive circuit integrated with a drive circuit portion integrated on an array substrate.
도면에 도시된 바와 같이, 액정표시장치는 크게 컬러필터 기판(5)과 어레이 기판(10) 및 상기 컬러필터 기판(5)과 어레이 기판(10) 사이에 형성된 액정층(미도시)으로 이루어져 있다.As shown in the figure, the liquid crystal display is largely composed of a
상기 어레이 기판(10)은 단위 화소들이 매트릭스 형태로 배열된 화상표시 영역인 화소부(35)와 상기 화소부(35)의 외곽에 위치한 데이터 구동회로부(31)와 게이트 구동회로부(32)로 구성된 구동회로부(30)로 이루어져 있다.The
이때, 도면에는 도시하지 않았지만, 상기 어레이 기판(10)의 화소부(35)는 상기 기판(10) 위에 종횡으로 배열되어 복수개의 화소영역을 정의하는 복수개의 게이트라인과 데이터라인, 상기 게이트라인과 데이터라인의 교차영역에 형성된 스위칭소자인 박막 트랜지스터 및 상기 화소영역에 형성된 화소전극으로 구성된다.In this case, although not shown in the drawing, the
상기 박막 트랜지스터는 화소전극에 신호전압을 인가하고 차단하는 스위칭소자로 전계에 의하여 전류의 흐름을 조절하는 일종의 전계 효과 트랜지스터(Field Effect Transistor; FET)이다.The thin film transistor is a switching element for applying and blocking a signal voltage to the pixel electrode, and is a kind of field effect transistor (FET) for controlling current flow by an electric field.
상기 어레이 기판(10)의 구동회로부(30)는 상기 컬러필터 기판(5)에 비해 돌출된 어레이 기판(10)의 화소부(35) 외곽에 위치하는데, 상기 돌출된 어레이 기판(10)의 일측 장(長)변에 데이터 구동회로부(31)가 위치하며, 상기 돌출된 어레이 기판(10)의 일측 단(短)변에 게이트 구동회로부(32)가 위치하게 된다.The
이때, 상기 데이터 구동회로부(31)와 게이트 구동회로부(32)는 입력되는 신호를 적절하게 출력시키기 위하여 인버터(inverter)인 CMOS(Complementary Metal Oxide Semiconductor) 구조의 박막 트랜지스터를 사용하게 된다.In this case, the
참고로, 상기 CMOS는 고속 신호처리가 요구되는 구동회로부 박막 트랜지스터에 사용되는 MOS 구조로 된 집적회로의 일종으로 n 채널 박막 트랜지스터와 p 채널박막 트랜지스터를 모두 필요로 하며 속도와 밀도의 특성은 NMOS와 PMOS의 중간 형태를 나타낸다.For reference, the CMOS is an integrated circuit having an MOS structure which is used in a thin film transistor for driving circuits requiring high-speed signal processing. The CMOS requires both an n-channel thin film transistor and a p-channel thin film transistor. It shows the intermediate form of PMOS.
상기 게이트 구동회로부(32)와 데이터 구동회로부(31)는 각각 게이트라인과 데이터라인을 통해 화소전극에 주사신호 및 데이터신호를 공급하기 위한 장치로써, 외부신호 입력단(미도시)과 연결되어 있어 상기 외부신호 입력단을 통하여 들어온 외부신호를 조절하여 상기 화소전극에 출력하는 역할을 한다.The gate
또한, 상기 컬러필터 기판(5)의 화소부(35)에는 컬러를 구현하는 컬러필터(미도시)와 상기 어레이 기판(10)에 형성된 화소전극의 대향전극인 공통전극(미도시)이 형성되어 있다.In addition, a color filter (not shown) for implementing color and a common electrode (not shown), which is an opposite electrode of the pixel electrode formed on the
이와 같이 구성된 상기 컬러필터 기판(5)과 어레이 기판(10)은 스페이서(spacer)(미도시)에 의해 일정하게 이격되도록 셀갭(cell gap)이 마련되고, 화소부(35)의 외곽에 형성된 실 패턴(seal pattern)(미도시)에 의해 합착되어 단위 액정표시패널을 이루게 된다. 이때, 상기 컬러필터 기판(5)과 어레이 기판(10)의 합착은 상기 컬러필터 기판(5) 또는 어레이 기판(10)에 형성된 합착키를 통해 이루어진다.The
상기와 같이 구성되는 구동회로 일체형 액정표시장치는 다결정 실리콘 박막 트랜지스터를 이용하므로 소자 특성이 탁월하여 화상 품질이 우수하며, 고정세화가 가능하고 전력의 소비가 적다는 장점을 가지고 있다.The driving circuit integrated type liquid crystal display device having the above structure is advantageous in device characteristics because it uses a polycrystalline silicon thin film transistor, has excellent image quality, is capable of high definition, and consumes less power.
그러나, 상기 구동회로 일체형 액정표시장치는 동일 기판 위에 n 채널 박막 트랜지스터와 p 채널 박막 트랜지스터를 함께 형성하여야하기 때문에 단일 타입의 채널만을 형성하는 비정질 실리콘 박막 트랜지스터 액정표시장치에 비해 제조공정이 보다 복잡하다는 단점이 있다.However, since the n-channel thin film transistor and the p-channel thin film transistor must be formed together on the same substrate, the driving circuit-integrated liquid crystal display device is more complicated in manufacturing process than the amorphous silicon thin film transistor liquid crystal display device forming only a single type channel. There are disadvantages.
이와 같이 상기 박막 트랜지스터를 포함하는 어레이 기판의 제조에는 다수회의 포토리소그래피(photolithography)공정을 필요로 한다.As such, fabrication of an array substrate including the thin film transistor requires a plurality of photolithography processes.
상기 포토리소그래피공정은 마스크에 그려진 패턴을 박막이 증착된 기판 위 에 전사시켜 원하는 패턴을 형성하는 일련의 공정으로 감광액 도포, 노광, 현상공정 등 다수의 공정으로 이루어지며, 다수의 포토리소그래피공정은 생산 수율을 떨어뜨리는 단점이 있다.The photolithography process is a series of processes in which a pattern drawn on a mask is transferred onto a substrate on which a thin film is deposited to form a desired pattern. The photolithography process includes a plurality of processes such as photoresist coating, exposure, and development, and a plurality of photolithography processes are produced. There is a disadvantage of lowering the yield.
특히, 패턴을 형성하기 위하여 설계된 마스크는 매우 고가이어서, 공정에 적용되는 마스크수가 증가하면 액정표시장치의 제조비용이 이에 비례하여 상승하게 된다.In particular, the mask designed to form the pattern is very expensive, so that the manufacturing cost of the liquid crystal display device increases proportionally as the number of masks applied to the process increases.
본 발명은 상기한 문제를 해결하기 위한 것으로, 액티브패턴과 스토리지전극을 한번의 마스크공정으로 형성함으로써 박막 트랜지스터의 제조에 사용되는 마스크수를 감소시킨 액정표시장치의 제조방법을 제공하는데 목적이 있다.An object of the present invention is to provide a method of manufacturing a liquid crystal display device in which the number of masks used for manufacturing a thin film transistor is reduced by forming an active pattern and a storage electrode in one mask process.
본 발명의 다른 목적은 화소전극과 드레인전극의 접속을 위한 콘택홀 마스크공정을 제거하는 동시에 상기 화소전극과 소오스/드레인전극을 한번의 마스크공정을 통해 형성함으로써 마스크수를 더욱 감소시킨 액정표시장치의 제조방법을 제공하는데 있다. Another object of the present invention is to eliminate the contact hole mask process for connecting the pixel electrode and the drain electrode, and to form the pixel electrode and the source / drain electrode through one mask process to further reduce the number of masks. It is to provide a manufacturing method.
본 발명의 또 다른 목적은 얼라인 마진을 요구하는 블랙매트릭스를 어레이 기판에 형성함으로써 개구율을 향상시킨 액정표시장치의 제조방법을 제공하는데 있다.It is still another object of the present invention to provide a method of manufacturing a liquid crystal display device having improved aperture ratio by forming a black matrix on the array substrate that requires alignment margin.
본 발명의 또 다른 목적 및 특징들은 후술되는 발명의 구성 및 특허청구범위에서 설명될 것이다.Other objects and features of the present invention will be described in the following description of the invention and the claims.
상기한 목적을 달성하기 위하여, 본 발명의 액정표시장치의 제조방법은 단위 화소들이 매트릭스 형태로 배치된 화소부와 상기 화소부의 외곽에 위치한 제 1 회로부 및 제 2 회로부로 구분되는 제 1 기판을 제공하는 단계; 상기 화소부의 화소들의 경계영역에 블랙매트릭스를 형성하는 단계; 상기 블랙매트릭스가 형성된 제 1 기판 위에 버퍼층을 형성하는 단계; 상기 버퍼층이 형성된 제 1 기판의 화소부 및 제 1, 2 회로부에 액티브패턴과 제 1 게이트절연막을 형성하며, 상기 화소부의 액티브패턴의 소정영역 상부에 스토리지전극을 형성하는 단계; 상기 제 1 기판 위에 제 2 게이트절연막을 형성하는 단계; 상기 제 2 게이트절연막이 형성된 제 1 기판의 제 1 회로부에 게이트전극을 형성하며, 상기 제 1 회로부의 액티브패턴의 소정영역에 p+ 소오스/드레인영역을 형성하는 단계; 상기 제 2 게이트절연막이 형성된 제 1 기판의 화소부와 제 2 회로부에 게이트전극을 형성하며, 상기 화소부에 공통라인을 형성하는 단계; 상기 화소부와 제 2 회로부의 액티브패턴의 소정영역에 n+ 소오스/드레인영역을 형성하는 단계; 상기 제 1 기판 위에 층간절연막을 형성하는 단계; 상기 제 1 게이트절연막과 제 2 게이트절연막 및 층간절연막을 선택적으로 제거하여 상기 액티브패턴의 소오스영역과 드레인영역을 각각 노출시키는 제 1 콘택홀과 제 2 콘택홀을 형성하는 단계; 상기 제 1 콘택홀을 통해 상기 액티브패턴의 소오스영역과 전기적으로 접속하는 소오스전극을 형성하며, 상기 제 2 콘택홀을 통해 상기 액티브패턴의 드레인영역과 전기적으로 접속하는 드레인전극을 형성하는 단계; 상기 드레인전극과 전기적으로 접속하는 화소전극을 형성하는 단계; 컬러필터가 형성된 제 2 기판을 제공하는 단계; 상기 제 1 기판 또는 제 2 기판 중 어느 하나의 기판상에 액정층을 형성하는 단계; 및 상기 제 1 기판과 제 2 기판을 합착하는 단계를 포함한다.In order to achieve the above object, the manufacturing method of the liquid crystal display device of the present invention provides a first substrate divided into a pixel portion in which the unit pixels are arranged in a matrix form, and a first circuit portion and a second circuit portion located outside the pixel portion. Doing; Forming a black matrix in a boundary region of pixels of the pixel portion; Forming a buffer layer on the first substrate on which the black matrix is formed; Forming an active pattern and a first gate insulating layer on the pixel portion of the first substrate on which the buffer layer is formed and on the first and second circuit portions, and forming a storage electrode on a predetermined region of the active pattern of the pixel portion; Forming a second gate insulating film on the first substrate; Forming a gate electrode on a first circuit portion of the first substrate on which the second gate insulating film is formed, and forming a p + source / drain region on a predetermined region of the active pattern of the first circuit portion; Forming a gate electrode on the pixel portion and the second circuit portion of the first substrate on which the second gate insulating film is formed, and forming a common line on the pixel portion; Forming an n + source / drain region in a predetermined region of an active pattern of the pixel portion and the second circuit portion; Forming an interlayer insulating film on the first substrate; Selectively removing the first gate insulating layer, the second gate insulating layer, and the interlayer insulating layer to form first and second contact holes exposing source and drain regions of the active pattern, respectively; Forming a source electrode electrically connected to the source region of the active pattern through the first contact hole, and forming a drain electrode electrically connected to the drain region of the active pattern through the second contact hole; Forming a pixel electrode electrically connected to the drain electrode; Providing a second substrate having a color filter formed thereon; Forming a liquid crystal layer on any one of the first substrate and the second substrate; And bonding the first substrate and the second substrate to each other.
이하, 첨부한 도면을 참조하여 본 발명에 따른 액정표시장치의 제조방법의 바람직한 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the manufacturing method of the liquid crystal display device according to the present invention.
도 2는 본 발명의 제 1 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도로써, 특히 화소부의 박막 트랜지스터를 포함하는 하나의 화소를 나타내고 있다.FIG. 2 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a first exemplary embodiment of the present invention. In particular, FIG. 2 illustrates one pixel including a thin film transistor of a pixel portion.
실제의 액정표시장치에서는 N개의 게이트라인과 M개의 데이터라인이 교차하여 MxN개의 화소가 존재하지만 설명을 간단하게 하기 위해 도면에는 한 화소를 나타내고 있다.In an actual liquid crystal display device, N number of gate lines and M number of data lines cross each other and MxN pixels are present. However, in order to simplify the description, one pixel is shown in the drawing.
도면에 도시된 바와 같이, 제 1 실시예의 어레이 기판(110)에는 상기 어레이 기판(110) 위에 종횡으로 배열되어 화소영역을 정의하는 게이트라인(116)과 데이터라인(117)이 형성되어 있다. 또한, 상기 게이트라인(116)과 데이터라인(117)의 교차영역에는 스위칭소자인 박막 트랜지스터가 형성되어 있으며, 상기 화소영역 내에는 상기 박막 트랜지스터에 연결되어 컬러필터 기판(미도시)의 공통전극과 함께 액정(미도시)을 구동시키는 화소전극(118)이 형성되어 있다.As shown in the figure, a
상기 박막 트랜지스터는 게이트라인(116)에 연결된 게이트전극(121), 데이터라인(117)에 연결된 소오스전극(122) 및 화소전극(118)에 연결된 드레인전극(123)으로 구성되어 있다. 또한, 상기 박막 트랜지스터는 상기 게이트전극(121)에 공급되는 게이트 전압에 의해 상기 소오스전극(122)과 드레인전극(123) 간에 전도채널(conductive channel)을 형성하는 액티브패턴(124')을 포함한다.The thin film transistor includes a
이때, 상기 제 1 실시예의 액티브패턴(124')은 다결정 실리콘 박막으로 이루어지며, 상기 액티브패턴(124')은 그 일부가 화소영역으로 연장되어 공통라인(108) 과 함께 제 1 스토리지 커패시터를 구성하는 스토리지패턴(124")에 연결되어 있다. 즉, 상기 화소영역 내에는 상기 게이트라인(116)과 실질적으로 동일한 방향으로 공통라인(108)이 형성되어 있으며, 상기 공통라인(108)은 제 1 절연막(미도시)을 사이에 두고 그 하부의 스토리지패턴(124")과 중첩하여 제 1 스토리지 커패시터를 구성한다. 이때, 상기 제 1 실시예의 스토리지패턴(124")은 상기 액티브패턴(124')을 구성하는 다결정 실리콘 박막에 별도의 마스크공정을 통한 스토리지 도핑을 통해 형성되게 된다.In this case, the
상기 소오스전극(122) 및 드레인전극(123)은 상기 제 1 절연막과 제 2 절연막(미도시)에 형성된 제 1 콘택홀(140a) 및 제 2 콘택홀(140b)을 통해 상기 액티브패턴(124')의 소오스영역 및 드레인영역과 전기적으로 접속하게 된다. 또한, 상기 소오스전극(122)의 일부는 일방향으로 연장되어 상기 데이터라인(117)의 일부를 구성하며, 상기 드레인전극(123)의 일부는 화소영역 쪽으로 연장되어 제 3 절연막(미도시)에 형성된 제 3 콘택홀(140c)을 통해 상기 화소전극(118)과 전기적으로 접속하게 된다.The
이때, 상기 화소영역으로 연장된 드레인전극(123)의 일부는 상기 제 2 절연막을 사이에 두고 그 하부의 공통라인(108)과 중첩하여 제 2 스토리지 커패시터를 구성하게 된다.In this case, a part of the
이하, 이와 같이 구성된 상기 어레이 기판의 제조공정을 도면을 참조하여 상세히 설명한다.Hereinafter, a manufacturing process of the array substrate constructed as above will be described in detail with reference to the drawings.
도 3a 내지 도 3i는 도 2에 도시된 어레이 기판의 IIa-IIa'선에 따른 제조공 정을 순차적으로 나타내는 단면도로써, n 채널의 TFT가 형성되는 화소부의 어레이 기판을 제조하는 과정을 예를 들어 나타내고 있다. 이때, 회로부에는 n 채널의 TFT와 p 채널의 TFT가 모두 형성되게 된다.3A to 3I are cross-sectional views sequentially illustrating a manufacturing process along a line IIa-IIa 'of the array substrate shown in FIG. 2, illustrating an example of a process of manufacturing an array substrate of a pixel portion where n-channel TFTs are formed. have. At this time, both the n-channel TFT and the p-channel TFT are formed in the circuit portion.
도 3a에 도시된 바와 같이, 유리와 같은 투명한 절연물질로 이루어진 기판(110) 위에 버퍼층(111)과 실리콘 박막을 형성한 다음, 상기 실리콘 박막을 결정화하여 다결정 실리콘 박막을 형성한다. 이후, 상기 다결정 실리콘 박막을 포토리소그래피공정(제 1 마스크공정)을 이용하여 패터닝하여 액티브패턴과 스토리지패턴을 구성할 다결정 실리콘 박막패턴(124)을 형성한다.As shown in FIG. 3A, a
그리고, 도 3b에 도시된 바와 같이, 상기 다결정 실리콘 박막패턴(124)의 일부를 가린 후 도핑을 진행하여 스토리지패턴(124")을 형성한다. 여기서, 포토레지스트로 가려진 상기 다결정 실리콘 박막패턴(124)의 일부는 액티브패턴(124')을 형성하게 되며, 이때 또 하나의 포토리소그래피공정(제 2 마스크공정)이 필요하게 된다.3B, a portion of the polycrystalline silicon
다음으로, 도 3c에 도시된 바와 같이, 상기 기판(110) 전면에 차례대로 제 1 절연막(115a)과 제 1 도전막을 형성한 후, 포토리소그래피공정(제 3 마스크공정)을 이용하여 상기 제 1 도전막을 선택적으로 패터닝함으로써 상기 액티브패턴(124') 위에 상기 제 1 도전막으로 이루어진 게이트전극(121)을 형성하는 동시에 상기 스토리지패턴(124") 위에 상기 제 1 도전막으로 이루어진 공통라인(108)을 형성한다. Next, as shown in FIG. 3C, the first insulating
상기 제 1 도전막은 상기 게이트전극(121)과 공통라인(108)을 구성하기 위해 알루미늄(aluminium; Al), 알루미늄 합금(Al alloy), 텅스텐(tungsten; W), 구 리(copper; Cu), 크롬(chromium; Cr), 몰리브덴(molybdenum; Mo) 등과 같은 저저항 불투명 도전성물질로 이루어질 수 있다.The first conductive layer may be formed of aluminum (Al), aluminum alloy, tungsten (W), copper (Cu), to form a
이때, 상기 공통라인(108)은 화소영역 내에서 상기 제 1 절연막(115a)을 사이에 두고 그 하부의 스토리지패턴(124")과 중첩하여 제 1 스토리지 커패시터를 구성하게 된다.In this case, the
이후, 도 3d에 도시된 바와 같이, 상기 화소부 어레이 기판(110)의 전면과 회로부의 n 채널 TFT영역을 포토레지스트로 이루어진 제 1 차단막(170)으로 가린 후(제 4 마스크공정), 회로부의 p 채널 TFT영역에 고농도의 p+ 이온을 주입하여 p+ 소오스영역과 드레인영역을 형성한다.After that, as shown in FIG. 3D, the n-channel TFT region of the front surface of the pixel
그리고, 도 3e에 도시된 바와 같이, 상기 회로부의 p 채널 TFT영역과 상기 화소부/회로부의 n 채널 TFT영역 일부 및 스토리지영역을 제 2 차단막(170')으로 가린 후(제 5 마스크공정), 상기 화소부의 액티브패턴(124')의 소정 영역에 고농도의 n+ 이온을 주입하여 n+의 소오스영역(124a)과 드레인영역(124b)을 형성한다. 여기서, 도면부호 124c는 상기 소오스영역(124a)과 드레인영역(124b) 사이에 전도채널을 형성하는 채널영역을 의미한다.3E, after the p-channel TFT region of the circuit portion, a portion of the n-channel TFT region and the storage region of the pixel portion / circuit portion are covered by the
이후, 상기 제 2 차단막(170')을 제거한 다음 기판(110) 전면에 저농도의 n- 이온을 주입하여 상기 n+의 소오스영역(124a)과 채널영역(124c) 및 상기 n+의 드레인영역(124b)과 채널영역(124c) 사이에 엘디디(Lightly Doped Drain; LDD)영역(124l)을 형성한다.Subsequently, the
이때, 상기 스토리지영역은 상기 제 2 차단막(170')으로 가려도 되고 가리지 않아도 되며, 상기 회로부의 n 채널 TFT영역에도 동일한 방식으로 n+ 이온이 주입되어 n+의 소오스영역과 드레인영역 및 엘디디영역이 형성되게 된다.In this case, the storage region may or may not be covered by the
다음으로, 도 3f에 도시된 바와 같이, 상기 기판(110) 전면에 제 2 절연막(115b)을 증착한 후, 포토리소그래피공정(제 6 마스크공정)을 통해 상기 제 1 절연막(115a)과 제 2 절연막(115b)의 일부 영역을 제거하여 상기 소오스영역(124a)의 일부를 노출시키는 제 1 콘택홀(140a)과 상기 드레인영역(124b)의 일부를 노출시키는 제 2 콘택홀(140b)을 형성한다.Next, as shown in FIG. 3F, after depositing the second
그리고, 도 3g에 도시된 바와 같이, 제 2 도전막을 기판(110) 전면에 형성한 후 포토리소그래피공정(제 7 마스크공정)을 이용하여 패터닝함으로써 상기 제 1 콘택홀(140a)을 통해 상기 소오스영역(124a)과 전기적으로 접속하는 소오스전극(122)을 형성하며, 상기 제 2 콘택홀(140b)을 통해 상기 드레인영역(124b)과 전기적으로 접속하는 드레인전극(123)을 형성한다. 이때, 상기 소오스전극(122)의 일부는 일방향으로 연장되어 데이터라인(117)을 형성하게 되며, 상기 드레인전극(123)의 일부는 화소영역으로 연장되어 상기 제 2 절연막(115b)을 사이에 두고 그 하부의 공통라인(108)과 중첩하여 제 2 스토리지 커패시터를 구성하게 된다.As shown in FIG. 3G, the source region is formed through the
다음으로, 도 3h에 도시된 바와 같이, 상기 기판(110) 전면에 제 3 절연막(115c)을 증착한 후, 포토리소그래피공정(제 8 마스크공정)을 이용하여 상기 제 3 절연막(115c)을 패터닝함으로써 상기 드레인전극(123)의 일부를 노출시키는 제 3 콘택홀(140c)을 형성한다.Next, as shown in FIG. 3H, after depositing a third
그리고, 도 3i에 도시된 바와 같이, 상기 제 3 절연막(115c)이 형성된 기 판(110) 전면에 제 3 도전막을 형성한 후, 포토리소그래피공정(제 9 마스크공정)을 이용하여 상기 제 3 도전막을 선택적으로 패터닝함으로써 상기 제 3 콘택홀(140c)을 통해 상기 드레인전극(123)과 전기적으로 접속하는 화소전극(118)을 형성한다.3I, after the third conductive film is formed on the entire surface of the
상기 제 3 도전막은 화소전극(118)을 구성하기 위해 인듐-틴-옥사이드(Indium Tin Oxide; ITO) 또는 인듐-징크-옥사이드(Indium Zinc Oxide; IZO) 등과 같이 투과율이 뛰어난 투명 도전물질을 사용할 수 있다.The third conductive layer may use a transparent conductive material having excellent transmittance such as indium tin oxide (ITO) or indium zinc oxide (IZO) to form the
이때, 상기 제 1 실시예의 경우에는 다결정 실리콘 박막으로 액티브패턴과 스토리지패턴을 형성하고 별개의 마스크공정을 통해 상기 스토리지패턴에 스토리지도핑을 진행함으로써 총 9개의 마스크공정을 통해 화소부와 회로부의 TFT를 제작할 수 있게 된다.In this case, in the case of the first embodiment, the active pattern and the storage pattern are formed of a polycrystalline silicon thin film and the storage doping is performed on the storage pattern through a separate mask process. I can produce it.
이와 같이 제조된 상기 제 1 실시예의 어레이 기판은 도 4에 도시된 바와 같이, 화상표시 영역의 외곽에 형성된 실런트(미도시)에 의해 컬러필터 기판(105)과 대향하도록 합착되어 액정표시장치를 구성하며, 상기 어레이 기판(110)과 컬러필터 기판(105)의 합착은 상기 어레이 기판(110)과 컬러필터 기판(105)에 형성된 합착키(미도시)를 통해 이루어진다.The array substrate of the first embodiment manufactured as described above is bonded to face the
이때, 상기 제 1 실시예의 액정표시장치는 컬러필터 기판(105)에 블랙매트릭스(107)를 형성하여 화소의 개구영역(la)을 정의하기 때문에 상기 어레이 기판(110)과 컬러필터 기판(105)의 합착시 발생하는 미스얼라인(misalign)을 고려하여 상기 블랙매트릭스(107)의 어라인 마진(m)을 고려하여 컬러필터 기판(105)을 설계하게 된다. 그 결과 개구영역(la)이 줄어들게 되어 개구율이 감소하게 된다.In this case, the
참고로, 도면부호 106은 컬러를 구현하는 컬러필터를 나타낸다.For reference,
이하, 회절마스크 또는 하프-톤 마스크(이하, 회절마스크를 지칭하는 경우에는 하프-톤 마스크를 포함하는 것으로 한다)를 이용한 한번의 마스크공정으로 실리콘 박막으로 이루어진 액티브패턴과 도전물질로 이루어진 스토리지전극을 형성하며, 화소전극과 드레인전극의 접속을 위한 콘택홀 마스크공정을 제거함으로써 마스크수를 감소시켜 제조공정을 단순화하는 동시에 블랙매트릭스를 어레이 기판의 하부층에 형성함으로써 상기 어레이 기판과 컬러필터 기판 사이의 얼라인 마진을 줄여 개구율을 향상시킨 본 발명의 제 2 실시예를 도면을 참조하여 상세히 설명한다.Hereinafter, a storage process made of an active pattern made of a silicon thin film and a conductive material is performed in a single mask process using a diffraction mask or a half-tone mask (hereinafter, referred to as a half-tone mask when referred to as a diffraction mask). The number of masks is reduced by eliminating the contact hole mask process for connecting the pixel electrode and the drain electrode, thereby simplifying the manufacturing process, and forming a black matrix on the lower layer of the array substrate, thereby forming a gap between the array substrate and the color filter substrate. A second embodiment of the present invention in which phosphorus margin is reduced to improve aperture ratio will be described in detail with reference to the drawings.
도 5는 본 발명의 제 2 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도로써, 특히 화소부의 박막 트랜지스터를 포함하는 하나의 화소를 나타내고 있다.FIG. 5 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a second exemplary embodiment of the present invention, in particular one pixel including a thin film transistor of a pixel portion.
실제의 액정표시장치에서는 N개의 게이트라인과 M개의 데이터라인이 교차하여 MxN개의 화소가 존재하지만 설명을 간단하게 하기 위해 도면에는 하나의 화소를 나타내고 있다.In an actual liquid crystal display device, N number of gate lines and M number of data lines intersect to form MxN pixels, but one pixel is shown in the figure for simplicity.
도면에 도시된 바와 같이, 제 2 실시예의 어레이 기판(210)에는 상기 어레이 기판(210) 위에 종횡으로 배열되어 화소영역을 정의하는 게이트라인(216)과 데이터라인(217)이 형성되어 있다. 또한, 상기 게이트라인(216)과 데이터라인(217)의 교차영역에는 스위칭소자인 박막 트랜지스터가 형성되어 있으며, 상기 화소영역 내에는 상기 박막 트랜지스터에 연결되어 컬러필터 기판(미도시)의 공통전극과 함께 액정(미도시)을 구동시키는 화소전극(218)이 형성되어 있다.As shown in the figure, a
상기 박막 트랜지스터는 게이트라인(216)에 연결된 게이트전극(221), 데이터라인(217)에 연결된 소오스전극(222) 및 화소전극(218)에 연결된 드레인전극(223)으로 구성되어 있다. 또한, 상기 박막 트랜지스터는 상기 게이트전극(221)에 공급되는 게이트 전압에 의해 상기 소오스전극(222)과 드레인전극(223) 간에 전도채널을 형성하는 액티브패턴(224')을 포함한다.The thin film transistor includes a
이때, 다결정 실리콘 박막으로 이루어진 상기 액티브패턴(224')은 그 일부가 화소영역으로 연장되며, 상기 화소영역으로 연장된 액티브패턴(224') 상부에는 제 1 게이트절연막(미도시)이 개재된 상태에서 도전물질로 이루어진 스토리지전극(230")이 형성되어 있다. 또한, 상기 화소영역 내에는 상기 게이트라인(216)과 실질적으로 동일한 방향으로 공통라인(208)이 형성되어 있으며, 상기 공통라인(208)은 제 2 게이트절연막(미도시)을 사이에 두고 그 하부의 스토리지전극(230")과 중첩하여 제 1 스토리지 커패시터를 구성한다. 이때, 상기 제 2 실시예의 스토리지전극(230")은 상기 제 1 실시예와는 다르게 불투명한 도전물질로 이루어지며 한번의 마스크공정을 통한 상기 액티브패턴(224')과 동시에 형성되게 된다.In this case, a portion of the
또한, 불투명한 도전물질로 이루어진 상기 소오스전극(222)과 드레인전극(223) 및 데이터라인(217)은 그 상부에 투명한 도전물질로 이루어지며 각각 상기 소오스전극(222)과 드레인전극(223) 및 데이터라인(217)을 덮도록 패터닝된 소오스전극패턴(222')과 드레인전극패턴(223') 및 데이터라인패턴(217')이 형성되어 있다.In addition, the
상기 소오스전극(222) 및 드레인전극(223)은 상기 제 1 게이트절연막과 제 2 게이트절연막 및 층간절연막(미도시)에 형성된 제 1 콘택홀(240a) 및 제 2 콘택홀(240b)을 통해 상기 액티브패턴(224')의 소오스영역(224a) 및 드레인영역(224b)과 전기적으로 접속하게 된다. 또한, 상기 소오스전극(222)의 일부는 일방향으로 연장되어 상기 데이터라인(217)의 일부를 구성하며, 상기 드레인전극패턴(223')의 일부는 화소영역 쪽으로 연장되어 상기 제 2 실시예의 화소전극(218)을 구성하게 된다.The
이때, 상기 화소영역으로 연장된 드레인전극(223)의 일부는 상기 층간절연막을 사이에 두고 그 하부의 공통라인(208)과 중첩하여 제 2 스토리지 커패시터를 구성하게 된다.In this case, a part of the
여기서, 상기 제 2 실시예의 액정표시장치는 컬러필터 기판이 아닌 상기 어레이 기판(210)에 블랙매트릭스(207)을 형성함으로써 얼라인 마진을 줄일 수 있어 화소의 개구영역(A)이 증가하는 이점이 있다. 즉, 블랙매트릭스를 컬러필터 기판에 형성하는 경우에는 상기 컬러필터 기판과 어레이 기판을 합착할 때 상기 어레이 기판과의 얼라인을 위한 얼라인 마진을 고려하여야하기 때문에 상기 블랙매트릭스에 마진을 가지도록 설계하게 되는데, 이에 따라 화소의 개구영역이 줄어들게 된다. 이때, 상기 제 2 실시예와 같이 어레이 기판(210)에 블랙매트릭스(207)를 형성하게 되면 전술한 얼라인 마진을 고려할 필요가 없기 때문에 블랙매트릭스(207)에 마진을 주지 않아 화소의 개구영역(A)이 증가하게 된다Here, the liquid crystal display of the second embodiment can reduce the alignment margin by forming the
또한, 전술한 바와 같이 상기 제 2 실시예의 액정표시장치는 회절마스크를 이용한 한번의 마스크공정으로 액티브패턴(224')과 스토리지전극(230")을 동시에 형성하며, 화소전극(218)과 드레인전극(223')의 접속을 위한 콘택홀 마스크공정이 필요없게 되어 총 6번의 마스크공정을 통해 어레이 기판을 제작할 수 있게 되는데, 이를 액정표시장치의 제조방법을 통해 상세히 설명한다.As described above, the liquid crystal display of the second embodiment simultaneously forms the active pattern 224 'and the
도 6a 내지 도 6j는 도 5에 도시된 어레이 기판의 Va-Va'선에 따른 제조공정을 순차적으로 나타내는 단면도로써, 상기 도 5에 도시되지 않은 회로부의 어레이 기판의 제조공정을 함께 나타내고 있다.
또한, 도 7a 내지 도 7e는 도 5에 도시된 어레이 기판의 Va-Va'선에 따른 제조공정을 순차적으로 나타내는 평면도이다.6A to 6J are cross-sectional views sequentially illustrating a manufacturing process along a Va-Va 'line of the array substrate illustrated in FIG. 5, and together illustrate a manufacturing process of an array substrate of a circuit unit not illustrated in FIG. 5.
7A to 7E are plan views sequentially illustrating a manufacturing process along the Va—Va ′ line of the array substrate illustrated in FIG. 5.
이때, 일반적으로 화소부에 형성되는 박막 트랜지스터는 n 채널 또는 p 채널 모두 가능하며 회로부에는 n 채널 TFT와 p 채널 TFT가 모두 형성되어 CMOS 형태를 이루게 되나, 도면에는 편의상 화소부의 n 채널 TFT 및 회로부의 n 채널 TFT와 p 채널 TFT를 제작하는 방법을 예를 들어 나타내고 있다.In this case, in general, the thin film transistor formed in the pixel portion may be both n-channel or p-channel, and both the n-channel TFT and the p-channel TFT are formed in the circuit portion to form a CMOS. The method of manufacturing an n-channel TFT and a p-channel TFT is shown, for example.
도 6a 및 7a에 도시된 바와 같이, 유리와 같은 투명한 절연물질로 이루어진 어레이 기판(210) 위에 제 1 버퍼층(211)과 유기막(또는 금속막)을 형성한 다음, 상기 유기막(또는 금속막)을 패터닝하여 화소부에 블랙매트릭스(207)를 형성한다.6A and 7A, a
상기 블랙매트릭스(207)는 화소들의 경계영역에 패터닝되어 액정표시장치 하부의 백라이트(미도시)로부터 발생된 광의 누설을 차단하고, 인접하는 화소들의 혼색을 방지하는 역할을 한다.The
이때, 상기 제 2 실시예의 블랙매트릭스(207)는 어레이 기판(210)에 형성되기 때문에 상기 어레이 기판(210)과 컬러필터 기판을 합착할 때 필요한 얼라인 마진을 고려하여 설계할 필요가 없게 된다.In this case, since the
참고로, 상기 블랙매트릭스(207)를 형성하기 위한 마스크공정은 상기 어레이 기판(210)을 제조하는 어레이공정의 총 마스크수에는 포함되지 않는다.For reference, the mask process for forming the
이후, 도 6b 및 도 7b에 도시된 바와 같이, 상기 블랙매트릭스(207)가 형성된 상기 어레이 기판(210) 전면에 제 2 버퍼막(211')과 실리콘 박막과 제 1 게이트절연막 및 도전막을 형성한 후, 포토리소그래피공정(제 1 마스크공정)을 이용하여 상기 실리콘 박막과 제 1 게이트절연막과 도전막을 선택적으로 패터닝하여 화소부 어레이 기판(210)에 액티브패턴(224')과 스토리지전극(230")을 형성하며, 회로부 어레이 기판(210)에 n 채널 액티브패턴(224n)과 p 채널 액티브패턴(224p)을 형성한다.6B and 7B, a
전술한 바와 같이 상기 액티브패턴(224',224n,224p)과 스토리지전극(230")은 회절마스크를 이용함으로써 한번의 마스크공정을 통해 형성할 수 있는데, 이를 도면을 참조하여 상세히 설명한다.As described above, the
도 8a 내지 도 8f는 도 6b 및 도 7b에 도시된 제 1 마스크공정을 구체적으로 나타내는 단면도이다.8A to 8F are cross-sectional views illustrating in detail the first mask process illustrated in FIGS. 6B and 7B.
도 8a에 도시된 바와 같이, 제 1 버퍼막(211)과 블랙매트릭스(207)가 형성된 어레이 기판(210) 위에 제 2 버퍼막(211')과 다결정 실리콘 박막(224)을 형성한다.As shown in FIG. 8A, the
이때, 상기 제 2 실시예는 다결정 실리콘 박막(224)을 박막 트랜지스터의 반도체층으로 이용한 경우를 예를 들어 설명하고 있으나, 본 발명이 이에 한정되는 것은 아니며, 상기 박막 트랜지스터의 반도체층으로 비정질 실리콘 박막을 이용할 수도 있다. 이때, 상기 다결정 실리콘 박막(224)은 어레이 기판(210) 위에 비정질 실리콘 박막을 증착한 후 여러 가지 결정화 방식을 이용하여 형성할 수 있으며, 이 를 설명하면 다음과 같다.In this case, the second embodiment has been described using the polycrystalline silicon
먼저, 비정질 실리콘 박막은 여러 가지 방법으로 증착하여 형성할 수 있으며, 상기 비정질 실리콘 박막을 증착하는 대표적인 방법으로는 저압 화학 기상 증착(Low Pressure Chemical Vapor Deposition; LPCVD)방법과 플라즈마 화학 기상 증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)방법이 있다.First, an amorphous silicon thin film may be formed by depositing in various ways. Representative methods of depositing the amorphous silicon thin film may include low pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (Plasma Enhanced). Chemical Vapor Deposition (PECVD) method.
상기 비정질 실리콘 박막을 결정화하는 방법으로는 크게 비정질 실리콘 박막을 고온 요로(furnace)에서 열처리하는 고상 결정화(Solid Phase Crystallization; SPC)방법과 레이저를 이용하는 엑시머 레이저 어닐링(Eximer Laser Annealing; ELA)방법이 있다.As a method of crystallizing the amorphous silicon thin film, there are largely a solid phase crystallization (SPC) method for heat treating the amorphous silicon thin film in a high temperature furnace and an excimer laser annealing (ELA) method using a laser. .
상기 레이저 결정화로는 펄스(pulse) 형태의 레이저를 이용한 엑시머 레이저 어닐링방법이 주로 이용되나, 근래에는 그레인(grain)을 수평방향으로 성장시켜 결정화특성을 향상시킨 순차적 수평결정화(Sequential Lateral Solidification; SLS)방법이 연구되고 있다.As the laser crystallization, an excimer laser annealing method using a pulse-type laser is mainly used, but in recent years, sequential lateral solidification (SLS) in which grains are grown in a horizontal direction to improve crystallization characteristics. The method is being studied.
그리고, 상기의 다결정 실리콘 박막(224) 위에 제 1 게이트절연막(215) 및 몰리브덴이나 알루미늄 계열의 도전물질로 이루어진 도전막(230)을 형성한다. 이때, 상기 제 2 실시예는 다결정 실리콘 박막(224) 위에 스토리지전극을 구성할 도전막을 바로 스퍼터링(sputtering)하는 것이 아니라, 상기 다결정 실리콘 박막(224) 위에 제 1 게이트절연막(215a)을 증착한 후 도전막(230)을 형성함으로써 스퍼터링에 의한 상기 다결정 실리콘 박막(224)의 손상을 방지할 수 있게 된다.A first
다음으로, 도 8b에 도시된 바와 같이, 상기 어레이 기판(210) 전면에 포토레 지스트와 같은 감광성물질로 이루어진 감광막(270)을 형성한 후 제 2 실시예의 회절마스크(280)를 통해 상기 감광막(270)에 선택적으로 광을 조사한다.Next, as shown in FIG. 8B, a
이때, 상기 제 2 실시예에 사용한 회절마스크(280)에는 조사된 광을 모두 투과시키는 투과영역(I)과 슬릿패턴이 적용되어 광의 일부만 투과시키고 일부는 차단하는 슬릿영역(II) 및 조사된 모든 광을 차단하는 차단영역(III)이 마련되어 있으며, 상기 회절마스크(280)를 투과한 광만이 감광막(270)에 조사되게 된다.In this case, the
이어서, 상기 회절마스크(280)를 통해 노광된 감광막(270)을 현상하고 나면, 도 8c에 도시된 바와 같이, 상기 차단영역(III)과 슬릿영역(II)을 통해 광이 모두 차단되거나 일부만 차단된 영역에는 소정 두께의 제 1 감광막패턴(270a) 내지 제 4 감광막패턴(270d)이 남아있게 되고, 모든 광이 투과된 투과영역(I)에는 감광막이 완전히 제거되어 상기 도전막(230) 표면이 노출되게 된다.Subsequently, after developing the
이때, 상기 차단영역(III)에 형성된 제 1 감광막패턴(270a)은 슬릿영역(II)을 통해 형성된 제 2 감광막패턴(270b) 내지 제 4 감광막패턴(270d) 보다 두껍게 형성된다. 또한, 상기 투과영역(I)을 통해 광이 모두 투과된 영역에는 감광막이 완전히 제거되는데, 이것은 포지티브 포토레지스트를 사용했기 때문이며, 본 발명이 이에 한정되는 것은 아니며 네거티브 포토레지스트를 사용하여도 무방하다.In this case, the
다음으로, 도 8d에 도시된 바와 같이, 상기와 같이 형성된 제 1 감광막패턴(270a) 내지 제 4 감광막패턴(270d)을 마스크로 하여, 그 하부에 형성된 다결정 실리콘 박막과 제 1 게이트절연막 및 도전막을 선택적으로 제거하게 되면, 상기 화소부의 어레이 기판(210)에 상기 다결정 실리콘 박막으로 이루어진 액티브패 턴(224')이 형성되게 된다. 이때, 상기 액티브패턴(224') 상부에는 화소부 제 1 게이트절연막(215a)을 개재하되, 상기 도전막으로 이루어지며 상기 액티브패턴(224')과 동일한 형태로 패터닝된 도전막패턴(230')이 남아있게 된다.Next, as shown in FIG. 8D, the polycrystalline silicon thin film, the first gate insulating film, and the conductive film formed under the first
이때, 상기 회로부의 어레이 기판(210)에는 상기 다결정 실리콘 박막으로 이루어진 n 채널 액티브패턴(224n)과 p 채널 액티브패턴(224p)이 각각 형성되게 되며, 상기 n 채널 액티브패턴(224n)과 p 채널 액티브패턴(224p) 상부에는 회로부 제 1 게이트절연막(215na, 215pa)을 개재하되, 상기 도전막으로 이루어지며 상기 n 채널 액티브패턴(224n)과 p 채널 액티브패턴(224p) 각각 동일한 형태로 패터닝된 n 채널 도전막패턴(230n)과 p 채널 도전막패턴(230p)이 남아있게 된다.At this time, the n-channel
이후, 상기 제 1 감광막패턴(270a) 내지 제 4 감광막패턴(270d)의 일부를 제거하는 애싱(ashing)공정을 진행하게 되면, 도 8e에 도시된 바와 같이, 상기 액티브패턴(224')과 n 채널 액티브패턴(224n) 및 p 채널 액티브패턴(224p)의 상부, 즉 회절노광이 적용된 슬릿영역(II)의 제 2 감광막패턴 내지 제 4 감광막패턴이 완전히 제거되어 상기 도전막패턴(230')과 n 채널 도전막패턴(230n) 및 p 채널 도전막패턴(230p) 표면이 노출되게 된다.Subsequently, when an ashing process of removing a portion of the
이때, 상기 제 1 감광막패턴은 상기 제 2 감광막패턴 내지 제 4 감광막패턴의 두께만큼이 제거된 제 5 감광막패턴(270a')으로 상기 차단영역(III)에 대응하는 영역 상부에만 남아있게 된다.In this case, the first photoresist pattern may be the
이후, 도 8f에 도시된 바와 같이, 상기 남아있는 제 5 감광막패턴(270a')을 마스크로 하여 상기 도전막패턴(230')의 일부와 n 채널 도전막패턴(230n) 및 p 채 널 도전막패턴(230p)을 제거하게 되면, 상기 화소부의 어레이 기판(210)에 도전막으로 이루어진 스토리지전극(230")이 형성되게 된다.Subsequently, as shown in FIG. 8F, a portion of the
그리고, 도 6c에 도시된 바와 같이, 상기 어레이 기판(210) 전면에 제 2 게이트절연막(215a')과 제 1 도전막(250)을 형성한다.6C, a second
상기 제 1 도전막(250)은 게이트전극과 공통라인을 구성하기 위해 알루미늄(aluminium; Al), 알루미늄 합금(Al alloy), 텅스텐(tungsten; W), 구리(copper; Cu), 크롬(chromium; Cr), 몰리브덴(molybdenum; Mo) 등과 같은 저저항 불투명 도전성물질로 이루어질 수 있다.The first conductive layer 250 may include aluminum (Al), aluminum alloy, tungsten (W), copper (Cu), chromium (chromium) to form a common line with the gate electrode. Cr), molybdenum (Mo) and the like can be made of a low resistance opaque conductive material.
다음으로, 도 6d에 도시된 바와 같이, 상기 화소부와 회로부의 n 채널 TFT영역 전부와 상기 회로부의 p 채널 TFT영역의 소정영역을 포토레지스트로 이루어진 제 1 차단막(270')으로 가린 후(제 2 마스크공정), 상기 제 1 차단막(270')을 마스크로 그 하부의 제 1 도전막을 선택적으로 패터닝하여 회로부의 p 채널 TFT영역에 상기 제 1 도전막으로 이루어진 회로부 게이트전극(221p)을 형성한다.Next, as shown in Fig. 6D, the entire area of the n-channel TFT region of the pixel portion and the circuit portion and the predetermined region of the p-channel TFT region of the circuit portion are covered with a first blocking film 270 'made of photoresist ( 2), and selectively patterning the first conductive film under the mask using the first blocking film 270 'as a mask to form a circuit
그리고, 상기 제 1 차단막(270')을 마스크로 회로부 p 채널 TFT영역에 고농도의 p+ 이온을 주입하여 p+ 소오스영역(224pa)과 드레인영역(224pb)을 형성한다. 여기서, 도면부호 224pc는 상기 p+ 소오스영역(224pa)과 드레인영역(224pb) 사이에 전도채널을 형성하는 p 채널영역을 의미한다.The p + source region 224pa and the drain region 224pb are formed by implanting high concentrations of p + ions into the circuit portion p-channel TFT region using the first blocking layer 270 'as a mask. Here, reference numeral 224pc denotes a p-channel region that forms a conductive channel between the p + source region 224pa and the drain region 224pb.
이후, 도 6e와 도 6f 및 도 7c에 도시된 바와 같이, 상기 회로부의 p 채널 TFT영역 전부 및 화소부와 회로부의 n 채널 TFT영역 일부를 제 2 차단막(270")으로 가린 후(제 3 마스크공정), 상기 제 2 차단막(270")을 마스크로 그 하부의 제 1 도 전막을 패터닝하여 화소부와 회로부에 각각 화소부 게이트전극(221)과 회로부 게이트전극(221n)을 형성하는 동시에 상기 스토리지전극(230") 상부에 공통라인(208)을 형성한다.6E, 6F, and 7C, after covering all of the p-channel TFT region of the circuit portion and a portion of the n-channel TFT region of the pixel portion and the circuit portion with the
이때, 상기 화소부 게이트전극(221)과 회로부 게이트전극(221n) 및 공통라인(208)은 상기 제 1 도전막을 습식식각을 이용하여 오버식각(over etching)함으로써 그 상부의 제 2 차단막(270")보다 폭이 줄어들게 할 수 있다.In this case, the pixel
여기서, 상기 화소부의 공통라인(208)은 상기 제 2 게이트절연막(215a')을 사이에 두고 그 하부의 스토리지전극(230")과 중첩하여 제 1 스토리지 커패시터를 형성하며, 이때 제 2 실시예의 경우에는 게이트절연막이 제 1 게이트절연막(215a)과 제 2게이트절연막(215a')으로 구성되어 상기 제 2 게이트절연막(215a')을 얇게 형성할 수 있어 상기 제 1 스토리지 커패시터의 용량이 증가하게 된다. 따라서, 스토리지전극(230")이나 공통라인(208) 등 불투명한 스토리지영역의 면적을 줄일 수 있게 되어 실질적으로 개구율이 증가하는 효과를 얻게 된다.Here, the
이후, 상기 제 2 차단막(270")을 마스크로 상기 화소부와 회로부의 n 채널 TFT영역에 고농도의 n+ 이온을 주입하여 n+ 소오스영역(224a, 224na)과 드레인영역(224b, 224nb)을 형성한다. 여기서, 도면부호 224c 및 224nc는 상기 n+ 소오스영역(224a, 224na)과 드레인영역(224b, 224nb) 사이에 전도채널을 형성하는 n 채널영역을 의미한다.Subsequently, n +
그리고, 도 6g에 도시된 바와 같이, 상기 제 2 차단막을 제거한 다음 어레이 기판(210) 전면에 저농도의 n- 이온을 주입하여 상기 n+ 소오스영역(224a, 224na) 과 채널영역(224c, 224nc) 및 상기 n+ 드레인영역(224b, 224nb)과 채널영역(224c, 224nc) 사이에 엘디디영역(224l,224nl, 224l,224nl)을 형성한다.As shown in FIG. 6G, the second blocking layer is removed, and then a low concentration of n − ions is implanted into the
다음으로, 도 6h 및 도 7d에 도시된 바와 같이, 상기 어레이 기판(210) 전면에 층간절연막(215b)을 증착한 후, 포토리소그래피공정(제 4 마스크공정)을 통해 상기 제 1 게이트절연막(215a)과 제 2 게이트절연막(215a') 및 층간절연막(215b)의 일부 영역을 제거하여 상기 소오스영역(224a,224na,224pa)의 일부를 노출시키는 제 1 콘택홀(240a,240na,240pa)과 상기 드레인영역(224b,224nb,224pb)의 일부를 노출시키는 제 2 콘택홀(240b,240nb,240pb)을 형성한다.Next, as shown in FIGS. 6H and 7D, after depositing the
여기서, 상기 층간절연막(215b)은 실리콘질화막(SiNx)/실리콘산화막(SiO2)의 이중막을 적용할 수 있다. 이때에는 SiO2 증착 후 활성화 열처리를 하며, SiNx 증착 후 수소화 열처리를 할 수 있다. 또는, SiNx/SiO2를 모두 증착 후 한번의 열처리를 통해 수소화 및 활성화를 동시에 할 수도 있다.The interlayer insulating
또한, 상기 층간절연막(215b)은 SiNx 단일막 혹은 SiO2/SiNx/SiO2의 삼중막 등이 다양하게 적용될 수 있다.In addition, the
이와 같이, 본 발명에서는 상기 층간절연막(215b)으로 실리콘질화막(SiNx)을 포함한 구조를 채택하며, 이때 상기 SiNx은 수소화에 기여할 수 있는 수소 소오스 역할을 한다.As described above, the present invention adopts a structure including a silicon nitride film (SiNx) as the
그러나, 전술한 바와 같이 상기 층간절연막(215b)으로 SiNx/SiO2 구조 또는 SiNx 단일막 구조를 채택할 경우, 상기 SiNx는 유전상수가 6.5 ~7.0으로서 유전상수가 3.9인 SiO2와 비교하여 동일한 적층 두께에 대해 단위면적당 커패시턴스가 크게 된다. 따라서, 상기 층간절연막(215b)의 상부 및 하부에 각각 배열된 게이트라인(216)과 데이터라(217)인 사이에 전기적 영향이 커져 신호 딜레이가 증가하게 된다. 이로써, 고속 동작이나 고해상도 구현 관점에서 문제가 될 수 있다.However, when the SiNx / SiO 2 structure or the SiNx single layer structure is adopted as the
따라서, 이러한 문제점을 보완하기 위해, 상기 층간절연막(215b)으로 상기 SiNx 위에 유전상수가 낮은 SiO2를 적층한 SiO2/SiNx/SiO2의 3중 구조를 채택할 수 있다. 이와 같이, 상기 층간절연막(215b)으로 SiO2/SiNx/SiO2의 3중 구조를 채택할 경우, SiNx/SiO2 구조 또는 SiNx 단일막 구조와 비교하여 동일한 적층 두께에 대해 단위면적당 커패시턴스를 작게 할 수 있다. 이로써, 게이트라인(216)과 데이터라인(217) 사이에 전기적 영향이 줄어들게 되어 신호 딜레이 요소를 줄일 수 있다.Thus, to solve this problem, the dielectric constant on the SiNx as the interlayer insulating layer (215b) can adopt three of the structure of SiO 2 / SiNx / SiO 2 by laminating a low SiO 2. As described above, when the interlayer insulating
이때, 상기 화소부의 제 2 콘택홀(240b) 형성시 상기 화소부의 드레인영역(224b)과 스토리지전극(230")의 일부를 함께 노출시키도록 할 수 있으며, 상기 화소부의 드레인영역(224b)과 상기 스토리지전극(230")의 일부가 따로 노출되도록 두 개의 제 2 콘택홀을 형성한 후 드레인전극으로 서로 연결시키도록 할 수도 있다.In this case, when the
이후, 도 6i 및 도 7e에 도시된 바와 같이, 상기 어레이 기판(210) 전면에 제 2 도전막을 형성한 후 포토리소그래피공정(제 5 마스크공정)을 이용하여 패터닝함으로써 상기 제 1 콘택홀(240a,240na,240pa)을 통해 상기 소오스영 역(224a,224na,224pa)과 전기적으로 접속하는 소오스전극(222,222n,222p)을 형성하며, 상기 제 2 콘택홀(240b,240nb,240pb)을 통해 상기 드레인영역(224b,224nb,224pb)과 전기적으로 접속하는 드레인전극(223,223n,223p)을 형성한다. 이때, 상기 화소부의 소오스전극(222)의 일부는 일방향으로 연장되어 데이터라인(217)의 일부를 구성하게 되며, 상기 화소부의 드레인전극(223)의 일부는 화소영역으로 연장되어 상기 층간절연막(215b)을 사이에 두고 그 하부의 공통라인(208)과 중첩하여 제 2 스토리지 커패시터를 구성하게 된다.6I and 7E, a second conductive film is formed on the entire surface of the
이때, 상기 제 2 도전막은 소오스전극(222,222n,222p)과 드레인전극(223,223n,223p) 및 데이터라인(217)을 구성하기 위해 알루미늄(aluminium; Al), 알루미늄 합금(Al alloy), 텅스텐(tungsten; W), 구리(copper; Cu), 크롬(chromium; Cr), 몰리브덴(molybdenum; Mo) 등과 같은 저저항 불투명 도전물질로 이루어질 수 있다.In this case, the second conductive layer may be formed of aluminum (Al), aluminum alloy (Al alloy), and tungsten (or aluminum) to form the
그리고, 도 6j에 도시된 바와 같이, 상기 어레이 기판(210) 전면에 제 3 도전막을 형성한 후 포토리소그래피공정(제 6 마스크공정)을 이용하여 패터닝함으로써 상기 소오스전극(222,222n,222p)과 드레인전극(223,223n,223p) 및 데이터라인(217) 상부에 각각 상기 소오스전극(222,222n,222p)과 드레인전극(223,223n,223p) 및 데이터라인(217)을 덮도록 소오스전극패턴(222',222n',222p')과 드레인전극패턴(223',223n',223p') 및 데이터라인패턴(217')을 형성하게 된다. 이때, 상기 화소부의 드레인전극패턴(223')의 일부는 화소영역으로 연장되어 화소전극(218)을 구성하게 됨으로써 추가적인 콘택홀 없이 상기 드레인전극패턴(223')을 통해 상기 드레인전극(223)과 화소전극(218)이 전기적으로 접속하게 된다.As illustrated in FIG. 6J, a third conductive film is formed on the entire surface of the
이때, 상기 제 3 도전막은 화소전극(218)을 구성하기 위해 인듐-틴-옥사이드 또는 인듐-징크-옥사이드 등과 같이 투과율이 뛰어난 투명 도전물질로 이루어질 수 있다.In this case, the third conductive layer may be made of a transparent conductive material having excellent transmittance such as indium tin oxide or indium zinc oxide to form the
이와 같이 상기 제 2 실시예는 액티브패턴(224')과 스토리지전극(230")을 한번의 마스크공정을 통해 형성하고, 화소전극(218)과 드레인전극(223)의 접속을 위한 콘택홀 마스크공정을 제거함으로써 총 6번의 마스크공정을 통해 구동회로 일체형 액정표시장치의 어레이 기판(210)을 제작할 수 있게 된다.As described above, in the second embodiment, the active pattern 224 'and the
이때, 상기 제 2 실시예는 상기 어레이 기판(210)의 하부층에 블랙매트릭스(207)를 형성함으로써 컬러필터 기판에 블랙매트릭스를 형성하는 경우에 비해 얼라인 마진이 필요없게 되어 실질적으로 개구율이 향상되는 효과를 가지게 되는데, 이를 다음의 도면을 참조하여 상세히 설명한다.At this time, in the second embodiment, since the
도 9는 도 5에 도시된 어레이 기판의 Vb-Vb'선에 따른 액정표시장치의 단면구조를 개략적으로 나타내는 도면이다.FIG. 9 is a diagram schematically illustrating a cross-sectional structure of the liquid crystal display device along the line Vb-Vb ′ of the array substrate illustrated in FIG. 5.
상기 제 2 실시예에 따라 제조된 어레이 기판은 도면에 도시된 바와 같이, 화상표시 영역의 외곽에 형성된 실런트(미도시)에 의해 컬러필터 기판(205)과 대향하도록 합착되어 액정표시장치를 구성하며, 상기 어레이 기판(210)과 컬러필터 기판(205)의 합착은 상기 어레이 기판(210)과 컬러필터 기판(205)에 형성된 합착키(미도시)를 통해 이루어진다.As shown in the drawing, the array substrate manufactured according to the second embodiment is bonded to face the
이때, 상기 제 2 실시예의 액정표시장치는 어레이 기판(210)에 블랙매트릭스(207)를 형성하여 화소의 개구영역(la')을 정의하기 때문에 상기 제 1 실시예의 액정표시장치에서와 같이 어레이 기판과 컬러필터 기판의 합착시 발생하는 미스얼라인(misalign)을 고려할 필요가 없게 된다.In this case, the liquid crystal display of the second embodiment forms a
즉, 블랙매트릭스(207)를 어레이 기판(210)에 형성하게 되면, 컬러필터 기판과 어레이 기판(210)이 합착할 때 미스얼라인이 발생하더라도 상기 블랙매트릭스(207)는 상기 미스얼라인과 관계없는 어레이 기판(210)에 형성되어 있으므로 상기 제 1 실시예에서와 같이 상기 미스얼라인을 고려하여 블랙매트릭스에 얼라인 마진을 형성할 필요가 없게 된다.That is, when the
그 결과, 상기 제 1 실시예의 얼라인 마진을 고려한 경우의 개구영역(la)에 비해 개구영역(la)이 증가하게 되어 개구율이 향상되게 된다.As a result, the opening area la is increased compared to the opening area la when the alignment margin of the first embodiment is taken into consideration, and the opening ratio is improved.
참고로, 도면부호 206은 컬러를 구현하는 컬러필터를 나타낸다.For reference,
이때, 상기 제 2 실시예는 소오스/드레인전극과 화소전극을 두 번의 마스크공정을 통해 개별적으로 형성하는 경우를 예를 들어 설명하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 다른 방법으로 화소전극용 투명한 제 2 도전막을 형성하고 그 위에 소오스/드레인전극용 불투명한 제 3 도전막을 형성한 다음, 회절마스크를 이용하여 상기 제 2 도전막과 제 3 도전막을 선택적으로 패터닝함으로써 한번의 마스크공정을 통해 상기 소오스/드레인전극과 화소전극을 형성할 수 있는데, 이를 다음의 제 3 실시예를 통해 상세히 설명한다.In this case, the second embodiment has been described in which the source / drain electrodes and the pixel electrodes are formed separately through two mask processes, for example, but the present invention is not limited thereto. Alternatively, a transparent second conductive film for the pixel electrode is formed and an opaque third conductive film for the source / drain electrodes is formed thereon, and then selectively patterned the second conductive film and the third conductive film using a diffraction mask. The source / drain electrodes and the pixel electrodes may be formed through the mask process of FIG.
도 10은 본 발명의 제 3 실시예에 따른 액정표시장치의 어레이 기판 일부를 개략적으로 나타내는 평면도이다.10 is a plan view schematically illustrating a portion of an array substrate of a liquid crystal display according to a third exemplary embodiment of the present invention.
도면에 도시된 바와 같이, 제 3 실시예의 어레이 기판(310)에는 상기 어레이 기판(310) 위에 종횡으로 배열되어 화소영역을 정의하는 게이트라인(316)과 데이터라인(317)이 형성되어 있다. 또한, 상기 게이트라인(316)과 데이터라인(317)의 교차영역에는 스위칭소자인 박막 트랜지스터가 형성되어 있으며, 상기 화소영역 내에는 상기 박막 트랜지스터에 연결되어 컬러필터 기판(미도시)의 공통전극과 함께 액정(미도시)을 구동시키는 화소전극(318)이 형성되어 있다.As shown in the figure, a
상기 박막 트랜지스터는 게이트라인(316)에 연결된 게이트전극(321), 데이터라인(317)에 연결된 소오스전극(322) 및 화소전극(318)에 연결된 드레인전극(323)으로 구성되어 있다. 또한, 상기 박막 트랜지스터는 상기 게이트전극(321)에 공급되는 게이트 전압에 의해 상기 소오스전극(322)과 드레인전극(323) 간에 전도채널을 형성하는 액티브패턴(324')을 포함한다.The thin film transistor includes a
이때, 다결정 실리콘 박막으로 이루어진 상기 액티브패턴(324')은 그 일부가 화소영역으로 연장되며, 상기 화소영역으로 연장된 액티브패턴(324') 상부에는 제 1 게이트절연막(미도시)이 개재된 상태에서 도전물질로 이루어진 스토리지전극(330")이 형성되어 있다. 또한, 상기 화소영역 내에는 상기 게이트라인(316)과 실질적으로 동일한 방향으로 공통라인(308)이 형성되어 있으며, 상기 공통라인(308)은 제 2 게이트절연막(미도시)을 사이에 두고 그 하부의 스토리지전극(330")과 중첩하여 제 1 스토리지 커패시터를 구성한다. 이때, 상기 제 3 실시예의 스토리지전극(330")은 상기 제 2 실시예의 경우와 동일하게 불투명한 도전물질 로 이루어지며 한번의 마스크공정을 통한 상기 액티브패턴(324')과 동시에 형성되게 된다.In this case, a portion of the active pattern 324 'made of a polycrystalline silicon thin film extends to a pixel region, and a first gate insulating film (not shown) is interposed on the active pattern 324' extending to the pixel region. A
또한, 불투명한 도전물질로 이루어진 상기 소오스전극(322)과 드레인전극(323) 및 데이터라인(317)은 그 하부에 투명한 도전물질로 이루어지며 각각 상기 소오스전극(322)과 드레인전극(323) 및 데이터라인(317)과 동일한 형태로 패터닝된 소오스전극패턴(322')과 드레인전극패턴(323') 및 데이터라인패턴(317')이 형성되어 있다.In addition, the
상기 소오스전극(322) 및 드레인전극(323)은 상기 제 1 게이트절연막과 제 2 게이트절연막 및 층간절연막(미도시)에 형성된 제 1 콘택홀(340a) 및 제 2 콘택홀(340b)을 통해 상기 액티브패턴(324')의 소오스영역(324a) 및 드레인영역(324b)과 전기적으로 접속하게 된다. 또한, 상기 소오스전극(322)의 일부는 일방향으로 연장되어 상기 데이터라인(317)의 일부를 구성하며, 상기 드레인전극패턴(323')의 일부는 화소영역 쪽으로 연장되어 상기 화소전극(318)을 구성하게 된다.The
이때, 상기 화소영역으로 연장된 드레인전극(323)의 일부는 상기 층간절연막을 사이에 두고 그 하부의 공통라인(308)과 중첩하여 제 2 스토리지 커패시터를 구성하게 된다.In this case, a part of the
또한, 상기 제 3 실시예의 액정표시장치는 컬러필터 기판이 아닌 상기 어레이 기판(310)에 블랙매트릭스(307)을 형성함으로써 얼라인 마진을 줄일 수 있어 화소의 개구영역(A)이 증가하는 이점이 있다.In addition, in the liquid crystal display of the third embodiment, alignment margins can be reduced by forming the
이때, 상기 제 3 실시예의 액정표시장치는 회절마스크를 이용한 한번의 마스 크공정으로 액티브패턴(324')과 스토리지전극(330")을 동시에 형성하고 소오스전극(322)과 드레인전극(323) 및 화소전극(318)을 동시에 형성하며, 상기 드레인전극(323')의 접속을 위한 콘택홀 마스크공정을 제거함으로써 총 5번의 마스크공정을 통해 어레이 기판을 제작할 수 있게 되는데, 이를 다음의 액정표시장치의 제조방법을 통해 상세히 설명한다.In this case, the liquid crystal display of the third embodiment simultaneously forms the active pattern 324 'and the
도 11a 내지 도 11f는 도 10에 도시된 어레이 기판의 X-X'선에 따른 제조공정을 순차적으로 나타내는 단면도로써, 상기 도 10에 도시되지 않은 회로부의 어레이 기판의 제조공정을 함께 나타내고 있다.11A through 11F are cross-sectional views sequentially illustrating a manufacturing process along the line X-X 'of the array substrate illustrated in FIG. 10, and together illustrate a manufacturing process of an array substrate of a circuit unit not illustrated in FIG. 10.
이때, 일반적으로 화소부에 형성되는 박막 트랜지스터는 n 채널 또는 p 채널 모두 가능하며 회로부에는 n 채널 TFT와 p 채널 TFT가 모두 형성되어 CMOS 형태를 이루게 되나, 도면에는 편의상 화소부의 n 채널 TFT 및 회로부의 n 채널 TFT와 p 채널 TFT를 제작하는 방법을 예를 들어 나타내고 있다.In this case, in general, the thin film transistor formed in the pixel portion may be both n-channel or p-channel, and both the n-channel TFT and the p-channel TFT are formed in the circuit portion to form a CMOS. The method of manufacturing an n-channel TFT and a p-channel TFT is shown, for example.
도 11a에 도시된 바와 같이, 유리와 같은 투명한 절연물질로 이루어진 어레이 기판(310) 위에 제 1 버퍼층(311)과 유기막(또는 금속막)을 형성한 다음, 상기 유기막(또는 금속막)을 패터닝하여 화소부에 블랙매트릭스(307)를 형성한다.As shown in FIG. 11A, a
상기 블랙매트릭스(307)는 화소들의 경계영역에 패터닝되어 액정표시장치 하부의 백라이트(미도시)로부터 발생된 광의 누설을 차단하고, 인접하는 화소들의 혼색을 방지하는 역할을 한다.The
참고로, 상기 블랙매트릭스(307)를 형성하기 위한 마스크공정은 상기 어레이 기판(310)을 제조하는 어레이공정의 총 마스크수에는 포함되지 않는다.For reference, the mask process for forming the
이후, 도 11b에 도시된 바와 같이, 상기 블랙매트릭스(307)가 형성된 상기 어레이 기판(310) 전면에 제 2 버퍼막(311')과 제 1 게이트절연막과 다결정 실리콘 박막 및 도전막을 형성한 후, 포토리소그래피공정(제 1 마스크공정)을 이용하여 상기 제 1 게이트절연막과 다결정 실리콘 박막 및 도전막을 선택적으로 패터닝하여 화소부 어레이 기판(310)에 액티브패턴(324')과 스토리지전극(330")을 형성하며, 회로부 어레이 기판(310)에 n 채널 액티브패턴(324n)과 p 채널 액티브패턴(324p)을 형성한다.Thereafter, as shown in FIG. 11B, after the
전술한 제 2 실시예와 같이 상기 액티브패턴(324',324n,324p)과 스토리지전극(330")은 회절마스크를 이용함으로써 한번의 마스크공정을 통해 형성할 수 있게 된다.As in the above-described second embodiment, the
이때, 상기 화소부 액티브패턴(324') 및 회로부 액티브패턴(324n, 324p) 상부에는 각각 상기 제 1 게이트절연막으로 이루어진 화소부 제 1 게이트절연막(315a) 및 회로부 제 1 게이트절연막(315na, 315pa)이 형성되게 된다. In this case, the pixel portion first
이후, 도 11c에 도시된 바와 같이, 상기 어레이 기판(110) 전면에 제 2 게이트절연막(315a')과 제 1 도전막을 형성한다.Thereafter, as shown in FIG. 11C, a second
다음으로, 상기 화소부와 회로부의 n 채널 TFT영역 전부와 상기 회로부의 p 채널 TFT영역의 소정영역을 제 1 차단막으로 가린 후(제 2 마스크공정), 상기 제 1 차단막을 마스크로 그 하부의 제 1 도전막을 선택적으로 패터닝하여 회로부의 p 채널 TFT영역에 상기 제 1 도전막으로 이루어진 회로부 게이트전극(321p)을 형성한다. 그리고, 상기 제 1 차단막을 마스크로 회로부 p 채널 TFT영역에 고농도의 p+ 이온을 주입하여 p+ 소오스영역(324pa)과 드레인영역(324pb)을 형성한다. 여기서, 도면부호 324pc는 상기 p+ 소오스영역(324pa)과 드레인영역(324pb) 사이에 전도채널을 형성하는 p 채널영역을 의미한다.Next, the entire area of the n-channel TFT region of the pixel portion and the circuit portion and the predetermined region of the p-channel TFT region of the circuit portion are covered with the first blocking film (second mask process), and the first blocking film is masked under the first blocking film. The first conductive film is selectively patterned to form a circuit
이후, 도 11d에 도시된 바와 같이, 상기 회로부의 p 채널 TFT영역 전부 및 화소부와 회로부의 n 채널 TFT영역 일부를 제 2 차단막으로 가린 후(제 3 마스크공정), 상기 제 2 차단막을 마스크로 그 하부의 제 1 도전막을 패터닝하여 화소부와 회로부에 각각 화소부 게이트전극(321)과 회로부 게이트전극(321n)을 형성하는 동시에 상기 스토리지전극(330") 상부에 공통라인(308)을 형성한다.Subsequently, as shown in FIG. 11D, after covering all of the p-channel TFT region of the circuit portion and a portion of the n-channel TFT region of the pixel portion and the circuit portion with the second blocking film (third mask process), the second blocking film is used as a mask. The first conductive layer under the pattern is patterned to form the pixel
이때, 전술한 제 2 실시예와 같이 상기 화소부 게이트전극(321)과 회로부 게이트전극(321n) 및 공통라인(308)은 상기 제 1 도전막을 습식식각을 이용하여 오버식각함으로써 그 상부의 제 2 차단막보다 폭이 줄어들게 할 수 있다.In this case, as in the above-described second embodiment, the pixel
이후, 상기 제 2 차단막을 마스크로 상기 화소부와 회로부의 n 채널 TFT영역에 고농도의 n+ 이온을 주입하여 n+ 소오스영역(324a, 324na)과 드레인영역(324b, 324nb)을 형성한다. 여기서, 도면부호 324c 및 324nc는 상기 n+ 소오스영역(324a, 324na)과 드레인영역(324b, 324nb) 사이에 전도채널을 형성하는 n 채널영역을 의미한다.Subsequently, n +
그리고, 상기 제 2 차단막을 제거한 다음 어레이 기판(310) 전면에 저농도의 n- 이온을 주입하여 상기 n+ 소오스영역(324a, 324na)과 채널영역(324c, 324nc) 및 상기 n+ 드레인영역(324b, 324nb)과 채널영역(324c, 324nc) 사이에 엘디디영역(324l,324nl, 324l,324nl)을 형성한다.After removal of the second blocking layer, a low concentration of n − ions is implanted into the entire surface of the
다음으로, 도 11e에 도시된 바와 같이, 상기 어레이 기판(310) 전면에 층간 절연막(315b)을 증착한 후, 포토리소그래피공정(제 4 마스크공정)을 통해 상기 제 1 게이트절연막(315a)과 제 2 게이트절연막(315a') 및 층간절연막(315b)의 일부 영역을 제거하여 상기 소오스영역(324a,324na,324pa)의 일부를 노출시키는 제 1 콘택홀(340a,340na,340pa)과 상기 드레인영역(324b,324nb,324pb)의 일부를 노출시키는 제 2 콘택홀(340b,340nb,340pb)을 형성한다.Next, as shown in FIG. 11E, after the
여기서, 상기 층간절연막(315b)은 SiNx/SiO2의 이중막을 적용할 수 있다. 이때에는 SiO2 증착 후 활성화 열처리를 하며, SiNx 증착 후 수소화 열처리를 할 수 있다. 또는, SiNx/SiO2를 모두 증착 후 한번의 열처리를 통해 수소화 및 활성화를 동시에 할 수도 있다.Here, the
또한, 상기 층간절연막(315b)은 SiNx 단일막 혹은 SiO2/SiNx/SiO2의 삼중막 등이 다양하게 적용될 수 있다.In addition, the
이때, 상기 화소부의 제 2 콘택홀(340b) 형성시 상기 화소부의 드레인영역(324b)과 스토리지전극(330")의 일부를 함께 노출시키도록 할 수 있으며, 상기 화소부의 드레인영역(324b)과 상기 스토리지전극(330")의 일부가 따로 노출되도록 두 개의 제 2 콘택홀을 형성한 후 드레인전극으로 서로 연결시키도록 할 수도 있다.In this case, when the
이후, 도 11f에 도시된 바와 같이, 상기 어레이 기판(310) 전면에 제 2 도전막과 제 3 도전막을 형성한 후 포토리소그래피공정(제 5 마스크공정)을 이용하여 패터닝함으로써, 상기 제 3 도전막으로 이루어지며 상기 제 1 콘택 홀(340a,340na,340pa)을 통해 상기 소오스영역(324a,324na,324pa)과 전기적으로 접속하는 소오스전극(322,322n,322p)과 상기 제 2 콘택홀(340b,340nb,340pb)을 통해 상기 드레인영역(324b,324nb,324pb)과 전기적으로 접속하는 드레인전극(323,323n,323p)을 형성하는 동시에 상기 제 2 도전막으로 이루어지며 상기 화소부 드레인전극(323)과 전기적으로 접속하는 화소전극(318)을 형성한다.Thereafter, as shown in FIG. 11F, a second conductive film and a third conductive film are formed on the entire surface of the
이때, 상기 소오스전극(322,322n,322p)과 드레인전극(323,323n,323p) 및 데이터라인(미도시)의 하부에는 상기 제 2 도전막으로 이루어지며 각각 상기 소오스전극(322,322n,322p)과 드레인전극(323,323n,323p) 및 데이터라인과 동일한 형태로 패터닝된 소오스전극패턴(322',322n',322p')과 드레인전극패턴(323',323n',323p') 및 데이터라인패턴(미도시)이 형성되게 된다. 그리고, 상기 화소부의 드레인전극패턴(323')의 일부는 화소영역으로 연장되어 화소전극(318)을 구성하게 됨으로써 추가적인 콘택홀 없이 상기 드레인전극패턴(323')을 통해 상기 드레인전극(323)과 화소전극(318)이 전기적으로 접속하게 된다.In this case, the
이와 같이 상기 제 3 실시예는 상기 제 5 마스크공정에 회절마스크를 이용함으로써 상기 소오스전극(322,322n,322p)과 드레인전극(323,323n,323p) 및 화소전극(318)을 한번의 마스크공정을 통해 동시에 형성할 수 있게 되는데, 이를 도면을 참조하여 상세히 설명한다.As described above, the third embodiment uses a diffraction mask in the fifth mask process so that the
도 12a 내지 도 12f는 도 11f에 도시된 제 5 마스크공정을 구체적으로 나타내는 단면도이다.12A to 12F are cross-sectional views specifically illustrating a fifth mask process illustrated in FIG. 11F.
도 12a에 도시된 바와 같이, 상기 어레이 기판(310) 전면에 제 2 도전 막(320)과 제 3 도전막(330)을 형성한다.As shown in FIG. 12A, a second
이때, 상기 제 2 도전막(320)은 화소전극을 구성하기 위해 인듐-틴-옥사이드 또는 인듐-징크-옥사이드 등과 같이 투과율이 뛰어난 투명 도전물질로 이루어질 수 있으며, 상기 제 3 도전막(330)은 소오스전극과 드레인전극 및 데이터라인을 구성하기 위해 알루미늄(aluminium; Al), 알루미늄 합금(Al alloy), 텅스텐(tungsten; W), 구리(copper; Cu), 크롬(chromium; Cr), 몰리브덴(molybdenum; Mo) 등과 같은 저저항 불투명 도전물질로 이루어질 수 있다.In this case, the second
다음으로, 도 12b에 도시된 바와 같이, 상기 어레이 기판(310) 위에 감광막(370)을 형성한 후 제 3 실시예의 회절마스크(380)를 통해 상기 감광막(370)에 선택적으로 광을 조사한다.Next, as shown in FIG. 12B, after the
이때, 상기 제 3 실시예에 사용한 회절마스크(380)에는 조사된 광을 모두 투과시키는 투과영역(I)과 슬릿패턴이 적용되어 광의 일부만 투과시키고 일부는 차단하는 슬릿영역(II) 및 조사된 모든 광을 차단하는 차단영역(III)이 마련되어 있으며, 상기 회절마스크(380)를 투과한 광만이 감광막(370)에 조사되게 된다.In this case, the
이어서, 상기 회절마스크(380)를 통해 노광된 감광막(370)을 현상하고 나면, 도 12c에 도시된 바와 같이, 상기 차단영역(III)과 슬릿영역(II)을 통해 광이 모두 차단되거나 일부만 차단된 영역에는 소정 두께의 제 1 감광막패턴(370a) 내지 제 5 감광막패턴(370e)이 남아있게 되고, 모든 광이 투과된 투과영역(I)에는 감광막이 완전히 제거되어 상기 제 3 도전막(330) 표면이 노출되게 된다.Subsequently, after the
이때, 상기 차단영역(III)에 형성된 제 1 감광막패턴(370a) 내지 제 4 감광 막패턴(370d)은 슬릿영역(II)을 통해 형성된 제 5 감광막패턴(370e)은 보다 두껍게 형성된다. 또한, 상기 투과영역(I)을 통해 광이 모두 투과된 영역에는 감광막이 완전히 제거되는데, 이것은 포지티브 포토레지스트를 사용했기 때문이며, 본 발명이 이에 한정되는 것은 아니며 네거티브 포토레지스트를 사용하여도 무방하다.In this case, the
다음으로, 도 12d에 도시된 바와 같이, 상기와 같이 형성된 제 1 감광막패턴(370a) 내지 제 5 감광막패턴(370e)을 마스크로 하여, 그 하부에 형성된 제 2 도전막과 제 3 도전막을 선택적으로 제거하게 되면, 상기 어레이 기판(310)에 상기 제 3 도전막으로 이루어지며 각각 상기 제 1 콘택홀(340a,340na,340pa) 및 제 2 콘택홀(340b,340nb,340pb)을 통해 상기 액티브패턴(324',324n,324p)의 소오스영역(324a,324na,324pa) 및 드레인영역(324b,324nb,324pb)과 전기적으로 접속하는 소오스전극(322,322n,322p) 및 드레인전극(323,323n,323p)이 형성되게 된다.Next, as shown in FIG. 12D, the second conductive film and the third conductive film formed below are selectively formed using the first
이때, 상기 소오스전극(322,322n,322p)과 드레인전극(323,323n,323p)의 하부에는 상기 제 2 도전막으로 이루어지며 그 측면이 상기 소오스전극(322,322n,322p) 및 드레인전극(323,323n,323p)과 동일한 형태로 패터닝된 소오스전극패턴(322',322n',322p')과 드레인전극패턴(323',323n',323p')이 남아있게 된다.At this time, the
상기 화소부의 드레인전극패턴(323')은 그 일부가 화소영역으로 연장되어 화소전극(318)을 구성하며, 이때 상기 화소전극(318) 상부에는 상기 제 3 도전막으로 이루어진 도전막패턴(330')이 남아있게 된다.A part of the
이후, 상기 제 1 감광막패턴(370a) 내지 제 5 감광막패턴(370e)의 일부를 제거하는 애싱공정을 진행하게 되면, 도 12e에 도시된 바와 같이, 상기 화소영역, 즉 회절노광이 적용된 슬릿영역(II)의 제 5 감광막패턴이 완전히 제거되어 상기 도전막패턴(330') 표면이 노출되게 된다.Subsequently, when an ashing process of removing a portion of the
이때, 상기 제 1 감광막패턴 내지 제 4 감광막패턴은 상기 제 5 감광막패턴의 두께만큼이 제거된 제 6 감광막패턴(370a') 내지 제 9 감광막패턴(370d')으로 상기 차단영역(III)에 대응하는 영역 상부에만 남아있게 된다.In this case, the first photoresist pattern to the fourth photoresist pattern correspond to the blocking region III by the
이후, 도 12f에 도시된 바와 같이, 상기 남아있는 제 6 감광막패턴(370a') 내지 제 9 감광막패턴(370d')을 마스크로 하여 상기 화소전극(318) 상부의 도전막패턴을 제거하여 상기 화소전극(318) 표면을 외부로 노출시킨다.12F, the conductive layer pattern on the
이와 같이 구성된 상기 제 1 실시예 내지 제 3 실시예의 어레이 기판은 화상표시 영역의 외곽에 형성된 실런트에 의해 컬러필터 기판과 대향하도록 합착되어 액정표시장치를 구성하며, 상기 어레이 기판과 컬러필터 기판의 합착은 상기 어레이 기판과 컬러필터 기판에 형성된 합착키를 통해 이루어진다.The array substrates of the first to third embodiments configured as described above are bonded to face the color filter substrate by sealants formed on the outer side of the image display area to form a liquid crystal display device, and the bonding of the array substrate and the color filter substrate is performed. Is achieved through a bonding key formed on the array substrate and the color filter substrate.
상기한 설명에 많은 사항이 구체적으로 기재되어 있으나 이것은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 따라서 발명은 설명된 실시예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위에 균등한 것에 의하여 정하여져야 한다.While a great many are described in the foregoing description, it should be construed as an example of preferred embodiments rather than limiting the scope of the invention. Therefore, the invention should not be construed as limited to the embodiments described, but should be determined by equivalents to the appended claims and the claims.
상술한 바와 같이, 본 발명에 따른 액정표시장치의 제조방법은 회절노광을 이용함으로써 액티브패턴과 스토리지전극을 한번의 마스크공정으로 형성할 수 있게 된다. 그 결과 박막 트랜지스터 제조에 사용되는 마스크수를 줄여 제조공정 및 비 용을 절감시키는 효과를 제공한다.As described above, in the method of manufacturing the liquid crystal display according to the present invention, the active pattern and the storage electrode can be formed in one mask process by using diffraction exposure. As a result, the number of masks used for manufacturing the thin film transistor is reduced, thereby reducing the manufacturing process and cost.
또한, 본 발명에 따른 액정표시장치의 제조방법은 화소전극의 형성 및 콘택홀 형성에 별도의 마스크를 사용하지 않음에 따라 제조공정 및 비용을 더욱 절감시킬 수 있게 된다.In addition, the manufacturing method of the liquid crystal display according to the present invention can further reduce the manufacturing process and cost by not using a separate mask for forming the pixel electrode and contact hole.
또한, 본 발명에 따른 액정표시장치의 제조방법은 얼라인 마진이 고려될 필요없는 어레이 기판에 블랙매트릭스를 형성함으로써 개구율의 향상으로 휘도가 증가하는 효과를 제공한다.In addition, the manufacturing method of the liquid crystal display according to the present invention provides the effect of increasing the luminance by improving the aperture ratio by forming a black matrix on the array substrate that does not need to consider the alignment margin.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060128197A KR101338107B1 (en) | 2006-12-14 | 2006-12-14 | Method of fabricating liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060128197A KR101338107B1 (en) | 2006-12-14 | 2006-12-14 | Method of fabricating liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080055193A KR20080055193A (en) | 2008-06-19 |
KR101338107B1 true KR101338107B1 (en) | 2013-12-06 |
Family
ID=39802045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060128197A Active KR101338107B1 (en) | 2006-12-14 | 2006-12-14 | Method of fabricating liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101338107B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101868145B1 (en) * | 2011-10-06 | 2018-06-18 | 엘지디스플레이 주식회사 | Stereoscopic image display |
KR101878482B1 (en) * | 2011-10-06 | 2018-07-16 | 엘지디스플레이 주식회사 | Stereoscopic image display |
KR102261007B1 (en) * | 2014-06-26 | 2021-06-04 | 엘지디스플레이 주식회사 | Thin film transistor substrate for display device and method of manufacturing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0982976A (en) * | 1995-09-14 | 1997-03-28 | Toshiba Corp | Thin-film transistor, manufacture thereof and liquid-crystal display |
JP2001264816A (en) | 2000-03-23 | 2001-09-26 | Nec Corp | Liquid crystal light valve |
KR20060100903A (en) * | 2005-03-18 | 2006-09-21 | 삼성에스디아이 주식회사 | Thin film transistor, flat panel display and manufacturing method |
-
2006
- 2006-12-14 KR KR1020060128197A patent/KR101338107B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0982976A (en) * | 1995-09-14 | 1997-03-28 | Toshiba Corp | Thin-film transistor, manufacture thereof and liquid-crystal display |
JP2001264816A (en) | 2000-03-23 | 2001-09-26 | Nec Corp | Liquid crystal light valve |
KR20060100903A (en) * | 2005-03-18 | 2006-09-21 | 삼성에스디아이 주식회사 | Thin film transistor, flat panel display and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20080055193A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101250789B1 (en) | Method of fabricating liquid crystal display device | |
US7358528B2 (en) | Liquid crystal display device and fabrication method thereof | |
KR101250790B1 (en) | Method of fabricating liquid crystal display device | |
US8953110B2 (en) | Liquid crystal display and method for fabricating the same | |
KR101338106B1 (en) | Liquid crystal display and method for fabricating the same | |
US7633573B2 (en) | Liquid crystal display device and method of fabricating the same | |
KR101338107B1 (en) | Method of fabricating liquid crystal display device | |
US7602454B2 (en) | Liquid crystal display and method for fabricating the same | |
KR101338108B1 (en) | Method of fabricating liquid crystal display device | |
KR101224049B1 (en) | Method of fabricating liquid crystal display device | |
KR101266276B1 (en) | Method of fabricating liquid crystal display device | |
KR101331803B1 (en) | Liquid crystal display and method for fabricating the same | |
KR101266275B1 (en) | Method of fabricating liquid crystal display device | |
KR101358220B1 (en) | Method of fabricating liquid crystal display device | |
KR101250788B1 (en) | Method of fabricating liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061214 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20111214 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20061214 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130701 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20131121 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20131202 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20131203 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20161118 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20161118 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171116 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20171116 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181114 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20181114 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20211116 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20221115 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20241118 Start annual number: 12 End annual number: 12 |