KR101309713B1 - the ceramic to manufacture using waste of Masato and method for the same - Google Patents
the ceramic to manufacture using waste of Masato and method for the same Download PDFInfo
- Publication number
- KR101309713B1 KR101309713B1 KR1020110122619A KR20110122619A KR101309713B1 KR 101309713 B1 KR101309713 B1 KR 101309713B1 KR 1020110122619 A KR1020110122619 A KR 1020110122619A KR 20110122619 A KR20110122619 A KR 20110122619A KR 101309713 B1 KR101309713 B1 KR 101309713B1
- Authority
- KR
- South Korea
- Prior art keywords
- masato
- ceramic
- waste
- molding
- tailings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000002699 waste material Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000006227 byproduct Substances 0.000 claims abstract description 36
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 35
- 239000011733 molybdenum Substances 0.000 claims abstract description 35
- 238000000465 moulding Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000010304 firing Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 239000000047 product Substances 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 238000001125 extrusion Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 241000718541 Tetragastris balsamifera Species 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 14
- 239000004576 sand Substances 0.000 abstract description 6
- 238000005065 mining Methods 0.000 abstract description 4
- 229910052661 anorthite Inorganic materials 0.000 abstract description 3
- 238000001354 calcination Methods 0.000 abstract description 3
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000227 grinding Methods 0.000 abstract description 3
- 239000004615 ingredient Substances 0.000 abstract 1
- 239000004927 clay Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000011449 brick Substances 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 238000001238 wet grinding Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000010433 feldspar Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/02—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/20—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/30—Drying methods
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/32—Burning methods
- C04B33/34—Burning methods combined with glazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
광업 폐기물인 마사토의 폐기물과 몰리브덴에서 필요성분을 분리하고 남은 몰리브덴 광미를 첨가하여 2차상(Anorthite)을 형성하여 저온에서 소성하여 일반적으로 활용할 수 있는 흡수율과 강도를 지니는 마사토 폐기물을 이용하여 제조되는 세라믹 및 그 제조방법이 개시된다. 본 발명은 마사토에서 모래를 채취하고 남은 부산물에 몰리브덴 광미를 10-30중량% 첨가하고, 분쇄 및 성형 후 1000℃이하의 온도에서 소성공정을 거치는 것을 특징으로 하며, 본 발명을 통하여 광업 폐기물인 부산물을 효과적으로 재활용할 수 있으며, 저온에서 강도가 강한 세라믹을 얻을 수 있다.Ceramic manufactured using Masato waste, which has the absorption rate and strength that can be generally utilized by forming the secondary phase (Anorthite) by separating the necessary ingredients from the waste of minato Masato waste and molybdenum and adding the remaining molybdenum tailings. And a method of manufacturing the same. The present invention is characterized in that 10-30% by weight of molybdenum tailings is added to the remaining by-products after collecting sand from Masato, and subjected to a calcination process at a temperature of less than 1000 ℃ after grinding and molding, by-products of mining waste through the present invention Can be effectively recycled, and a strong ceramic can be obtained at low temperatures.
Description
본 발명은 마사토 폐기물을 활용하여 제조되는 세라믹 및 그 제조방법에 관한 것으로, 특히 광업 폐기물인 마사토의 폐기물과 몰리브덴에서 필요성분을 분리하고 남은 몰리브덴 광미를 첨가하여 2차상(Anorthite)을 형성하여 저온에서 소성하여 일반적으로 활용할 수 있는 흡수율과 강도를 지니는 마사토 폐기물을 이용하여 제조되는 세라믹 및 그 제조방법에 관한 것이다.The present invention relates to a ceramic manufactured using Masato waste, and a method of manufacturing the same, and in particular, to form a secondary phase (Anorthite) by adding the remaining molybdenum tailings after separating necessary components from the waste of Masato, which is a mining waste, and molybdenum. The present invention relates to a ceramic manufactured using Masato waste having an absorption rate and strength that can be generally utilized by firing, and a method of manufacturing the same.
일반적으로 세라믹은 점토(백토, 고령토, 도석), 규사, 장석을 첨가하여 건조 및 소성하는 방법에 의해서 제조하는 것이 널리 알려져 왔다. 즉, 점토 조성물을 60~90중량%와 점토를 제외한 첨가물을 10~40중량%를 첨가하여 건조 및 소성을 거쳐서 생산하는 방법이 주류를 이룬다. 점토를 이용하여 제작하는 세라믹 제품은 대체로 1,200℃ 이상의 고온으로 소성하여 제조하게 된다. In general, it is widely known that ceramics are manufactured by a method of drying and calcining by adding clay (clay, kaolin, pottery stone), silica sand and feldspar. That is, the main method is to produce 60 to 90% by weight of the clay composition and 10 to 40% by weight of the additives excluding the clay, followed by drying and calcining. Ceramic products manufactured using clay are generally manufactured by firing at a high temperature of 1,200 ° C. or higher.
이와 같은 종래의 방법에 의해서 제조되는 점토벽돌 및 세라믹은 일반적으로 고온소성(1200℃ 이상)이 되어야만 하기 때문에 고온 소성에 필요한 연료비등의 원가상승을 초래하고 결국에는 원가상승에 따른 높은 생산비용을 초래하였다. 따라서, 세라믹의 제조방법에서 각종 첨가제를 이용하여 소성온도를 낮추기 위한 시도가 진행되어 왔다. Since clay bricks and ceramics manufactured by such conventional methods generally have to be hot baked (over 1200 ° C.), they cause a cost increase such as fuel cost required for high temperature firing and eventually a high production cost due to the cost increase. It was. Therefore, attempts have been made to lower the firing temperature using various additives in the ceramic production method.
그러나, 각종 첨가제를 이용하여 소성온도를 낮추기 위한 세라믹 제조방법 은 제조공정이 복잡하며, 사용되는 원료 종류가 많고, 화학약품등의 첨가제가 사용됨에 따라 소성과정 중의 유해물질이 발생할 가능성이 높고, 제조비용 상승하는등의 문제점을 여전히 가지고 있다. However, the ceramic manufacturing method for lowering the firing temperature by using various additives is complicated manufacturing process, there are many kinds of raw materials used, and the use of additives such as chemicals is likely to cause harmful substances during the firing process, There are still problems such as rising costs.
한편, 광산폐기물은 광석에서 필요성분을 분리하고 남은 물질을 말하는 것으로 광미라고 하며, 폐광산 주변에 산재해 있는 광미를 처리하기 위하여는 광미를 시멘트로 고형화/안정화 처리 후 차단형 콘크리트 매립시설인 차폐시설에 안전매립하는 방법이 안정적인 처리방법이다. On the other hand, mine waste refers to the material remaining after separating the necessary components from the ore, which is called tailings.In order to treat the tailings scattered around the waste mines, the tailings are solidified / stabilized with cement and then shielded facility which is a block type concrete reclamation facility. Safe landfill is a stable treatment method.
광미를 광미댐에 적치할 경우, 장기적으로는 비산먼지, 중금속 용출 등 환경문제를 발생시킬 수 있으나 광업 폐기물을 순환자원으로 재활용할 수만 있다면 환경도 보전하고 광물 자원의 수명도 연장시킬 수 있다는 장점을 가지고 있다. If the tailings are placed in the tailings dam, environmental problems such as fugitive dust and heavy metal leaching may occur in the long term, but if they can be recycled as recycling resources, they can conserve the environment and extend the life of the mineral resources. Have.
이와 같은 광산폐기물에 의하여 토양 및 수질 환경의 오염을 방지시켜 환경 파괴를 막는 대안으로 광석 폐기물(광미)의 재활용이 현재 많은 분야에서 연구자들에 의해서 연구가 진행되고 있으나, 응용은 매우 협소한 분야에서만이 시도되고 있는 실정이다. The recycling of ore wastes (tailings) is currently being conducted by researchers in many fields as an alternative to prevent pollution of the soil and water environment by such mine wastes, but the application is only in very narrow fields. This is being tried.
본 발명은 상기한 문제점을 해결하기 위하여 발명된 것으로, 마사토 및 몰리브덴의 폐기물을 이용하여 소성 온도를 낮춤으로써 제조비용을 절감하는 건축재료인 세라믹을 제조함으로서, 환경오염의 원인이 되고 폐광물을 재활용할 뿐만 아니라 종래의 고온소성방법에 의하여 제조된 세라믹에 비하여 압축강도가 향상되고, 흡수율이 낮은 마사토 폐기물을 이용하여 제조되는 세라믹 및 그의 제조방법을 제공하는 데 그 목적이 있다. The present invention has been invented to solve the above problems, by using a waste of Masato and molybdenum to manufacture a ceramic, a building material that reduces the manufacturing cost by lowering the firing temperature, causing environmental pollution and recycling waste minerals In addition, the object of the present invention is to provide a ceramic and a method for producing the same, which are manufactured using Masato waste, which has improved compressive strength and has low water absorption as compared with ceramic prepared by a conventional high temperature firing method.
이와 같은 목적을 수행하기 위한 본 발명은, The present invention for performing such an object,
본 발명은 모래(마사)를 채취하고 남은 부산물인 마사토 폐기물 70~90중량%와 몰리브덴 광미 10~30중량% 혼합한 혼합물을 40~100메쉬입자로 분쇄한 분쇄혼합물의 수분함량을 20~30%가 되도록 수분을 제거한 다음 성형체를 제조하는 혼합 및 성형단계; The present invention 20 to 30% of the water content of the pulverized mixture obtained by crushing a mixture of 70 ~ 90% by weight of Masato waste and 10 to 30% by weight of molybdenum tailings, which are the byproducts of the sand (mass), with 40 to 100 mesh particles. Mixing and forming steps of removing water to make a molded body;
혼합 및 성형단계에서 생성된 성형체를 상온에서 10~30시간 자연 건조한 후, 140℃~180℃에서 1~3일간 가온 건조하는 건조단계;Drying the molded product produced in the mixing and molding step at room temperature for 10 to 30 hours, and then drying at a temperature of 140 ° C. to 180 ° C. for 1 to 3 days;
건조단계후에 건조된 성형체를 800℃~1000℃ 온도에서 2~6시간 소성시켜 세라믹 제품을 제조하는 소성단계를 포함하는 마사토 폐기물을 이용하여 제조되는 세라믹의 제조방법이다. After the drying step is a method of manufacturing a ceramic produced using the Masato waste comprising the firing step of producing a ceramic product by firing the dried molded body at 800 ℃ ~ 1000 ℃ temperature for 2 to 6 hours.
본 발명의 바람직한 실시예에 따르면, 소성단계전에 연화점이 600℃~800℃정도인 프릿트를 주성분으로 한 유약을 두께가 0.5~5.0㎛가 되도록 도포하는 프릿트 도포단계를 더 포함하는 것이다. According to a preferred embodiment of the present invention, a frit coating step of applying a glaze containing a frit having a softening point of about 600 ° C to 800 ° C as a main component before the firing step is 0.5 to 5.0 µm in thickness.
또한, 본 발명에서는 혼합 및 성형단계에서, 성형체의 제조에는 15MPa ~30MPa의 성형압으로 가압성형하는 가압 성형법과 진공하에서 압출하여 성형하는 압출성형법이 사용됨을 특징으로 한다. In the present invention, in the mixing and forming step, the press-molding method for press molding at a molding pressure of 15MPa ~ 30MPa and the extrusion molding method for extrusion molding under vacuum is used for the production of the molded body.
또한 본 발명에 따른 세라믹 제품은 벽돌, 온돌, 기와, 판넬, 타일 및 도자기중의 어느 하나의 제품임을 특징으로 한다. In addition, the ceramic product according to the invention is characterized in that the product of any one of brick, ondol, tile, panel, tile and ceramics.
본 발명은 모래(마사)를 채취하고 남은 부산물인 광업 폐기물인 마사토의 폐기물과 몰리브덴 광미를 재활용하여 고부가가치의 세라믹을 제조한다. 마사토 부산물과 몰리브덴 광미의 배합비를 적절하게 조절하여 기존의 점토질 세라믹 온도보다 약 300℃ 낮은 온도에서 소성할 수 있어 세라믹의 제조원가를 절감하고 소성시 압축강도는 소성 점토벽돌의 1종 규격 이상에 해당되어 에너지 절감효과를 확보한 세라믹으로서 순환자원화 가능성을 확인할 수 있다. The present invention manufactures high value-added ceramics by recycling the waste of Masato, a mining waste which is a by-product left after collecting sand (mass), and molybdenum tailings. By controlling the mixing ratio of masato by-product and molybdenum tailings properly, it can be fired at about 300 ℃ lower than the conventional clay ceramic temperature, reducing the manufacturing cost of ceramics and the compressive strength during firing corresponds to more than one type of plastic clay brick. As a ceramic with energy saving effects, it is possible to confirm the possibility of recycling resources.
도 1은 본 발명의 실시예 4에 따라 제조된 세라믹의 미세구조를 나타낸 사진이다.
도 2는 본 발명의 실시예 5에 따라 프릿트 유약을 도포하여 소성한 세라믹의 미세구조를 나타낸 사진이다.1 is a photograph showing a microstructure of a ceramic manufactured according to Example 4 of the present invention.
2 is a photograph showing a microstructure of a ceramic baked by applying a frit glaze according to Example 5 of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 바람직할 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 사용되는 마사토 부산물은 마사토에서 모래를 채취하고 발생된 부산물(waste)을 이용하는 것이다. 마사토는 장석질계 광물로서 일정 규격의 알맹이를 모래형태로 채취하기 위하여 파, 분쇄 및 선별 처리하는 과정을 거치는데 특히 선별시 토분 제거를 위해 습식 체거름을 하여 알맹이를 걸러내고 물에 세척된 토분은 부산물로 선별한다. 선별된 부산물은 일반 광업 부산물과 달리 습식 체거름을 하여 가소성이 있는 토분으로 휠터프레스에 의해 수분을 제거하여 수분 30% 정도의 점토형상의 고형체로 선별된다. 선별된 부산물은 방치되거나 매립용으로 활용하고 있으나 방치하였을 경우 지표수 및 지하수를 오염시키며, 매립용으로도 점성을 지닌 미립자로서 토질을 황폐하게 만든다. Masato by-products used in the present invention are to collect sand from Masato and use the generated by-products (waste). Masato is a feldspar mineral, which is dug, crushed, and sorted to collect grains of a certain size in the form of sand. Particularly, when the sieves are filtered through a wet sieve to remove soils, Sort by by-product. Selected by-products, unlike general mining by-products, are subjected to wet sieving and are removed from the soil by a filter press to remove moisture by a filter press. Selected by-products are left unused or used for landfill, but if left untreated, they contaminate surface water and groundwater, and are viscous particulates for landfilling.
몰리브덴 광석은 휘수연석이 광석광물로 산출되나 그의 품위는 대부분 1%이하이기 때문에 이를 부선하여 정광의 품위를 높이고 실수율을 95%이상 올린다 하더라도 채굴된 광석의 대부분은 광미로 폐기되고 있다. 또한 광석광물과 맥석광물의 단체분리를 위해 분쇄 후, 부유 선별하므로 폐기되는 광미는 대부분 미립상태이다.Molybdenum ore is produced as ore mineral, but most of its grade is less than 1%, so most of the mined ore is discarded as tailings even if it is enhanced by increasing the quality of the concentrate and increasing the error rate by more than 95%. In addition, the tailings are discarded because most of the tailings are pulverized and separated for the separation of ore minerals and gangue minerals.
마사토 부산물은 <표1>에서 보는 바와 같이 화학성분이 SiO2 61.02중량%, Al2O3 20.32중량%, Fe2O3 4.96중량%, CaO 7.74중량%등으로 구성되며, SiO2 와 Al2O3의 점토질 광물이 풍부하게 함유되어 있으며, 몰리브덴 광미는 화학성분이 SiO2 68.4중량%, Fe2O3 3.55중량%, Al2O3 13.5중량%, CaO 3.17중량%, MgO 3.61중량%, Na2O 3.28중량%, K2O 2.74중량% 등 다량의 장석 광물이 함유되어 있다.Masato by-product is <Table 1> SiO 2 61.02 wt%, Al 2 O 3 20.32% by weight of the chemical composition as shown in, Fe 2 O 3 4.96 is composed of by weight%, CaO 7.74% by weight, such as, SiO 2 and Al 2 Rich in O 3 clay minerals, molybdenum tailings contain 68.4% by weight SiO 2 , 3.55% by weight Fe 2 O 3 , 13.5% by weight Al 2 O 3 , 3.17% by weight CaO, 3.61% by weight MgO, It contains a large amount of feldspar minerals, such as 3.28 wt% Na 2 O and 2.74 wt% K 2 O.
또한 마사토 부산물은 SiO2 와 Al2O3가 많아 용융유리액상화 할 수 있는 조성비를 지니며 가소성이 있기 때문에 자체만도 성형이 가능하다. 몰리브덴 광미는 CaO, k20, Na2O의 합이 10중량% 이상이 되기 때문에 저온에서 용융유리액상 형성이 유리하며 용융유리액상의 형성은 입자간의 유동성이나 소결을 촉진하게 되어 결과적으로는 마사토 부산물과 몰리브덴 광미에 의한 시편은 가소성으로 인한 성형을 할 수 있으며, 저온에서 소성을 일으켜 소결되어 세라믹으로 만들 수 있다. In addition, Masato by-products contain SiO 2 and Al 2 O 3 , which have a composition ratio capable of liquid-melting molten glass, and because they are plastic, they can be molded by themselves. Since molybdenum tailings have a CaO, k 2 0 and Na 2 O total of 10 wt% or more, the molten glass liquid phase is advantageously formed at low temperature, and the molten glass liquid phase promotes fluidity or sintering between particles, resulting in Masato. Specimens from by-products and molybdenum tailings can be shaped by plasticity, sintered at low temperatures and sintered into ceramics.
Sample
Sample
SiO2
SiO 2
Al2O3
Al 2 O 3
Fe2O3
Fe 2 O 3
MgO
MgO
CaO
CaO
K2O
K 2 O
Na2O
Na 2 O
기타
Etc
마사토부산물
Masato byproduct
61.02
61.02
20.32
20.32
4.96
4.96
2.09
2.09
7.74
7.74
2.22
2.22
0.25
0.25
1.4
1.4
몰리브덴광미
Molybdenum tailings
68.4
68.4
13.5
13.5
3.55
3.55
1.75
1.75
3.17
3.17
3.28
3.28
3.61
3.61
2.74
2.74
따라서 본 발명에서는 가소성이 우수한 마사토 부산물에 용융유리액상 형성이 유리한 몰리브덴 광미를 10~30중량%의 범위로 첨가하여 소성함으로써 세라믹 제품을 제조할 수 있다. 몰리브덴 광미의 첨가량이 상기 범위 미만의 경우에는 본 발명에서 원하는 목적을 달성할 수 없으며, 상기 범위를 초과할 경우에는 가소성이 부족하게 되어 성형이 어렵게 된다. 마사토 부산물과 몰리브덴 광미는 습식볼밀에 의해 40~100메쉬입자로 혼합분쇄한 후 성형한다. Therefore, in the present invention, a ceramic product can be manufactured by adding molybdenum tailings in which molten glass liquid phase is advantageously formed in the Masato by-product having excellent plasticity in a range of 10 to 30% by weight and firing. When the added amount of molybdenum tailings is less than the above range, the object desired in the present invention cannot be achieved, and when it exceeds the above range, plasticity becomes insufficient and molding becomes difficult. Masato by-products and molybdenum tailings are mixed and pulverized into 40-100 mesh particles by a wet ball mill.
성형방법은 특별히 제한되는 것은 아니고, 프레스에 의한 가압 성형법과 진공하에서 압출하여 성형하는 압출성형법 등이 가능하다. 성형체는 상온에서 1일간 자연건조를 거쳐 크랙 및 변형을 억제하고, 120~160℃의 온도에서 48시간 건조기 건조하며, 산화분위기 중에서 소성하지만 900℃ 온도범위에서 소성을 수행한다. 최고 온도에서의 유지시간은 성형체의 두께, 형상에 따라서 적당하게 결정하면 좋지만, 일반적으로 1시간 정도를 유지하면 좋다.The molding method is not particularly limited and may be a press molding method by a press or an extrusion molding method that is molded by extruding under vacuum. The molded product is subjected to natural drying at room temperature for 1 day to suppress cracks and deformation, and dried for 48 hours at a temperature of 120 to 160 ° C., and calcined in an oxidizing atmosphere, but firing is performed at 900 ° C. The holding time at the highest temperature may be appropriately determined depending on the thickness and shape of the molded body, but generally, about 1 hour may be maintained.
이와 같이 제조된 세라믹은 흡수율이 대략 1~3%의 범위로 기존 세라믹과 유사하며 점토벽돌 8~10%에 대하여 낮은 값을 나타낸다. 본 발명은 마사토 부산물에 몰리브덴광미를 첨가함으로써 마사토 부산물의 충진성을 높여 성형성을 향상하고, 저온에서도 소성결합력을 발휘하며, 배합비의 조절로 저온소성 세라믹제품을 얻는 것이 가능하다. The ceramic thus manufactured has a water absorption of about 1 to 3%, similar to that of conventional ceramics, and shows low values for clay bricks of 8 to 10%. According to the present invention, by adding molybdenum tailings to the masato by-products, the filling properties of the masato by-products are increased, thereby improving moldability, exhibiting plastic bonding strength even at low temperatures, and by controlling the mixing ratio, it is possible to obtain a low-temperature fired ceramic product.
첨가되는 부산물의 중량%에 따라 소성되며, 입자 사이에서 용융액상을 형성 촉진하여 소성수축이 진행되며, 이와 같은 액상소결에 의해서 낮은 온도에서 소결이 가능하고, 이와 같은 소결 메카니즘에 의해서 2차 생성상의 촉진으로 치밀하고 흡수율이 낮으면서 압축강도는 기존 세라믹정도로서 점토벽돌에 비하여 월등히 높은 값을 나타내는 등의 제품 품질특성이 있다. It is calcined according to the weight% of by-products added, and it promotes the formation of a molten liquid phase between particles, thereby causing plastic shrinkage, and sintering at a low temperature is possible by the liquid phase sintering. The product has characteristics of product quality, such as compactness and low water absorption, and high compressive strength, which is much higher than that of clay bricks.
본 발명은 도1 및 도 2에서 보는 바와 같이 마사토 부산물에 몰리브덴 광미의 첨가를 하여 2차상 Anorthite (CaAl2Si2O8)를 생성함으로써 기공을 메우는 효과와 치밀화 촉진으로 흡수율이 낮아지고 압축강도가 급격하게 상승하게 된다. 이와 같은 2차상은 부산물 내에 다량으로 존재하는 CaO, NaO, K2O와 알루미노 실리케이트의 반응으로 생성된 것으로 추측된다.1 and 2, by adding molybdenum tailings to the Masato by-product, the present invention produces a secondary phase Anorthite (CaAl 2 Si 2 O 8 ), thereby filling up pores and facilitating densification, thereby lowering the absorption rate and compressive strength. It rises sharply. Such secondary phases are believed to have been produced by the reaction of CaO, NaO, K 2 O and aluminosilicates present in large quantities in the by-products.
또한 일반 세라믹으로 활용하기 위해서는 성형 후 성형체의 표면에 두께가 0.5~5.0㎛되도록 연화점이 700℃ 이하인 프릿트 유약을 도포하는 것이다. 상기와 같은 제품의 특성으로 세라믹의 표면 처리가 가능하고 흡수력을 저하시키며 동시에 내구성 향상으로 수명이 연장되며, 유지 관리비용을 절감할 수 있다.In addition, in order to utilize as a general ceramic is to apply a frit glaze having a softening point of 700 ℃ or less so that the thickness of the molded body after the molding is 0.5 ~ 5.0㎛. Due to the characteristics of the product, it is possible to treat the surface of the ceramic and to reduce the absorbency and at the same time to increase the durability by improving the durability, it is possible to reduce the maintenance cost.
본 발명의 세라믹 제조방법은 마사토 부산물에 일정한 양의 몰리브덴 광미를 첨가하여 습식 분쇄 과정을 거쳐 분쇄한 후, 혼합물의 수분함량이 20-23%가 되도록 수분을 제거한 후, 혼합한 배합토를 가압성형기를 이용하여 일축 가압성형 하여 건조 및 소성 시킨다.In the ceramic manufacturing method of the present invention, after adding a certain amount of molybdenum tailings to the masato by-products and grinding them through a wet grinding process, the water is removed so that the water content of the mixture is 20-23%, and then the mixed clay is press-molded. It is uniaxially press-molded and dried and fired.
본 발명의 다른 형태의 세라믹 제조 방법은 마사토 부산물에 일정양의 몰리브덴 광미를 첨가하여 혼합한 배합토를 습식 분쇄 과정을 거쳐 분쇄한 후 수분 함량이 25~30%가 되도록 건조 조정한 후, 진공토련기를 이용하여 압출성형하며, 성형체는 원하는 크기로 절단하여 건조 및 소성시키는 것이다. According to another aspect of the present invention, a method of manufacturing ceramics is performed by adding a predetermined amount of molybdenum tailings to masato by-products and grinding the mixed soil through a wet grinding process to dry and adjust the water content to 25 to 30%, followed by a vacuum drill machine. By extrusion molding, and the molded product is cut into a desired size, dried and fired.
본 발명의 실시예는 아래와 같으며, 아래의 실시예는 세라믹에 관한 것이지만 본 발명의 제조방법은 세라믹을 특별히 규정하지 않으며, 특히 벽돌, 온돌, 기와, 판넬, 타일, 도자기 등에 대하여도 적용될 수 있다.Embodiments of the present invention are as follows, and the following embodiments are related to ceramics, but the manufacturing method of the present invention does not specifically define ceramics, and in particular, may be applied to bricks, ondols, tiles, panels, tiles, ceramics, and the like. .
(실시예 1)(Example 1)
마사토 부산물에 상기 표1의 조성을 가지는 몰리브덴 광미 10중량%를 혼합하여 볼밀에 의한 습식분쇄를 하고, 이 혼합물의 수분함량을 20~30%가 되도록 수분을 제거한 후, 혼합물은 240×115mm의 사각금형에 충진하고 이것을 가압 성형기를 이용하여 20MPa의 성형압으로 압축가압하여 성형체를 제조하였다.10 parts by weight of molybdenum tailings having the composition of Table 1 was mixed with masato by-products, followed by wet grinding by a ball mill, and after the moisture was removed to make the water content of the mixture 20 to 30%, the mixture was 240 × 115 mm square mold. It was filled in to the compression molding machine using a pressure molding machine to compression molding to a molding pressure of 20MPa to prepare a molded body.
그리고 이 성형체를 상온에서 1일간 자연 건조한 후, 160℃에서 48시간 건조 및 900℃ 온도의 전기로에서 4시간 소성한 후, 냉각시켜서 세라믹을 제조하였다.The molded product was naturally dried at room temperature for 1 day, then dried at 160 ° C. for 48 hours, calcined at 900 ° C. for 4 hours, and then cooled to prepare a ceramic.
(실시예 2)(Example 2)
마사토 부산물에 몰리브덴광미 20중량%를 혼합하여 습식분쇄를 하고, 이 혼합물 의 수분함량을 20~30%가 되도록 수분을 제거한 후, 실시예 1과 동일한 제조과정을 통하여 세라믹을 제조하였다.20 minutes by weight of molybdenum tailings was mixed with the masato by-product, and the wet grinding was performed. The water was removed so that the water content of the mixture was 20-30%, and a ceramic was manufactured through the same manufacturing process as in Example 1.
(실시예 3 )(Example 3)
마사토 부산물에 몰리브덴광미 30중량%를 혼합하여 습식분쇄를 하고, 이 혼합물 의 수분함량을 20~30%가 되도록 수분을 제거한 후, 실시예 1과 동일한 제조과정을 통하여 세라믹을 제조하였다.30 minutes by weight of molybdenum tailings was mixed with the masato by-product, and the wet grinding was performed. The water was removed so that the water content of the mixture was 20-30%, and a ceramic was manufactured through the same manufacturing process as in Example 1.
(실시예 4)(Example 4)
실시예 2과 동일한 배합조건으로 원료를 혼합 및 분쇄한 후, 혼합물을 진공토련기를 통하여 진공압출하여 성형하였으며, 240×115×60mm의 규격으로 절단하여 성형체를 제조하였다. 제조된 성형체는 실시예 1과 동일한 건조 및 소성 조건으로 세라믹을 제조하였다.After mixing and pulverizing the raw materials under the same mixing conditions as in Example 2, the mixture was molded by vacuum extrusion through a vacuum boring machine and cut to a size of 240 × 115 × 60 mm to prepare a molded body. The manufactured molded article was manufactured in the same drying and firing conditions as in Example 1.
(실시예 5)(Example 5)
실시예 4에 의하여 얻어진 성형체를 상온에서 1일간 자연 건조한 후, 160℃에서 48시간 건조한후 연화점이 700℃정도인 프릿트를 주성분으로 한 유약을 두께가 0.5~5.0㎛가 되도록 도포한 후 900℃ 온도의 전기로에서 4시간 소성한 후, 냉각시켜서 세라믹을 제조하였다.The molded article obtained in Example 4 was naturally dried at room temperature for 1 day, and then dried at 160 ° C. for 48 hours, and then coated with a frit having a softening point of about 700 ° C. so as to have a thickness of 0.5 to 5.0 μm, followed by 900 ° C. After firing in an electric furnace at a temperature for 4 hours, the mixture was cooled to prepare a ceramic.
(실시예 6)(Example 6)
실시예 4에 의하여 얻어진 성형체를 상온에서 1일간 자연 건조한 후, 160℃에서 48시간 건조 및 800℃ 온도의 전기로에서 4시간 소성한 후, 냉각시켜서 세라믹을 제조하였다.The molded article obtained in Example 4 was naturally dried at room temperature for 1 day, then dried at 160 ° C. for 48 hours and calcined for 4 hours in an electric furnace at 800 ° C., followed by cooling to prepare a ceramic.
(실시예 7)(Example 7)
실시예 4에 의하여 얻어진 성형체를 상온에서 1일간 자연 건조한 후, 160℃에서 48시간 건조 및 1,000℃ 온도의 전기로에서 4시간 소성한 후, 냉각시켜서 세라믹을 제조하였다.The molded article obtained in Example 4 was naturally dried at room temperature for 1 day, then dried at 160 ° C. for 48 hours and calcined for 4 hours in an electric furnace at 1,000 ° C., followed by cooling to prepare a ceramic.
(비교예 1)(Comparative Example 1)
마사토 부산물만을 습식분쇄를 하고, 실시예 1과 동일한 제조과정을 통하여 세라믹을 제조하였다.Only Masato by-products were wet milled, and ceramics were prepared through the same manufacturing process as in Example 1.
(비교예 2)(Comparative Example 2)
마사토 부산물에 몰리브덴광미 40중량%를 혼합하여 습식분쇄를 하고, 이 혼합물 의 수분함량을 20~30%가 되도록 수분을 제거한 후, 실시예 1과 동일한 제조과정을 통하여 세라믹을 제조하였다.40 wt% molybdenum tailings were mixed with the masato by-product to wet grind, and the water was removed so that the water content of the mixture was 20 to 30%. Then, a ceramic was manufactured through the same manufacturing process as in Example 1.
상기 실시예에 의하여 얻어진 세라믹을 한국산업규격 KSL 4201의 방법에 따라 같은 기준으로 물성으로 흡수율과 압축강도를 측정하였다. 시험결과는 다음 표 2와 같다.According to the method of Korean Industrial Standard KSL 4201, the ceramic obtained by the above example was measured for absorption and compressive strength by physical properties. The test results are shown in Table 2 below.
구분
division
흡수율(%)
Absorption rate (%)
실시예 1
Example 1
2.1
2.1
38.17
38.17
실시예 2
Example 2
1.8
1.8
45.36
45.36
실시예 3
Example 3
1.1
1.1
43.22
43.22
실시예 4
Example 4
1.5
1.5
47.05
47.05
실시예 5
Example 5
0.8
0.8
52.65
52.65
실시예 6
Example 6
10.7
10.7
15.22
15.22
실시예 7
Example 7
0.4
0.4
38.25
38.25
비교예 1
Comparative Example 1
15.2
15.2
16.34
16.34
비교예 2
Comparative Example 2
점성, 가소성 부족으로 성형이 안됨.
Molding due to lack of viscosity and plasticity
실시예 1에서 5까지의 마사토 부산물에 몰리브덴 광미를 10-30% 혼합된 세라믹의 흡수율과 압축강도는 소성 점토벽돌(KS L 4201)의 1종 규격 압축강도 20.6 MPa이상으로 세라믹 벽돌로 문제가 없는 것으로 보인다. Absorption rate and compressive strength of ceramics mixed with molybdenum tailings 10-30% in Masato by-products of Examples 1 to 5 are higher than 20.6 MPa of the first type compressive strength of plastic clay brick (KS L 4201). Seems to be.
그러나 비교예 1에서 제조된 세라믹은 900℃에서 완벽하게 소결이 되지 않고 일반 세라믹의 초벌소성처럼 압축 강도가 약하다. 마사토 부산물로만 만든 성형체는 1200℃이상이 되어야 완전하게 소결되어 세라믹이 된다. 비교예 2처럼 몰리브덴 광미가 40% 이상이 되면 점성과 가소성 부족으로 성형이 안되는 문제점을 갖고 있다. 따라서 몰리브덴 광미의 혼합은 10%-30% 범위에서 혼합하여야 한다. 또한 몰리브덴 광미가 증가 될수록 소결은 잘되지만 30% 이상이 되면 유리화가 되어 압축강도가 떨어지는 것을 알 수 있다. 실시예 2의 가압성형한 조건과 실시예 4의 진공토련한 조건의 압축강도의 차이는 가압성형 조건보다는 진공토련기를 이용하여 성형하는 조건이 성형체 내부에 존재하는 기공을 진공으로 뽑아내기 용이하기 때문에 보다 치밀하고 높은 압축강도를 발현하는 것이라 판단된다. However, the ceramic prepared in Comparative Example 1 is not completely sintered at 900 ° C., and has a low compressive strength as the superplasticity of general ceramics. Molded products made only of the Masato by-products are fully sintered until 1200 ° C to become ceramics. When the molybdenum tailings is 40% or more as in Comparative Example 2, there is a problem in that molding is not possible due to lack of viscosity and plasticity. Therefore, the molybdenum tailings should be mixed in the range of 10% -30%. In addition, as the molybdenum tailings increases, the sintering is better, but when it is 30% or more, it becomes vitrified and the compressive strength is lowered. The difference in compressive strength between the press-molded condition of Example 2 and the vacuum-treated condition of Example 4 is that the conditions of molding using a vacuum drill machine rather than the press-molding condition make it easier to extract pores existing in the molded body by vacuum. It is considered to express more compact and high compressive strength.
실시예 1에서 5까지는 마사토부산물 단독으로 소성한 비교예 1에 비하여 300% 이상 압축강도가 증가한다. 또한 마사토 부산물과 몰리브덴 광미를 20% 혼합물에 플리트 유약을 도포하여 소성한 세라믹은 흡수율이 1.0%이하로 흡수율이 거의 없는 세라믹가 되며 압축강도 52.62Mpa로서 시험체중에 가장 강하다. 따라서 실시예 5는 상용화할 수 있는 세라믹으로 제조하는 것이 가능하다. 특히 몰리브덴 광미의 첨가량이 20중량%에서 제일 높은 압축강도 성능을 나타내었다. 조건의 소성 온도가 800℃로 사례예 6처럼 900℃이하가 되면 소결 반응이 일어나지 않아 강도가 저하되며 사례예 7처럼 1000℃이상이 되면 완전 유리화 되어 흡수율은 낮아지나 강도는 저하됨을 알 수 있다. In Examples 1 to 5, the compressive strength is increased by 300% or more compared with Comparative Example 1 fired by Masato byproduct alone. In addition, ceramics fired by applying pleated glaze to 20% mixture of Masato by-product and molybdenum tailings have a water absorption of less than 1.0% and have almost no water absorption, and have a compressive strength of 52.62Mpa, which is the strongest in the test body. Therefore, Example 5 can be manufactured from a commercially available ceramic. In particular, the added amount of molybdenum tailings showed the highest compressive strength performance at 20% by weight. When the sintering temperature of the condition is 800 ℃ or less than 900 ℃ as in Example 6, the sintering reaction does not occur, the strength is lowered. When the temperature is more than 1000 ℃ as in Example 7, it is completely vitrified, the absorption rate is low, but the strength is lowered.
따라서 실험 예에 따라 실시예 5의 몰리브덴 광미 20% 첨가하여 진공토련기를 이용하여 성형하는 조건에 프릿트 유약 도포하여 900℃에서 소성하는 방법이 흡수율이 적고 압축강도가 큰 세라믹을 만들 수 있다. 또한 마사토부산물에 몰리브덴 광미의 첨가효과는 소성온도를 약 300℃를 낮추는 효과가 있음을 알 수 가 있다.Therefore, according to the experimental example, 20% molybdenum tailings of Example 5 was coated with frit glaze under conditions of molding using a vacuum grinder, and then fired at 900 ° C., thereby making a ceramic having a low absorption rate and a high compressive strength. In addition, it can be seen that the addition effect of molybdenum tailings to the masato byproduct has an effect of lowering the firing temperature by about 300 ° C.
이상에서 본 발명의 바람직한 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것이 아니며 본 발명의 기술적 사상의 범위내에서 당업자에 의해 그 개량이나 변형이 가능하다. Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited thereto and may be improved or modified by those skilled in the art within the scope of the technical idea of the present invention.
Claims (4)
상기 혼합 및 성형단계에서 생성된 성형체를 상온에서 10∼30시간 자연 건조한 후, 140℃∼180℃에서 1∼3일간 가온 건조하는 건조단계;
연화점이 600℃∼800℃정도인 프릿트를 주성분으로 한 유약을 두께가 0.5∼5.0㎛가 되도록 도포하는 프릿트 도포단계; 및
상기 건조단계후에 건조된 성형체를 800℃∼1000℃ 온도에서 2∼6시간 소성시켜 세라믹 제품을 제조하는 소성단계를 포함하는 마사토 폐기물을 이용하여 제조되는 세라믹의 제조방법.After removing the water so that the water content of the pulverized mixture pulverized the mixture of 70 to 90% by weight of the Masato waste by-product of Masa and 10 to 30% by weight of molybdenum tailings into 40 to 100 mesh particles, the molded body was removed. Mixing and forming steps;
A drying step of naturally drying the molded product produced in the mixing and molding step at room temperature for 10 to 30 hours, and then drying at a temperature of 140 ° C. to 180 ° C. for 1 to 3 days;
A frit coating step of applying a glaze containing a frit having a softening point of about 600 ° C. to 800 ° C. as a main component so as to have a thickness of 0.5 to 5.0 μm; And
And a firing step of firing the molded body dried after the drying step at a temperature of 800 ° C. to 1000 ° C. for 2 to 6 hours to produce a ceramic product.
According to claim 1, Masato waste, characterized in that the production of the molded body in the mixing and molding step of any one of the pressure molding method of pressing molding at a molding pressure of 15MPa ~ 30MPa and the extrusion molding method of extrusion molding under vacuum is used. Method for producing a ceramic produced using.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110122619A KR101309713B1 (en) | 2011-11-23 | 2011-11-23 | the ceramic to manufacture using waste of Masato and method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110122619A KR101309713B1 (en) | 2011-11-23 | 2011-11-23 | the ceramic to manufacture using waste of Masato and method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130056952A KR20130056952A (en) | 2013-05-31 |
KR101309713B1 true KR101309713B1 (en) | 2013-09-25 |
Family
ID=48664791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110122619A Expired - Fee Related KR101309713B1 (en) | 2011-11-23 | 2011-11-23 | the ceramic to manufacture using waste of Masato and method for the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101309713B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103524105A (en) * | 2013-10-12 | 2014-01-22 | 东山县金石混凝土有限公司 | Green and environment-friendly brick for building and making technology thereof |
CN104386974A (en) * | 2014-10-09 | 2015-03-04 | 合肥向荣环保科技有限公司 | Method for preparing ore tailing thermal-insulation brick |
CN111620567A (en) * | 2020-06-05 | 2020-09-04 | 河北恒钏建筑材料有限公司 | Light microcrystalline foaming thermal insulation material prepared from molybdenum tailings and preparation method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101709933B1 (en) * | 2014-12-11 | 2017-02-24 | 주식회사 카멜 | Soil conditioner using by-product of mining industry |
KR101696716B1 (en) * | 2015-10-07 | 2017-01-16 | 김대건 | Manufacturing method of high-strength artificial stone block using tailing |
CN114736000B (en) * | 2022-04-30 | 2023-02-10 | 福建省德化县宝瑞陶瓷有限公司 | Thermal shock resistant white blank and its making process |
CN116409987B (en) * | 2023-04-18 | 2024-07-09 | 郑州大学 | Value-added utilization method of calcium molybdate-containing slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010074309A (en) * | 2001-05-07 | 2001-08-04 | 문병일 | Production method of light weight and multi-pore ceramic using waste glass and mineral resources and the product therefrom |
KR100421698B1 (en) | 2001-01-15 | 2004-03-10 | 주식회사 삼한 씨원 | Manufacturing method of ocher brick for building |
KR20050096687A (en) * | 2004-03-31 | 2005-10-06 | 주식회사공간세라믹 | Clay sinter using tailing and manufaturing method of the same |
KR20050112207A (en) * | 2004-05-25 | 2005-11-30 | 한국지질자원연구원 | A ceramics cinder with low absorptiveness using waste mine tailing and a manufacturing method thereof |
-
2011
- 2011-11-23 KR KR1020110122619A patent/KR101309713B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100421698B1 (en) | 2001-01-15 | 2004-03-10 | 주식회사 삼한 씨원 | Manufacturing method of ocher brick for building |
KR20010074309A (en) * | 2001-05-07 | 2001-08-04 | 문병일 | Production method of light weight and multi-pore ceramic using waste glass and mineral resources and the product therefrom |
KR20050096687A (en) * | 2004-03-31 | 2005-10-06 | 주식회사공간세라믹 | Clay sinter using tailing and manufaturing method of the same |
KR20050112207A (en) * | 2004-05-25 | 2005-11-30 | 한국지질자원연구원 | A ceramics cinder with low absorptiveness using waste mine tailing and a manufacturing method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103524105A (en) * | 2013-10-12 | 2014-01-22 | 东山县金石混凝土有限公司 | Green and environment-friendly brick for building and making technology thereof |
CN104386974A (en) * | 2014-10-09 | 2015-03-04 | 合肥向荣环保科技有限公司 | Method for preparing ore tailing thermal-insulation brick |
CN111620567A (en) * | 2020-06-05 | 2020-09-04 | 河北恒钏建筑材料有限公司 | Light microcrystalline foaming thermal insulation material prepared from molybdenum tailings and preparation method thereof |
CN111620567B (en) * | 2020-06-05 | 2021-02-23 | 河北恒钏建筑材料有限公司 | Light microcrystalline foaming thermal insulation material prepared from molybdenum tailings and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20130056952A (en) | 2013-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101309713B1 (en) | the ceramic to manufacture using waste of Masato and method for the same | |
AU2006283780B2 (en) | Synthesized hybrid rock composition, method, and article formed by the method | |
CN101844910B (en) | Thin-wall light-weighted sanitary ceramic body and manufacturing method thereof | |
CN101805209B (en) | Matt porcelain glaze prepared by using waste porcelains and production method thereof | |
KR20080017966A (en) | Ceramic Tile Composition Using Waste Glass and Manufacturing Method of the Tile | |
KR101696716B1 (en) | Manufacturing method of high-strength artificial stone block using tailing | |
KR101964801B1 (en) | Red Mud Ceramics and Manufacturing Method Thereof | |
CN113387679A (en) | Preparation method of high-strength recyclable environment-friendly ceramic pug | |
KR101279881B1 (en) | Slag brick coated with glaze composition and method for manufacturing the same | |
KR100853971B1 (en) | How to make a product from waste glass | |
KR20110125913A (en) | Brick for interior containing stone powder sludge and its manufacturing method | |
EP2511251A1 (en) | Ceramics produced from solid waste incineration bottom ash | |
KR101383646B1 (en) | Lightweight aggregate made from waste stone sludge of basalt | |
KR101398816B1 (en) | Artificial stone made from waste stone or lightweight aggregate of basalt | |
KR102307197B1 (en) | Color cement | |
JP4246961B2 (en) | Manufacturing method of visiting stone stone clay and pottery | |
CN107793132B (en) | Ceramic tile based on ceramic polishing slag and preparation method thereof | |
KR100832852B1 (en) | Hazardous Waste Melting Slag | |
EP2455352A1 (en) | Artificial stone production process | |
KR100623459B1 (en) | Clay sintered body using tailings and its manufacturing method | |
CN115819071A (en) | Recycling process and application of industrial waste ceramic mud | |
KR20140077872A (en) | A method of forming ceramic articles from recycled aluminosilicates | |
CN106146001A (en) | A kind of high-strength light mullite quartz porous brick and preparation technology thereof | |
CN106083012A (en) | A kind of method utilizing glazed tile waste residue to prepare fine stoneware tile | |
KR101572190B1 (en) | Pellet using waste CRT powder and red clay, and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20111123 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130318 Patent event code: PE09021S01D |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20130327 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130905 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130911 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130911 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160804 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160804 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170727 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170727 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20190622 |