KR101327971B1 - Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation - Google Patents
Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation Download PDFInfo
- Publication number
- KR101327971B1 KR101327971B1 KR1020110081800A KR20110081800A KR101327971B1 KR 101327971 B1 KR101327971 B1 KR 101327971B1 KR 1020110081800 A KR1020110081800 A KR 1020110081800A KR 20110081800 A KR20110081800 A KR 20110081800A KR 101327971 B1 KR101327971 B1 KR 101327971B1
- Authority
- KR
- South Korea
- Prior art keywords
- vinyl ether
- grafted
- polymer
- leaving group
- polymer membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 91
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 239000012528 membrane Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 230000005855 radiation Effects 0.000 title description 27
- 229920000578 graft copolymer Polymers 0.000 title description 5
- 229920006254 polymer film Polymers 0.000 claims abstract description 52
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 15
- 238000005341 cation exchange Methods 0.000 claims abstract description 14
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 229920005597 polymer membrane Polymers 0.000 claims description 52
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 24
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 18
- -1 perfluoroalkyl vinyl ether Chemical compound 0.000 claims description 18
- 239000004743 Polypropylene Substances 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 claims description 4
- 238000001179 sorption measurement Methods 0.000 claims description 4
- PEVRKKOYEFPFMN-UHFFFAOYSA-N 1,1,2,3,3,3-hexafluoroprop-1-ene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C(F)F.FC(F)=C(F)C(F)(F)F PEVRKKOYEFPFMN-UHFFFAOYSA-N 0.000 claims description 3
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical group 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 abstract description 12
- 230000000274 adsorptive effect Effects 0.000 abstract description 11
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 17
- REEBWSYYNPPSKV-UHFFFAOYSA-N 3-[(4-formylphenoxy)methyl]thiophene-2-carbonitrile Chemical compound C1=CC(C=O)=CC=C1OCC1=C(C#N)SC=C1 REEBWSYYNPPSKV-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 239000002972 grafting catalyst Substances 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000012954 diazonium Chemical group 0.000 description 2
- 150000001989 diazonium salts Chemical group 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 150000008648 triflates Chemical class 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 125000006414 CCl Chemical group ClC* 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WKYAPGVTFGNPSP-UHFFFAOYSA-N benzene;chloroethene Chemical compound ClC=C.C1=CC=CC=C1 WKYAPGVTFGNPSP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2243—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
- C08J5/225—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/78—Graft polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Toxicology (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Graft Or Block Polymers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
본 발명은 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법에 관한 것으로, 본 발명에 따른 제조방법은 방사선 동시조사법을 사용하므로 간단하고, 열적 안정성이 우수하며, 그라프트율이 우수할 뿐만 아니라 그라프트율을 조절할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.The present invention relates to a method for producing a polymer film grafted with a vinyl ether monomer containing a leaving group, the production method according to the invention is simple because of the simultaneous irradiation method, excellent thermal stability, excellent graft rate However, since the graft rate can be adjusted, it may be useful for the preparation of cation exchange membranes, anion exchange membranes, adsorptive separation membranes, and the like.
Description
본 발명은 고분자전해질막, 이온교환막, 연료전지막 등으로 이용가능한 고분자막의 제조방법에 관한 것으로, 방사선 동시조사를 이용하여 이탈기가 포함된 비닐에테르계 단량체가 그라프팅된 고분자막을 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing a polymer membrane usable as a polymer electrolyte membrane, an ion exchange membrane, a fuel cell membrane, etc., and to a method for producing a polymer membrane grafted with a vinyl ether monomer containing a leaving group using simultaneous irradiation will be.
높은 에너지 준위를 가지는 전리 방사선 종류에는 감마선, X선, 전자선 등이 있는데, Co60에서 방출하는 감마선은 물질을 투과하는 능력이 뛰어나서 식품과 의료제품의 멸균, 고분자 물질의 가공 등에 널리 사용되고 있고, 전자를 가속시켜 얻는 전자선의 경우에는 감마선보다 투과력은 작지만 짧은 시간에 높은 에너지를 발생시킬 수 있는 장점이 있어 타이어 및 케이블 제작에 널리 사용되고 있다.
Types of ionizing radiation having high energy levels include gamma rays, X-rays, and electron beams.The gamma rays emitted from Co 60 have a high ability to penetrate materials and are widely used for sterilization of food and medical products and processing of polymer materials. In the case of an electron beam obtained by accelerating the electron beam, the transmission power is smaller than that of gamma rays, but it is widely used in tire and cable manufacturing because it can generate high energy in a short time.
방사선을 이용한 그라프트 기술은 오래전부터 많은 연구가 진행되어왔으며, 제조 방법에 있어서 필름을 조사하고 나중에 단량체를 그라프트하는 전조사법과 필름과 단량체를 동시에 조사하여 그라프트하는 동시조사법으로 분류할 수 있다.
Grafting technology using radiation has been studied for a long time, and the manufacturing method can be classified into a pre-irradiation method of irradiating a film and later grafting monomer and a simultaneous irradiation method of irradiating and grafting a film and a monomer simultaneously. .
감마선의 경우, 물질의 투과력이 좋아 전조사와 동시조사 모두에 사용 가능하지만 전자선은 상대적으로 투과력이 작아 주로 전조사에 한정되어 연구가 진행되고 있다. 상기 방사선을 이용한 그라프트 기술은 재료 내부까지 고르게 그라프트 시킬 수 있는 장점이 있어, 상용화된 필름에 새로운 기능성을 부여하는데 유용하게 사용할 수 있다.
In the case of gamma rays, the permeability of the material is good and can be used for both pre-irradiation and simultaneous irradiation. The graft technology using the radiation has the advantage that it can be evenly grafted to the inside of the material, it can be usefully used to give new functionality to the commercialized film.
방사선을 이용한 그라프트 방법은 두 가지 이상의 상이한 물질을 적절히 결합하여 각각의 물질이 가지는 특성을 발현할 수 있는 기능성 하이브리드 물질을 제조할 수 있다. 예를 들어, 테트라플루오로에틸렌-헥사플루오로프로필렌(FEP), 페르플루오로알킬비닐에테르(PFA), 에틸렌테트라플루오로에틸렌(ETFE), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE)와 같은 높은 열안정성과 기계적 강도를 지닌 불소 고분자 필름과 불소 고분자 필름에 비하여 상대적으로 저렴한 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리에테르에테르케톤(PEEK), 폴리술폰(PSU), 폴리에테르술폰(PES), 폴리이미드(PI), 폴리벤질이미다졸(PBI)과 같은 탄화수소계 고분자 필름에 적절한 단량체를 방사선 그라프트하고, 필요한 경우 추가적인 처리과정을 거쳐 높은 열안정성과 기계적 강도를 지닌 이온 전도성 막을 제조할 수 있다.
The graft method using radiation can properly combine two or more different materials to produce a functional hybrid material capable of expressing the properties of each material. For example, tetrafluoroethylene-hexafluoropropylene (FEP), perfluoroalkyl vinyl ether (PFA), ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene Compared to fluorine polymer film and fluorine polymer film having high thermal stability and mechanical strength such as (PTFE), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), polysulfone (PSU), Radiation-grafted monomers suitable for hydrocarbon-based polymer films such as polyethersulfone (PES), polyimide (PI), polybenzylimidazole (PBI), and, if necessary, undergo additional processing to achieve high thermal stability and mechanical strength. It is possible to produce an ion conductive membrane with the same.
스티렌, 염화비닐벤젠, 메타크릴레이트, 아크릴레이트, 아크릴로니트릴과 같은 비닐 및 아크릴 계통의 단량체는 방사선 그라프팅에 널리 이용되고 있다. 그러나 비닐 에테르 단량체를 이용한 방사선 그라프트는 앞에서 언급한 단량체들을 이용한 방사선 그라프트 방법에 비해 극히 드물다.
Vinyl and acrylic monomers such as styrene, vinyl chloride benzene, methacrylate, acrylate and acrylonitrile are widely used for radiation grafting. However, radiation grafts using vinyl ether monomers are extremely rare compared to the radiation graft methods using the aforementioned monomers.
비특허문헌 1[Chen, J., Asano, M., Yamaki, T., Yoshida, M., 2005. Preparation of sulfonated crosslinked PTFE-graft-poly(alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing. J. Membrane Sci. 256, 3845.]에서는 PTFE 필름에 알킬비닐에테르 단량체를 방사선 동시조사한 후 클로로설폰산(chlorosulfonic acid)을 이용하여 술폰화 반응시켜 연료전지막을 제조하는 방법을 개시하고 있다.
Non-Patent Document 1 [Chen, J., Asano, M., Yamaki, T., Yoshida, M., 2005. Preparation of sulfonated crosslinked PTFE-graft-poly (alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing. J. Membrane Sci. 256, 3845.] discloses a method for producing a fuel cell membrane by irradiating an alkyl vinyl ether monomer to a PTFE film at the same time and then sulfonating with chlorosulfonic acid.
비특허문헌 2[Abdel Aal, A., Khutoryanskiy, V.V., Nurkeeva, Z.S., Mun, G.A., 2002. Radiation grafting of vinyl ether of monoethanolamine on polypropylene films for application in waste water treatment. J. Mater. Chem. 12, 2692-2695.]에서는 모노에탄올아민(monoethaneolamine)을 갖는 비닐에테르 단량체를 폴리프로필렌(PP) 필름에 방사선 그라프트하여 중금속 흡착제를 제조하는 방법을 개시하고 있다.
Non-Patent Document 2 [Abdel Aal, A., Khutoryanskiy, VV, Nurkeeva, ZS, Mun, GA, 2002. Radiation grafting of vinyl ether of monoethanolamine on polypropylene films for application in waste water treatment. J. Mater. Chem. 12, 2692-2695. Discloses a method for producing a heavy metal adsorbent by radiografting a vinyl ether monomer having a monoethanolamine onto a polypropylene (PP) film.
그러나, 상기 비특허문헌 1 및 2의 방법인 비닐에테르 단량체를 이용한 방사선 그라프트는 방사선 조사시 높은 온도 및 조사선량을 필요로할 뿐만 아니라, 첨가제로 루이스 산을 사용하는 등 제조방법이 복잡하다. 또한, 필름에 그라프트 되는 단량체 내부에 이탈기(leaving group)가 없어 화학처리를 통한 반응기 도입이 어려운 문제가 있다.
However, the radiation graft using the vinyl ether monomer, which is the method of Non-Patent Documents 1 and 2, requires not only high temperature and irradiation dose when irradiating, but also complicated manufacturing method such as using Lewis acid as an additive. In addition, there is a problem in that it is difficult to introduce a reactor through a chemical treatment because there is no leaving group in the monomer grafted on the film.
이에, 본 발명자들은 이탈기가 포함된 비닐에테르 단량체를 이용한 고분자막의 제조방법을 연구하던 중, 본 발명에 따른 방사선 동시조사법을 이용하여 제조된 고분자막이 종래 방사선 동시조사 조건하에서 제조된 고분자막보다 우수한 그라프트 효율을 나타낼 뿐만 아니라 단량체에 포함된 이탈기에 화학적 처리를 통해 반응기(funcitional group)를 도입하면 양이온교환막, 음이온교환막, 흡착분리막 등에 유용하게 사용될 수 있음을 알아내고 본 발명을 완성하였다.
Thus, the inventors of the present invention while studying a method for producing a polymer film using a vinyl ether monomer containing a leaving group, the polymer film produced by the simultaneous irradiation method according to the present invention graft superior to the polymer film prepared under the conditions of the conventional simultaneous irradiation The present invention was completed by finding out that efficiency can be usefully used in cation exchange membranes, anion exchange membranes, adsorptive separation membranes, etc. by introducing a reactor (funcitional group) through chemical treatment in the leaving group included in the monomer.
본 발명의 목적은 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a polymer film grafted with a vinyl ether monomer containing a leaving group.
본 발명의 다른 목적은 상기 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 양이온교환막을 제공하는 것이다.Another object of the present invention is to provide a cation exchange membrane using a polymer membrane prepared by the method for producing a polymer membrane grafted with a vinyl ether monomer containing the leaving group.
본 발명의 또 다른 목적은 상기 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 음이온교환막을 제공하는 것이다.Still another object of the present invention is to provide an anion exchange membrane using a polymer membrane prepared by a method for preparing a polymer membrane in which a vinyl ether monomer including the leaving group is grafted.
본 발명의 다른 목적은 상기 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 흡착분리막을 제공하는 것이다.
Another object of the present invention is to provide an adsorptive separation membrane using a polymer membrane prepared by a method for preparing a polymer membrane in which a vinyl ether monomer including the leaving group is grafted.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 이탈기(X)가 포함된 비닐에테르계 단량체를 탄화수소계 용매에 용해시켜 단량체 용액을 제조하는 단계(단계 1); 및In order to achieve the above object, the present invention comprises the steps of preparing a monomer solution by dissolving a vinyl ether monomer containing a leaving group (X) represented by the formula (1) in a hydrocarbon solvent (step 1); And
상기 단계 1에서 제조한 단량체 용액에 고분자필름을 침지시키고 방사선을 조사하는 단계(단계 2)를 포함하는 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법을 제공한다:It provides a method for producing a polymer membrane grafted with a vinyl ether monomer containing a leaving group comprising the step of immersing the polymer film in the monomer solution prepared in step 1 and irradiating (step 2):
[화학식 1][Formula 1]
상기 화학식 1에서,In Formula 1,
X는 할로겐(halogen), 디아조늄염(diazonium salts), 옥소늄 이온(oxonium ion), 플로로설포네이트(fluorosulfonates), 암모늄염(ammonium salts), 니트레이트(nitrates), 포스페이트(phosphates), 토실레이트(tosylates), 메실레이트(mesylates), 트리플레이트(triflates) 또는 히드록시(hydroxy)이고,X is halogen, diazonium salts, oxonium ions, fluorosulfonates, ammonium salts, nitrates, phosphates, tosylate tosylates, mesylates, triflates, or hydroxy,
n은 1-10의 정수이다.n is an integer of 1-10.
또한, 본 발명은 상기 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 양이온교환막을 제공한다.In addition, the present invention provides a cation exchange membrane using a polymer membrane prepared by the method for producing a polymer membrane grafted with a vinyl ether monomer containing the leaving group.
나아가, 본 발명은 상기 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 음이온교환막을 제공한다.Furthermore, the present invention provides an anion exchange membrane using a polymer membrane prepared by a method for preparing a polymer membrane in which a vinyl ether monomer including the leaving group is grafted.
또한, 본 발명은 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조된 고분자막을 이용한 흡착분리막을 제공한다.
The present invention also provides an adsorptive separation membrane using a polymer membrane prepared by a method of preparing a polymer membrane in which a vinyl ether monomer including a leaving group is grafted.
본 발명에 따른 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 방사선 동시조사법을 이용하여 제조방법이 간단하고, 열적 안정성이 우수하며, 그라프트율이 우수할 뿐만 아니라 그라프트율을 조절할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
According to the present invention, a method of preparing a polymer membrane grafted with a vinyl ether monomer containing a leaving group according to the present invention is simple, a method of excellent thermal stability, excellent graft rate, and graft rate can be controlled using a simultaneous radiation method. , Cation exchange membranes, anion exchange membranes, adsorptive separation membranes and the like can be useful.
도 1은 본 발명의 일실시예에 따른 고분자막의 그라프트율을 방사선 조사선량에 따라 나타낸 그래프이다(실시예 1: ETFE-g-CEVE, 실시예 2: ETFE-g-BDVE, 비교예 1: ETFE-g-BVE).
도 2는 본 발명의 일실시예에 따른 고분자막 제조시 그라프팅 촉매 첨가에 따른 그라프트율을 나타낸 그래프이다.
도 3은 본 발명의 일실시예에 따른 고분자막을 FT-IR로 측정한 피크를 나타낸 그래프이다(실시예 1: ETFE-g-CEVE, 비교예 1: ETFE-g-BVE).
도 4는 본 발명의 일실시예에 따른 고분자막으 단면을 EDX로 촬영한 이미지이다.
도 5는 본 발명의 일실시예에 따른 BVE가 그래프트된 고분자막의 열분해곡선을 나타낸 그래프이다(A: ETFE, B: ETFE-g-BVE(2.5%), C: ETFE-g-BVE(6.1%)).
도 6은 본 발명의 일실시예에 따른 CEVE가 그래프트된 고분자막의 열분해곡선을 나타낸 그래프이다(A: ETFE, B: ETFE-g-CEVE(13.5%), C: ETFE-g-CEVE(54%)).
도 7은 본 발명의 일실시예에 따른 고분자막을 헥산, 톨루엔, 아세톤, DCM 및 클로로포름 용매로 제조했을 경우의 그라프트율을 나타낸 그래프이다.
도 8은 본 발명의 일실시예에 따른 고분자막을 헥산, 헵탄, 사이클로헥산 및 옥탄 용매로 제조했을 경우의 그라프트율을 나타낸 그래프이다.
도 9는 본 발명의 일실시예에 따른 고분자막을 단량체의 농도를 달리하여 제조했을 경우의 그라프트율을 나타낸 그래프이다.
도 10은 본 발명의 일실시예에 따른 고분자막을 방사선 선량율을 달리하여 제조했을 경우의 그라프트율을 나타낸 그래프이다.1 is a graph showing the graft ratio of a polymer film according to an embodiment of the present invention according to the radiation dose (Example 1: ETFE-g-CEVE, Example 2: ETFE-g-BDVE, Comparative Example 1: ETFE- g-BVE).
Figure 2 is a graph showing the graft rate according to the addition of the grafting catalyst when producing a polymer film according to an embodiment of the present invention.
3 is a graph showing the peak measured by the FT-IR polymer film according to an embodiment of the present invention (Example 1: ETFE-g-CEVE, Comparative Example 1: ETFE-g-BVE).
Figure 4 is an image taken with the EDX cross section of the polymer film according to an embodiment of the present invention.
5 is a graph showing a thermal decomposition curve of a polymer film grafted BVE according to an embodiment of the present invention (A: ETFE, B: ETFE-g-BVE (2.5%), C: ETFE-g-BVE (6.1%) )).
6 is a graph showing a thermal decomposition curve of the polymer membrane grafted CEVE according to an embodiment of the present invention (A: ETFE, B: ETFE-g-CEVE (13.5%), C: ETFE-g-CEVE (54%) )).
7 is a graph showing the graft ratio when the polymer membrane according to one embodiment of the present invention is prepared with hexane, toluene, acetone, DCM, and chloroform solvent.
8 is a graph showing the graft ratio when the polymer membrane according to one embodiment of the present invention is prepared with hexane, heptane, cyclohexane and octane solvent.
Figure 9 is a graph showing the graft rate when the polymer film according to one embodiment of the present invention is prepared by varying the concentration of the monomer.
10 is a graph showing the graft rate when the polymer film according to an embodiment of the present invention is manufactured by varying the radiation dose rate.
이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명은 하기 화학식 1로 표시되는 이탈기(X)가 포함된 비닐에테르계 단량체를 탄화수소계 용매에 용해시켜 단량체 용액을 제조하는 단계(단계 1); 및The present invention comprises the steps of preparing a monomer solution by dissolving a vinyl ether monomer containing a leaving group (X) represented by the formula (1) in a hydrocarbon solvent (step 1); And
상기 단계 1에서 제조한 단량체 용액에 고분자필름을 침지시키고 방사선을 조사하는 단계(단계 2)를 포함하는 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법을 제공한다:It provides a method for producing a polymer membrane grafted with a vinyl ether monomer containing a leaving group comprising the step of immersing the polymer film in the monomer solution prepared in step 1 and irradiating (step 2):
상기 화학식 1에서,In Formula 1,
X는 할로겐(halogen), 디아조늄염(diazonium salts), 옥소늄 이온(oxonium ion), 플로로설포네이트(fluorosulfonates), 암모늄염(ammonium salts), 니트레이트(nitrates), 포스페이트(phosphates), 토실레이트(tosylates), 메실레이트(mesylates), 트리플레이트(triflates), 또는 히드록시(hydroxy)이고,X is halogen, diazonium salts, oxonium ions, fluorosulfonates, ammonium salts, nitrates, phosphates, tosylate tosylates, mesylates, triflates, or hydroxy,
n은 1-10의 정수이다.
n is an integer of 1-10.
바람직하게는, 본 발명에 따른 상기 제조방법에 있어서, 상기 X는 클로로, 브로모, 아이오도, 플루오로 또는 히드록시이고,Preferably, in the above production method according to the present invention, X is chloro, bromo, iodo, fluoro or hydroxy,
n은 2-8의 정수이다.
n is an integer of 2-8.
이하, 본 발명을 단계별로 상세히 설명한다.
Hereinafter, the present invention will be described in detail by steps.
본 발명에 따른 고분자막의 제조방법에 있어서, 상기 단계 1은 단량체 용액을 제조하는 단계이다.In the method of preparing a polymer membrane according to the present invention, step 1 is a step of preparing a monomer solution.
구체적으로, 상기 화학식 1로 표시되는 이탈기(leaving group)가 포함된 비닐에테르 단량체를 탄화수소계 용매에 넣고 용해시켜 단량체 용액을 제조하는 것이다.Specifically, the monomer solution is prepared by dissolving a vinyl ether monomer including a leaving group represented by Chemical Formula 1 in a hydrocarbon solvent.
본 단계 1의 상기 화학식 1로 표시되는 이탈기가 포함된 비닐에테르 단량체는 본 발명의 제조방법으로 고분자필름에 그라프트된 다음에, 사용 목적에 따라 추가적인 화학적 처리를 통해 필요한 기능기(functional group)를 도입하여 양이온교환막, 음이온교환막, 흡착분리막 등의 기능성 고분자막으로 사용할 수 있는 도입부 역할을 한다.Vinyl ether monomer containing a leaving group represented by the formula (1) of the step 1 is grafted to the polymer film by the production method of the present invention, and then required functional groups (functional groups) through additional chemical treatment depending on the purpose of use It serves as an introduction part that can be used as a functional polymer membrane such as a cation exchange membrane, an anion exchange membrane, and an adsorption separation membrane.
상기 단계 1의 탄화수소계 용매는 상기 단량체를 용해시키는 역할을 한다. 상기 탄화수소계 용매로는 지방족 용매, 방향족 용매, 케톤류 용매 또는 할로겐화 용매를 사용할 수 있으나 이에 제한하지 않는다.The hydrocarbon solvent of step 1 serves to dissolve the monomer. The hydrocarbon solvent may be an aliphatic solvent, an aromatic solvent, a ketone solvent or a halogenated solvent, but is not limited thereto.
상기 지방족 용매로는 펜탄, 헥산, 헵탄, 시클로헥산, 옥탄, 노난, 데칸 등을 사용할 수 있고, 상기 방향족 용매로는 벤젠, 톨루엔, 자일렌 등을 사용할 수 있고, 상기 케톤류 용매로는 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 사이클로헥사논 등을 사용할 수 있고, 상기 할로겐화 용매로는 디클로로메탄, 클로로포름 등을 사용할 수 있다.The aliphatic solvent may be pentane, hexane, heptane, cyclohexane, octane, nonane, decane, and the like. The aromatic solvent may be benzene, toluene, xylene or the like, and the ketone solvent may be acetone, methyl. Ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. can be used, and dichloromethane, chloroform, etc. can be used as said halogenation solvent.
나아가, 본 발명에 따른 고분자막의 제조방법은 탄화수소계 용매의 사용 없이, 단량체만을 이용하여 고분자 필름에 그라프트 시키는 것도 가능한 바, 본 발명의 제조방법이 탄화수소계 용매 없이 단량체만을 사용하는 것을 배제하는 것은 아니다.
Furthermore, the method for producing a polymer film according to the present invention can be grafted onto a polymer film using only monomers without using a hydrocarbon solvent. However, the method of the present invention excludes the use of only a monomer without a hydrocarbon solvent. no.
본 발명에 따른 고분자막의 제조방법에 있어서, 상기 단계 2는 상기 단계 1에서 제조한 단량체 용액에 고분자필름을 침지시키고 방사선을 조사하는 단계이다.In the method of manufacturing a polymer membrane according to the present invention, step 2 is a step of immersing the polymer film in the monomer solution prepared in step 1 and irradiating the radiation.
구체적으로, 상기 단량체 용액에 고분자필름을 침지시킨 다음 방사선을 조사함으로써 단량체를 고분자필름에 그라프트시켜 고분자막을 제조하는 것이다. 이때, 방사선을 조사함으로써 고분자필름에 라디칼이 생성됨과 동시에 단량체가 그라프트되는 방사선 동시조사법을 이용하는 것이다.Specifically, the polymer film is immersed in the monomer solution and then irradiated with radiation to graf the monomer onto the polymer film to prepare a polymer film. At this time, the radiation is irradiated to generate a radical on the polymer film and at the same time the monomer is grafted using a radiation simultaneous irradiation method.
본 단계 2의 고분자필름은 제조하고자 하는 고분자막의 기본 골격 역할을 하는 것으로, 화학적 안정성, 열적 안정성이 우수하고 기계적 특성이 뛰어날 뿐만 아니라 방사선에 안정한 고분자필름을 사용할 수 있다.The polymer film of step 2 serves as a basic skeleton of the polymer film to be prepared, and has excellent chemical stability, thermal stability, excellent mechanical properties, and a polymer film stable to radiation.
상기 고분자필름으로는 테트라플루오로에틸렌-헥사플루오로프로필렌(FEP), 페르플루오로알킬비닐에테르(PFA), 에틸렌테트라플루오로에틸렌(ETFE), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE) 등과 같은 높은 열안정성과 기계적 강도를 지닌 불소고분자필름과 불소고분자필름에 비하여 상대적으로 저렴한 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리에테르에테르케톤(PEEK), 폴리술폰(PSU), 폴리에테르술폰(PES), 폴리이미드(PI), 폴리벤질이미다졸(PBI) 등과 같은 탄화수소계 고분자필름을 사용할 수 있다.The polymer film is tetrafluoroethylene-hexafluoropropylene (FEP), perfluoroalkyl vinyl ether (PFA), ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polytetrafluoro Relatively cheaper polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), polysulfone (PSU) than fluoropolymer films and fluoropolymer films with high thermal stability and mechanical strength such as ethylene (PTFE) , Hydrocarbon-based polymer films such as polyether sulfone (PES), polyimide (PI), polybenzylimidazole (PBI) and the like can be used.
이때, 상기 방사선은 기본 골격 역할을 하는 고분자필름의 지방족 사슬에 라디칼을 생성시킴과 동시에 단량체를 고분자필름에 그래프트 시키는 역할을 한다. 상기 방사선으로는 감마선, 자외선, 전자선을 사용할 수 있고, 감마선을 사용하는 것이 바람직하다.In this case, the radiation generates radicals in the aliphatic chain of the polymer film serving as the basic skeleton and at the same time serves to graf the monomer to the polymer film. Gamma rays, ultraviolet rays, and electron beams can be used as the radiation, and gamma rays are preferably used.
상기 방사선은 1-20 kGy/h의 선량율(dose rate)로 50-600 kGy 조사선량(total dose) 만큼 조사하는 것이 바람직하다. 만약, 선량율이 1 kGy/h 미만일 경우에는 제조시간이 길어지는 문제가 있고, 20 kGy/h를 초과할 경우에는 그라프트율이 낮아지고 분자간의 끊어짐이 발생하여 분자량 감소로 인한 기계적 강도 저하의 문제가 있다.The radiation is preferably irradiated by 50-600 kGy total dose at a dose rate of 1-20 kGy / h. If the dose rate is less than 1 kGy / h, there is a problem in that the manufacturing time is long, and if the dose rate is more than 20 kGy / h, the graft rate is lowered and the intermolecular breakage occurs, thereby deteriorating the mechanical strength due to molecular weight reduction. .
또한, 조사선량이 50 kGy 미만일 경우에는 그라프트율이 낮아지는 문제가 있고, 600 kGy를 초과할 경우에는 그라프트율 향상 정도가 미미하여 경제성이 떨어지는 문제가 있다.
In addition, when the irradiation dose is less than 50 kGy, there is a problem that the graft rate is lowered, and when it exceeds 600 kGy, there is a problem that the degree of graft rate improvement is insignificant and the economy is inferior.
추가적으로, 상기 단계 2를 수행한 후 제조된 고분자막을 세척 및 건조하는 단계를 수행하여 불순물을 제거할 수 있다.
Additionally, impurities may be removed by performing the step of washing and drying the prepared polymer membrane after performing step 2.
본 발명에 따른 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 방사선 동시조사법을 이용하여 제조방법이 간단하고, 열적 안정성이 우수하며, 그라프트율이 우수할 뿐만 아니라 그라프트율을 조절할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
According to the present invention, a method of preparing a polymer membrane grafted with a vinyl ether monomer containing a leaving group according to the present invention is simple, a method of excellent thermal stability, excellent graft rate, and graft rate can be controlled using a simultaneous radiation method. , Cation exchange membranes, anion exchange membranes, adsorptive separation membranes and the like can be useful.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
<< 실시예Example 1> 1> ETFEETFE 필름에 On film CEVECEVE 가 end 그래프트된Grafted 고분자막의 제조( Preparation of Polymer Membrane ETFEETFE -g--g- CEVECEVE ))
전처리: 고분자필름의 준비Pretreatment: Preparation of Polymer Film
25 ㎛ 두께의 에틸렌테트라플루오로에틸렌 필름(ETFE)을 3 cm x 4 cm 크기로 자른 후 아세톤을 이용하여 세척하고, 60 ℃의 진공오븐에서 1시간 동안 건조시켜 필름을 준비하였다.
An ethylene tetrafluoroethylene film (ETFE) having a thickness of 25 μm was cut to 3 cm × 4 cm size, washed with acetone, and dried in a vacuum oven at 60 ° C. for 1 hour to prepare a film.
단계 1: 단량체 용액의 준비Step 1: Preparation of Monomer Solution
이탈기가 포함된 단량체로서 2-클로로에틸비닐에테르(CEVE)를 헵탄에 1:1의 부피비로 혼합하여 단량체 용액을 준비하였다.
2-chloroethyl vinyl ether (CEVE) as a monomer containing a leaving group was mixed with heptane in a volume ratio of 1: 1 to prepare a monomer solution.
단계 2: 방사선 조사Step 2: Irradiation
상기 단계 1에서 제조한 단량체 용액에 상기 준비단계에서 준비한 ETFE 필름을 침지시키고, 감마선을 10 kGy/h의 선량율로 하기 표 1에 나타낸 조사선량(50-600 kGy)이 될 때까지 조사하였다.The ETFE film prepared in the preparation step was immersed in the monomer solution prepared in Step 1, and gamma rays were irradiated until the irradiation dose (50-600 kGy) shown in Table 1 at a dose rate of 10 kGy / h.
조사가 끝난 후 ETFE 필름에 그라프트 되지 않은 호모폴리머와 미반응 단량체를 제거하기 위하여 24시간 동안 아세톤으로 세척하고, 40 ℃의 진공오븐에서 1시간 동안 건조하여 ETFE 필름에 CEVE가 그래프트된 고분자막을 제조하였다.
After irradiation, the grafted ETFE film was washed with acetone for 24 hours to remove ungrafted homopolymer and unreacted monomer, and dried in a vacuum oven at 40 ° C. for 1 hour to prepare a polymer film grafted with CEVE on the ETFE film. It was.
<< 실시예Example 2> 2> ETFEETFE 필름에 On film BDVEBDVE 가 end 그래프트된Grafted 고분자막의 제조( Preparation of Polymer Membrane ETFEETFE -g--g- BDVEBDVE ))
이탈기가 포함된 단량체로서 2-클로로에틸비닐에테르(CEVE) 대신에 1,4-부탄디올비닐에테르(BDVE)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 ETFE 필름에 BDVE가 그래프트된 고분자막을 제조하였다.Polymer membrane grafted with BDVE on an ETFE film in the same manner as in Example 1 except that 1,4-butanediol vinyl ether (BDVE) was used instead of 2-chloroethyl vinyl ether (CEVE) as a monomer containing a leaving group. Was prepared.
<< 비교예Comparative Example 1> 1> ETFEETFE 필름에 On film BVEBVE 가 end 그래프트된Grafted 고분자막의 제조( Preparation of Polymer Membrane ETFEETFE -g--g- BVEBVE ))
이탈기가 없는 단량체로 2-클로로에틸비닐에테르(CEVE) 대신에 부틸비닐에테르(BVE)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 ETFE 필름에 BVE가 그래프트된 고분자막을 제조하였다.Except for using butyl vinyl ether (BVE) instead of 2-chloroethyl vinyl ether (CEVE) as a monomer without leaving group was carried out in the same manner as in Example 1 to prepare a polymer film grafted BVE to the ETFE film.
<< 실험예Experimental Example 1> 방사선 1> radiation 조사선량에To radiation dose 따른 Following 그라프트율Graft rate 평가 evaluation
실시예 1-2 및 비교예 1에서 방사선 조사량에 따른 그라프트율을 알아보기 위하여 다음과 같이 실험하였다.In Example 1-2 and Comparative Example 1 to determine the graft rate according to the radiation dose was tested as follows.
구체적으로, 실시예 1-2 및 비교예 1의 준비단계에서 준비한 고분자필름의 무게(W0)를 측정하고, 각 실시예 및 비교예의 단량체들을 그라프트 시켜 제조한 고분자막의 무게(Wg)를 측정한 다음, 그라프트율(%)을 하기 수학식 1을 이용하여 측정하였고, 그 결과를 도 1에 나타내었다.Specifically, the weight (W 0 ) of the polymer film prepared in the preparation step of Example 1-2 and Comparative Example 1 was measured, and the weight (W g ) of the polymer film prepared by grafting the monomers of each example and the comparative example. After the measurement, the graft rate (%) was measured using Equation 1 below, and the results are shown in FIG. 1.
상기 수학식 1에서,In the above equation (1)
W0은 단량체를 그라프트 시키기 전의 고분자필름 무게이고,W 0 is the polymer film weight before grafting the monomer,
Wg는 단량체를 그라프트 시킨 후의 고분자막의 무게이다.
W g is the weight of the polymer film after the monomer is grafted.
도 1에 나타난 바와 같이, 단량체의 종류에 따라서 조사선량에 따른 그라프트율이 많은 차이가 있음을 보여주고 있다. 실시예 1(ETFE-g-CEVE)의 단량체인 CEVE는 조사량이 증가함에 따라 그라프트율이 규칙적으로 증가하고 있음을 보여주는 반면, 비교예 1(ETFE-g-BVE)의 단량체인 BVE는 매우 적은 그라프트율을 보이고, 실시예 2(ETFE-g-BDVE)의 단량체인 BDVE는 높은 반응성 때문에 호모폴리머가 형성되면서 겔화가 관찰되어 50 kGy 이상부터는 조사를 하지 않았다. 따라서, 단량체의 화학적 특성에 의하여 각각의 다른 그라프트율을 보이고 있음을 확인할 수 있었다.As shown in Figure 1, it shows that there are many differences in the graft rate according to the irradiation dose depending on the type of monomer. CEVE, a monomer of Example 1 (ETFE-g-CEVE), shows that the graft rate increases regularly with increasing dose, whereas BVE, a monomer of Comparative Example 1 (ETFE-g-BVE), shows very little graft rate. The BDVE, which is a monomer of Example 2 (ETFE-g-BDVE), was observed to form a homopolymer due to its high reactivity and gelation was observed. Therefore, it was confirmed that different graft rates were shown by the chemical properties of the monomers.
이러한 결과는, 고분자를 형성하는데에 전자주개 그룹이 활동적인 기능을 하고, 실시예 1의 단량체인 CEVE의 Cl 부분이 부반응을 일으키지 않아 높은 그라프트율이 나온 것으로 사료된다. 실시예 1의 단량체인 CEVE를 이용하여 충분한 그라프트율을 얻기 위해서는 100 kGy 이상의 조사선량이 필요한 것을 확인할 수 있었다.
These results suggest that the electron donor group plays an active role in forming the polymer, and the Cl portion of CEVE, which is the monomer of Example 1, does not cause side reactions, resulting in a high graft rate. In order to obtain a sufficient graft ratio using CEVE as a monomer of Example 1, it was confirmed that an irradiation dose of 100 kGy or more is required.
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 간단한 방사선 동시조사방법을 이용하여 비닐에테르계 단량체를 고분자필름에 높은 그라프트율로 도입할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, according to the present invention, the vinyl ether monomer-grafted polymer membrane can be introduced into the polymer film at a high graft rate by using a simple radiation simultaneous irradiation method. Thus, cation exchange membrane, anion exchange membrane, and adsorption It may be useful in the manufacture of the separator.
<< 실험예Experimental Example 2> 촉매 첨가에 따른 2> according to the addition of catalyst 그라프트율Graft rate 평가 evaluation
그라프팅 촉매 첨가에 따른 그라프트율을 알아보기 위하여 다음과 같이 실험을 하였다.In order to determine the graft rate according to the grafting catalyst addition was performed as follows.
구체적으로, 실시예 1(ETFE-g-CEVE) 및 비교예 1(ETFE-g-BVE)의 단계 1에서 단량체 용액을 제조할 때 그라프팅 촉매로 AlCl3 2 mg을 첨가하고 10 kGy/h의 선량률로 조사선량 200 kGy가 될 때까지 조사하여 제조한 고분자막의 그라프트율을 측정하였다. 이때, 그라프트율은 실험예 1에서 이용한 방법과 동일하게 수행하여 측정하였고, 그 결과를 도 2에 나타내었다.
Specifically, when preparing the monomer solution in Step 1 of Example 1 (ETFE-g-CEVE) and Comparative Example 1 (ETFE-g-BVE), 2 mg of AlCl 3 was added as a grafting catalyst and 10 kGy / h of The graft rate of the prepared polymer membrane was measured until the dose was 200 kGy at the dose rate. In this case, the graft rate was measured in the same manner as in Experiment 1, and the results are shown in FIG. 2.
도 2에 나타난 바와 같이, 그라프팅 촉매를 첨가한 경우와 단량체만을 첨가한 경우를 비교하였을 때 유의할만한 그라프트율 변화는 관찰되지 않았다. 이것은, 본 발명의 제조방법이 추가적인 촉매 없이도 그라프트율이 높게 나타나는 것을 나타낸다.
As shown in FIG. 2, no significant graft rate change was observed when the grafting catalyst was added and the monomer alone was added. This indicates that the production method of the present invention shows a high graft rate even without an additional catalyst.
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 간단한 방사선 동시조사방법을 이용하여 추가적인 그라프팅 촉매 없이도 비닐에테르계 단량체를 고분자막에 높은 그라프트율로 도입할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, according to the present invention, the method for preparing a polymer membrane grafted with vinyl ether monomer can be introduced into the polymer membrane at a high graft rate without additional grafting catalyst by using a simple simultaneous irradiation method. It may be useful in the production of anion exchange membrane, adsorptive separation membrane and the like.
<< 실험예Experimental Example 3> 3> FTFT -- IRIR 및 And EDXEDX 를 이용한 Using 그라프트Graft 평가 evaluation
실시예 1(ETFE-g-CEVE) 및 비교예 1(ETFE-g-BVE)에서 제조한 고분자막의 그라프트 유무를 평가하기 위하여 다음과 같이 실험하였다.In order to evaluate the graft presence of the polymer membrane prepared in Example 1 (ETFE-g-CEVE) and Comparative Example 1 (ETFE-g-BVE) was performed as follows.
구체적으로, 단량체를 그라프팅 시키지 않은 ETFE 필름과 실험예 2에서 사용한 것과 동일한 고분자막을 FT-IR(모델명: Tensor-37 , 제조사: Brucker)로 측정하여 나타나는 피크에서 그라프트 유무를 평가하였고, 그 결과를 도 3에 나타내었다.Specifically, the grafted ETFE film and the same polymer membrane used in Experimental Example 2 were measured by FT-IR (model name: Tensor-37, manufacturer: Brucker) to evaluate the presence or absence of graft at the peaks. Is shown in FIG. 3.
또한, 실시예 1(조사선량: 200 kGy)에서 제조한 고분자막의 단면을 EDX(Energy Dispersive X-ray spectroscopy)(모델명:7200-H, 제조사: HORIVA Company)를 이용하여 측정하였고, 그 결과를 도 4에 나타내었다.
In addition, the cross section of the polymer film prepared in Example 1 (irradiation dose: 200 kGy) was measured using Energy Dispersive X-ray spectroscopy (EDX) (model name: 7200-H, manufactured by HORIVA Company), and the results are illustrated in FIG. 4 is shown.
도 3에 나타난 바와 같이, 그라프팅 전의 ETFE 필름과 실시예 1 및 비교예 1에서 제조한 고분자막(ETFE-g-CEVE와 ETFE-g-BVE)의 FT-IR 그래프에 나타난 피크 중 2870-2969 cm-1에서 지방족기(-CH2-) 대칭, 비대칭 스트레칭 피크가 나타나는 것을 확인하였고, 또한 실시예 1에서 제조한 고분자막(ETFE-g-CEVE)은 742 cm-1 부근에서 C-Cl 피크가 나타나는 것을 확인하여 ETFE 필름에 단량체로 CEVE와 BVE가 성공적으로 그라프트 되었음을 확인할 수 있었다.
As shown in FIG. 3, 2870-2969 cm of peaks shown in the FTFE graph of the ETFE film before grafting and the polymer membranes prepared in Examples 1 and 1 (ETFE-g-CEVE and ETFE-g-BVE). an aliphatic group (-CH 2 -) -1 was confirmed that the symmetric, asymmetric stretching peak appearing further embodiment the polymer membrane (ETFE-g-CEVE) prepared in example 1 is shown a C-Cl peak at about 742 cm -1 It was confirmed that CEVE and BVE were successfully grafted with monomers in the ETFE film.
도 4에 나타난 바와 같이, 실시예 1에서 제조한 고분자막의 단면을 촬영한 EDX 이미지에서는 고분자막의 가운데 부분까지 CEVE 단량체의 Cl 원소가 고르게 분포되어 있음을 확인하여, 그라프트가 성공적으로 됨을 알 수 있었다.
As shown in FIG. 4, in the EDX image photographing the cross section of the polymer film prepared in Example 1, it was confirmed that the Cl element of the CEVE monomer was evenly distributed to the center portion of the polymer film, and thus the graft was successful. .
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 간단한 방사선 동시조사방법을 이용하여 비닐에테르계 단량체를 고분자막에 고르게 분포하여 그라프팅할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, according to the present invention, the vinyl ether monomer-grafted polymer membrane can be grafted by uniformly distributing the vinyl ether monomer on the polymer membrane using a simple simultaneous irradiation method. It may be useful in the manufacture of the separator.
<< 실험예Experimental Example 4> 4> 그라프트율에On graft rate 따른 열적 안정성 평가 Thermal stability evaluation
ETFE 필름과 실시예 1(ETFE-g-CEVE) 및 실시예 2(ETFE-g-BDVE)에서 제조한 고분자막의 열적 안정성을 알아보기 위하여 다음과 같이 실험하였다. In order to determine the thermal stability of the ETFE film and the polymer membrane prepared in Example 1 (ETFE-g-CEVE) and Example 2 (ETFE-g-BDVE) as follows.
구체적으로, 열중량분석기(모델명: SDT Q600, 제조사: TA instrument Korea)를 이용하여 ETFE 필름과 실시예 1 및 비교예 1에서 제조한 고분자막의 열분해곡선을 측정하였고, 그 결과를 도 5 및 도 6에 나타내었다.
Specifically, using the thermogravimetric analyzer (model name: SDT Q600, manufacturer: TA instrument Korea) was measured the thermal decomposition curve of the ETFE film and the polymer film prepared in Example 1 and Comparative Example 1, the results are shown in Figures 5 and 6 Shown in
도 5에 나타난 바와 같이, ETFE 필름(A)은 490 ℃에서 첫 번째 열화(degradation)가 관찰되었고, BVE가 2.5% 그라프트된 고분자막(B)은 310-410 ℃에서 첫 번째 열화가 관찰되었으며, BVE가 6.1% 그라프트된 고분자막(C)은 450-525 ℃에서 첫 번째 열화가 관찰되었다.
As shown in FIG. 5, the first degradation was observed at 490 ° C. for the ETFE film A, and the first degradation was observed at 310-410 ° C. for the BVE-grafted polymer film 2.5%. The first degradation was observed in the polymer membrane (C) where 6.1% of the BVE was grafted.
도 6에 나타난 바와 같이, ETFE 필름(A)은 490 에서 첫 번째 열화(degradation)가 관찰되었고, CEVE가 13.5% 그라프트된 고분자막(B)은 310-410 에서 첫 번째 열화가 관찰되었으며, CEVE가 54% 그라프트된 고분자막(C) 또한310-410 에서 첫 번째 열화가 관찰되었다. 상기 두 고분자막 모두 300 까지 열화가 발생되지 않기 때문에, 양이온 교환막, 음이온 교환막 흡착 분리막등의 기능성 분리막에서 요구되는 작동온도 환경에 비해 충분히 높은 열적 안정성을 가지는 것을 알 수 있었다.As shown in FIG. 6, the first degradation was observed at 490 in the ETFE film (A), and the first degradation was observed at 310-410 in the polymer film (B) grafted with 13.5% of the CEVE. 54% grafted polymer film (C) was also observed for the first degradation in 310-410. Since both polymer membranes do not deteriorate to 300, it can be seen that they have sufficiently high thermal stability compared to the operating temperature environment required for functional separation membranes such as cation exchange membranes and anion exchange membrane adsorption membranes.
이때, 높은 그라프트율로 CEVE를 그라프트시킨 고분자막은 열화가 두 번에 걸쳐 발생하는 것을 확인할 수 있었는데, 이 중에서 첫 번째 열화는 CEVE 단량체의 열화에 의한 중량 손실을 나타내고, 두 번째 열화는 ETFE 필름의 열화에 의한 중량 손실을 나타낸다.
At this time, the polymer film grafted CEVE at a high graft rate was confirmed that deterioration occurs twice, wherein the first degradation represents the weight loss due to the degradation of the CEVE monomer, the second degradation of the ETFE film Weight loss by
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법으로 제조되는 비닐에테르계 단량체가 그라프팅된 고분자막은 높은 열적 안정성을 나타내므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, the polymer membrane grafted with vinyl ether monomers prepared by the method for producing a polymer membrane grafted with vinyl ether monomers according to the present invention exhibits high thermal stability, and therefore, is useful for preparing cation exchange membranes, anion exchange membranes, adsorptive separation membranes, and the like. Can be useful.
<< 실험예Experimental Example 5> 용매의 종류에 따른 5> according to the type of solvent 그라프트율Graft rate 평가 evaluation
스티렌이 및 VBC와 같은 단량체는 그라프트 반응에 용매의 영향이 높다는 것을 감안하여, 실시예 1에서 고분자막을 제조할 경우 용매의 종류에 따른 그라프트율을 알아보기 위하여 다음과 같이 실험하였다.Considering that the monomers such as styrene and VBC have a high influence of the solvent on the graft reaction, the following experiment was performed to determine the graft rate according to the type of solvent when preparing the polymer membrane in Example 1.
구체적으로, 실시예 1에서 사용한 용매로 헵탄 이외에 헥산, 사이클로헥산, 옥탄, 톨루엔, 아세톤, DCM 및 클로로포름을 사용하여 단량체 용액(단량체:용매=1:1부피)을 제조한 다음, 10 kGy/h 선량율로 200, 400 kGy 조사선량이 되도록 감마선을 조사하여 고분자막을 각각 제조한 다음, 그라프트율을 실험예 1과 동일한 방법으로 측정하였고, 그 결과를 도 7 및 도 8에 나타내었다.
Specifically, a monomer solution (monomer: solvent = 1: 1 volume) was prepared using hexane, cyclohexane, octane, toluene, acetone, DCM, and chloroform in addition to heptane as a solvent used in Example 1, and then 10 kGy / h. The polymer film was prepared by irradiating gamma rays to a dose rate of 200 and 400 kGy, respectively, and graft rates were measured by the same method as Experimental Example 1, and the results are shown in FIGS. 7 and 8.
도 7 및 도 8에 나타난 바와 같이, 지방족 용매(헥산, 헵탄, 사이클로헥산, 옥탄)를 사용하여 제조한 고분자막이 평균적으로 높은 그라프트율을 나타내었고, 특히 헵탄이 70% 이상의 그라프트율을 나타내는 것을 확인하여, 본 발명의 비닐에테르계 단량체를 용해시키는 용매로 헵탄이 가장 적합한 용매임을 알 수 있었다.
As shown in FIG. 7 and FIG. 8, it was confirmed that the polymer film prepared using an aliphatic solvent (hexane, heptane, cyclohexane, octane) showed an average high graft rate, in particular, heptane showed a graft rate of 70% or more. It was found that heptane is the most suitable solvent for dissolving the vinyl ether monomer of the present invention.
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 다양한 유기용매를 사용할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, the method for preparing a polymer membrane grafted with vinyl ether monomers according to the present invention can use a variety of organic solvents, it can be useful for the preparation of cation exchange membrane, anion exchange membrane, adsorptive separation membrane and the like.
<< 실험예Experimental Example 6> 단량체 농도에 따른 6> according to monomer concentration 그라프트율Graft rate 평가 evaluation
실시예 1에서 단량체의 농도에 따른 그라프트율의 변화를 평가하기 위하여 다음과 같이 실험하였다.In order to evaluate the change in the graft rate according to the concentration of the monomer in Example 1 was tested as follows.
구체적으로, 실시예 1에서 헵탄 용매에 대하여 30, 50, 70, 100 %(v/v)의 단량체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 각각의 고분자막을 제조한 다음, 실험예 1과 동일한 방법으로 그라프트율을 측정하였고, 그 결과를 도 9에 나타내었다.
Specifically, except that the monomers of 30, 50, 70, 100% (v / v) with respect to the heptane solvent in Example 1 to prepare each polymer membrane in the same manner as in Example 1, then Experimental Example 1 The graft rate was measured by the same method as described above, and the results are shown in FIG. 9.
도 9에 나타난 바와 같이, 단량체가 증가함에 따라 그라프트율도 증가함을 나타내는데, 이는 단량체를 증가시키면 더 높은 그라프트율을 얻을 수 있음을 알 수 있다.
As shown in Figure 9, it shows that the graft rate also increases as the monomer increases, it can be seen that higher graft rate can be obtained by increasing the monomer.
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 단량체의 농도를 조절하여 그라프트율을 조절할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.
Therefore, the method for preparing a polymer membrane grafted with vinyl ether monomers according to the present invention can adjust the concentration of the monomer to adjust the graft rate, it can be useful for the preparation of cation exchange membrane, anion exchange membrane, adsorptive separation membrane and the like.
<< 실험예Experimental Example 7> 7> 선량율에On dose rate 따른 Following 그라프트율Graft rate 평가 evaluation
실시예 1에서 선량율에 따른 그라프트율의 변화를 평가하기 위하여 다음과 같이 실험하였다.In Example 1, the following experiment was conducted to evaluate the change of the graft rate according to the dose rate.
구체적으로, 실시예 1에서 사용한 10 kGy/h 선량율 대신에 5 kGy/h 선량율을 사용하여 50, 100, 200 및 400 kGy 조사선량이 될 때까지 방사선을 조사한 것을 제외하고는 실시예 1과 동일한 방법으로 각각의 고분자막을 제조한 다음, 실험예 1과 동일한 방법으로 그라프트율을 측정하였고, 그 결과를 도 10에 나타내었다.
Specifically, instead of the 10 kGy / h dose rate used in Example 1, using the 5 kGy / h dose rate, the same method as in Example 1 except that the radiation was irradiated until 50, 100, 200 and 400 kGy doses Each polymer film was prepared, and the graft ratio was measured by the same method as Experimental Example 1, and the results are shown in FIG. 10.
도 10에 나타난 바와 같이, 선량율이 낮아질수록 그라프트율이 다소 증가함을 나타내는 것을 확인할 수 있었다. 이것은 선량율을 낮게 하였을 때 고분자 사슬에서 라디칼 생성을 조금 더 증가시키는 것에 따른 결과로 사료된다. 하지만, 전체적인 그라프트율에서는 유의적인 차이를 보이지 않으므로, 제조시간을 단축한다는 관점에서 10 kGy/h 선량율을 사용하는 것이 더욱 바람직한 것을 알 수 있었다.
As shown in FIG. 10, the lower the dose rate, the more the graft rate increased. This is believed to result from a slight increase in radical production in the polymer chains at lower dose rates. However, the overall graft rate does not show a significant difference, it was found that it is more preferable to use a 10 kGy / h dose rate in terms of reducing the manufacturing time.
따라서, 본 발명에 따른 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법은 선량율을 높여 제조시간을 단축할 수 있으므로, 양이온교환막, 음이온교환막, 흡착분리막 등의 제조에 유용할 수 있다.Therefore, the method for preparing a polymer membrane grafted with vinyl ether monomer according to the present invention can increase the dose rate and shorten the production time, and thus may be useful for the preparation of cation exchange membranes, anion exchange membranes, adsorptive separation membranes, and the like.
Claims (10)
상기 단계 1에서 제조한 단량체 용액에 고분자필름을 침지시키고 감마선을 3-15 kGy/h의 선량율로 200-600 kGy의 조사선량으로 조사하는 단계(단계 2);를 포함하는 이탈기가 포함된 비닐에테르계 단량체가 그라프트된 고분자막의 제조방법:
[화학식 1]
(상기 화학식 1에서,
X는 할로겐(halogen)이고,
n은 1-10의 정수이다).
Preparing a monomer solution by dissolving a vinyl ether monomer including a leaving group (X) represented by Formula 1 in a heptane solvent (step 1); And
Immersing the polymer film in the monomer solution prepared in step 1 and irradiating gamma rays with an irradiation dose of 200-600 kGy at a dose rate of 3-15 kGy / h (step 2); vinyl ether containing a leaving group comprising a; Method for preparing a polymer film grafted with monomers:
[Chemical Formula 1]
(In Formula 1,
X is halogen
and n is an integer of 1-10.
The method of claim 1, wherein the polymer film of step 2 is tetrafluoroethylene-hexafluoropropylene (FEP), perfluoroalkyl vinyl ether (PFA), ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyethylene (PE), Polypropylene (PP), Polyetheretherketone (PEEK), Polysulfone (PSU), Polyethersulfone (PES), Polyimide (PI) And polybenzylimidazole (PBI).
A cation exchange membrane using a polymer membrane prepared by the method of preparing a polymer membrane in which a vinyl ether monomer including the leaving group of claim 1 is grafted.
Anion exchange membrane using a polymer membrane prepared by the method for producing a polymer membrane grafted with a vinyl ether monomer containing a leaving group of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110081800A KR101327971B1 (en) | 2011-08-17 | 2011-08-17 | Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110081800A KR101327971B1 (en) | 2011-08-17 | 2011-08-17 | Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130019689A KR20130019689A (en) | 2013-02-27 |
KR101327971B1 true KR101327971B1 (en) | 2013-11-13 |
Family
ID=47897751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110081800A Expired - Fee Related KR101327971B1 (en) | 2011-08-17 | 2011-08-17 | Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101327971B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101970499B1 (en) | 2018-08-14 | 2019-04-19 | (주)한길산업 | An odor removing apparatus for removing odor, a method for manufacturing the same, and an odor removing apparatus using the manufactured adsorption deodorizer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005063778A (en) * | 2003-08-11 | 2005-03-10 | Nitto Denko Corp | Fuel cell electrolyte membrane with excellent oxidation resistance |
JP2006282969A (en) | 2005-04-05 | 2006-10-19 | Japan Atomic Energy Agency | Method for producing functional inorganic/graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell |
US20080033069A1 (en) | 2003-08-28 | 2008-02-07 | Japan Atomic Energy Research Institute | Processes for producing nano-space controlled polymer ion-exchange membranes |
KR20100132218A (en) * | 2009-06-09 | 2010-12-17 | 한남대학교 산학협력단 | Cation exchange membrane and its preparation method |
-
2011
- 2011-08-17 KR KR1020110081800A patent/KR101327971B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005063778A (en) * | 2003-08-11 | 2005-03-10 | Nitto Denko Corp | Fuel cell electrolyte membrane with excellent oxidation resistance |
US20080033069A1 (en) | 2003-08-28 | 2008-02-07 | Japan Atomic Energy Research Institute | Processes for producing nano-space controlled polymer ion-exchange membranes |
JP2006282969A (en) | 2005-04-05 | 2006-10-19 | Japan Atomic Energy Agency | Method for producing functional inorganic/graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell |
KR20100132218A (en) * | 2009-06-09 | 2010-12-17 | 한남대학교 산학협력단 | Cation exchange membrane and its preparation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101970499B1 (en) | 2018-08-14 | 2019-04-19 | (주)한길산업 | An odor removing apparatus for removing odor, a method for manufacturing the same, and an odor removing apparatus using the manufactured adsorption deodorizer |
Also Published As
Publication number | Publication date |
---|---|
KR20130019689A (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140370417A1 (en) | Anion exchange membrane, method for producing the same, and fuel cell using the same | |
US8173325B2 (en) | Functional membrane and electrolyte membrane for fuel cells and method for producing the same | |
CA1189018A (en) | Cation exchange membrane and process for producing the same | |
CN104861194B (en) | A kind of manufacturing method of single slice type ambipolar film | |
EP2827415A1 (en) | Polymer electrolyte membrane having graft chain, and production method therefor | |
DE112006000450B4 (en) | Functional membrane, e.g. An electrolyte membrane for use in a fuel cell, and manufacturing method thereof | |
US20140165837A1 (en) | Method for manufacturing carbon dioxide separation membrane, and carbon dioxide separation membrane | |
Enomoto et al. | Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hydrophilic grafts from hydrophobic polymer substrates in aqueous media | |
Ismail et al. | Physico-chemical study of sulfonated polystyrene pore-filled electrolyte membranes by electrons induced grafting | |
KR101327971B1 (en) | Fabrication method for the grafted polymer membrane with vinyl ether based monomers having leaving group by simultaneous radiation | |
Atanasov et al. | ETFE-g-pentafluorostyrene: Functionalization and proton conductivity | |
KR101734980B1 (en) | Polyketone anion exchange membrane and manufacturing method thereof | |
US20100190875A1 (en) | Crosslinked aromatic polymer electrolyte membrane | |
KR101239883B1 (en) | Preparation method for crosslinked poly(vinylbenzyl sulfonyl acid)-grafted fluoropolymer membranes having improved chemical stability by simultaneous radiation and fluoropolymer membranes thereby | |
KR101358808B1 (en) | Fabrication method for the anion-exchange membranes by radiation graft cross-linking of vinylbenzyl chloride / divinylbenzene mixture and subsequent quaternarization with tertiary amines | |
Nasef et al. | Structure-property relationships in radiation grafted poly (tetrafluoroethylene)-graft-polystyrene sulfonic acid membranes | |
KR101088404B1 (en) | Method for preparing fluoropolymer film using simultaneous radiation and fluorine polymer film with improved chemical stability | |
KR101734841B1 (en) | Fabrication Method for the Hydrophilic Porous Supporters by Radiation Grafting of Hydrophilic Monomer and Hydrophilic Porous Supporters Thereby | |
Kinger et al. | Synthesis of poly ((vinyloxy) ethanesulfonic acid)‐grafted ETFE membrane via radiation grafting and its characterization | |
KR101446955B1 (en) | Manufacturing method of hydrogen ion conduction film | |
JPH0438762B2 (en) | ||
JP2004087380A (en) | Electrolyte membrane for fuel cell and method for producing the same | |
Ghafoor et al. | Synthesis of cation exchange membrane from polypropylene fabric using simultaneous radiation grafting | |
Tran et al. | Study of lamellar structures of graft-type fluorinated proton exchange membranes by small-angle X-ray scattering: preparation procedures and grafting degree dependence for fuel application | |
Yamaki et al. | Nano-structure controlled polymer electrolyte membranes for fuel cell applications prepared by ion beam irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20110817 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130415 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20131030 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20131105 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20131106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160928 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160928 Start annual number: 4 End annual number: 4 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20210603 |
|
PR0401 | Registration of restoration |
Patent event code: PR04011E01D Patent event date: 20210603 Comment text: Registration of Restoration |
|
PR1001 | Payment of annual fee |
Payment date: 20210603 Start annual number: 8 End annual number: 8 |
|
R401 | Registration of restoration | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220816 Termination category: Default of registration fee Termination date: 20210603 |