[go: up one dir, main page]

KR101308153B1 - Method of recylcing waste plastics containing natural fiber filler - Google Patents

Method of recylcing waste plastics containing natural fiber filler Download PDF

Info

Publication number
KR101308153B1
KR101308153B1 KR20130040080A KR20130040080A KR101308153B1 KR 101308153 B1 KR101308153 B1 KR 101308153B1 KR 20130040080 A KR20130040080 A KR 20130040080A KR 20130040080 A KR20130040080 A KR 20130040080A KR 101308153 B1 KR101308153 B1 KR 101308153B1
Authority
KR
South Korea
Prior art keywords
starch
natural fiber
polymer composition
recycled
waste plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR20130040080A
Other languages
Korean (ko)
Inventor
이승환
Original Assignee
이승환
주식회사 현창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승환, 주식회사 현창 filed Critical 이승환
Priority to KR20130040080A priority Critical patent/KR101308153B1/en
Application granted granted Critical
Publication of KR101308153B1 publication Critical patent/KR101308153B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0286Cleaning means used for separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 마 또는 목분 등의 천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법에 관한 것으로서, 더욱 상세하게는 천연섬유계 필러를 함유하는 폐플라스틱을 분쇄한 후 세척, 건조하는 단계, 섬유상 분쇄물을 준비하는 단계, 평균크기 2~20㎚의 세라믹 나노입자를 전분 수용액과 혼합, 건조하여 전분 나노복합체를 준비하는 단계, 및 상기 각 단계의 물질들을 포함하는 혼합물을 용융압출하는 단계를 포함하는 재생 폴리머 조성물의 제조방법에 관한 것이다. 본 발명에 따른 제조방법에 의하면 상기 전분 나노복합체의 혼입에 의해 폐플라스틱을 재생하여 제조되는 폴리머 조성물의 물성을 안정화시킬 수 있게 됨으로써, 그동안 대부분 폐기처분되던 천연섬유계 필러-함유 폐플라스틱을 재활용될 수 있게 되는 장점이 있다.The present invention relates to a method for recycling waste plastics containing natural fiber-based fillers such as hemp or wood flour, and more particularly, washing, drying and pulverizing waste plastics containing natural fiber-based fillers. Regeneration comprising preparing a starch nanocomposite by mixing and drying ceramic nanoparticles having an average size of 2 to 20 nm with an aqueous solution of starch, and melting and extruding the mixture including the materials of the respective steps. A method for producing a polymer composition. According to the production method according to the present invention it is possible to stabilize the physical properties of the polymer composition produced by recycling the waste plastic by the incorporation of the starch nanocomposite, thereby to recycle the natural fiber-based filler-containing waste plastic that has been mostly disposed of It has the advantage of being able to.

Description

천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법{METHOD OF RECYLCING WASTE PLASTICS CONTAINING NATURAL FIBER FILLER}Recycling method of waste plastic containing natural fiber filler {METHOD OF RECYLCING WASTE PLASTICS CONTAINING NATURAL FIBER FILLER}

본 발명은 마, 목분 등의 천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법에 관한 것으로서, 특히 천연섬유계 필러를 함유하는 폐플라스틱을 분쇄하여 세척, 건조한 후 미리 준비해둔 섬유상 물질과 함께 혼합하여 용융압출함으로써 비교적 균질한 물성을 보유한 재생 폴리머 조성물을 제조하는 방법에 관한 것이다.
The present invention relates to a method for recycling waste plastics containing natural fiber fillers, such as hemp and wood flour. In particular, the waste plastics containing natural fiber fillers are pulverized, washed, dried and mixed together with the previously prepared fibrous material. The present invention relates to a method for producing a recycled polymer composition having a relatively homogeneous physical property by melt extrusion.

최근 자동차 부품에의 플라스틱 재료의 사용이 늘고 있다. 특히 폴리프로필렌(PP) 수지는 가격이 저렴하고 비중이 낮으면서도 가공이 용이한 장점 때문에 종래에 자동차 부품용 소재로서 많이 사용되던 ABS 또는 나일론 수지를 대체하고 있는 추세이다. 그 예로서, 자동차 내장부품 용도로서 사용되는 PP 복합재료를 들 수 있다. 일반적으로 자동차 내장부품 소재로는 PP 수지에 여러 종류의 필러가 첨가되어 내충격성 및 강도을 보강한 것이 주로 사용된다. 최근에는 친환경 자동차의 개발을 위해 자연에서 분해가 용이한 마, 면, 목재분말, 종이분말 등의 천연섬유계 필러가 사용된 복합재료로 성형된 부품의 사용이 증가하고 있다.Recently, the use of plastic materials in automobile parts is increasing. In particular, polypropylene (PP) resin is a trend of replacing the ABS or nylon resin that has been used as a conventional material for automobile parts because of the low cost, low specific gravity and easy processing. Examples thereof include PP composite materials used as automotive interior parts. In general, as automotive interior parts, various fillers are added to PP resin to reinforce impact resistance and strength. Recently, the use of parts molded of composite materials using natural fiber fillers such as hemp, cotton, wood powder, and paper powder, which are easily decomposed in nature, has been increasing for the development of eco-friendly vehicles.

이에 따라 천연섬유계 필러를 함유하는 폴리머 복합재료를 재활용할 수 있는 기술에 대한 연구가 활발히 진행되고 있다. 그러나 종래 플라스틱 재료의 재활용기술을 적용할 경우 천연섬유계 필러가 함유된 폴리머 복합재료는 재활용되기 어렵다. 그 이유는, 재활용을 위한 세척공정에서 폐플라스틱의 천연섬유계 필러로 세척용 물이 침투, 흡수되어 건조하기가 어려워짐으로써 그 다음 공정인 압출 및 냉각공정을 거쳐 제조된 복합재료의 물성이 전반적으로 저하되는 현상이 나타나기 때문이다. 또한 폐플라스틱의 수집원에 따라 첨연섬유계 필러의 함량이 일정하지 않고, 그 섬유 종류에 따라 압출과정에서 섬유와 매트릭스 폴리머간의 물리화학적 상호반응에 따른 물성이 변화가 예측하기 어려운 수준으로 발현되어 재생 폴리머 조성물의 물성을 일정한 수준으로 안정화시키기 어려운 문제점이 있다. 이에 따라 현재의 플라스틱 재활용 업계에서는 기존 재활용기술이 적용 가능한 폴리머 복합재료만 따로 분리하여 재활용하고, 천연섬유계 필러를 일정 수준 이상으로 함유한 폴리머 복합재료는 폐기물로 분류되어 매립이나 소각으로 전량 폐기 처리되고 있는 실정이다.Accordingly, researches on technologies for recycling polymer composite materials containing natural fiber fillers have been actively conducted. However, when applying the recycling technology of the conventional plastic material, the polymer composite material containing the natural fiber filler is difficult to recycle. The reason for this is that it is difficult to penetrate and absorb the washing water into the natural plastic filler of waste plastic in the washing process for recycling, so that the physical properties of the composite material manufactured through the extrusion and cooling process, which is the next process, This is because the phenomenon of deterioration appears. In addition, the content of spine-based fillers is not constant according to the collection source of waste plastics, and the physical properties due to the physicochemical interaction between the fibers and the matrix polymers during the extrusion process are expressed at an unpredictable level depending on the fiber type. There is a problem that it is difficult to stabilize the physical properties of the polymer composition to a certain level. Accordingly, the current plastic recycling industry separates and recycles only polymer composite materials that can be applied to existing recycling technologies, and polymer composite materials containing natural fiber fillers above a certain level are classified as waste and disposed of in full by disposal of landfill or incineration. It's happening.

따라서 천연섬유계 필러를 함유한 폐플라스틱의 재생을 위하여, 재생과정에서의 수분흡수 및 물리화학적 변성 등에 의해 야기되는 물성의 저하를 보완함과 동시에, 폐플라스틱 로트별에 따른 물성의 변화를 최소화할 수 있는 폐플라스틱의 재활용방법이 요구되고 있다.
Therefore, for the regeneration of waste plastics containing natural fiber fillers, it is necessary to compensate for the deterioration of physical properties caused by water absorption and physicochemical denaturation during the regeneration process, and to minimize the change of physical properties according to waste plastic lots. There is a need for a method of recycling waste plastics.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구 노력한 결과, 천연섬유계 필러를 함유한 폐플라스틱의 재활용이 가능할 수 있는 조건을 설정하였다. 이에 따르면 첨연섬유계 필러를 함유한 재활용 폴리머를 사용함에 따른 물성의 저하를 보완함과 동시에 폐플라스틱의 로트별에 따른 천연섬유계 필러 함량의 차이를 재활용공정 중에 재조정함으로써 물성의 균질성을 확보할 수 있는 폐플라스틱 기반의 재생 폴리머 조성물의 제조방법을 제공하는데 그 목적이 있다.
Thus, the inventors of the present invention, as a result of research efforts to solve the above problems, set the conditions that can be recycled waste plastic containing natural fiber-based fillers. According to this, it is possible to secure the homogeneity of physical properties by compensating for the deterioration of the physical properties by using recycled polymers containing the filamentary fiber fillers and by re-adjusting the difference in the content of the natural fiber fillers according to the lot of waste plastics during the recycling process. It is an object of the present invention to provide a method for producing a waste plastic based recycled polymer composition.

본 발명은 천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법에 관한 것으로서, 특히 폐플라스틱의 분쇄물을 세척, 건조하여 용융압출한 후 나타나는 물성의 저하를 보완하기 위하여 상기 분쇄물에 전분에 분산된 2~20 nm 크기의 나노세라믹 입자를 혼합하며, 또한 폐플라스틱이 그 수집원에 따라 천연섬유 함량이 다른 점을 보완, 조정하기 위해 상기 혼합물에 별도의 섬유상 물질을 임의적인 비율로 더 첨가시킴으로써 재생 폴리머 조성물 내의 섬유상 필러 함량을 일정하게 유지시킴으로써 물성의 균질성을 확보할 수 있는, 폐플라스틱 기반의 재생 폴리머 조성물의 제조방법을 제공하는 것을 그 특징으로 한다.
The present invention relates to a method for recycling waste plastics containing natural fiber-based fillers, and in particular, in order to compensate for the deterioration of physical properties that appear after melt-extrusion by washing and drying the pulverized waste plastics. Nano-ceramic particles of 2 to 20 nm size are mixed and recycled by adding additional fibrous materials in arbitrary proportion to the mixture to compensate and adjust the difference of natural fiber content according to the source of waste plastics. It is characterized by providing a method for producing a recycled polymer-based recycled polymer composition, which can ensure homogeneity of physical properties by maintaining a constant fibrous filler content in the polymer composition.

상술한 바와 같이, 본 발명에 의하면 천연섬유계 필러를 함유한 폐플라스틱의 재생과정에서 섬유상 필러 및 세라믹 나노입자를 혼입하여 용융압출함으로써 재생 폴리머 조성물을 제공할 수 있다. 그 결과, 폐플라스틱 재생과정에서의 수분흡수 및 물리화학적 변성 등에 의해 야기되는 물성 저하를 보완함과 동시에, 폐플라스틱 로트별에 따른 물성의 변화를 최소화할 수 있게 되었다.
As described above, according to the present invention, a regenerated polymer composition may be provided by mixing and melt-extruding a fibrous filler and ceramic nanoparticles in a regeneration process of waste plastic containing a natural fiber filler. As a result, it is possible to compensate for the deterioration of physical properties caused by water absorption and physicochemical denaturation during waste plastic recycling, and to minimize the change of physical properties according to waste plastic lots.

본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention is described in more detail as follows.

본 발명은 천연섬유계 필러를 함유하는 폐플라스틱을 분쇄한 후 세척, 건조하여 재생 플라스틱을 준비하는 단계;The present invention comprises the steps of preparing a recycled plastic by pulverizing and then washing and drying the waste plastic containing a natural fiber-based filler;

천연섬유, 합성섬유, 목재, 또는 종이를 분쇄하여 섬유상 분쇄물을 준비하는 단계;Preparing a fibrous pulverized product by grinding natural fibers, synthetic fibers, wood, or paper;

평균크기 2~20 nm의 세라믹 나노입자를 전분 수용액과 혼합, 건조하여 전분 나노복합체를 준비하는 단계; 및 Preparing a starch nanocomposite by mixing and drying ceramic nanoparticles having an average size of 2 to 20 nm with an aqueous starch solution; And

상기 각 단계별로 준비된 물질들을 포함하는 혼합물을 용융 압출하는 단계를 포함하는 재생 폴리머 조성물의 제조방법을 제공한다.It provides a method for producing a recycled polymer composition comprising the step of melt-extruding a mixture comprising the materials prepared in each step.

본 발명에서 사용하는 천연섬유계 필러를 함유한 폐플라스틱은 자동차 내장 부품이나 생활용품, 산업용 부품 등의 다양한 수집원으로부터 수집될 수 있다. 폐플라스틱에 사용된 매트릭스 폴리머로는 주로 폴리프로필렌, 폴리에틸렌, PVC, ABS, 나일론, 또는 이들이 조합된 폴리머 얼로이 등을 들 수 있다. 본 발명에 따르면, 수집된 폐플라스틱을 기계적인 방법을 사용하여 1~15㎚ 크기로 분쇄하고, 상기 분쇄물을 수조에서 과량의 물과 혼합하여 도막 파편 등을 함유하는 불순물을 제거한 후 건조시켜 재생 플라스틱을 준비할 수 있다.Waste plastics containing natural fiber fillers used in the present invention can be collected from various sources such as automobile interior parts, household goods, industrial parts, and the like. Matrix polymers used in waste plastics are mainly polypropylene, polyethylene, PVC, ABS, nylon, or polymer alloys in combination thereof. According to the present invention, the collected waste plastic is pulverized to a size of 1 to 15 nm using a mechanical method, and the pulverized product is mixed with excess water in a water bath to remove impurities containing coating fragments and the like, followed by drying and regeneration. Plastic can be prepared.

본 발명에서의 전분 나노복합체는 평균크기 2~20㎚의 세라믹 나노입자를 전분 수용액과 혼합, 건조하는 방법으로 준비될 수 있다. 본 발명에서의 세라믹 나노입자는 분말상 또는 콜로이드 용액상으로 제공되는 제품을 사용할 수 있다. 상기 세라믹 나노입자는 전분 수용액에 혼합되어 초음파 등의 분산방식에 의해 나노 수준으로 혼합될 수 있는바, 전분은 상기 나노입자의 표면에 부착되어 나노입자끼리의 응집을 방지해주는 역할을 할 수 있다. 이 경우 전분 수용액에 에탄올 등의 저분자 알코올을 첨가하여 분산특성을 개선하거나 건조를 수월하게 할 수 있다.The starch nanocomposite in the present invention may be prepared by mixing and drying ceramic nanoparticles having an average size of 2 to 20 nm with an aqueous starch solution. Ceramic nanoparticles in the present invention can be used as a product provided in the form of powder or colloidal solution. The ceramic nanoparticles may be mixed in an aqueous solution of starch and mixed at a nano level by a dispersion method such as ultrasonic waves. Starch may be attached to a surface of the nanoparticles to prevent aggregation of nanoparticles. In this case, low molecular weight alcohols such as ethanol may be added to the starch aqueous solution to improve dispersion characteristics or to facilitate drying.

상기 세라믹 나노입자는 나노다이아몬드, 나노 산화아연, 나노 산화알루미늄, 나노 산화철, 또는 이들의 조합 중 하나일 수 있다. 세라믹 나노입자의 평균크기가 2㎚ 이하일 경우 용융압출 단계에서 나노입자끼리 서로 응집되는 문제점이 나타날 수 있다. 반면, 세라믹 나노입자의 평균크기가 20㎚ 이상이 될 경우 단위 중량당 표면적이 큰 폭으로 감소하므로 재생 폴리머 조성물의 물성 보완을 위해서는 세라믹 나노입자의 사용량을 늘려야 한다. 그 결과 재생 폴리머 조성물의 용융가공성이 저하되며, 또한 그 제조비용이 증가하여 경제성을 갖추기 어려워진다. The ceramic nanoparticles may be one of nanodiamonds, nano zinc oxides, nano aluminum oxides, nano iron oxides, or a combination thereof. If the average size of the ceramic nanoparticles is 2nm or less, there may be a problem that the nanoparticles aggregate with each other in the melt extrusion step. On the other hand, when the average size of the ceramic nanoparticles is 20nm or more, since the surface area per unit weight is greatly reduced, it is necessary to increase the amount of ceramic nanoparticles used to supplement the physical properties of the recycled polymer composition. As a result, the melt processability of the recycled polymer composition is lowered, and the production cost thereof is increased, making it difficult to obtain economical efficiency.

폐플라스틱 및 섬유상 분쇄물의 혼합물에 상기 전분 나노복합체를 혼입하여 압출장치에서 용융 압출할 경우, 평균크기 2~20㎚의 세라믹 나노입자는 용융된 폴리머 체인에 작용하여 폴리머의 용융상태를 비-뉴토니안 유체로부터 뉴토니안 유체에 가까운 거동 상태로 변형시켜 줄 수 있는바, 이에 따라 매트릭스 폴리머와 섬유상 분쇄물 사이의 상용성을 증가시켜주는 작용을 할 수 있다. 또한 상기 전분 나노복합체의 세라믹 나노입자의 상당량이 표면에 흡착된 전분과 함께 상기 재생 폴리머 조성물 내의 섬유상 필러의 표면에 흡착된 상태로 존재하며 섬유상 필러와 매트릭스 폴리머 사이의 친화성을 증가시키므로 섬유상 필러의 보강효과를 증진시킬 수 있다. 이에 더하여, 평균크기 2~20㎚의 세라믹 나노입자는 매트릭스 폴리머 내에 분산되어 결정핵제의 기능을 할 수 있는바, 용융압출 후 냉각공정 중에 매트릭스 폴리머의 나노 수준 결정화를 유발시킴으로써 재생 폴리머 조성물의 열적 및 기계적 성질을 개선시키는 역할을 할 수 있다.When the starch nanocomposite is mixed into a mixture of waste plastic and fibrous pulverized and melt extruded in an extrusion apparatus, ceramic nanoparticles having an average size of 2 to 20 nm act on the molten polymer chain to prevent the melt state of the polymer from being non-Newtonian. It can be transformed from the fluid to a state close to the Newtonian fluid, thereby acting to increase the compatibility between the matrix polymer and the fibrous mill. In addition, a considerable amount of the ceramic nanoparticles of the starch nanocomposite is adsorbed on the surface of the fibrous filler in the regenerated polymer composition together with the starch adsorbed on the surface and increases the affinity between the fibrous filler and the matrix polymer, It can enhance the reinforcing effect. In addition, ceramic nanoparticles having an average size of 2 to 20 nm may be dispersed in the matrix polymer to function as nucleating agents. The thermal and regeneration of the recycled polymer composition may be induced by causing nano-level crystallization of the matrix polymer during the cooling process after melt extrusion. It can serve to improve mechanical properties.

상기 전분 나노복합체는 전분 80~99.9 중량% 및 세라믹 나노입자 0.1~20 중량%를 함유할 수 있다. 세라믹 나노입자의 함량이 0.1 중량%보다 낮으면 최종적으로 제조되는 재생 폴리머 조성물 내의 나노입자 함량이 너무 낮아져 용융가공특성의 개선을 포함한 물성 개선효과가 미미할 수 있으며, 20 중량% 이상일 경우 전분에 의한 나노입자의 분산효과가 감소할 수 있다.The starch nanocomposite may contain 80 to 99.9 wt% of starch and 0.1 to 20 wt% of ceramic nanoparticles. If the content of the ceramic nanoparticles is lower than 0.1 wt%, the nanoparticle content in the finally produced regenerated polymer composition may be too low, so that the improvement of physical properties including improvement of the melt processing property may be insignificant. The dispersing effect of the particles can be reduced.

본 발명에 따른 폐플라스틱에 포함된 천연섬유계 필러로는 마, 면, 실크, 펄프 등을 들 수 있다. 그러나 폐플라스틱 내의 천연섬유계 필러의 함량은 수집원에 따라 매우 다양한바, 본 발명에 적용될 수 있는 폐플라스틱은 천연섬유계 필러 함량이 5 ~60 중량%인 것이 바람직하다. 예컨대, 천연섬유계 필러의 함량이 5 중량% 이하일 경우 종래의 일반적인 재활용기술을 적용하더라도 물성의 저하가 크지 않아 재활용에 따른 경제적 이점이 크지 않다. 반면 천연섬유계 필러의 함량이 60 중량%를 초과하는 경우 용융 압출 등의 가공공정 중에 탄화가 발생할 우려가 커지며, 사출성형성이 현저히 저하되고, 압출물의 냉각 및 가공 공정상에서의 수분흡수에 따른 물성의 저하를 보완하기가 어려워지는 문제점이 있다.Natural fiber-based fillers contained in the waste plastic according to the present invention include hemp, cotton, silk, pulp and the like. However, the content of the natural fiber-based filler in the waste plastic is very diverse depending on the collection source, the waste plastic that can be applied to the present invention is preferably a natural fiber-based filler content of 5 to 60% by weight. For example, when the content of the natural fiber-based filler is 5% by weight or less, even if the conventional general recycling technology is applied, the deterioration of physical properties is not large, and the economical benefits due to recycling are not large. On the other hand, when the content of the natural fiber-based filler exceeds 60% by weight, there is a high risk of carbonization during processing such as melt extrusion, injection molding remarkably decreases, and the properties of the extrudate cooling and water absorption in the processing process There is a problem that it is difficult to compensate for the degradation.

본 발명에 따라 제조되는 재생 폴리머 조성물은 천연섬유계 필러를 함유한 폐플라스틱에 별도의 섬유상 분쇄물이 더 첨가되어 제조될 수 있다. 상기 섬유상 분쇄물은 천연섬유, 합성섬유, 목재, 또는 종이를 용융 폴리머에 분산 가능한 크기로 분쇄함으로써 준비될 수 있다. 한편 더욱 저렴한 재생 폴리머 조성물을 제조하기 위하여, 폐 자동차 내장 부품, 폐생활용품, 폐 의류, 또는 폐기된 산업용 부품 중 섬유상 물질만을 따로 분리, 재생하여 섬유상 분쇄물을 준비할 수도 있다. The recycled polymer composition prepared according to the present invention may be prepared by further adding a fibrous pulverized product to the waste plastic containing the natural fiber filler. The fibrous pulverized product may be prepared by pulverizing natural fibers, synthetic fibers, wood, or paper to a size dispersible in the molten polymer. Meanwhile, in order to prepare a more inexpensive regenerated polymer composition, the fibrous pulverized product may be prepared by separating and regenerating only the fibrous material among waste automobile interior parts, waste household goods, waste clothes, or discarded industrial parts separately.

상기 폐플라스틱과 상기 섬유상 분쇄물의 혼합비는 상기 폐플라스틱에 포함된 천연섬유계 필러의 함량에 따라, 그리고 재생 폴리머 조성물의 용도에 따라 요구되는 물성 수치에 맞추어 임의 조정될 수 있다. 예컨대 폐플라스틱의 천연섬유계 필러의 함량이 낮을수록, 또는 재생 폴리머 조성물의 물성치가 섬유 필러 함량이 높은 수준으로 요구될수록 폐플라스틱 대비 섬유상 분쇄물의 혼합비를 임의적으로 증가시킬 수 있음은 당연하다. The mixing ratio of the waste plastic and the fibrous pulverized product may be arbitrarily adjusted according to the physical properties required according to the content of the natural fiber filler included in the waste plastic and the use of the recycled polymer composition. For example, it is natural that the lower the content of the natural fiber filler of the waste plastic, or the higher the content of the fiber filler content of the recycled polymer composition, the higher the mixing ratio of the fibrous pulverized powder to the waste plastic.

상기의 방법에 따라 준비되는 상기 재생 플라스틱, 상기 섬유상 분쇄물, 및 상기 전분 나노복합체 분말을 헨셀 믹서에서 혼합한 후 통상적인 압출장치를 통해 스트랜드로서 용융 압출하여 재생 폴리머 조성물을 제조할 수 있다. 본 발명에 따른 상기 재생 폴리머 조성물은 재생 플라스틱과 전분 나노복합체만을 혼합, 용융 압출하여 제조할 수도 있으나, 재생 플라스틱 내의 천연섬유 함량이 그 수집원에 따라 큰 편차를 보일 수 있음을 감안하면 상기 혼합물에 섬유상 분쇄물을 임의적으로 추가함으로써 재생 폴리머 조성물의 물성을 일정 수준으로 안정화시키는 것이 유리하다. 이에 따른 바람직한 배합 예로서 재생 플라스틱 50~90 중량%, 섬유상 분쇄물 9.9 내지 49.9 중량%, 및 전분 나노복합체 0.1~10 중량%를 들 수 있다.The recycled plastic, the fibrous pulverized product, and the starch nanocomposite powder prepared according to the above method may be mixed in a Henschel mixer and melt-extruded as a strand through a conventional extrusion apparatus to prepare a recycled polymer composition. The regenerated polymer composition according to the present invention may be prepared by mixing and melt extruding only regenerated plastic and starch nanocomposite, but considering that the natural fiber content in the regenerated plastic may show a large variation depending on the collection source, It is advantageous to stabilize the physical properties of the recycled polymer composition to a certain level by optionally adding fibrous grounds. Preferred compounding examples thereof include 50 to 90% by weight of recycled plastics, 9.9 to 49.9% by weight of fibrous ground products, and 0.1 to 10% by weight of starch nanocomposites.

본 발명의 용융 압출 단계에서의 압출장치의 작동 온도는 180 ~ 240℃가 바람직하다. 180℃ 미만에서는 폴리프로필렌 등의 매트릭스 폴리머가 충분히 용융되지 않아 섬유계 필러가 매트릭스 폴리머와 균일하게 섞이지 않을 수 있으며, 240℃ 를 초과할 경우에는 섬유계 필러 또는 매트릭스 폴리머가 고온에 의해 탄화되거나 변성되어 재생 폴리머 조성물의 물성이 현격히 저하될 수 있다.The operating temperature of the extrusion apparatus in the melt extrusion step of the present invention is preferably 180 ~ 240 ℃. Below 180 ° C., the matrix polymer such as polypropylene may not be sufficiently melted, and thus the fiber filler may not be uniformly mixed with the matrix polymer. If the temperature exceeds 240 ° C., the fiber filler or matrix polymer may be carbonized or modified by high temperature. Physical properties of the recycled polymer composition may be significantly reduced.

본 발명에서, 천연섬유를 함유하는 폐플라스틱으로부터 준비된 재생 플라스틱에 더하여, 폴리프로필렌 또는 폴리에틸렌과 같은 저렴한 플라스틱 원료를 임의적인 비율로 첨가하여 용융 압출함으로써 재생 폴리머 조성물 중 매트릭스 폴리머의 함량을 증가시킬 수 있음은 당연하다. 이에 더하여, 폐플라스틱의 수집원 각각에 따라 서로 상용성이 좋지 않은 매트릭스 폴리머들이 혼재되어 존재할 수 있는바, 이들 사이의 상용성을 개선하기 위한 목적으로 통상적인 상용화제를 추가적으로 첨가할 수 있다. 본 발명에 적합한 상용화제의 예를 들면 말레인산 변형 폴리프로필렌, 실란계 화합물, 에폭시변성 폴리비닐 화합물 등을 들 수 있다. 또한 본 발명에 따른 재생 폴리머 조성물은 산화방지제, 착색제, 이형제, 윤활제, 광안정제, 고무와 같은 다양한 첨가제를 추가로 함유할 수 있으며, 이들 첨가제의 사용량은 원하는 최종 용도 및 특성을 포함한 다양한 요인에 따라 적절히 조정되어 적용될 수 있다.In the present invention, in addition to recycled plastics prepared from waste plastics containing natural fibers, an inexpensive plastic raw material such as polypropylene or polyethylene can be added at any ratio and melt-extruded to increase the content of the matrix polymer in the recycled polymer composition. Of course. In addition, matrix polymers having poor compatibility with each other may exist in accordance with each collection source of waste plastics, and a conventional compatibilizer may be additionally added for the purpose of improving compatibility therebetween. Examples of the compatibilizer suitable for the present invention include maleic acid-modified polypropylene, silane-based compounds, epoxy-modified polyvinyl compounds and the like. In addition, the recycled polymer composition according to the present invention may further contain various additives such as antioxidants, colorants, mold release agents, lubricants, light stabilizers, rubbers, and the amount of these additives used depends on various factors including the desired end use and properties. It can be adjusted and applied accordingly.

이하, 본 발명은 실시예를 통하여 더욱 구체적으로 설명되나, 본 발명이 이러한 실시예에 의하여 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

실시예Example 1: 재생 플라스틱의 준비 1: preparation of recycled plastic

폐자동차의 내장재 부품의 잔류 스크랩을 회수하여 평균 크기 10-20㎜로 분쇄하고 물로 세정한 후 열풍건조기에서 건조하여 재생 플라스틱을 준비하였다. 상기 재생 플라스틱을 유기용매로 녹여 매트릭스 폴리머와 섬유상 물질을 분리한 결과, 상기 재생 플라스틱의 매트릭스 폴리머는 폴리프로필렌을 주성분으로 하고 있으며, 섬유상 물질의 성분은 천연 마 섬유로서 그 함량은 재생 플라스틱의 전체 중량 대비 25 중량%임을 알 수 있었다.
Residual scraps of the interior parts of scrapped cars were collected, ground to an average size of 10-20 mm, washed with water, and dried in a hot air dryer to prepare recycled plastics. As a result of dissolving the recycled plastic with an organic solvent to separate the matrix polymer and the fibrous material, the matrix polymer of the recycled plastic has polypropylene as a main component, and the component of the fibrous material is natural hemp fiber, the content of which is the total weight of the recycled plastic. It was found that 25% by weight.

실시예Example 2:  2: 섬유상Fibrous 분쇄물의Crushed 준비 Ready

천연섬유, 합성섬유, 목재, 또는 종이 등으로 제조된 다양한 종류의 폐 산업용 필터, 부품, 소재 등을 수거한 후, 이를 평균크기 2㎜로 분쇄하는 방법으로 섬유상 분쇄물을 준비하였다.
Fibrous pulverized products were prepared by collecting various types of industrial filters, parts, materials, etc., made of natural fibers, synthetic fibers, wood, or paper, and then grinding them to an average size of 2 mm.

실시예Example 3: 전분 나노복합체의 준비 3: Preparation of Starch Nanocomposites

평균크기 10 nm인 나노 산화아연 분말을 나노리더(주)로부터 입수하여 전분 수용액에 넣고 초음파를 가하여 분산시킨 다음 열풍 건조시킨 후 분말화함으로써 전분 나노복합체를 제조하였다. 건조된 상태의 전분 나노복합체 분말 중 나노 산화아연 함량은 5.0 중량%로 조정하였다.
Starch nanocomposites were prepared by obtaining nano zinc oxide powder having an average size of 10 nm from NanoLead Co., Ltd., into an aqueous starch solution, dispersing by applying ultrasonic waves, and drying the powder by hot air drying. Nano zinc oxide content in the dried starch nanocomposite powder was adjusted to 5.0% by weight.

실시예Example 4: 재생  4: play 폴리머Polymer 조성물의 제조 Preparation of the composition

헨셀믹서에 상기 재생 플라스틱 2㎏, 폴리프로필렌 1㎏, 상기 섬유상 분쇄물 1100g, 상기 전분 나노복합체 300g, 말레인산 변형 폴리프로필렌 100g, 및 스테아린산 아연 60g을 넣어 혼합한 후 일반 압출장치를 사용하여 200~220℃의 온도에서 직경 20~30㎜ 굵기로 용융 압출하였다. 상기 압출물을 냉각 롤을 통하여 냉각 시키고 50~70㎜ 길이로 절단하여 냉각수조에 약 20~30초 동안 침적한 후 공기을 통한 냉각 공정을 거친 다음 2~3㎜ 크기로 분쇄하여 재생 폴리머 조성물을 제조하였다.
2 kg of the recycled plastic, 1 kg of polypropylene, 1100 g of the fibrous pulverized product, 300 g of the starch nanocomposite, 100 g of maleic acid modified polypropylene, and 60 g of zinc stearate were mixed and mixed with a Henschel mixer, using a general extrusion apparatus. It melt-extruded by the diameter of 20-30 mm thickness at the temperature of ° C. The extrudate was cooled through a cooling roll, cut into 50-70 mm lengths, immersed in a cooling water tank for about 20-30 seconds, then subjected to a cooling process through air, and then ground to a size of 2-3 mm to prepare a recycled polymer composition. .

비교예Comparative example 1: 전분 나노복합체를 사용하지 않은 재생  1: Regeneration Without Starch Nanocomposites 폴리머Polymer 조성물의 제조 Preparation of the composition

헨셀믹서에 상기 재생 플라스틱 2㎏, 폴리프로필렌 1㎏, 상기 섬유상 분쇄물 1100g, 말레인산 변형 폴리프로필렌 100g, 및 스테아린산 아연 60g을 넣어 혼합한 후 실시예 4와 동일한 방법을 사용하여 전분 나노복합체를 사용하지 않은 재생 폴리머 조성물을 제조하였다.
2 kg of the recycled plastic, 1 kg of polypropylene, 1100 g of the fibrous ground product, 100 g of maleic acid modified polypropylene, and 60 g of zinc stearate were mixed in a Henschel mixer, and the starch nanocomposite was not used using the same method as in Example 4. Recycled polymer composition was prepared.

시험예Test Example 1: 재생  1: play 폴리머Polymer 조성물의 기계적 성질 측정 Measurement of the mechanical properties of the composition

실시예 4 및 비교예 1에 따라 제조된 재생 폴리머 조성물의 분쇄물을 사출성형하여 만들어진 시편을 사용하여 비중, 아이조드(Izod) 충격강도, 인장강도, 파단신율(elongation at break), 굴곡강도, 및 경도를 측정하였다. 기계적 물성은 각 종류 당 7개의 시편에 대하여 측정하여 평균값을 취하였으며, 결과를 다음 표 1에 나타내었다.
Specific Gravity, Izod Impact Strength, Tensile Strength, Elongation at Break, Flexural Strength, Using Specimens Made by Injection Molding the Crushed Polymer Compositions of Example 4 and Comparative Example 1 The hardness was measured. Mechanical properties were measured and averaged for 7 specimens of each type, and the results are shown in Table 1 below.

재생 play 폴리머Polymer 조성물의 비중 및 기계적 특성 Specific gravity and mechanical properties of the composition 비중
(g/㎝3)
importance
(g / cm 3 )
충격강도
(㎏f㎝/㎝)
Impact strength
(Kgfcm / cm)
인장강도
(㎏f/㎝2)
The tensile strength
(Kgf / cm 2 )
파단신율
(%)
Elongation at break
(%)
굴곡강도
(㎏f/㎝2)
Flexural strength
(Kgf / cm 2 )
굴곡탄성률
(㎏f/㎝2)
Flexural modulus
(Kgf / cm 2 )
경도
(R scale)
Hardness
(R scale)
실시예 4Example 4 0.9890.989 3.63.6 263263 4141 387387 2732527325 99.799.7 비교예 1Comparative Example 1 0.9820.982 2.22.2 227227 1616 340340 2269922699 89.889.8

표 1을 참조하면, 전분 나노복합체를 사용하여 제조된 실시예 4의 재생 폴리머 조성물은 전분 나노복합체를 사용하지 않고 제조된 비교예 1에 비하여 비중은 다소 증가하는 경향을 보이나, 기계적 물성은 전반적으로 향상하는 것으로 나타났다.Referring to Table 1, the recycled polymer composition of Example 4 prepared using starch nanocomposites tended to have a slightly increased specific gravity compared to Comparative Example 1 prepared without using starch nanocomposites, but overall mechanical properties It has been shown to improve.

Claims (4)

천연섬유계 필러를 함유하는 폐플라스틱을 분쇄한 후 세척, 건조하여 재생 플라스틱을 준비하는 단계;
천연섬유, 합성섬유, 목재, 또는 종이를 분쇄하여 섬유상 분쇄물을 준비하는 단계;
평균크기 2~20㎚의 세라믹 나노입자를 전분 수용액과 혼합, 건조하여 전분 나노복합체를 준비하는 단계; 및
상기 각 단계별로 준비된 물질들을 기계적으로 혼합한 후 용융압출하는 단계;
를 포함하는 재생 폴리머 조성물의 제조방법.
Pulverizing waste plastics containing natural fiber fillers, followed by washing and drying to prepare recycled plastics;
Preparing a fibrous pulverized product by grinding natural fibers, synthetic fibers, wood, or paper;
Preparing a starch nanocomposite by mixing and drying ceramic nanoparticles having an average size of 2 to 20 nm with an aqueous starch solution; And
Mechanically mixing the materials prepared in each step and then extruding the melt;
Method for producing a recycled polymer composition comprising a.
청구항 1에 있어서, 상기 전분 나노복합체는 전분 80~99.9 중량% 및 세라믹 나노입자 0.1~20 중량%를 함유하는 것을 특징으로 하는 재생 폴리머 조성물의 제조방법.
The method of claim 1, wherein the starch nanocomposite contains 80 to 99.9 wt% of starch and 0.1 to 20 wt% of ceramic nanoparticles.
청구항 2에 있어서, 상기 폴리머 조성물은 재생 플라스틱 50~90 중량%, 섬유상 분쇄물 9.9 내지 49.9 중량%, 및 전분 나노복합체 0.1~10 중량%로 이루어진 것을 특징으로 하는 재생 폴리머 조성물의 제조방법.
The method of claim 2, wherein the polymer composition comprises 50 to 90% by weight of recycled plastic, 9.9 to 49.9% by weight of fibrous ground material, and 0.1 to 10% by weight of starch nanocomposite.
청구항 1에 있어서, 상기 용융압출된 단계 이후에 압출물을 냉각 롤을 통하여 냉각 시키고 50~70㎜ 길이로 절단하여 냉각수조에 20~30초 동안 침적한 후 공기을 통한 냉각 공정을 거친 다음 2~3㎜ 크기로 분쇄하는 단계를 더 포함하는 재생 폴리머 조성물의 제조방법.The method of claim 1, wherein after the melt-extruded step, the extrudate is cooled through a cooling roll, cut into 50-70 mm lengths, and deposited in a cooling water tank for 20-30 seconds, followed by a cooling process through air, and then 2-3 mm. The method of producing a recycled polymer composition further comprising the step of grinding to size.
KR20130040080A 2013-04-11 2013-04-11 Method of recylcing waste plastics containing natural fiber filler Active KR101308153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130040080A KR101308153B1 (en) 2013-04-11 2013-04-11 Method of recylcing waste plastics containing natural fiber filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130040080A KR101308153B1 (en) 2013-04-11 2013-04-11 Method of recylcing waste plastics containing natural fiber filler

Publications (1)

Publication Number Publication Date
KR101308153B1 true KR101308153B1 (en) 2013-09-12

Family

ID=49456065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130040080A Active KR101308153B1 (en) 2013-04-11 2013-04-11 Method of recylcing waste plastics containing natural fiber filler

Country Status (1)

Country Link
KR (1) KR101308153B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055995A (en) * 2014-09-17 2017-05-22 이메리즈 미네랄즈 리미티드 Polymeric compositions
CN106945195A (en) * 2017-02-24 2017-07-14 蚌埠市振华包装机械有限责任公司 A kind of recoverying and utilizing method of packing plastics filler
KR102064250B1 (en) 2018-08-31 2020-01-09 신동수 Apparatus and method for recycling composite material
KR102394680B1 (en) * 2021-08-13 2022-05-04 김민영 Method of preparing polymer composition including recycle polyolefin
KR20240131489A (en) 2023-02-23 2024-09-02 조성수 The manufacturing method of warmth and breathability-improved flake for filling utilizing PET or PE plastic products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007821A (en) 1998-06-18 2000-01-11 Sony Corp Recycling of styrene resin waste
JP2001018278A (en) 2000-01-01 2001-01-23 Isuzu Motors Ltd Manufacturing method of recycled synthetic resin molded product
JP2005506413A (en) 2001-10-23 2005-03-03 レッテンバッハー マルクス Plastic-containing moldings reinforced with natural fibers
KR101134809B1 (en) 2008-09-12 2012-04-13 제이에프이 스틸 가부시키가이샤 Method for producing pulverized waste plastic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007821A (en) 1998-06-18 2000-01-11 Sony Corp Recycling of styrene resin waste
JP2001018278A (en) 2000-01-01 2001-01-23 Isuzu Motors Ltd Manufacturing method of recycled synthetic resin molded product
JP2005506413A (en) 2001-10-23 2005-03-03 レッテンバッハー マルクス Plastic-containing moldings reinforced with natural fibers
KR101134809B1 (en) 2008-09-12 2012-04-13 제이에프이 스틸 가부시키가이샤 Method for producing pulverized waste plastic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055995A (en) * 2014-09-17 2017-05-22 이메리즈 미네랄즈 리미티드 Polymeric compositions
KR102449110B1 (en) 2014-09-17 2022-09-28 이메리즈 미네랄즈 리미티드 polymer composition
CN106945195A (en) * 2017-02-24 2017-07-14 蚌埠市振华包装机械有限责任公司 A kind of recoverying and utilizing method of packing plastics filler
KR102064250B1 (en) 2018-08-31 2020-01-09 신동수 Apparatus and method for recycling composite material
KR102394680B1 (en) * 2021-08-13 2022-05-04 김민영 Method of preparing polymer composition including recycle polyolefin
KR20240131489A (en) 2023-02-23 2024-09-02 조성수 The manufacturing method of warmth and breathability-improved flake for filling utilizing PET or PE plastic products

Similar Documents

Publication Publication Date Title
KR101308153B1 (en) Method of recylcing waste plastics containing natural fiber filler
CN102558664B (en) High-performance polypropylene nano composite material and preparation method thereof
Wang et al. Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites
CA2642075C (en) Composite plastics material
Wang et al. Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites
Zhang et al. The effects of recycling on the properties of carbon nanotube-filled polypropylene composites and worker exposures
Azeez Thermoplastic Recycling: Properties, Modifications, and
CN102333910A (en) Pekk composite fibre, method for manufacturing same and uses thereof
Jenifer et al. Synergistic effect of the inclusion of glass fibers and halloysite nanotubes on the static and dynamic mechanical, thermal and flame retardant properties of polypropylene
KR20160023967A (en) A preparation method of natural fiber-reinforced plastic for car interior and natural fiber-reinforced plastic for car interior prepared by the same
Velásquez et al. Physical properties and safety of 100% post-consumer PET bottle-organoclay nanocomposites towards a circular economy
JP5828896B2 (en) Recycling use of polyamide airbag
JP6796107B2 (en) Method for Producing Cellulose-Containing Resin Composition
Medeiros et al. Composites of recycled nylon 11 and titanium based nanofillers
KR101187193B1 (en) Recycled polypropylene material with improved impact strength and thermoplastic molded article comprising the same.
KR101527182B1 (en) Method of recycling waste plastics containing long fiber filler
Zhu et al. Crystallization, rheological behavior and mechanical properties of carbon nanotube/metallocene polypropylene composites
Almazrouei et al. Producing Particulate Composite Using 3D Printing Plastics Waste
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
CN111748154A (en) High-performance reinforced polypropylene composite material
KR102262187B1 (en) Composition for biodegradability and antibacterial loess masterbatch, plastic product using the same, and manufacturing method thereof
KR102084641B1 (en) An electrically conductive resin composition and a method for preparing the same
EP1780241A1 (en) Use of polyamide moulding materials for the fabrication of moulded articles with reduced superficial charring
KR101658393B1 (en) Nanocomposite composition for automobile radiator hose rubber and preparing method thereof
Perez-Guerrero et al. Influence of silica nanoparticles on the thermomechanical properties of recycled polystyrene

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20130411

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20130711

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20130411

Patent event code: PA03021R01I

Comment text: Patent Application

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20130902

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130907

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130907

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160725

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160725

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170725

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20180828

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20180828

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20191111

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20200831

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210622

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20220608

Start annual number: 10

End annual number: 10