KR101315068B1 - SbtA gene from Synechocystis sp. PCC6803 and uses thereof - Google Patents
SbtA gene from Synechocystis sp. PCC6803 and uses thereof Download PDFInfo
- Publication number
- KR101315068B1 KR101315068B1 KR1020110010642A KR20110010642A KR101315068B1 KR 101315068 B1 KR101315068 B1 KR 101315068B1 KR 1020110010642 A KR1020110010642 A KR 1020110010642A KR 20110010642 A KR20110010642 A KR 20110010642A KR 101315068 B1 KR101315068 B1 KR 101315068B1
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- sbta
- plant
- plants
- pcc6803
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 69
- 241000192581 Synechocystis sp. Species 0.000 title abstract description 5
- 230000001965 increasing effect Effects 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000009261 transgenic effect Effects 0.000 claims abstract description 36
- 239000002028 Biomass Substances 0.000 claims abstract description 25
- 101000713310 Homo sapiens Sodium bicarbonate cotransporter 3 Proteins 0.000 claims abstract description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 17
- 230000001419 dependent effect Effects 0.000 claims abstract description 17
- 239000011734 sodium Substances 0.000 claims abstract description 17
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 17
- 102100036911 Sodium bicarbonate cotransporter 3 Human genes 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 239000013598 vector Substances 0.000 claims description 48
- 230000001131 transforming effect Effects 0.000 claims description 16
- 239000002773 nucleotide Substances 0.000 claims description 15
- 125000003729 nucleotide group Chemical group 0.000 claims description 15
- 241000192584 Synechocystis Species 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 8
- 241000208292 Solanaceae Species 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 5
- 244000061458 Solanum melongena Species 0.000 claims 11
- 108700026220 vif Genes Proteins 0.000 abstract description 7
- 241000196324 Embryophyta Species 0.000 description 144
- 210000004027 cell Anatomy 0.000 description 44
- 244000061176 Nicotiana tabacum Species 0.000 description 29
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 28
- 210000003763 chloroplast Anatomy 0.000 description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 230000000243 photosynthetic effect Effects 0.000 description 14
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 11
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 11
- 235000000346 sugar Nutrition 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 9
- 229920002472 Starch Polymers 0.000 description 9
- 235000019698 starch Nutrition 0.000 description 9
- 239000008107 starch Substances 0.000 description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 230000029553 photosynthesis Effects 0.000 description 7
- 238000010672 photosynthesis Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229930002875 chlorophyll Natural products 0.000 description 6
- 235000019804 chlorophyll Nutrition 0.000 description 6
- 210000001938 protoplast Anatomy 0.000 description 6
- 230000002786 root growth Effects 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 238000002105 Southern blotting Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229930002868 chlorophyll a Natural products 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000006870 ms-medium Substances 0.000 description 5
- DTBNBXWJWCWCIK-UHFFFAOYSA-M phosphoenolpyruvate Chemical compound OP(O)(=O)OC(=C)C([O-])=O DTBNBXWJWCWCIK-UHFFFAOYSA-M 0.000 description 5
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 229930002869 chlorophyll b Natural products 0.000 description 4
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 229960000268 spectinomycin Drugs 0.000 description 4
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 241000208838 Asteraceae Species 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 241000192700 Cyanobacteria Species 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 241000219991 Lythraceae Species 0.000 description 3
- 241000219071 Malvaceae Species 0.000 description 3
- 241000013557 Plantaginaceae Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 101150067314 aadA gene Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008635 plant growth Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 230000021749 root development Effects 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LHPVTMAMEMZFIJ-UHFFFAOYSA-N 2-benzyl-7h-purin-6-amine Chemical compound N=1C=2N=CNC=2C(N)=NC=1CC1=CC=CC=C1 LHPVTMAMEMZFIJ-UHFFFAOYSA-N 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000208173 Apiaceae Species 0.000 description 2
- 241000208327 Apocynaceae Species 0.000 description 2
- 241000142975 Cornaceae Species 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 241000208421 Ericaceae Species 0.000 description 2
- 244000062730 Melissa officinalis Species 0.000 description 2
- 235000010654 Melissa officinalis Nutrition 0.000 description 2
- 102100023175 NADP-dependent malic enzyme Human genes 0.000 description 2
- 101710082757 NADP-dependent malic enzyme Proteins 0.000 description 2
- 101710107456 NADP-dependent malic enzyme, chloroplastic Proteins 0.000 description 2
- 101710087699 NADP-dependent malic enzyme, mitochondrial Proteins 0.000 description 2
- 241000207834 Oleaceae Species 0.000 description 2
- 241000218998 Salicaceae Species 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000865 liniment Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 108010058731 nopaline synthase Proteins 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- MWMOPIVLTLEUJO-UHFFFAOYSA-N 2-oxopropanoic acid;phosphoric acid Chemical compound OP(O)(O)=O.CC(=O)C(O)=O MWMOPIVLTLEUJO-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 241000207965 Acanthaceae Species 0.000 description 1
- 241001143500 Aceraceae Species 0.000 description 1
- 241000219066 Actinidiaceae Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000208834 Adoxaceae Species 0.000 description 1
- 241001202987 Agaraceae Species 0.000 description 1
- 241000219317 Amaranthaceae Species 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000208223 Anacardiaceae Species 0.000 description 1
- 241000209034 Aquifoliaceae Species 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000758795 Aristolochiaceae Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- 241000209450 Bataceae Species 0.000 description 1
- 241000218999 Begoniaceae Species 0.000 description 1
- 241000133570 Berberidaceae Species 0.000 description 1
- 241001090347 Bignoniaceae Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241001072256 Boraginaceae Species 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241000208195 Buxaceae Species 0.000 description 1
- 241000209432 Cabombaceae Species 0.000 description 1
- 241000219357 Cactaceae Species 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 241000208671 Campanulaceae Species 0.000 description 1
- 241000873224 Capparaceae Species 0.000 description 1
- 241000208828 Caprifoliaceae Species 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- 241000219321 Caryophyllaceae Species 0.000 description 1
- 241000208365 Celastraceae Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241001453446 Ceratophyllaceae Species 0.000 description 1
- 241000758719 Chloranthaceae Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 241000758346 Clethraceae Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 241000207782 Convolvulaceae Species 0.000 description 1
- 240000006766 Cornus mas Species 0.000 description 1
- 241000220284 Crassulaceae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 241001464430 Cyanobacterium Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- IMXSCCDUAFEIOE-UHFFFAOYSA-N D-Octopin Natural products OC(=O)C(C)NC(C(O)=O)CCCN=C(N)N IMXSCCDUAFEIOE-UHFFFAOYSA-N 0.000 description 1
- IMXSCCDUAFEIOE-RITPCOANSA-N D-octopine Chemical compound [O-]C(=O)[C@@H](C)[NH2+][C@H](C([O-])=O)CCCNC(N)=[NH2+] IMXSCCDUAFEIOE-RITPCOANSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000758335 Diapensiaceae Species 0.000 description 1
- 241000123586 Dipsacaceae Species 0.000 description 1
- 241000208711 Droseraceae Species 0.000 description 1
- 241000792913 Ebenaceae Species 0.000 description 1
- 241001112083 Elaeocarpaceae Species 0.000 description 1
- 241000563967 Elatinaceae Species 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 241000208686 Eucommiaceae Species 0.000 description 1
- 241000221017 Euphorbiaceae Species 0.000 description 1
- 235000014066 European mistletoe Nutrition 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 241000219428 Fagaceae Species 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 241001071804 Gentianaceae Species 0.000 description 1
- 241000208150 Geraniaceae Species 0.000 description 1
- 241001112537 Gesneriaceae Species 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 241000578422 Graphosoma lineatum Species 0.000 description 1
- 241001106479 Haloragaceae Species 0.000 description 1
- 241000142952 Hamamelidaceae Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241001143502 Hippocastanaceae Species 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- 108091006671 Ion Transporter Proteins 0.000 description 1
- 102000037862 Ion Transporter Human genes 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 241000207923 Lamiaceae Species 0.000 description 1
- 241001083838 Lardizabalaceae Species 0.000 description 1
- 241000218195 Lauraceae Species 0.000 description 1
- 241000207990 Lentibulariaceae Species 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 241001113846 Loganiaceae Species 0.000 description 1
- 241000218377 Magnoliaceae Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000158728 Meliaceae Species 0.000 description 1
- 241000218164 Menispermaceae Species 0.000 description 1
- 241001105566 Menyanthaceae Species 0.000 description 1
- 241000218231 Moraceae Species 0.000 description 1
- 241001115514 Myricaceae Species 0.000 description 1
- 241000758344 Myrsinaceae Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000219469 Nyctaginaceae Species 0.000 description 1
- 241000209477 Nymphaeaceae Species 0.000 description 1
- 241000219929 Onagraceae Species 0.000 description 1
- 241000308150 Orobanchaceae Species 0.000 description 1
- 241000208165 Oxalidaceae Species 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000218180 Papaveraceae Species 0.000 description 1
- 241000218995 Passifloraceae Species 0.000 description 1
- 241000207960 Pedaliaceae Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000131786 Phrymaceae Species 0.000 description 1
- 241000219505 Phytolaccaceae Species 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 241001092092 Pittosporaceae Species 0.000 description 1
- 241000209464 Platanaceae Species 0.000 description 1
- 241000209454 Plumbaginaceae Species 0.000 description 1
- 241001105552 Polemoniaceae Species 0.000 description 1
- 241000208977 Polygalaceae Species 0.000 description 1
- 241000219050 Polygonaceae Species 0.000 description 1
- 241000219304 Portulacaceae Species 0.000 description 1
- 241000208476 Primulaceae Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 235000014360 Punica granatum Nutrition 0.000 description 1
- 241000218206 Ranunculus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000219100 Rhamnaceae Species 0.000 description 1
- 244000152640 Rhipsalis cassutha Species 0.000 description 1
- 235000012300 Rhipsalis cassutha Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 241001107098 Rubiaceae Species 0.000 description 1
- 241001093501 Rutaceae Species 0.000 description 1
- 241001083952 Sabiaceae Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000221035 Santalaceae Species 0.000 description 1
- 241001093760 Sapindaceae Species 0.000 description 1
- 241000758742 Saururaceae Species 0.000 description 1
- 241000220151 Saxifragaceae Species 0.000 description 1
- 241000758724 Schisandraceae Species 0.000 description 1
- 101710193464 Sedoheptulose-1,7-bisphosphatase, chloroplastic Proteins 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 241001093962 Simaroubaceae Species 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 241001671215 Staphyleaceae Species 0.000 description 1
- 241001060310 Styracaceae Species 0.000 description 1
- 241001060368 Symplocaceae Species 0.000 description 1
- 241000135402 Synechococcus elongatus PCC 6301 Species 0.000 description 1
- 241000192593 Synechocystis sp. PCC 6803 Species 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 241001534930 Thymelaeaceae Species 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 241000208236 Tropaeolaceae Species 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000218215 Urticaceae Species 0.000 description 1
- 241000792902 Valerianaceae Species 0.000 description 1
- 241001073567 Verbenaceae Species 0.000 description 1
- 241001106476 Violaceae Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 241000159213 Zygophyllaceae Species 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 108010003143 malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) Proteins 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 230000014075 nitrogen utilization Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 pEMU Proteins 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000005097 photorespiration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/405—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 이용하여 식물의 내염성을 증가시키는 방법, 상기 SbtA 유전자를 이용한 내염성이 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 내염성이 증가된 형질전환 식물체 및 이의 종자, 상기 SbtA 유전자를 이용하여 식물의 바이오매스를 증가시키는 방법, 상기 SbtA 유전자를 이용한 바이오매스가 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 식물체 및 이의 종자에 관한 것이다.The present invention is of the genus Synechocystis sp.) Method for increasing the flame resistance of plants using a PCC6803 derived SbtA (Sodium dependent bicarbonate transporter) gene, the SbtA Method for producing a transgenic plant with increased salt resistance using a gene, the transgenic plant with increased salt resistance produced by the method and its seeds, the SbtA The present invention relates to a method of increasing the biomass of a plant using a gene, a method of producing a transformed plant having an increased biomass using the SbtA gene, a transformed plant having an increased biomass produced by the method, and a seed thereof. .
Description
본 발명은 시네코시스티스 속 PCC6803 유래 SbtA 유전자 및 이의 용도에 관한 것으로서, 더욱 상세하게는 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 이용하여 식물의 내염성을 증가시키는 방법, 상기 SbtA 유전자를 이용한 내염성이 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 내염성이 증가된 형질전환 식물체 및 이의 종자, 상기 SbtA 유전자를 이용하여 식물의 바이오매스를 증가시키는 방법, 상기 SbtA 유전자를 이용한 바이오매스가 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 식물체 및 이의 종자에 관한 것이다.The present invention is of the genus SbtA gene derived from PCC6803 and its use, and more specifically, Synechocystis sp.) Method for increasing the flame resistance of a plant using a PCC6803-derived SbtA (Sodium dependent bicarbonate transporter) gene, a method for producing a transgenic plant with increased flame resistance using the SbtA gene, a transgenic plant with increased salt resistance prepared by the method And a seed thereof, a method of increasing the biomass of a plant using the SbtA gene, the SbtA The present invention relates to a method for producing a transformed plant having an increased biomass using a gene, a transformed plant having an increased biomass produced by the method, and a seed thereof.
식물은 태양에너지를 이용하여 물을 산화시키며 산소를 방출하고 이산화탄소와 유기물을 주로 당의 형태로 환원시킨다. 광합성은 이러한 에너지를 수확하고 유기물질을 합성하여 생명의 에너지원으로 이용하는 가장 중요한 화학 반응이라고 할 수 있다. 광합성을 하는 대부분의 육상식물은 캘빈회로의 루비스코를 통해 공기중의 CO2를 바로 고정하는 C3 식물로써 구분된다. C3 식물의 탄소고정은 루비스코 (ribulose bisphosphate carboxylase/oxygenas; Rubisco)에 의하여 촉매되며, 루비스코는 카르복실라제(carboxylase) 활성과 옥시게나제(oxygenase) 활성을 동시에 지니고 있어 경쟁적으로 반응하기 때문에 탄소 고정 효율이 낮다. 또한 루비스코의 산화반응에 의한 광호흡은 탄소고정 능력을 30~50%까지 저하시키며 가뭄, 고조도 및 고온 등의 스트레스 조건에서는 탄소 고정율이 지속적으로 감소된다(Sharkey, 1988, Physiologia Plantarum 73:147-152).Plants use solar energy to oxidize water, release oxygen, and reduce carbon dioxide and organics, mainly in the form of sugars. Photosynthesis is the most important chemical reaction that harvests this energy, synthesizes organic matter and uses it as the energy source of life. Most terrestrial plants that do photosynthesis are classified as C3 plants, which directly fix CO 2 in the air through the Calvin Rubisco. Carbon fixation of C3 plants is catalyzed by Rubisco (ribulose bisphosphate carboxylase / oxygenas; Rubisco), and Rubisco has a carboxylase activity and an oxygenase activity, which is a competitive reaction. Fixed efficiency is low. In addition, photorespiration by Rubisco's oxidation decreases the carbon fixation capacity by 30-50%, and the carbon fixation rate is continuously decreased under stress conditions such as drought, high illumination and high temperature (Sharkey, 1988, Physiologia Plantarum 73: 147). -152).
반면 열대환경에서 나타나는 C4 식물의 CO2 고정은 해부학적으로 엽육세포와 유관속초 세포가 협동하여 이루어지며, 상기 식물의 최초의 카르복시화는 루비스코 대신 PEP(phosphoenylpyruvate) 카르복시화 효소에 의하여 촉매되며, C4 산인 말산 및 아스파르트산이 최초의 광합성 중간 산물이 된다(Chollet et al., 1996, Annu Rev Plant Physiol Plant Mol Biol 47:273-298). PEP 카르복시화 효소는 기질인 중탄산 이온에 대한 친화도가 높아 대기 수준과 비슷한 CO2 농도에서도 포화되며, 기질로 중탄산 이온과 반응하기 때문에 O2와는 반응하지 않는다. 이처럼 PEP 카르복시화 효소의 활성이 높기 때문에 C4 식물은 기공을 부분적으로 닫아도 CO2를 빠른 속도로 고정하면서도 물을 보존할 수 있다. 이렇듯 C4 식물은 높은 광합성율 외에도 질소와 물 이용 효율이 높아 아열대 지역에서 생산성이 높다.On the other hand, CO 2 immobilization of C4 plants in the tropical environment is anatomically formed by co-operation of foliar cells and endospertic cells, and the first carboxylation of the plants is catalyzed by PEP (phosphoenylpyruvate) carboxylase instead of Rubisco, C4 acids malic and aspartic acid become the first photosynthetic intermediates (Chollet et al., 1996, Annu Rev Plant Physiol Plant Mol Biol 47: 273-298). PEP carboxylase has a high affinity for bicarbonate ions as a substrate and is saturated at CO 2 concentrations similar to atmospheric levels, and does not react with O 2 because it reacts with bicarbonate ions as a substrate. Because of the high activity of PEP carboxylase, C4 plants can conserve water while fixing CO 2 at high speed even when the pores are partially closed. In addition to the high photosynthesis rate, C4 plants are more productive in subtropical regions due to their higher efficiency of nitrogen and water use.
최근에는 이러한 C4 식물과 광합성 조류에서 나타나는 CO2 농축 메커니즘을 C3 식물에 도입하기 위한 연구가 진행되고 있다. C4 식물의 광합성 관련 주요 효소들의 유전자를 조작함으로써 C3 식물의 광합성 효율을 높이는 연구가 진행되고 있다(Miyao and Fukayama, 2003, Arch Biochem Biophys 414:197-203). 벼에 옥수수의 PEPC (phosphoenylpyruvate carboxylase), PPDK (pyruvate orthophosphate dikinase) 및 NADP-ME (NADP-malic enzyme) 유전자를 각각 도입한 결과, 높은 효소활성도를 보였으며(Fukayama et al., 2001, Plant Physiol 127:1136-1146), PEPC와 NADP-ME를 함께 발현시킨 담배의 경우 광호흡율이 감소되었다(Hausler et al., 2002, J Exp Bot 53:591-607).Recently, studies have been conducted to introduce CO 2 enrichment mechanisms in C4 plants and photosynthetic algae into C3 plants. Research on enhancing photosynthetic efficiency of C3 plants by engineering genes of key enzymes related to photosynthesis of C4 plants (Miyao and Fukayama, 2003, Arch Biochem Biophys 414: 197-203). The introduction of the corn phosphoenylpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-ME (NADP-malic enzyme) genes into rice showed high enzymatic activity (Fukayama et al., 2001, Plant Physiol 127). : 1136-1146), the photorespiratory rate was decreased in cigarettes expressing PEPC and NADP-ME (Hausler et al., 2002, J Exp Bot 53: 591-607).
한편 광합성 미세 조류는 루비스코 주변에서 CO2를 농축하는 메커니즘을 가지고 있어 결점을 보완한다. 미세 조류의 CO2 농축기작인 CCM (CO2-concentrating mechanism)은 광합성 미세 조류가 낮은 CO2 환경에서 무기 탄소를 농축할 수 있는 능력을 발달시키는데, 원형질막의 중탄산 이온펌프로 작용하는 트랜스포터(transporter)를 사용하여 세포내 무기 탄소의 농도를 높여준다. 농축된 중탄산 이온은 탄산탈수소효소(carbonic anhydrase)에 의하여 CO2로 전환되며, CO2는 캘빈회로로 들어가 루비스코와 결합하여 카르복시화가 진행된다. 루비스코의 활성은 활성부위 근처에서의 CO2와 O2의 농도에 따라 서로 경쟁적으로 나타나는데, 루비스코의 CO2 친화도는 원래 낮지만 세포내 CO2 농도를 높여 줌으로써 높은 광합성 속도를 나타낼 수 있다. 엽록체 내에 CO2 농도가 적은 양이 증가하더라도 CO2 고정효율은 매우 높게 향상될 수 있다(Price et al., 2008, J Exp Bot 59:1441-1461).Photosynthetic microalgae, on the other hand, have a mechanism for concentrating CO 2 around Rubisco, which compensates for the drawbacks. Micro-algae of the CO 2 concentrator agent CCM (CO 2 -concentrating mechanism) is sikineunde photosynthetic micro algae developed the ability to concentrate the inorganic carbon in the low CO 2 environment, the transporter acting as a bicarbonate ion pump of the plasma membrane (transporter) Increase the concentration of inorganic carbon in the cell. The concentrated bicarbonate ions are converted to CO 2 by carbonic anhydrase, and CO 2 enters the Calvin cycle and binds to Rubisco to undergo carboxylation. Rubisco's activity appears to be competitive with each other depending on the concentration of CO 2 and O 2 near the active site. Rubisco's CO 2 affinity is originally low, but it can show high photosynthetic rate by increasing intracellular CO 2 concentration. . Even small increases in the concentration of CO 2 in the chloroplasts can lead to very high CO 2 fixation efficiencies (Price et al., 2008, J Exp Bot 59: 1441-1461).
이러한 미세 조류의 CO2 농축기작인 CCM 메커니즘을 C3식물에 도입하기 위한 연구로 시아노박테리움(Cyanobacterium) 시네코코커스(Synechococcus) PCC 7942 유래 중탄산 이온 트랜스포터인 IctB 유전자를 C3 식물인 애기장대와 담배에 도입시킨 결과, 광합성 효율과 생장율이 증가되었으며(Lieman-Hurwitz et al., 2003, Plant Biotechnol J 1:43-50), IctB 유전자를 벼에서 발현 시켰을 때 광합성 효율과 효소 활성이 증가되고 CO2 보상점이 낮아졌으며 바이오매스가 증가된 결과가 보고되었다(Yang et al., 2008, Energy from the Sun 20:1244-1246). 상기 연구결과는 CO2 농축 메커니즘에 관련된 유전자를 C3 식물에 발현시킴으로써 CO2 고정효율을 증가시키고, 물과 질소 이용 효율을 높이는 등 C3식물의 결점을 보완할 수 있는 가능성을 제시하고 있다. C4 효소를 C3 식물에서 발현시킴과 동시에 미세 조류의 CO2 농축 메커니즘을 적용한다면 CO2 고정을 극대화함은 물론, 단세포 C4-주기(single-cell C4-cycle) 시스템을 C3 식물에서 실현시킬 수 있는 원동력이 될 것이다.In order to introduce the CCM mechanism, which is a CO 2 enrichment mechanism of microalgae, to C3 plants, IctB gene, a bicarbonate ion transporter derived from Cyanobacterium Synechococcus PCC 7942, was used for C3 plants, Arabidopsis and tobacco. As a result, the photosynthetic efficiency and growth rate were increased (Lieman-Hurwitz et al., 2003, Plant Biotechnol J 1: 43-50 ), and when the IctB gene was expressed in rice, photosynthetic efficiency and enzyme activity were increased and CO 2 was increased. Reward points have been lowered and biomass increases have been reported (Yang et al., 2008, Energy from the Sun 20: 1244-1246). The results suggest that the genes involved in the CO 2 enrichment mechanism can be expressed in C3 plants, thereby increasing the CO 2 fixation efficiency and improving the water and nitrogen utilization efficiency. By expressing the C4 enzyme in C3 plants and applying the CO 2 enrichment mechanism of microalgae, it is possible to maximize CO 2 fixation and to realize a single-cell C4-cycle system in C3 plants. It will be the driving force.
한편 시아노박테리아에는 여러 가지 CO2 농축기작에 사용되는 중탄산 이온 트랜스포터(bicarbonate transporter)가 존재한다. 그 중 SbtA는 중탄산 이온과 높은 친화력을 가지고 있어 낮은 CO2 농도의 환경에서도 CO2를 세포내로 효율적으로 흡수시킴으로써 세포내 CO2 농도를 높일 수 있으며, 나트륨 이온/중탄산 이온 심포터(sympoter)로써 SbtA를 통한 중탄산 이온의 흡수가 나트륨 이온에 의존적인 것으로 보고되었다(Shibata et al., 2002, J Biol Chem 227:18658-18664). 또한 SbtA는 시네코시스티스(Synechocystis) PCC6803에 단일-서브유닛 중탄산 이온 트랜스포터(Single-subunit bicarbonate transporter)로 존재하며, 다중-서브유닛 트랜스포터(multi-subunit transporter)에 비하여 조작이 용이하므로 고등식물로의 형질전환이 유리하다(Price et al., 2008, J Exp Bot 59:1441-1461). On the other hand, there are bicarbonate transporters in cyanobacteria that are used for various CO 2 enrichment mechanisms. Among them, SbtA has high affinity with bicarbonate ions, so it can increase the intracellular CO 2 concentration by efficiently absorbing CO 2 intracellularly even in low CO 2 concentration environment, and as a sodium ion / bicarbonate ion sympoter, SbtA Absorption of bicarbonate ions through is reported to be dependent on sodium ions (Shibata et al., 2002, J Biol Chem 227: 18658-18664). SbtA is also present in Synechocystis PCC6803 as a single-subunit bicarbonate transporter, and is easier to manipulate than multi-subunit transporters. Transformation is advantageous (Price et al., 2008, J Exp Bot 59: 1441-1461).
시아노박테리아는 엽록체의 원시적인 형태로 외막 및 엽록소 a를 함유하며, 식물처럼 광합성을 하는 광합성세균으로 엽록체와 유전적, 구조적 유사성이 크다. 특히 시아노박테리움 시네코시스티스 PCC6803은 광합성 원핵생물로는 최초로 게놈 분석이 완성되어 모델생물로서 이용되고 있다(Tabei et al., 2007, Biochem Biophys Res Commun 355:1045-1050). 상기 특성과 게놈 시퀀싱에 의한 정보로 인해 최근에는 시아노박테리아가 광합성 및 광합성의 유전적 조절 등의 연구에 많이 이용되고 있다. 본 발명에서는 이러한 점을 고려하여 시네코시스티스 PCC6803으로부터 SbtA (Sodium dependent bicarbonate transporter) 유전자를 분리하였으며, C3 식물인 담배에 도입함으로써 CO2 이용 효율과 바이오매스 생산이 증가된 식물체를 개발하고자 하였다. 이를 위하여 엽록체 형질전환 시스템을 통하여 SbtA 유전자가 도입된 담배 식물체를 제작하고, 확보된 T2 세대를 대상으로 효소활성과 광합성 효율, 탄수화물 함량, 생장량 및 바이오매스 생산 등을 조사하였다.Cyanobacteria is a primitive form of chloroplast, which contains the outer membrane and chlorophyll a, and is a photosynthetic bacterium that photosynthesizes like plants, and has great genetic and structural similarities with chloroplasts. In particular, cyanobacterium cinecosistis PCC6803 is the first photosynthetic prokaryotic genome analysis has been used as a model organism (Tabei et al., 2007, Biochem Biophys Res Commun 355: 1045-1050). Recently, cyanobacteria have been widely used for research on photosynthesis and genetic regulation of photosynthesis due to the characteristics and information by genome sequencing. In the present invention, SbtA (Sodium dependent bicarbonate transporter) gene was isolated from Cinecosystis PCC6803 in consideration of this point, and was introduced to the C3 plant tobacco to develop a plant with increased CO2 utilization efficiency and biomass production. To this end, tobacco plants with the SbtA gene were introduced through the chloroplast transformation system, and the enzyme activity, photosynthetic efficiency, carbohydrate content, growth and biomass production were investigated for the T2 generation.
한국등록특허 제10-0895611호에는 시네코시스티스 PCC6803 유래 SyFBP/SBPase 유전자를 이용하여 식물체의 내염성을 증가시키는 방법이 개시되어 있으며, 한국등록특허 제10-0990333호에는 보리 유래 NHX 유전자를 이용하여 식물체의 내염성을 증가시키는 방법이 개시되어 있다. Korean Patent Registration No. 10-0895611 A method of increasing the flame resistance of a plant using a PCC6803 derived SyFBP / SBPase gene is disclosed. Korean Patent No. 10-0990333 discloses a method of increasing the flame resistance of a plant using a barley-derived NHX gene.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 시네코시스티스 PCC6803 유래 SbtA 유전자를 도입시킨 형질전환 담배 식물체에서 염 스트레스에 대한 내성이 증가하고, 바이오매스가 증가한 것을 확인함으로써 본 발명을 완성하게 되었다.The present invention is derived from the above-described needs, and the present inventors have confirmed that the present invention is confirmed by the increase in resistance to salt stress and the increase in biomass in transgenic tobacco plants to which the SbtA gene derived from the cinecosistis PCC6803 is introduced. It was completed.
상기 과제를 해결하기 위해, 본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 이용하여 식물의 내염성을 증가시키는 방법을 제공한다. In order to solve the above problems, the present invention (Synechocystis) sp.) SbtA from PCC6803 It provides a method of increasing the flame resistance of plants by using a sodium dependent bicarbonate transporter gene.
또한, 본 발명은 시네코시스티스 속 PCC6803 유래 SbtA 유전자를 이용한 내염성이 증가된 형질전환 식물체의 제조 방법을 제공한다.In addition, the present invention is a genus Provided is a method for producing a transgenic plant having increased salt resistance using the SbtA gene derived from PCC6803 .
또한, 본 발명은 상기 방법에 의해 제조된 내염성이 증가된 형질전환 식물체 및 이의 종자를 제공한다. The present invention also provides a transgenic plant with increased flame resistance produced by the above method and its seeds.
또한, 본 발명은 시네코시스티스 속 PCC6803 유래의 SbtA 유전자를 포함하는, 식물체의 내염성 증가용 조성물을 제공한다.In addition, the present invention is a genus Provided is a composition for increasing the salt resistance of a plant, comprising the SbtA gene derived from PCC6803 .
또한, 본 발명은 시네코시스티스 속 PCC6803 유래 SbtA 유전자를 이용하여 식물의 바이오매스를 증가시키는 방법을 제공한다. In addition, the present invention is a genus Provided is a method for increasing plant biomass using SbtA gene derived from PCC6803 .
또한, 본 발명은 시네코시스티스 속 PCC6803 유래 SbtA 유전자를 이용한 바이오매스가 증가된 형질전환 식물체의 제조 방법을 제공한다. In addition, the present invention is a genus Provided is a method for producing a transgenic plant having increased biomass using the SbtA gene derived from PCC6803 .
또한, 본 발명은 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 식물체 및 이의 종자를 제공한다.The present invention also provides a transgenic plant and seed thereof having increased biomass produced by the above method.
또한, 본 발명은 시네코시스티스 속 PCC6803 유래의 SbtA 유전자를 포함하는, 식물체의 바이오매스 증가용 조성물을 제공한다.In addition, the present invention is a genus Provided is a composition for increasing biomass of a plant, including the SbtA gene derived from PCC6803 .
본 발명의 시네코시스티스 속 PCC6803 유래 SbtA 유전자를 식물체의 엽록체에 형질전환시키면 염 스트레스에 대한 내성이 증가할 뿐만 아니라 바이오매스 또한 증가한다. 따라서 SbtA 유전자를 이용하면 염 스트레스 환경에 대해 저항성이 강한 형질전환 식물체를 개발하는데 유용할 것으로 기대된다.The genus Cinecosis of the present invention Transforming the SBTA gene from PCC6803 to the chloroplasts of plants not only increases resistance to salt stress but also increases biomass. Therefore, the SbtA gene is expected to be useful for developing transgenic plants that are resistant to salt stress environments.
도 1은 시네코시스티스 SbtA 유전자의 엽록체 형질전환 벡터를 나타낸다. 상기 벡터는 Rclp 프로모터, SbtA 표적 유전자, 2개의 마커 유전자(aadA 및 GFP), rrnB1/B2 터미네이터 및 엽록체 게놈 내의 삽입 영역(trnI 및 trnA)으로 이루어진다.
도 2는 담배 엽록체에 도입된 시네코시스티스 SbtA 유전자의 도입과 발현 결과를 나타낸다. (A) trnA 프로브를 이용한 벡터 대조군 및 SySbtA 형질전환 식물의 서던 블롯 분석. (B) SbtA 프로브를 이용한 노던 블롯 분석.
도 3은 엽록체 형질전환 담배 식물체의 잎으로부터 분리된 원형질체의 GFP 발현을 나타낸 것이다. GFP의 발현은 형광현미경으로 관찰하였다.
도 4는 대조군 식물 및 SySbtA 형질전환 식물의 생장 및 뿌리 발달에 대한 염의 효과를 나타낸 것이다. (A) 0 mM, 25 mM 및 100 mM의 NaCl을 포함하는 배지에서 9일 동안 대조군 및 형질전환 식물을 직접 발아시킨 결과. (B) 뿌리 발달에 대한 다양한 염 농도의 효과.
도 5는 형질전환 담배 식물 및 대조군 식물의 표현형을 나타낸 것이다. (A) 7주 동안 키운 담배 식물의 표현형. (B) 14주 동안 키운 개화 개시기의 담배 식물의 표현형. (C) 9주 동안 키운 담배 식물의 꼭대기로부터 7번째 잎의 모양. 식물은 25℃ 및 60% 상대습도로 16시간 광 및 8시간 암의 주기하의 피토트론(Phytotron) 조건에서 생장되었다.
도 6은 대조군 식물 및 SySbtA 형질전환 담배 식물의 생장율, 생중량 및 건중량을 나타낸 것이다. (A) 토양에 이식 후 피토트론 조건하의 초장. (B) 생중량. (C) 건조중량. 결과는 평균±표준편차로 나타내었다(n=10).
도 7은 대조군 식물 및 SySbtA 형질전환 식물체의 잎 수와 줄기 직경을 비교한 것이다. (A) 잎의 수. (B) 줄기 직경. 결과는 평균±표준편차로 나타내었다(n=10).
도 8은 엽록소 함량을 측정한 결과를 나타낸 것이다. (A) 엽록소 a, b 및 총 엽록소의 양. (B) 엽록소 a/b 비. 담배 식물은 10주 동안 키웠다. 결과는 평균±표준편차로 나타내었다(n=3).
도 9는 대조군 식물 및 SySbtA 형질전환 식물에서 세포내 CO2 농도에 따른 광합성율을 나타낸 것이다. 담배 식물은 9주 동안 키웠다. 700 μmol/m2/s의 광도에서 증가하는 세포내 CO2 농도(Ci)에 대한 CO2 동화율의 반응(n=7).
도 10은 벡터 대조군 및 형질전환 담배 식물에서의 CO2 보상점을 나타낸 것이다. 보상점은 0~400 mL/L 범위의 CO2 농도에서 CO2 교환율을 측정하여 추정되었다. 담배 식물은 9주 동안 키웠다. 결과는 평균±표준편차로 나타내었다(n=4).
도 11은 수용성 당 및 전분 함량의 측정 결과를 나타낸 것이다. (A) 프룩토오스, 글루코오스 및 수크로오스의 양. (B) 전분의 양. 당 및 전분은 식물 꼭대기로부터 5번째에 해당하는 잎 추출물에서 측정되었다. 담배 식물은 10주 동안 키웠다. 결과는 평균±표준편차로 나타내었다(n=4).1 shows the chloroplast transforming vector of the cinecosistis SbtA gene. The vector consists of the Rclp promoter, SbtA target gene, two marker genes ( aadA and GFP ), the rrnB1 / B2 terminator and insertion regions ( trnI and trnA ) in the chloroplast genome.
Figure 2 shows the results of the introduction and expression of the Synecocistis SbtA gene introduced into tobacco chloroplasts. (A) Vector control and SySbtA with trnA probe Southern blot analysis of transgenic plants. (B) Northern blot analysis using SbtA probe.
Figure 3 shows GFP expression of protoplasts isolated from the leaves of chloroplast transgenic tobacco plants. Expression of GFP was observed by fluorescence microscopy.
4 shows the effect of salt on growth and root development of control plants and SySbtA transgenic plants. (A) Direct germination of control and transgenic plants for 9 days in medium containing 0 mM, 25 mM and 100 mM NaCl. (B) Effect of varying salt concentrations on root development.
5 shows phenotypes of transgenic tobacco plants and control plants. (A) Phenotype of tobacco plants grown for 7 weeks. (B) Phenotype of tobacco plants at initiation of flowering for 14 weeks. (C) The appearance of the seventh leaf from the top of tobacco plants grown for nine weeks. The plants were grown in Phytotron conditions under a cycle of 16 hours light and 8 hours cancer at 25 ° C. and 60% relative humidity.
Figure 6 shows the growth rate, growth weight and dry weight of control plants and SySbtA transgenic tobacco plants. (A) Ultra long under phytotron conditions after transplantation into soil. (B) fresh weight. (C) dry weight. The results are expressed as mean ± standard deviation (n = 10).
Figure 7 compares the number of leaves and stem diameter of control plants and SySbtA transgenic plants. (A) Number of leaves. (B) stem diameter. The results are expressed as mean ± standard deviation (n = 10).
Figure 8 shows the result of measuring the chlorophyll content. (A) The amounts of chlorophyll a, b and total chlorophyll. (B) Chlorophyll a / b ratio. Tobacco plants were grown for 10 weeks. The results are expressed as mean ± standard deviation (n = 3).
9 shows photosynthesis rate according to intracellular CO 2 concentration in control plants and SySbtA transgenic plants. Tobacco plants were grown for 9 weeks. Response of CO 2 assimilation to increasing intracellular CO 2 concentration (Ci) at a light intensity of 700 μmol / m 2 / s (n = 7).
10 shows CO 2 reward points in vector control and transgenic tobacco plants. The compensation point was estimated by measuring the CO 2 exchange rate at a CO 2 concentration in the range of 0 to 400 mL / L. Tobacco plants were grown for 9 weeks. The results are expressed as mean ± standard deviation (n = 4).
Figure 11 shows the results of the measurement of the water-soluble sugar and starch content. (A) The amount of fructose, glucose and sucrose. (B) the amount of starch. Sugar and starch were measured in the fifth leaf extract from the plant top. Tobacco plants were grown for 10 weeks. The results are expressed as mean ± standard deviation (n = 4).
본 발명의 목적을 달성하기 위하여, 본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 SbtA 유전자를 과발현하는 단계를 포함하는 식물의 내염성을 증가시키는 방법을 제공한다. 상기 재조합 벡터는 바람직하게는 엽록체 형질전환 벡터이며, 더욱 바람직하게는 도 1에 기재된 RclpGAH::SbtA 벡터일 수 있으나, 이에 제한되지 않는다. 상기 재조합 벡터를 식물세포, 바람직하게는 식물세포의 엽록체에 형질전환시킨다.In order to achieve the object of the present invention, the present invention (Synechocystis) sp.) SbtA from PCC6803 It provides a method for increasing the flame resistance of a plant comprising the step of transforming a recombinant vector comprising a sodium dependent bicarbonate transporter gene to plant cells overexpressing the SbtA gene. The recombinant vector is preferably a chloroplast transformation vector, and more preferably, may be the RclpGAH :: SbtA vector described in FIG. 1, but is not limited thereto. The recombinant vector is transformed into plant cells, preferably chloroplasts of plant cells.
상기 SbtA 유전자는 바람직하게는 서열번호 1의 염기서열로 이루어질 수 있다. 또한, 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.The SbtA gene may be preferably composed of the nucleotide sequence of SEQ ID NO: 1. In addition, variants of the above nucleotide sequences are included within the scope of the present invention. Specifically, the gene has a base sequence having a sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% with the nucleotide sequence of SEQ ID NO: 1, respectively. It may include. "% Of sequence homology to polynucleotides" is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. The recombinant cell can express a gene or a gene fragment that is not found in the natural form of the cell in one of the sense or antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.
본 발명에서, 상기 SbtA 유전자 서열은 재조합 발현 벡터 내로 삽입될 수 있다. 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the SbtA gene sequence can be inserted into a recombinant expression vector. The term "recombinant expression vector" means a bacterial plasmid, a phage, a yeast plasmid, a plant cell virus, a mammalian cell virus, or other vector. In principle, any plasmid and vector can be used if it can replicate and stabilize within the host. An important characteristic of the expression vector is that it has a replication origin, a promoter, a marker gene and a translation control element.
SbtA 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.Expression vectors comprising the SbtA gene sequence and appropriate transcriptional / translational control signals can be constructed by methods well known to those of skill in the art. Such methods include in vitro recombinant DNA technology, DNA synthesis techniques, and in vivo recombination techniques. The DNA sequence can be effectively linked to appropriate promoters in the expression vector to drive mRNA synthesis. The expression vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.
본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a so-called T-region to a plant cell when present in a suitable host, such as Agrobacterium tumefaciens. Other types of Ti-plasmid vectors (see
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. Resistance gene, aadA gene, and the like, but are not limited thereto.
본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS, 히스톤 프로모터, Clp 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant vector of the present invention, the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS, histone promoter, Clp promoter. The term "promoter " refers to the region of DNA upstream from the structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constructive promoters may be preferred in the present invention because the choice of transformants can be made by various tissues at various stages. Thus, constitutive promoters do not limit selectivity.
본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vector of the present invention, conventional terminators can be used. Examples thereof include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens ( Agrobacterium tumefaciens ) Terminator of the Octopine gene, and the rrnB1 / B2 terminator of E. coli, but the present invention is not limited thereto. Regarding the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of a terminator is highly desirable in the context of the present invention.
본 발명의 벡터를 원핵세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다. The host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell while being stable can be used in any host cell known in the art, for example, E. coli JM109, E. coli BL21, E. coli RR1. , Bacillus genus strains, such as E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcensons, and various Pseudomonas Enterobacteria such as species and strains.
또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주세포로서, 효모(Saccharomyce cerevisiae), 곤충세포, 사람세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 숙주세포는 바람직하게는 식물세포이다.In addition, when transforming the vector of the present invention into eukaryotic cells, yeast ( Saccharomyce cerevisiae ), insect cells, human cells (e.g., CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293) as host cells. , HepG2, 3T3, RIN and MDCK cell lines) and plant cells and the like can be used. The host cell is preferably a plant cell.
본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법, 하나한 방법 (Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.The method of carrying the vector of the present invention into a host cell is performed by using the CaCl 2 method or one method (Hanahan, D., J. Mol. Biol., 166: 557-580 (1983)) when the host cell is a prokaryotic cell. And the electroporation method. When the host cell is a eukaryotic cell, the vector is injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment .
또한, 본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 내염성이 증가된 형질전환 식물체의 제조 방법을 제공한다. 바람직하게는, 상기 SbtA 유전자는 서열번호 1의 염기서열로 이루어질 수 있다. In addition, the present invention (Synechocystis) sp.) A method for producing a transgenic plant having increased flame resistance comprising transforming a plant cell with a recombinant vector comprising a PCC6803-derived SbtA (Sodium dependent bicarbonate transporter) gene and regenerating the plant from the transformed plant cell. to provide. Preferably, the SbtA gene may be composed of the nucleotide sequence of SEQ ID NO: 1.
본 발명의 방법은 본 발명에 따른 재조합 벡터로 식물 세포를 형질전환하는 단계를 포함하는데, 상기 형질전환은 예를 들면, 아그로박테리움 튜머파시엔스(Agrobacterium tumefiaciens)에 의해 매개될 수 있다. 또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.The method of the invention comprises the step of transforming a plant cell with a recombinant vector according to the present invention, the transformant is, for example, Agrobacterium tyumeo Pacific Enschede may be mediated by (Agrobacterium tumefiaciens). In addition, the method of the present invention comprises regenerating a transgenic plant from the transformed plant cell. Any of the methods known in the art can be used for regeneration of transgenic plants from transgenic plant cells.
형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).Transformed plant cells must be regenerated into whole plants. Techniques for the regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vol. 1-5, 1983-1989, Momillan, N. Y.).
또한, 본 발명은 상기 방법에 의해 제조된 내염성이 증가된 형질전환 식물체 및 이의 종자를 제공한다. 바람직하게는, 상기 식물체는 쌍자엽 식물일 수 있으나, 이에 제한되지는 않는다. 바람직하게는, 상기 쌍자엽 식물은 담배이다.The present invention also provides a transgenic plant with increased flame resistance produced by the above method and its seeds. Preferably, the plant may be a dicotyledonous plant, but is not limited thereto. Preferably, the dicotyledonous plant is tobacco.
상기 쌍자엽 식물은 암매과(돌매화나무과, Diapensiaceae), 매화오리나무과(Clethraceae), 노루발과(Pyrolaceae), 진달래과(Ericaceae), 자금우과(Myrsinaceae), 앵초과(Primulaceae), 갯질경이과 (Plumbaginaceae), 감나무과(Ebenaceae), 때죽나무과(Styracaceae), 노린재나무과, 회목과(Symplocaceae), 물푸레나무과(목서과, Oleaceae), 마전과(Loganiaceae), 용담과(Gentianaceae), 조름나물과(Menyanthaceae), 협죽도과(마삭나무과, Apocynaceae), 박주가리과(Asclepiadaceae), 꼭두서니과(Rubiaceae), 꽃고비과(Polemoniaceae), 메꽃과(Convolvulaceae), 지치과(Boraginaceae), 마편초과(Verbenaceae), 꿀풀과(Labiatae), 가지과(Solanaceae), 현삼과(Scrophulariaceae), 능소화과(Bignoniaceae), 쥐꼬리망초과(Acanthaceae), 참깨과(Pedaliaceae), 열당과 (Orobanchaceae). 제스네리아과(Gesneriaceae), 통발과(Lentibulariaceae), 파리풀과(Phrymaceae), 질경이과(Plantaginaceae), 인동과(Caprifoliaceae), (연복초과 Adoxaceae), 마타리과(Valerianaceae), 산토끼꽃과(Dipsacaceae), 초롱꽃과 (Campanulaceae), 국화과(Compositae), 소귀나무과(Myricaceae), 가래나무과 (Juglandaceae), 버드나무과(Salicaceae), 자작나무과(Betulaceae), 너도 밤나무과(참나무과, Fagaceae), 느릅나무과(Ulmaceae), 뽕나무과(Moraceae), 쐐기풀과 (Urticaceae), 단향과(Santalaceae), 겨우살이과(Loranthaceae), 마디풀과(여뀌과, Polygonaceae), 자리공과(상륙과, Phytolaccaceae), 분꽃과(Nyctaginaceae), 석류풀과(Aizoaceae), 쇠비름과(Portulacaceae), 석죽과(Caryophyllaceae), 명아주과 (Chenopodiaceae), 비름과(Amaranthaceae), 선인장과(Cactaceae), 목련과(Magnoliaceae), 붓순나무과(Illiciaceae), 녹나무과(Lauraceae), 계수나무과 (Cercidiphyllaceae), 미나리아재비과(Ranunculaceae), 매자나무과(Berberidaceae), 으름덩굴과(Lardizabalaceae), 새모래덩굴과(방기과, Menispermaceae), 수련과(Nymphaeaceae), 붕어마름과(Ceratophyllaceae), 어항마름과(Cabombaceae), 삼백초과(Saururaceae), 후추과(Piperaceae), 홀아비꽃대과(Chloranthaceae), 쥐방울덩굴과(Aristolochiaceae), 다래나무과(Actinidiaceae), 차나무과(동백나무과, Theaceae), 물레나물과(Guttiferae), 끈끈이주걱과(Droseraceae), 양귀비과(Papaveraceae), 풍접초과(Capparidaceae), 십자화과(겨자과, Cruciferae), 플라타너스과(버즘나무과, Platanaceae), 조록나무과(금루매과, Hamamelidaceae), 꿩의비름과(돌나물과, Crassulaceae), 범의귀과(Saxifragaceae), 두충과(Eucommiaceae), 돈나무과(Pittosporaceae), 장미과(Rosaceae), 콩과(Leguminosae), 괭이밥과(Oxalidaceae), 쥐손이풀과(Geraniaceae), 한련과(Tropaeolaceae), 남가새과(Zygophyllaceae), 아마과(Linaceae), 대극과(Euphorbiaceae), 별이끼과(Callitrichaceae), 운향과(Rutaceae), 소태나무과(Simaroubaceae), 멀구슬나무과(Meliaceae), 원지과(Polygalaceae), 옻나무과(Anacardiaceae), 단풍나무과(단풍과, Aceraceae), 무환자나무과(Sapindaceae), 칠엽수과(Hippocastanaceae), 나도밤나무과(Sabiaceae), 봉선화과(물봉선과, Balsaminaceae), 감탕나무과(Aquifoliaceae), 노박덩굴과(화살나무과, Celastraceae), 고추나무과(Staphyleaceae), 회양목과 (Buxaceae), 시로미과(Empetraceae), 갈매나무과(Rhamnaceae), 포도과(Vitaceae), 담팔수과(Elaeocarpaceae), 피나무과(Tiliaceae), 아욱과(Malvaceae), 벽오동과 (Sterculiaceae), 팥꽃나무과(서향나무과, Thymelaeaceae), 보리수나무과 (Elaeagnaceae), 이나무과(Flacourtiaceae), 제비꽃과(Violaceae), 시계꽃과 (Passifloraceae), 위성류과(Tamaricaceae), 물별과(Elatinaceae), 베고니아과 (Begoniaceae), 박과(Cucurbitaceae), 부처꽃과(배롱나무과, Lythraceae), 석류나무과(Punicaceae), 바늘꽃과(Onagraceae), 개미탑과(Haloragaceae), 박쥐나무과 (Alangiaceae), 층층나무과(산수유나무과, Cornaceae), 두릅나무과(오갈피나무과, Araliaceae) 또는 산형과(미나리과)(Umbelliferae(Apiaceae))일 수 있으나, 이에 제한되지는 않는다. The dicotyledonous plants are Asteraceae (Dolaceae, Diapensiaceae), Asteraceae (Clethraceae), Pyrolaceae, Ericaceae, Myrsinaceae, Primaceae (Primulaceae), Plumbaginaceae, Persimmonaceae (Ebenaceae) , Styracaceae, Stink bug, Symplocaceae, Ash (Oleaceae), Loganiaceae, Gentianaceae, Menyanthaceae, Oleaceae, Apocynaceae , Asclepiadaceae, Rubiaceae, Polemoniaceae, Convolvulaceae, Boraginaceae, Verbenaceae, Labiatae, Solanaceae, Scrophulariaceae , Bignoniaceae, Acanthaceae, Sesame (Pedaliaceae), Fructose (Orobanchaceae). Gesneriaceae, Lentibulariaceae, Phrymaceae, Plantaginaceae, Caprifoliaceae, (Perox Adoxaceae), Valerianaceae, Dipsacaceae, Campanaceae ( Campanulaceae, Compositae, Myricaceae, Sapaceae, Juglandaceae, Salicaceae, Birchaceae, Beechaceae, Fagaceae, Elmaceae, Moraceae , Urticaceae, Santalaceae, Mistletoe, Lothanthaceae, Polygonaceae, Landaceae, Phytolaccaceae, Nyctaginaceae, Pomegranate, Azizaceae (Portulacaceae), Caryophyllaceae, Chinopodiaceae, Amaranthaceae, Cactaceae, Magnoliaceae, Illiciaceae, Lauraceae, Cassia family, Cecidiphyllaceae, Ranunculus eae), Berberidaceae, Lardizabalaceae, Bird breeze (Mentaceae, Menispermaceae), Nymphaeaceae, Ceratophyllaceae, Cabombaceae, Saururaceae , Piperaceae, Chloranthaceae, Aristolochiaceae, Actinidiaceae, Camellia, Theaceae, Guttaiferae, Droseraceae, Papaveraceae ), Capparidaceae, Cruciferaceae (Mustaceae, Cruciferae), Planeaceae (Plataceae, Platanaceae), Verruaceae, Hamamelidaceae, Pheasant (Snaphaceae, Crassulaceae), Panaxaceae (Saxifragaceae) Eucommiaceae, Pittosporaceae, Rosaceae, Leguminosae, Oxalidaceae, Geraniaceae, Tropaeolaceae, Zygophyllaceae, Linaceae Euphorbiaceae), star moss (Callitrichaceae), Rutaceae, Simaroubaceae, Meliaceae, Polygalaceae, Anacardiaceae, Mapleaceae, Aceraceae, Sapindaceae, Mapleaceae Hippocastanaceae, Sabiaceae, Balsam (Bamsamaceae), Aquifoliaceae, Nova (Celastraceae), Staphyleaceae, Buxaceae, Empyaceae, Rhamnaceae, Vitaceae, Elaeocarpaceae, Tiliaceae, Malvaceae, Sterculiaceae, Adenaceae, Thymelaeaceae, Eraeagnaceae (Flacourtiaceae), Violaceae, Passifloraceae, Tamaricanaceae, Elatinaceae, Begoniaceae, Cucurbitaceae, Buddha (Lythraceae), Pomegranate Punicac eae), Onagraceae, Haloragaceae, Bataceae (Alangiaceae), Dogwood (Hornaceae), Cornaceae, Arboraceae (Agaraceae) or Umbelliferae (Apiaceae) It may be, but is not limited thereto.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진, 시네코시스티스 속(Synechocystis sp.) PCC6803 유래의 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는, 식물체의 내염성 증가용 조성물을 제공한다. 상기 조성물은 유효성분으로 서열번호 1의 염기서열로 이루어진 SbtA 유전자를 포함하며, 상기 유전자를 식물체의 엽록체에 형질전환시킴으로써 식물체의 내염성을 증가시킬 수 있는 것이다.In addition, the present invention consists of the nucleotide sequence of SEQ ID NO: 1, Synechocystis genus (Synechocystis sp.) Provided is a composition for increasing the flame resistance of plants, including SbtA (Sodium dependent bicarbonate transporter) gene derived from PCC6803 . The composition comprises the SbtA gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient, by increasing the salt resistance of the plant by transforming the gene into the chloroplast of the plant.
또한, 본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 SbtA 유전자를 과발현하는 단계를 포함하는 식물의 바이오매스를 증가시키는 방법을 제공한다. 상기 재조합 벡터는 바람직하게는 엽록체 형질전환 벡터이며, 더욱 바람직하게는 도 1에 기재된 RclpGAH::SbtA 벡터일 수 있으나, 이에 제한되지 않는다. 상기 재조합 벡터를 식물세포, 바람직하게는 식물세포의 엽록체에 형질전환시킨다. 바람직하게는, 상기 SbtA 유전자는 서열번호 1의 염기서열로 이루어질 수 있다.In addition, the present invention (Synechocystis) sp.) Provided is a method for increasing the biomass of a plant, comprising the step of overexpressing the SbtA gene by transforming a recombinant vector comprising a PCC6803 derived SbtA (Sodium dependent bicarbonate transporter) gene into plant cells. The recombinant vector is preferably a chloroplast transformation vector, and more preferably, may be the RclpGAH :: SbtA vector described in FIG. 1, but is not limited thereto. The recombinant vector is transformed into plant cells, preferably chloroplasts of plant cells. Preferably, the SbtA gene may be composed of the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 시네코시스티스 속(Synechocystis sp.) PCC6803 유래 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 바이오매스가 증가된 형질전환 식물체의 제조 방법을 제공한다. 바람직하게는, 상기 SbtA 유전자는 서열번호 1의 염기서열로 이루어질 수 있다. In addition, the present invention (Synechocystis) sp.) Method for producing a transformed plant with increased biomass comprising transforming plant cells with a recombinant vector comprising a PCC6803 derived SbtA (Sodium dependent bicarbonate transporter) gene and regenerating the plant from the transformed plant cells To provide. Preferably, the SbtA gene may be composed of the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 식물체 및 이의 종자를 제공한다. 바람직하게는, 상기 식물체는 쌍자엽 식물일 수 있으나, 이에 제한되지는 않는다. 상기 쌍자엽 식물은 전술한 바와 같다. 바람직하게는, 상기 쌍자엽 식물은 담배이다. The present invention also provides a transgenic plant and seed thereof having increased biomass produced by the above method. Preferably, the plant may be a dicotyledonous plant, but is not limited thereto. The dicotyledonous plants are as described above. Preferably, the dicotyledonous plant is tobacco.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진, 시네코시스티스 속(Synechocystis sp.) PCC6803 유래의 SbtA (Sodium dependent bicarbonate transporter) 유전자를 포함하는, 식물체의 바이오매스 증가용 조성물을 제공한다. 상기 조성물은 유효성분으로 서열번호 1의 염기서열로 이루어진 SbtA 유전자를 포함하며, 상기 유전자를 식물체의 엽록체에 형질전환시킴으로써 식물체의 바이오매스를 증가시킬 수 있는 것이다.
In addition, the present invention consists of the nucleotide sequence of SEQ ID NO: 1, Synechocystis genus (Synechocystis sp.) Provided is a composition for increasing biomass of a plant, including a SbtA (Sodium dependent bicarbonate transporter) gene derived from PCC6803 . The composition comprises the SbtA gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient, by increasing the biomass of the plant by transforming the gene into the chloroplast of the plant.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
재료 및 방법Materials and methods
식물 재료Plant material
본 실험에서 담배는 Nicotiana tabacum L. cv. Samsun 품종을 사용하였으며, 10%(v/v) 소듐 하이포글로라이트(유효 염소 함유량 5%) 용액에 15분간 표면 살균 후 멸균수로 3회 세척하고 3% 수크로오스가 첨가된 MS 배지에 치상하여 25℃, 16시간 광조건, 30 μmol/m2/s로 유지되는 배양실에서 약 5주 동안 배양된 잎을 엽록체 형질전환 재료로 사용하였다.
Cigarettes in this experiment were Nicotiana tabacum L. cv. Samsun varieties were used, surface sterilization in 10% (v / v) sodium hypoglolite (5% effective chlorine content) solution for 15 minutes, washed three times with sterile water, and washed with MS medium containing 3% sucrose. Leaves incubated for about 5 weeks in a culture chamber maintained at 25 ° C., 16 hours light condition and 30 μmol / m 2 / s were used as chloroplast transforming materials.
시네코시스티스(Cynecosistis ( SynechocystisSynechocystis ) ) SbtASbtA 유전자의 클로닝 및 색소체 형질전환용 벡터 제작 Gene Cloning and Chromosome Transformation Vector Construction
시네코시스티스 PCC6803의 게놈 DNA를 주형으로 하여 SbtA F (5'- ATG GAT TTT TTG TCC AAT TTC TTG -3'; 서열번호 2) 및 SbtA R (5'- TTA ACC TGC ACC AAG GGT CTG GGC -3'; 서열번호 3) 프라이머를 사용하여 PCR 증폭(1.1 kb)하였으며, 염기서열을 시퀀싱하여 확인하였다. 증폭한 단편을 EcoRV으로 절단한 후 RclpGAH 벡터로 서브클로닝하고, Rclp-SbtA를 XhoI/SpeI으로 절단하여 블런팅(blunting)한 후 담배 색소체 형질전환 벡터인 TIA (PvuII)로 도입시켰다(도 1).
The genomic DNA of Cynecosistis PCC6803 as a template SbtA PCR amplification using F (5'- ATG GAT TTT TTG TCC AAT TTC TTG-3 '; SEQ ID NO: 2) and SbtA R (5'- TTA ACC TGC ACC AAG GGT CTG GGC-3'; SEQ ID NO: 3) primers (1.1 kb) and confirmed by sequencing the sequence. The amplified fragment was digested with EcoRV and subcloned with the RclpGAH vector, and the Rclp- SbtA was digested with XhoI / SpeI and blunted and then introduced into the tobacco pigment transforming vector TIA (PvuII) (FIG. 1). .
엽록체 형질전환과 형질전환체의 선발Chloroplast transformation and selection of transformants
입자 밤바드먼트를 위한 식물 재료 준비는 밤바드먼트 수행 하루 전에 1 mg/L 벤질아데닌(BA) 및 0.1 mg/L 나프탈렌아세트산(NAA)이 첨가된 MS 배지에 멸균된 필터 페이퍼(직경 70 mm ; Advantec Toyo, Tokyo Japan)에 올려놓고, 그 위에 3 cm 크기의 담배 잎을 취하여 잎 뒷면이 위를 향하게 하여 올려놓았다. DNA는 금 입자(gold particle, 0.6 ㎛)에 코팅하여 particle delivery system (PDS 1000/He, Bio-Rad, USA)과 1,100 psi (7,580 MPa) rupture disk를 사용하여 9 cm 높이에서 밤바드먼트를 시행하였다. 밤바드먼트 후 담배 잎을 48시간 동안 딤 라이트(dim light) 조건에 둔 다음 5×5 mm로 잘라서 1 mg/L 벤질아데닌(BA) 및 0.1 mg/L 나프탈렌아세트산(NAA), 500 mg/L 스펙티노마이신(spectinomycin)이 포함된 MS 배지(신초 선발 배지)에 치상하였다. 약 4-6주 후 형질전환된 세포로부터 발생된 신초의 잎을 잘게 잘라 동일 배지에 치상 한 후 3번의 반복 선발과정(라운딩 과정)을 거쳐 재분화된 식물체는, 호르몬이 첨가되지 않은 MS 선발 배지에 옮겨 뿌리를 발생시킨 후 순화과정을 거쳐 피토트론(Phytotron)의 25℃, 16시간 일장 조건하에서 생육시켰다.
Plant material preparations for particle balm-borders were prepared by sterile filter paper (diameter 70 mm) in MS medium to which 1 mg / L benzyladenin (BA) and 0.1 mg / L naphthaleneacetic acid (NAA) were added the day before the balm-border was carried out; Advantec Toyo, Tokyo Japan), 3 cm tobacco leaves were placed on the leaves, with the back of the leaves facing up. DNA was coated on gold particles (0.6 μm) and subjected to a balm body at 9 cm height using a particle delivery system (
서던 및 노던 Southern and Northern 블롯Blot 분석 analysis
담배 잎에서 DNeasy Plant Mini Kit (Qiagen, Hilden, Germany)를 이용하여 총 게놈 DNA를 분리하였으며, 게놈 DNA 4 ㎍을 BamHI 및 BglII로 잘라 0.8 % 아가로스 겔에서 전기영동한 후, Zeta-프로브 GT Blotting Membrane (Bio-Rad, Hercules, CA)에 10×SSC를 이용하여 옮겼다. 색소체 게놈안의 trnI을 포함하는 BamHI-BglII DNA 절편에 PCR 증폭한 trnA 프로브(P1, 150 bp)를 방사선 동위원소 [α-32P]dCTP로 라벨링 하여 도입 유전자의 삽입을 확인하였다. 전혼성화(prehybridization) 및 혼성화는 7% (w/v) SDS가 들어가 있는 0.25 M 인산 나트륨 완충액(pH 7.2)을 이용하여 65℃에서 밤새 수행하였으며, 세척 완충액 I(20 mM 인산 나트륨 완충액(pH 7.2) 및 5% SDS)과 세척 완충액 II(20 mM 인산 나트륨 완충액(pH 7.2) 및 1% SDS)로 65℃에서 각각 15분씩 씻어낸 다음, 막(membrane)을 이미지 플레이트(Image plate, Fuji Film)에 3시간 노출시킨 뒤 밴드를 확인하였다.Total genomic DNA was isolated from tobacco leaves using DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), 4 μg of genomic DNA was cut with BamHI and BglII and electrophoresed on 0.8% agarose gel, followed by Zeta-probe GT Blotting. Membrane (Bio-Rad, Hercules, Calif.) Was transferred using 10 × SSC. The insertion of the transgene was confirmed by labeling the trnA probe (P1, 150 bp) PCR-amplified on the trAI-containing BamHI-BglII DNA fragment in the chromatin genome with a radioisotope [α- 32 P] dCTP. Prehybridization and hybridization were performed overnight at 65 ° C. using 0.25 M sodium phosphate buffer (pH 7.2) containing 7% (w / v) SDS, Wash Buffer I (20 mM sodium phosphate buffer, pH 7.2). ) And 5% SDS) and Wash Buffer II (20 mM sodium phosphate buffer (pH 7.2) and 1% SDS) at 65 ° C. for 15 minutes each, and then the membrane is image plate (Fuji Film) After 3 hours exposure to the band was confirmed.
총 RNA는 Trizol Reagent (Invitrogen, Carlsbad, CA)를 이용하여 형질전환된 잎으로부터 추출하였다. 총 RNA(2 ㎍)를 5.1% (v/v) 포름알데히드가 들어간 1% 아가로스 겔에 전기영동 후, Zeta-probe GT blotting Membrane(Bio-Rad, Hercules, CA)에 RNA를 옮기고 PCR로 증폭한 SbtA 유전자 절편(P2 프로브)에 [α-32P]dCTP로 라벨링 하였으며, 혼성화 및 세척 과정은 서던 블롯팅 방법과 동일하였다.
Total RNA was extracted from the transformed leaves using Trizol Reagent (Invitrogen, Carlsbad, Calif.). Total RNA (2 μg) was electrophoresed on a 1% agarose gel containing 5.1% (v / v) formaldehyde, followed by transfer of RNA to Zeta-probe GT blotting Membrane (Bio-Rad, Hercules, CA) and amplification by PCR. One SbtA gene segment (P2 probe) was labeled with [α- 32 P] dCTP and hybridization and washing were the same as the Southern blotting method.
GFP 발현 관찰Observe GFP Expression
GFP 형광을 관찰하기 위하여 원형질체를 분리하였다. 2주간 흙에서 키운 담배의 잎을 채취하여 표피를 벗겨낸 뒤, 효소 용액(1~1.5% Cellulase R10, 0.2~0.4% Mecerozyme R10, 0.4 M 만니톨, 20 mM MES, pH 5.7 및 0.1% BSA)에 넣고 암 상태로 3~4시간 처리하였다. 분리한 원형질체는 형광현미경을 통해 관찰하였다.
Protoplasts were isolated to observe GFP fluorescence. Take the leaves of tobacco grown in soil for 2 weeks and remove the epidermis, and then in enzyme solution (1-1.5% Cellulase R10, 0.2-0.4% Mecerozyme R10, 0.4 M mannitol, 20 mM MES, pH 5.7 and 0.1% BSA). Put and treated for 3-4 hours in the dark. The separated protoplasts were observed by fluorescence microscopy.
내염성 검정 및 형태적 관찰Flameproof Assay and Morphological Observation
SySbtA 엽록체 형질전환 담배의 염에 대한 반응을 보기 위하여 T2 종자를 NaCl 0 mM, 25 mM 및 100 mM이 첨가된 MS 배지에 각각 치상한 후, 25℃, 16 시간 광조건으로 배양하여 발아 9일 후 식물체의 뿌리 길이를 조사하였다.
In order to see the response to the salts of SySbtA chloroplast-transformed tobacco, T2 seeds were soaked in MS
식물 생육조건과 생장량 조사Investigation of plant growth conditions and growth
모든 분석법은 형질전환 T2 식물로 수행하였으며, 대조군 식물체와 형질전환체는 MS 기본배지에 스펙티노마이신 500 mg/L가 들어있는 배지에서 25℃, 16시간 광조건으로 발아시키고 5주 후 흙으로 옮겼으며, 피토트론 환경(25℃, 16시간 일장)에서 생육하였다. 생장률 분석을 위해 10개의 독립 개체를 일주일 간격으로 초장을 측정하였고, 개화기 때의 식물체를 수확하여 지상부의 생중량 및 건중량을 측정하였으며, 줄기의 직경과 잎의 개수를 조사하였다. 건중량은 70℃에서 10일간 건조시킨 후 측정하였다.
All assays were performed with transgenic T2 plants. Control plants and transformants were germinated at 25 ° C. for 16 hours in medium containing 500 mg / L of spectinomycin in MS medium and transferred to soil after 5 weeks. And grown in phytotron environment (25 ° C., 16 h length). For the growth rate analysis, the height of 10 independent individuals was measured at weekly intervals, the plants were harvested during flowering period, and the fresh and dry weights of the ground were measured, and the diameters of stems and the number of leaves were examined. Dry weight was measured after drying for 10 days at 70 ℃.
엽록소 함량 측정Chlorophyll content determination
엽록소 a 및 b의 함량 측정은 10주 된 담배 잎 100 mg을 채취하여 액체 질소로 얼린 뒤 분쇄하고, 80% 아세톤 1 mL을 첨가하여 암 상태로 20분간 교반하여 상등액을 취하였다. 상기 과정을 3번 반복하여 엽록소를 완전히 분리하였으며, 측정은 spectrophotometer (UV-2450, SHIMADZU Inc., Japan)를 이용하여 645 nm 및 663 nm의 파장에서 실시하였다(Jeong et al., 2002, Plant Physiol 129:112-121).
The content of chlorophyll a and b was measured by taking 100 mg of 10-week-old tobacco leaves, frozen with liquid nitrogen, crushed, and adding 1 mL of 80% acetone and stirring for 20 minutes in the dark to obtain a supernatant. Chlorophyll was completely isolated by repeating the above procedure three times, and the measurement was performed at a wavelength of 645 nm and 663 nm using a spectrophotometer (UV-2450, SHIMADZU Inc., Japan) (Jeong et al., 2002, Plant Physiol 129: 112-121).
수용성 당 및 전분 함량 측정Determination of Water Soluble Sugar and Starch Content
수용성 당 및 전분의 함량을 측정하기 위하여 효소 분석법을 이용하였다 (Stitt et al., 1989, Method Enzymol 174:518-522). 6시간 광적응 된 식물의 잎 0.1 g (FW)을 채취하여 액체 질소로 동결시켜 마쇄한 뒤, 0.5 mL의 킬링(Killing) 용액(2 : 8 = 포름산 : 100% 에탄올)을 넣고 80℃에서 20분간 처리하고, 80% 에탄올 0.5 mL을 첨가한 뒤 다시 80℃에서 20분간 처리하여 추출하였다. 증발기를 이용하여 완전히 건조시킨 뒤, 펠렛을 500 ㎕의 증류수에 녹여 풀어준 다음 원심 분리하여 상등액을 취하여 수용성 당을 측정하였다. 전분의 측정은 남아 있는 펠렛을 아밀라제(amylase)와 아밀로글루코시다제(amyloglucosidase)로 가수분해시켜 글루코오스를 측정하였다. 당 및 전분은 UV-Spectorphotometer (UV-2450, SHIMADZU Inc., Japan)를 이용하여 340 nm에서 NADPH의 흡광도를 측정하였다.
Enzyme assays were used to determine the content of water soluble sugars and starch (Stitt et al., 1989, Method Enzymol 174: 518-522). Take 0.1 g (FW) of the leaves of the plants which have been adapted for 6 hours, freeze them with liquid nitrogen, crush them, and then add 0.5 mL of Killing solution (2: 8 = formic acid: 100% ethanol) at After the treatment, 0.5 mL of 80% ethanol was added, followed by extraction at 80 ° C. for 20 minutes. After drying completely using an evaporator, the pellet was dissolved in 500 µl of distilled water, released, and centrifuged to obtain a supernatant to measure water-soluble sugars. Starch was measured for glucose by hydrolysis of the remaining pellets with amylase and amyloglucosidase. Sugar and starch were measured for absorbance of NADPH at 340 nm using a UV-Spectorphotometer (UV-2450, SHIMADZU Inc., Japan).
COCO 2 2 교환 및 COExchange and CO 2 2 보상점 측정Compensation Point Measurement
식물의 잎에서의 기체 교환과 CO2 보상점의 측정은 fluorescence chamber head (Li-6400-40 leaf chamber fluorometer; Li-Cor Inc., USA)가 장착된 LI-6400 (Li-Cor Inc., USA)을 이용하였다. 비슷한 시기의 식물체의 성숙한 잎을 선정하였고 IRGA (infra red gas analyzer) leaf chamber의 온도는 25℃, 상대습도는 50±2%로 하였다. CO2 농도는 400 μmol CO2/mol, 광도는 700 μmol/m2/s로 하였다. 광원은 적색 및 푸른색 LED 광원이며, 이산화탄소는 Li-6400 CO2 혼합기체를 사용하였다. CO2 보상점 조사는 CO2 농도를 400 μmol CO2/mol에서 0 μmol CO2/mol로 변화시키면서 CO2 교환값을 측정하여 값이 0이 되는 지점을 CO2 보상점으로 하였다.
Gas exchange and CO 2 compensation points in the leaves of plants were measured using LI-6400 (Li-Cor Inc., USA) equipped with a fluorescence chamber head (Li-6400-40 leaf chamber fluorometer; Li-Cor Inc., USA). ) Was used. Mature leaves of plants of similar period were selected and IRGA (infra red gas analyzer) leaf chamber temperature was 25 ℃ and relative humidity was 50 ± 2%. CO 2 The concentration was 400 μmol CO 2 / mol and the brightness was 700 μmol / m 2 / s. The light source was a red and blue LED light source, and carbon dioxide was mixed with a Li-6400 CO 2 gas. In the CO 2 compensation point investigation, the CO 2 exchange value was measured while changing the CO 2 concentration from 400 μmol CO 2 / mol to 0 μmol CO 2 / mol, and the point at which the value became 0 was used as the CO 2 compensation point.
실시예 1: 엽록체 형질전환 벡터와 형질전환 식물체 확인Example 1 Identification of Chloroplast Transformation Vectors and Transgenic Plants
엽록체 형질전환 벡터에는 동형 재조합을 위한 삽입 염기서열 부위인 trnI와 trnA가 있으며, RclpGAH를 백본(backbone)으로 하여 시네코시스티스 속 PCC 6803에서 찾아낸 표적 유전자인 SbtA 유전자와 함께 스펙티노마이신 저항성 선발 마커인 aadA 유전자 및 GFP 리포터 유전자를 사용하였으며, 벼에서 찾아낸 clp 프로모터 및 대장균의 rrnB1/B2 터미네이터를 사용하였다(도 1).Chloroplast transformation vectors include trn I and trnA, insertion sequences for homologous recombination, and spectinomycin resistance selection markers along with the SbtA gene, a target gene found in PCC 6803 of the genus Scincosistis, with RclpGAH as the backbone. Phosphorus aadA gene and GFP reporter gene were used, and the clp promoter found in rice and the rrnB1 / B2 terminator of Escherichia coli were used (FIG. 1).
형질전환된 3개의 T0 독립 라인을 얻었으며, T0 식물체에서 받은 T1 종자를 스펙티노마이신 배지에 발아시켜 선발하였고, 서던 및 노던 블롯 분석 결과 T1 식물체에서도 도입된 유전자가 발현됨을 확인하였으며, 동형(homoplasmic) 라인을 얻기 위하여 다시 한 번 세대 진전시켜 T2 세대를 대상으로 이후 실험을 진행하였다. T2 식물체를 대상으로 trnA probe를 이용하여 서던 블롯 분석을 수행한 결과 3개의 독립적인 엽록체 형질전환체 모두 약 4.5 kb 크기의 밴드가 검출되었고, 벡터 대조군에서는 약 3.3 kb 크기의 밴드가 검출되었으며 야생형에서는 0.88 kb의 밴드가 검출되었다(도 2). 상기 결과는 형질전환 식물체의 엽록체 게놈에 목적 유전자인 SbtA 유전자가 동형(homoplasmy) 상태로 도입되고 다음 세대로 유전되었음을 의미한다(도 2A). 또한 노던 블롯 분석을 위하여 SbtA 프로브 (P2)를 사용하였으며, 벡터 대조구를 제외한 모든 라인에서 SbtA 유전자가 발현하는 것을 확인하였다(도 2B).
Three transformed T0 independent lines were obtained, T1 seeds received from T0 plants were germinated and selected in spectinomycin medium, and Southern and Northern blot analysis revealed that the genes introduced in T1 plants were expressed and homozygous (homoplasmic). In order to obtain the line, the generation was once again advanced and the experiment was conducted on the T2 generation. Southern blot analysis using trnA probe on T2 plants revealed bands of approximately 4.5 kb in all three independent chloroplast transformants, approximately 3.3 kb in the vector control group, and in wild-type. A band of 0.88 kb was detected (FIG. 2). The results indicate that the SbtA gene, the target gene, was introduced into the homoplasmy state and inherited to the next generation in the chloroplast genome of the transgenic plant (FIG. 2A). In addition, SbtA probe (P2) was used for Northern blot analysis, and it was confirmed that the SbtA gene was expressed in all lines except the vector control (FIG. 2B).
실시예 2: 담배 형질전환 식물체의 GFP 발현Example 2: GFP Expression of Tobacco Transgenic Plants
도입된 GFP 유전자의 발현 여부를 확인하기 위하여 야생형, 벡터 대조군 및 SySbtA 4번 라인을 대상으로 식물체 잎으로부터 원형질체를 분리하여 세포수준에서 관찰한 결과, 표지 유전자인 GFP가 식물 엽록체 내에서 발현하는 것을 UV 형광으로 확인하였다(도 3).
In order to confirm the expression of the introduced GFP gene, protoplasts were isolated from plant leaves in wild-type, vector control, and
실시예 3: SySbtA 식물체의 내염성 검정 및 표현형 분석Example 3: Salt Tolerance Assay and Phenotypic Analysis of SySbtA Plants
SySbtA 형질전환 식물체의 내염성을 알아보기 위하여, 염에 대한 반응을 조사하였다. T2 종자를 각각 NaCl 0 mM, 25 mM 및 100 mM이 첨가된 배지에 치상하여 9일 후 뿌리 발달을 관찰하였다. NaCl을 첨가하지 않은 배지 즉, 일반 조건에서 SySbtA 식물체는 원뿌리의 뿌리생장이 빨랐으며, 반면 벡터 대조군은 뿌리생장이 느리고 측뿌리가 발달한 것을 볼 수 있었다(도 4A). 일반 조건인 NaCl이 첨가되지 않은 상태에서의 뿌리의 형태가 서로 다르기 때문에, 이를 보정하기 위해서 이때의 뿌리의 길이를 100으로 하여 NaCl을 첨가하였을 때의 뿌리생장을 상대적인 수치로 표현하였다. 그 결과 벡터 대조군에서는 NaCl의 농도가 증가할수록 뿌리생장이 감소하였고, SySbtA 식물체에서는 NaCl 25 mM일 때 오히려 뿌리생장이 11~38% 증가하였으며, NaCl 100 mM일 때에는 뿌리길이가 감소하였지만 SySbtA식물체가 벡터 대조구에 비하여 내성이 증가된 것을 알 수 있었다(도 4B).
SySbtA In order to determine the salt resistance of the transgenic plants, the response to the salt was examined. T2 seeds were seeded in medium supplemented with
실시예 4: SySbtAExample 4: SySbtA 식물체의 생리적 특징과 생장량Physiological Characteristics and Growth of Plants
파종된 SySbtA T2 식물체들은 피토트론 환경에서 키웠으며, 식물체의 초장, 엽수, 줄기의 직경, 생중량 및 건중량을 측정하였다. SySbtA는 대조군에 비해 흙으로 옮긴 후부터 빠르게 성장하였으며 13주부터 개화가 시작되었다(도 5). 개화기 때의 초장을 비교해 본 결과 SySbtA 식물체가 50% 정도 성장률이 높게 조사되었다(도 6A). 개화기 때의 생중량과 건중량을 비교해 본 결과, 생중량은 SySbtA가 36~50% 높았고, 특히 건중량은 50% 이상 높아졌으며 1번 라인의 경우 두 배 이상 높아진 것을 볼 수 있었다(도 6B 및 6C). 엽수 또한 SySbtA 식물체가 14~24% 많은 것으로 조사되었고(도 7A), 줄기의 직경도 6~9% 증가한 것을 볼 수 있었다(도 7B).The seeded SySbtA T2 plants were grown in a phytotron environment, and the plant height, leaves, stem diameter, fresh weight and dry weight were measured. SySbtA grew rapidly after transfer to soil compared to the control and began to bloom from week 13 (FIG. 5). As a result of comparing the height of the flowering period, SySbtA plants showed a high growth rate of about 50% (FIG. 6A). As a result of comparing the fresh weight and dry weight at the flowering period, the fresh weight was 36-50% higher in SySbtA, especially the dry weight was higher by 50% and more than double in the first line (Figs. 6B and 6C). . Conifers also showed 14-24% more SySbtA plants (FIG. 7A), and the diameter of the stems was also increased by 6-9% (FIG. 7B).
엽록소 함량에 있어서 SySbtA 식물체는 벡터 대조군에 비하여 총 엽록소 함량이 45-84% 증가하였으며, 엽록소 a/b 비율에는 별다른 변화를 보이지 않았다(도 8).
In the chlorophyll content, SySbtA plants showed a 45-84% increase in total chlorophyll content compared to the vector control, and showed no change in the chlorophyll a / b ratio (FIG. 8).
실시예 5: SySbtA 형질전환 식물체의 광합성 효율과 COExample 5 Photosynthetic Efficiency and CO of SySbtA Transgenic Plants 22 보상점 Reward points
담배의 엽록체에 직접적으로 SbtA를 도입시켰을 때 식물의 생장과 바이오매스가 증가되었으므로 광합성 효율에는 어떠한 변화가 있는지를 확인하기 위해 Phytotron에서 9주 생육된 T2 형질전환 식물체의 손상되지 않은 성숙된 잎을 사용하여 CO2 동화율을 측정하였다. 엽육세포 내의 CO2 농도(Ci)에 따른 CO2 동화율(A/Ci response curve)을 측정하기 위하여 광도를 700 μmol/m2/s로 고정하고 CO2 농도를 0-2100 μmol CO2/mol까지 변화시키면서 측정하였다. 측정 결과 벡터 대조군에 비하여 SySbtA 식물체가 광합성 효율이 높게 나타났다(도 9).The introduction of SbtA directly into the chloroplasts of tobacco increased plant growth and biomass, so intact mature leaves of T2 transgenic plants grown 9 weeks in Phytotron were used to determine what changes in photosynthetic efficiency. CO 2 assimilation rate was measured. To measure the CO 2 assimilation rate (A / Ci response curve) according to the CO 2 concentration (Ci) in the leaf cells, the intensity was fixed at 700 μmol / m 2 / s and the CO 2 concentration was 0-2100 μmol CO 2 / mol Measured while changing to. As a result, SySbtA plants showed higher photosynthetic efficiency than the vector control (FIG. 9).
한편 CO2 보상점은 CO2 교환이 0이 되는 시점, 즉 식물이 살아갈 수 있는데 필요한 최소한의 CO2 환경이므로 CO2 보상점이 낮을수록 저농도의 CO2 환경에서도 식물이 CO2를 효율적으로 이용하여 적응할 수 있는 능력이 커진 것을 의미한다. CO2 보상점을 조사한 결과 SySbtA 1번 라인 및 4번 라인이 벡터 대조군에 비하여 각각 12-16% 낮았다(도 10). 이 결과는 상기 Ci-곡선(Ci-curve)과 상응하는 결과이며 SySbtA 식물체가 CO2 이용 효율이 증가된 것을 알 수 있었다.
The CO 2 compensation point is the CO 2 exchange the zero point, i.e. the minimum CO 2 environment because CO 2 compensation point lower the plant even in a low concentration of CO 2 environment for there plants can survive being adapted to use the CO 2 efficiently It means that you have increased your ability to do so. As a result of examining the CO 2 reward point,
실시예Example 6: 6: SySbtASySbtA 형질전환 식물체의 수용성 당 및 전분 함량의 변화 Changes in Water-soluble Sugars and Starch Contents of Transgenic Plants
SySbtA 식물체의 증가된 CO2 동화율이 탄수화물의 생합성에 영향을 주는지 알아보기 위해 SySbtA 식물체의 탄수화물 함량 분석을 위해 정오에 채취한 담배 잎에서의 수용성 당 및 전분의 함량을 측정하였다. 그 결과 수용성 당의 경우 프룩토오스는 벡터 대조군과 SySbtA 형질전환 식물체가 유사한 수준이었으나 글루코오스는 소폭 증가하였으며, 수크로오스의 경우에는 함량이 124-189%로 대폭 증가하였다(도 11). 상기 수용성 당 함량의 증가는 CO2 동화작용이 증가됨으로써 탄소대사 산물인 글루코오스 및 수크로오스 합성을 증가시켰을 것으로 생각된다.Increased CO 2 in SySbtA Plants To determine whether the assimilation affects the biosynthesis of carbohydrates, the content of water-soluble sugars and starch in tobacco leaves collected at noon was analyzed for carbohydrate content of SySbtA plants. As a result, fructose in water-soluble sugars was similar in vector control and SySbtA transgenic plants, but glucose was slightly increased, and in case of sucrose, the content was greatly increased to 124-189% (FIG. 11). The increase in the water-soluble sugar content is thought to increase the synthesis of glucose and sucrose, carbon metabolites by increasing CO 2 assimilation.
서열목록 전자파일 첨부Attach an electronic file to a sequence list
Claims (18)
상기 형질전환된 가지과 식물세포로부터 가지과 식물을 재분화하는 단계를 포함하는 내염성이 증가된 형질전환 가지과 식물체의 제조 방법.Synechocystis, consisting of the nucleotide sequence of SEQ ID NO: 1 sp.) Transforming Solanaceae plant cells with a recombinant vector comprising a PCC6803-derived SbtA (Sodium dependent bicarbonate transporter) gene; And
A method for producing a transformed eggplant plant with increased flame resistance, comprising the step of regenerating the eggplant plant from the transformed eggplant plant cells.
상기 형질전환된 가지과 식물세포로부터 가지과 식물을 재분화하는 단계를 포함하는 바이오매스가 증가된 형질전환 가지과 식물체의 제조 방법.Synechocystis, consisting of the nucleotide sequence of SEQ ID NO: 1 sp.) Transforming Solanaceae plant cells with a recombinant vector comprising a PCC6803-derived SbtA (Sodium dependent bicarbonate transporter) gene; And
A method for producing a transformed eggplant plant with increased biomass comprising the step of regenerating the eggplant plant from the transformed eggplant plant cells.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110010642A KR101315068B1 (en) | 2011-02-07 | 2011-02-07 | SbtA gene from Synechocystis sp. PCC6803 and uses thereof |
PCT/KR2012/000599 WO2012108630A2 (en) | 2011-02-07 | 2012-02-03 | Sbta gene derived from synechocystis sp. pcc6803 and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110010642A KR101315068B1 (en) | 2011-02-07 | 2011-02-07 | SbtA gene from Synechocystis sp. PCC6803 and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120090291A KR20120090291A (en) | 2012-08-17 |
KR101315068B1 true KR101315068B1 (en) | 2013-10-08 |
Family
ID=46639019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110010642A Active KR101315068B1 (en) | 2011-02-07 | 2011-02-07 | SbtA gene from Synechocystis sp. PCC6803 and uses thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101315068B1 (en) |
WO (1) | WO2012108630A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112646830A (en) * | 2019-10-10 | 2021-04-13 | 天津科技大学 | Universal plasmid and construction method thereof and novel method for synechocystis to express exogenous gene |
US20230323413A1 (en) * | 2020-09-09 | 2023-10-12 | Cj Cheiljedang Corporation | A recombinant microorganism for producing l-glutamic acid and a method for producing l-glutamic acid using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002262872A (en) * | 2001-03-06 | 2002-09-17 | Toru Fujiwara | Gene involved in boron transport |
JP2006522608A (en) * | 2003-04-09 | 2006-10-05 | パーデュー・リサーチ・ファウンデーション | Methods and compositions for enhancing stress tolerance of plants |
KR20070111458A (en) * | 2005-01-27 | 2007-11-21 | 크롭디자인 엔.브이. | Plants with increased yields and methods of production thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030087868A (en) * | 2002-05-10 | 2003-11-15 | 박연일 | A Gene-Defective Cyanobactria, Method for Increasing Resistancy against Salts, and Increasing Productivity of PHB using the Same Bacteria |
US20100251416A1 (en) * | 2007-05-22 | 2010-09-30 | Basf Plant Science Gmbh | Plants with increased tolerance and/or resistance to environmental stress and increased biomass production |
KR100895611B1 (en) * | 2007-10-24 | 2009-05-06 | 한국생명공학연구원 | How to increase the plant's flame resistance by overexpressing S. yeast strains |
-
2011
- 2011-02-07 KR KR1020110010642A patent/KR101315068B1/en active Active
-
2012
- 2012-02-03 WO PCT/KR2012/000599 patent/WO2012108630A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002262872A (en) * | 2001-03-06 | 2002-09-17 | Toru Fujiwara | Gene involved in boron transport |
JP2006522608A (en) * | 2003-04-09 | 2006-10-05 | パーデュー・リサーチ・ファウンデーション | Methods and compositions for enhancing stress tolerance of plants |
KR20070111458A (en) * | 2005-01-27 | 2007-11-21 | 크롭디자인 엔.브이. | Plants with increased yields and methods of production thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2012108630A9 (en) | 2013-02-21 |
WO2012108630A3 (en) | 2012-12-27 |
WO2012108630A2 (en) | 2012-08-16 |
KR20120090291A (en) | 2012-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109641940B (en) | Protoporphyrinogen oxidase variants and methods and compositions for conferring and/or enhancing herbicide tolerance using the same | |
US8927806B2 (en) | Codon optimized SNF1-related protein kinase gene confers drought tolerance to a plant | |
US9464117B2 (en) | Herbicide-resistant proteins, encoding genes, and uses thereof | |
AU2024216539A1 (en) | Plants with Increased Photorespiration Efficiency | |
US20180135067A1 (en) | Plant body ideal for high-density planting and use thereof | |
RU2446688C2 (en) | Composition for obtaining plant body having improved sugar content and use thereof | |
KR101281071B1 (en) | IbOr-Ins gene mutant from Ipomoea batatas and uses thereof | |
KR101315068B1 (en) | SbtA gene from Synechocystis sp. PCC6803 and uses thereof | |
KR101305277B1 (en) | SDA1 gene from Arabidopsis thaliana and uses thereof | |
CN105925590B (en) | Herbicide resistance protein, its encoding gene and purposes | |
KR101289405B1 (en) | GGPS gene inducing fast growth or biomass increase of plant and uses thereof | |
CN113004382B (en) | Application of EmBP1 gene or protein thereof | |
KR101350170B1 (en) | Method for preparing transgenic plant with increased anthocyanin content and the plant thereof | |
CN116410279B (en) | Proteins related to regulating abiotic stress tolerance in rice and their related biomaterials and applications | |
CN102206259B (en) | IbLEA14 gene from ipomoea batatas roots and use thereof | |
KR101282406B1 (en) | RMT1 gene from Oryza sativa and uses thereof | |
KR101261277B1 (en) | IbLEA14 gene from a root of Ipomoea batatas and uses thereof | |
KR101407336B1 (en) | Plant transformed with a taxadiene synthase gene and the method for mass production of taxadiene using the transformed plant | |
KR101260935B1 (en) | A red pepper gene CaBI-1 confers stress-tolerance to plants | |
KR101270231B1 (en) | AtSZF2 gene increasing salt stress resistance of plant and uses thereof | |
CN115074379B (en) | Methods to enhance plant resistance to varying light intensity stress | |
KR101325046B1 (en) | Jasmonates inducible cis-acting promoter element and uses thereof | |
KR101282410B1 (en) | Plant cell wall protein HyPRP1-encoding gene and uses thereof | |
KR20120096644A (en) | Use of iblea14 gene as lignin biosynthesis regulator | |
KR20120084432A (en) | Recombinant vector for transforming plant plastid and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20110207 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20111226 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20110207 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130429 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130927 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130930 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20131001 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170824 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170824 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181205 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20181205 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20181226 Start annual number: 7 End annual number: 18 |