KR101306429B1 - UV curable antistatic agent and method for preparing the same - Google Patents
UV curable antistatic agent and method for preparing the same Download PDFInfo
- Publication number
- KR101306429B1 KR101306429B1 KR1020110042572A KR20110042572A KR101306429B1 KR 101306429 B1 KR101306429 B1 KR 101306429B1 KR 1020110042572 A KR1020110042572 A KR 1020110042572A KR 20110042572 A KR20110042572 A KR 20110042572A KR 101306429 B1 KR101306429 B1 KR 101306429B1
- Authority
- KR
- South Korea
- Prior art keywords
- pani
- antistatic agent
- nanofibers
- photocurable
- nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002216 antistatic agent Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 32
- 229920000767 polyaniline Polymers 0.000 claims abstract description 131
- 239000002121 nanofiber Substances 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 27
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 238000000016 photochemical curing Methods 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 239000002019 doping agent Substances 0.000 claims abstract description 16
- 229920000775 emeraldine polymer Polymers 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 29
- 239000000178 monomer Substances 0.000 claims description 21
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 20
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 20
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical group CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 12
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 12
- 239000003999 initiator Substances 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 150000007524 organic acids Chemical class 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 7
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- -1 ammonium hydride Chemical compound 0.000 claims description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 5
- 125000004386 diacrylate group Chemical group 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 4
- OYKPJMYWPYIXGG-UHFFFAOYSA-N 2,2-dimethylbutane;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(C)(C)C OYKPJMYWPYIXGG-UHFFFAOYSA-N 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims 1
- CHDKQNHKDMEASZ-UHFFFAOYSA-N n-prop-2-enoylprop-2-enamide Chemical compound C=CC(=O)NC(=O)C=C CHDKQNHKDMEASZ-UHFFFAOYSA-N 0.000 claims 1
- 239000011231 conductive filler Substances 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 11
- 229920001940 conductive polymer Polymers 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 5
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 5
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000009102 absorption Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-O azanium;hydron;hydroxide Chemical compound [NH4+].O VHUUQVKOLVNVRT-UHFFFAOYSA-O 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- 229960003280 cupric chloride Drugs 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/04—Antistatic
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Paints Or Removers (AREA)
- Polymerisation Methods In General (AREA)
Abstract
본 발명은 고전도성 고분자인 폴리아닐린 나노섬유를 전도성 필러로 이용하는 광경화 대전방지제 및 그 제조방법에 관한 것이다. 본 발명에 의한 광경화 대전방지제의 제조방법은, ES-PANI 나노섬유(polyaniline emeraldine salt nanofiber)를 준비하는 단계, ES-PANI 나노섬유를 환원시켜 EB-PANI 나노섬유(polyaniline emeraldine base nanofiber)를 만드는 단계, EB-PANI 나노섬유를 광경화 수지와 도펀트(dopant)가 혼합된 광경화 수지액에 첨가하여 EB-PANI 나노섬유를 리도핑(re-doping)시키는 단계를 포함한다. 본 발명은 고전도성 고분자인 폴리아닐린을 리도핑 공정을 통해 광경화 수지에 첨가하여 전도성 필러로 이용함으로써 높은 용액 안정성과 우수한 대전방지 특성을 갖는 광경화 대전방지제를 제공할 수 있다.The present invention relates to a photocurable antistatic agent using a polyaniline nanofiber, which is a highly conductive polymer, as a conductive filler, and a manufacturing method thereof. According to the present invention, a method for preparing a photocuring antistatic agent includes preparing an ES-PANI nanofiber (polyaniline emeraldine salt nanofiber) and reducing the ES-PANI nanofiber to make an EB-PANI nanofiber (polyaniline emeraldine base nanofiber). Step, adding the EB-PANI nanofibers to the photocurable resin liquid mixed with the photocurable resin and the dopant (dopant) comprises the step of re-doping (E-PANI nanofibers). The present invention can provide a photocurable antistatic agent having high solution stability and excellent antistatic properties by adding polyaniline, which is a highly conductive polymer, to the photocurable resin through a re-doping process to use as a conductive filler.
Description
본 발명은 대전방지제에 관한 것으로, 더욱 상세하게는 전도성 폴리아닐린(polyaniline, PANI)을 전도성 필러로 이용하는 광경화 대전방지제 및 그 제조방법에 관한 것이다.The present invention relates to an antistatic agent, and more particularly, to a photocurable antistatic agent using a conductive polyaniline (PANI) as a conductive filler and a manufacturing method thereof.
최근 LCD, PDP 등의 평판형 디스플레이나 스마트폰 등 디스플레이 기능이 탑재된 각종 휴대용 전자기기가 발달하면서, 윈도우 표면을 먼지와 정전기에 의한 손상으로부터 보호하기 위한 다양한 시도가 이루어지고 있다.Recently, various portable electronic devices equipped with a display function such as a flat panel display such as an LCD or a PDP or a smart phone have been developed, and various attempts have been made to protect a window surface from damage caused by dust and static electricity.
정전기는 흐르지 못하고 일정한 물체의 표면에 전하의 형태로 축적되어 다른 물체와의 접촉 시에 순간적으로 방전됨으로써 발생하는 현상으로, 정전기는 먼지를 끌어당켜 윈도우를 오염시키고, 인체와의 접촉 시에는 상당한 전기적 충격을 인체에 가하여 심한 불쾌감을 초래하게 된다. 또한 축전된 전하가 IC회로와 같은 정밀한 회로에 인접하게 되면, 여기에서 발생되는 전계에 의하여 회로가 오동작을 일으킬 확률이 높아지므로 대전된 전하를 신속하게 제거하는 것은 매우 중요한 일이다.Static electricity does not flow and accumulates in the form of electric charges on the surface of certain objects, and is caused by instantaneous discharge upon contact with other objects. Static electricity attracts dust and contaminates the window. The impact on the human body causes severe discomfort. In addition, when the stored charge is adjacent to a precise circuit such as an IC circuit, it is very important to quickly remove the charged charge because the probability of the circuit malfunctioning is increased by the electric field generated therein.
이러한 이유로 윈도우 표면에 대전방지 특성을 부여해야 할 필요성이 있는데, 대전방지 특성은 일반적으로 약 108~1010Ω/□의 표면 저항을 갖는 전도성막을 형성함으로써 구현할 수 있다. 전도성막을 형성하는 방법으로 계면활성제를 이용하는 방법이 있다. 계면활성제는 주위의 물 분자와 결합하여 전도성을 갖게 되어 대전방지 기능을 발휘한다. 그런데 계면활성제는 주위 습도에 따라 대전방지 성능이 변하므로, 주위 습도가 높으면 어느 정도 대전방지 특성을 나타내다가 주위 습도가 낮아지면 대전방지 성능이 저하되어 안정된 대전방지 성능을 나타내기 어려운 문제가 있다.For this reason, there is a need to impart an antistatic property to the surface of the window, and the antistatic property can be generally realized by forming a conductive film having a surface resistance of about 10 8 to 10 10 Ω / □. There is a method using a surfactant as a method of forming a conductive film. The surfactant binds to the surrounding water molecules to become conductive and thus exhibits an antistatic function. By the way, since the antistatic performance of the surfactant changes according to the ambient humidity, when the ambient humidity is high, the antistatic property is exhibited to some extent, but when the ambient humidity is low, the antistatic performance is deteriorated, and thus there is a problem that it is difficult to show stable antistatic performance.
전도성막을 형성하는 다른 방법으로는 졸-겔법(sol-gel method)에 의한 금속 알콕시드(metal alkoxides)와 유기실록산(organosiloxanes)로 이루어지는 유기/무기 하이브리드 재료(organic/inorganic hybrid material)를 이용하는 방법이 있다.Another method of forming the conductive film is an organic / inorganic hybrid material composed of metal alkoxides and organosiloxanes by the sol-gel method. have.
또다른 방법으로는 계면활성제가 아닌 ITO(Indium tin oxide), IZO(Indium zinc oxide), ATO(Antimony tin oxide) 등과 같은 금속 산화물을 점착제에 혼합하여 사용함으로써 대전방지 점착제를 형성하는 방법이 있다. 이러한 방법은 금속 산화물 입자를 필러(filler)로 사용한 것이기 때문에 영구 대전방지가 가능하지만, 금속 산화물 입자가 빛을 산란시키므로 투명도가 저하되고, 제조 비용이 높은 문제가 있다.As another method, there is a method of forming an antistatic adhesive by using a metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), antimony tin oxide (ATO), etc., which are not surfactants. Since this method uses a metal oxide particle as a filler, it is possible to prevent permanent charge. However, since the metal oxide particle scatters light, transparency is lowered and manufacturing cost is high.
최근에는 상기와 같은 문제점을 해결하기 위해서 고전도성, 환경적인 안정성, 저비용, 간단한 합성 등의 특성을 갖는 전도성 고분자(intrinsically conductive polymers, ICP)를 전도성 필러(conductive filler)로 사용하는 방법이 개발된 바 있다. 특히 광경화 수지가 함유된 폴리(3,4-에틸렌디옥시티오펜)-폴리(스틸렌설포닉에시드)(PEDOT/PSS) 용액이 대전방지 코팅에 상용화되고 있다. 그런데 PEDOT/PSS 용액은 수용성의 PEDOT/PSS와 유기 용매인 광경화 수지 사이의 용해성 문제로 합성이 어려운 문제가 있다.Recently, in order to solve the above problems, a method of using inductively conductive polymers (ICP) having characteristics such as high conductivity, environmental stability, low cost, and simple synthesis has been developed. have. In particular, poly (3,4-ethylenedioxythiophene) -poly (styrenesulphonic acid) (PEDOT / PSS) solutions containing photocuring resins are commercially available for antistatic coatings. However, the PEDOT / PSS solution has a problem in that it is difficult to synthesize due to solubility between the water-soluble PEDOT / PSS and a photocurable resin which is an organic solvent.
본 발명은 이러한 문제를 해결하기 위한 것으로, 본 발명의 목적은 고전도성 고분자인 폴리아닐린(polyaniline, PANI) 나노섬유를 전도성 필러로 이용하여 높은 용액 안정성과 우수한 대전방지 특성을 갖는 광경화 대전방지제 및 그 제조방법을 제공하는 것이다.The present invention is to solve this problem, an object of the present invention by using a polyaniline (polyaniline, PANI) nanofiber of a highly conductive polymer as a conductive filler photocuring antistatic agent having high solution stability and excellent antistatic properties and its It is to provide a manufacturing method.
상기 목적을 달성하기 위한 본 발명에 의한 광경화 대전방지제의 제조방법은, (a) ES-PANI 나노섬유(polyaniline emeraldine salt nanofiber)를 준비하는 단계, (b) 상기 ES-PANI 나노섬유를 환원시켜 EB-PANI 나노섬유(polyaniline emeraldine base nanofiber)를 만드는 단계, (c) 상기 EB-PANI 나노섬유를 광경화 수지와 도펀트(dopant)가 혼합된 광경화 수지액에 첨가하여 상기 EB-PANI 나노섬유를 리도핑(re-doping)시켜 상기 광경화 수지액 속에 분산된 ES-PANI를 얻는 단계를 포함한다.Method for producing a photocurable antistatic agent according to the present invention for achieving the above object, (a) preparing an ES-PANI nanofibers (polyaniline emeraldine salt nanofiber), (b) reducing the ES-PANI nanofibers Making an EB-PANI nanofiber (polyaniline emeraldine base nanofiber), (c) adding the EB-PANI nanofibers to the photocurable resin liquid mixed with a photocurable resin and a dopant (dopant) to the EB-PANI nanofibers Re-doping to obtain ES-PANI dispersed in the photocurable resin liquid.
상기 (a) 단계는 화학 산화 중합법(chemical oxidation polymerization)으로 아닐린 단량체를 상기 ES-PANI 나노섬유로 합성하는 단계를 포함할 수 있다.The step (a) may include synthesizing aniline monomers into the ES-PANI nanofibers by chemical oxidation polymerization.
상기 (a) 단계는, 상기 아닐린 단량체를 도펀트와 라디칼 개시제가 혼합된 혼합 용액에 첨가하는 단계, 상기 아닐린 단량체가 첨가된 상기 혼합 용액을 교반하여 합성된 상기 ES-PANI 나노섬유를 침전시키는 단계, 침전된 상기 ES-PANI 나노섬유를 건조하는 단계를 포함할 수 있다.The step (a) may include adding the aniline monomer to a mixed solution containing a dopant and a radical initiator, stirring the mixed solution to which the aniline monomer is added to precipitate the synthesized ES-PANI nanofibers, It may comprise the step of drying the precipitated ES-PANI nanofibers.
상기 도펀트는 염산염(HCl)이고, 상기 라디칼 개시제는 과황산암모늄(APS), 염화제이철(FeCl3), 염화제이구리(CuCl2) 중에서 선택된 어느 하나일 수 있다.The dopant is hydrochloride (HCl), and the radical initiator may be any one selected from ammonium persulfate (APS), ferric chloride (FeCl 3 ), and cupric chloride (CuCl 2 ).
상기 (b) 단계는, 상기 ES-PANI 나노섬유를 수화암모늄(NH4OH) 용액에 첨가하는 단계, 상기 ES-PANI 나노섬유가 첨가된 상기 수화암모늄 용액을 교반하여 상기 ES-PANI 나노섬유를 상기 EB-PANI 나노섬유로 환원시키고 침전시키는 단계, 침전된 상기 EB-PANI 나노섬유를 건조하는 단계를 포함할 수 있다.In the step (b), adding the ES-PANI nanofibers to an ammonium hydride (NH 4 OH) solution, stirring the ammonium hydride solution to which the ES-PANI nanofibers are added to form the ES-PANI nanofibers. Reducing and precipitation to the EB-PANI nanofibers, may comprise the step of drying the precipitated EB-PANI nanofibers.
상기 (c) 단계에서 상기 도펀트는 도데실벤젠술폰산(DBSA)일 수 있다.In the step (c), the dopant may be dodecylbenzenesulfonic acid (DBSA).
상기 (c) 단계에서 상기 광경화 수지는 아크릴 모노머 중에서 선택된 1종류 이상을 포함할 수 있다.In the step (c), the photocurable resin may include one or more types selected from acrylic monomers.
본 발명에 의한 광경화 대전방지제의 제조방법은, 상기 (c) 단계 이후, 상기 EB-PANI 나노섬유가 리도핑된 상기 광경화 수지액을 투명 기판 위에 코팅하여 코팅층을 형성하고, 상기 코팅층을 건조시키는 단계를 더 포함할 수 있다.In the method of manufacturing a photocurable antistatic agent according to the present invention, after the step (c), the photocurable resin solution doped with the EB-PANI nanofibers is coated on a transparent substrate to form a coating layer, and the coating layer is dried. It may further comprise the step of.
상기 목적을 달성하기 위한 본 발명에 의한 광경화 대전방지제는, 광경화 수지, 유기산, 라디칼 개시제, 폴리아닐린 전도성 필러, 유기 용매를 포함한다.The photocuring antistatic agent according to the present invention for achieving the above object includes a photocuring resin, an organic acid, a radical initiator, a polyaniline conductive filler, and an organic solvent.
본 발명에 의한 광경화 대전방지제는 고전도성 고분자인 폴리아닐린을 리도핑 공정을 통해 광경화 수지에 첨가하여 전도성 필러로 이용함으로써 높은 용액 안정성과 우수한 대전방지 특성을 갖는다.The photocurable antistatic agent according to the present invention has high solution stability and excellent antistatic properties by adding polyaniline, which is a highly conductive polymer, to the photocurable resin through a re-doping process and using it as a conductive filler.
또한 본 발명에 의한 광경화 대전방지제는 전도성 필러인 폴리아닐린이 광경화 수지에 균일한 분포로 분산되어 있어 전체적으로 균일한 전도성을 나타내고 광학적 투과율이 우수하다.In addition, the photocurable antistatic agent according to the present invention is a polyaniline, which is a conductive filler, is dispersed in the photocurable resin in a uniform distribution, the overall uniformity and excellent optical transmittance.
또한 본 발명에 의한 광경화 대전방지제는 대면적 성막, 대량 생산, 연속적인 롤투롤 공정이 가능하여 생산성인 높고 제조 비용이 낮다.In addition, the photocurable antistatic agent according to the present invention is capable of large area film formation, mass production, continuous roll-to-roll process, high productivity and low manufacturing cost.
또한 본 발명에 의한 광경화 대전방지제는 각종 디스플레이 장치의 보호 패널, 휴대폰이나 스마트폰 등 휴대용 개인 단말기의 보호 패널, 의료설비의 보호 패널 등으로 이용되어 저비용으로 각종 전자장치의 성능과 품질을 높일 수 있다.In addition, the photocurable antistatic agent according to the present invention is used as a protection panel of various display devices, a protection panel of a portable personal terminal such as a mobile phone or a smart phone, a protection panel of a medical facility, and the like to improve the performance and quality of various electronic devices at low cost. have.
도 1은 본 발명에 의한 광경화 대전방지제를 제조하는 과정을 개략적으로 나타낸 것이다.
도 2는 화학 산화 중합법을 통해 얻은 ES-PANI 나노섬유의 TEM 이미지이다.
도 3은 ES-PANI과 EB-PANI의 특성 흡수를 적외선 분광광도계를 이용하여 조사한 결과이다.
도 4는 리도핑 공정을 통해 만들어진 본 발명의 실시예에 의한 광경화 대전방지 코팅액과 대조 실험예로 만든 광경화 코팅액의 용액 안정성을 비교하여 나타낸 것이다.
도 5는 본 발명의 실시예에 의한 광경화 대전방지제에 있어서 도데실벤젠술폰산/폴리아닐린의 몰비에 따른 자외선 흡수 스펙트럼을 나타낸 것이다.Figure 1 schematically shows a process for producing a photocuring antistatic agent according to the present invention.
2 is a TEM image of ES-PANI nanofibers obtained through chemical oxidation polymerization.
3 shows the results of investigating the characteristic absorption of ES-PANI and EB-PANI using an infrared spectrophotometer.
Figure 4 is a comparison of the solution stability of the photocurable antistatic coating solution prepared by the embodiment of the present invention through a re-doping process and the photocurable coating solution prepared in a control experiment.
Figure 5 shows the ultraviolet absorption spectrum according to the molar ratio of dodecylbenzene sulfonic acid / polyaniline in the photocuring antistatic agent according to an embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여, 본 발명에 의한 광경화 대전방지제 및 그 제조방법에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail with respect to the photocuring antistatic agent and a method for manufacturing the same.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the sizes and shapes of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of explanation. In addition, terms defined in consideration of the configuration and operation of the present invention may be changed according to the intention or custom of the user, the operator. These terms are to be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the contents throughout the present specification.
본 발명에 의한 광경화 대전방지제는 전도성 고분자인 폴리아닐린(polyaniline, PANI)을 전도성 필러로 이용하는 것으로, 폴리아닐린 전도성 필러, 광경화 수지, 유기산(organic acid), 라디칼 개시제(radical initiator) 및 유기 용매를 포함한다. 이러한 본 발명에 의한 광경화 대전방지제는 액체 상태의 코팅액으로 제공될 수도 있고, 얇은 필름 형태로 제공될 수도 있다.The photocuring antistatic agent according to the present invention uses polyaniline (PANI), which is a conductive polymer, as a conductive filler, and includes a polyaniline conductive filler, a photocurable resin, an organic acid, a radical initiator, and an organic solvent. do. The photocurable antistatic agent according to the present invention may be provided in a liquid coating liquid or may be provided in a thin film form.
폴리아닐린은 산화 상태에 따라 전기적으로 전도성인 폴리아닐린 에머랄딘 염(olyaniline emeraldine salt, 이하 'ES-PANI'라 한다)과 전기적으로 절연성인 폴리아닐린 에머랄딘 염기(polyaniline emeraldine base, 이하 'EB-PANI'라 한다)의 독특한 구조 상태를 갖는다. 대부분의 전도성 고분자가 비편재화된 전자(delocalized electron) 때문에 유기 용매에서 용해성이 떨어지는데 반해, EB-PANI는 2-메틸 피롤리돈(2-methyl pyrolidone, NMP), 톨루엔(toluene), 테트라하이드로퓨란(Tetrahydrofuran, THT) 등의 유기 용매에서 높은 용해성을 보인다. 본 발명은 유기 용매에서 용해성이 좋지만 전기적으로 절연성인 EB-PANI를 광경화 수지 속에서 선택적인 도펀트의 사용으로 '리도핑(re-doping)'시켜 ES-PANI로 변화시킴으로써 유기 용매에서의 용해성 문제와 전도성 문제를 해결할 수 있다.Polyaniline is referred to as an electrically conductive polyaniline emeraldine salt (hereinafter referred to as 'ES-PANI') and an electrically insulating polyaniline emeraldine base (hereinafter referred to as 'EB-PANI') depending on the oxidation state. ) Has a unique structural state. While most conductive polymers are poorly soluble in organic solvents due to delocalized electrons, EB-PANI is 2-methyl pyrolidone (NMP), toluene, tetrahydrofuran ( High solubility in organic solvents such as Tetrahydrofuran (THT). The present invention solves the problem of solubility in organic solvents by converting EB-PANI, which is good in solubility in organic solvents, but is electrically insulating to ES-PANI by 're-doping' the use of selective dopants in photocurable resins. And conductivity problem can be solved.
광경화 수지로는 아크릴 모노머가 이용될 수 있다. 아크릴 모노머로는 1,6-헥산디올디아크릴레이트(1,6-hexanedioldiacrylate, HDDA), 트리메틸프로판 트리아크릴레이트(trimethyolpropane triacrylate, TMPTA), 알리파틱 폴리우레탄 다이아크릴레이트(aliphatic polyurethane diacrylate) 등을 예로 들 수 있다. 본 발명에 의한 광경화 대전방지제의 제조에 이용되는 광경화 수지는 이러한 광경화 수지, 또는 그 밖의 아크릴 모노머, 또는 아크릴 모노머 중에서 선택된 두 가지 이상의 아크릴 모노머가 혼합된 것이 이용될 수 있다.As the photocuring resin, an acrylic monomer may be used. Examples of acrylic monomers include 1,6-hexanedioldiacrylate (HDDA), trimethyolpropane triacrylate (TMPTA), and aliphatic polyurethane diacrylate. Can be mentioned. As the photocuring resin used in the production of the photocuring antistatic agent according to the present invention, a mixture of two or more acrylic monomers selected from such a photocuring resin, another acrylic monomer, or an acrylic monomer may be used.
유기산은 ES-PANI를 합성하는데 이용되는 도펀트(dopant)로 이용되는 것으로 염산염(hydrochloride, HCl)이나 도데실벤젠술폰산(dodecylbenzenesulfonic acid, DBSA), 또는 그 이외의 다양한 종류의 유기산이 이용될 수 있다.The organic acid is used as a dopant for synthesizing ES-PANI, and hydrochloride (HCl), dodecylbenzenesulfonic acid (DBSA), or various other organic acids may be used.
라디칼 개시제로는 과황산암모늄(ammonium persulfate, APS), 염화제이철(FeCl3), 염화제이구리(CuCl2) 등의 산화 개시제(oxidation initiator)나, 1-히드록시-시클로헥실-페닐-케톤(1-hydroxy-cyclohexyl-phenyl-ketone, Igacure 184) 등의 광개시제(photo initiator)가 이용될 수 있다.Examples of radical initiators include oxidation initiators such as ammonium persulfate (APS), ferric chloride (FeCl 3 ) and cupric chloride (CuCl 2 ), and 1-hydroxycyclohexyl-phenyl-ketone ( Photo initiators such as 1-hydroxy-cyclohexyl-phenyl-ketone, Igacure 184) can be used.
이러한 본 발명에 의한 광경화 대전방지제는 염기성으로 유기 용매에 잘 녹는 EB-PANI를 유기산을 포함하는 광경화 수지액에 첨가하여 산성으로 전도성을 갖는 ES-PANI으로 변화시키는 리도핑 공정을 통해 합성할 수 있다. 리도핑 공정을 통해 전도성이 우수한 ES-PANI를 전도성 필러로 이용하는 액체 상태의 광경화 대전방지제는 높은 전도성과 침전물이 발생하지 않는 높은 용액 안정성(solution stability)의 특성을 나타낸다.The photocuring antistatic agent according to the present invention can be synthesized through a redoping process in which EB-PANI, which is basic and well soluble in an organic solvent, is added to a photocurable resin solution containing an organic acid and converted to ES-PANI having an acidic conductivity. Can be. The liquid photocurable antistatic agent using the highly conductive ES-PANI as the conductive filler through the re-doping process exhibits high conductivity and high solution stability without precipitation.
또한 광경화 대전방지 코팅액의 도포 및 건조를 통해 만들어지는 필름 형태의 광경화 대전방지제는 전체적으로 균일한 전도성과 광투과성을 나타낸다. 이러한 필름 형태의 광경화 대전방지제는 각종 디스플레이 장치의 보호 패널, 휴대폰이나 스마트폰 등 휴대용 개인 단말기의 보호 패널, 의료설비의 보호 패널 등으로 이용될 수 있다.In addition, the photocurable antistatic agent in the form of a film made by applying and drying the photocurable antistatic coating solution exhibits uniform conductivity and light transmittance as a whole. Such a photocurable antistatic agent in the form of a film may be used as a protective panel of various display devices, a protective panel of a portable personal terminal such as a mobile phone or a smartphone, a protective panel of a medical facility, and the like.
도 1은 본 발명에 의한 광경화 대전방지제를 제조하는 과정을 개략적으로 나타낸 것이다. 도 1을 참조하면, 본 발명에 의한 광경화 대전방지제를 제조하는 과정은 크게 ES-PANI을 만드는 단계((a)~(c)), ES-PANI으로부터 EB-PANI를 만드는 단계((d)~(e)), EB-PANI를 리도핑하는 단계(f)로 나뉠 수 있다.Figure 1 schematically shows a process for producing a photocuring antistatic agent according to the present invention. Referring to Figure 1, the process of manufacturing a photocurable antistatic agent according to the present invention is largely the step of making ES-PANI ((a) ~ (c)), the step of making EB-PANI from ES-PANI ((d) (e)), step (f) of re-doping the EB-PANI.
ES-PANI을 만드는 단계는 아닐린 단량체(aniline monomer)를 유기산과 라이칼 개시제가 혼합된 용액에 넣는 단계(a), 이를 저온에서 교반하여 암녹색의 ES-PANI을 합성하는 단계(b), 합성된 ES-PANI을 침전시키고 침전물을 세척 및 건조하는 단계(c)를 포함한다. 여기에서, 만들어진 ES-PANI은 나노섬유 형태를 갖는다.The step of making ES-PANI is a step of putting an aniline monomer (aniline monomer) in a solution mixed with an organic acid and a lycal initiator (a), by stirring it at a low temperature to synthesize a dark green ES-PANI (b), synthesized (C) precipitating ES-PANI and washing and drying the precipitate. Here, the ES-PANI made has a nanofiber form.
EB-PANI를 만드는 단계는 ES-PANI을 수화암모늄(NH4OH) 용액에 첨가하고 이를 교반하여 ES-PANI을 EB-PANI로 환원시키는 단계(d), EB-PANI를 침전시키고 침전물을 세척 및 건조하는 단계(e)를 포함한다.Making EB-PANI involves adding ES-PANI to ammonium hydride (NH 4 OH) solution and stirring it to reduce ES-PANI to EB-PANI (d), precipitating EB-PANI and washing the precipitate and Drying (e).
EB-PANI를 리도핑하는 단계(f)는 건조된 EB-PANI를 광경화 수지와 유기산이 혼합된 광경화 수지액에 첨가함으로써 이루어지며, 이때 광경화 수지액 속에서 EB-PANI가 암녹색의 ES-PANI으로 변하게 된다.Re-doping the EB-PANI is performed by adding the dried EB-PANI to the photocurable resin solution in which the photocurable resin and the organic acid are mixed, wherein the EB-PANI is dark green ES in the photocurable resin solution. It will change to PANI.
이하에서는, 본 발명을 실시예에 의거하여 설명한다.In the following, the present invention will be described based on Examples.
아래의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 실시예로 한정되는 것은 아니다.
The following examples are merely illustrative of the present invention, the present invention is not limited to the examples.
<실시예><Examples>
광경화Photocuring 대전방지제의 제조 Preparation of Antistatic Agent
도 1을 참조하면, 먼저 ES-PANI 나노섬유를 만들기 위해, 2.0g의 아닐린 단량체(aniline monomer, Sigma Aldrich Co., Ltd.)를 5.0g의 염산염(hydrochloride, HCl, Sigma Aldrich Co., Ltd.)과 2.8g의 과황산암모늄(ammonium persulfate, APS, Sigma Aldrich Co., Ltd.)이 혼합된 100ml 증류수(distilled water)에 넣고 3℃의 온도 조건에서 용해시켰다(도 1의 (a)). 여기에서, 염산염 및 과황산암모늄은 ES-PANI 나노섬유를 화학 산화 중합(chemical oxidation polymerization)하기 위한 도펀트 및 라디칼 개시제로 이용되었다. 다음으로, 혼합 용액을 5시간 교반하여 암녹색의 ES-PANI 나노섬유를 합성하였다(도 1의 (b)).Referring to Figure 1, first to make the ES-PANI nanofibers, 2.0g of aniline monomer (aniline monomer, Sigma Aldrich Co., Ltd.) 5.0g of hydrochloride (hydrochloride, HCl, Sigma Aldrich Co., Ltd.). ) And 2.8 g of ammonium persulfate (ammonium persulfate, APS, Sigma Aldrich Co., Ltd.) were mixed in 100 ml distilled water (distilled water) and dissolved at a temperature of 3 ℃ (Fig. 1 (a)). Here, hydrochloride and ammonium persulfate have been used as dopants and radical initiators for chemical oxidation polymerization of ES-PANI nanofibers. Next, the mixed solution was stirred for 5 hours to synthesize dark green ES-PANI nanofibers (FIG. 1B).
다음으로, ES-PANI 나노섬유를 침전시키고, 침전된 ES-PANI 나노섬유를 증류수와 에탄올로 세척하여 비반응 잔여물을 제거한 후, ES-PANI 나노섬유를 48시간 동안 진공 오븐(vacuum oven)에 건조시켜 ES-PANI 나노섬유로 이루어진 암녹색의 파우더를 얻었다(도 1의 (c)). Next, the ES-PANI nanofibers are precipitated, the precipitated ES-PANI nanofibers are washed with distilled water and ethanol to remove unreacted residues, and then the ES-PANI nanofibers are placed in a vacuum oven for 48 hours. It was dried to obtain a dark green powder consisting of ES-PANI nanofibers (Fig. 1 (c)).
다음으로, ES-PANI 나노섬유 파우더에 1M의 수화암모늄(ammonium hydrate, NH4OH, Samchun chemical Co.)에 섞고 이를 48시간 동안 교반하여 ES-PANI 나노섬유를 보라색의 EB-PANI 나노섬유로 환원시켰다(도 1의 (d)). 계속해서, EB-PANI 나노섬유를 침전시키고 이를 세척 및 건조하여 보라색의 EB-PANI 나노섬유 파우더를 얻었다(도 1의 (e)).Next, the ES-PANI nanofiber powder was mixed with 1M ammonium hydrate (ammonium hydrate, NH 4 OH, Samchun chemical Co.) and stirred for 48 hours to reduce the ES-PANI nanofibers to purple EB-PANI nanofibers. (FIG. 1D). Subsequently, EB-PANI nanofibers were precipitated, washed and dried to obtain a purple EB-PANI nanofiber powder (FIG. 1E).
다음으로, EB-PANI 나노섬유 파우더(2.2wt.%)를 아크릴 모노머, 도데실벤젠술폰산(dodecylbenzenesulfonic acid, DBSA, 25% in isopropyl alcohol, Sigma Aldrich Co., Ltd.), 1-히드록시-시클로헥실-페닐-케톤(1-hydroxy-cyclohexyl-phenyl-ketone, Igacure 184, Ciba Speciality Chemicals), 10ml의 테트라하이드로퓨란(tetrahydrofuran, THF, technical grade, Samchun chemical Co.)이 혼합된 용액에 섞어 EB-PANI 나노섬유를 ES-PANI 나노섬유로 리도핑하였다(도 1의 (f)).Next, EB-PANI nanofiber powder (2.2wt.%) Was converted into acrylic monomer, dodecylbenzenesulfonic acid (DBSA, 25% in isopropyl alcohol, Sigma Aldrich Co., Ltd.), 1-hydroxycyclo Hexyl-phenyl-ketone (1-hydroxy-cyclohexyl-phenyl-ketone, Igacure 184, Ciba Specialty Chemicals) and 10 ml of tetrahydrofuran (THF, technical grade, Samchun chemical Co.) are mixed and mixed with EB- PANI nanofibers were redoped with ES-PANI nanofibers (FIG. 1 (f)).
여기에서, 도데실벤젠술폰산은 도펀트로, 1-히드록시-시클로헥실-페닐-케톤은 라디칼 개시제로, 테트라하이드로퓨란은 유기 용매로 각각 이용되었다. 그리고 아크릴 모노머로는 1,6-헥산디올디아크릴레이트(1,6-hexanedioldiacrylate, HDDA, UCB chemicals) 40wt.%와 트리메틸프로판 트리아크릴레이트(trimethyolpropane triacrylate, TMPTA, Miwon Co.) 30wt.%와 알리파틱 폴리우레탄 다이아크릴레이트(aliphatic polyurethane diacrylate, U600C, Miwon Co.) 30wt.%가 이용되었다. 물론, 아크릴 모노머를 구성하는 1,6-헥산디올디아크릴레이트, 트리메틸프로판 트리아크릴레이트, 알리파틱 폴리우레탄 다이아크릴레이트의 함량은 다양하게 변경될 수 있는 것으로, 1,6-헥산디올디아크릴레이트의 함량은 40 ~ 80wt.%, 트리메틸프로판 트리아크릴레이트의 함량은 30 ~ 60 wt.%, 알리파틱 폴리우레탄 다이아크릴레이트의 함량은 30 ~ 70 wt.%의 범위 내에서 다양하게 변경될 수 있다.Here, dodecylbenzenesulfonic acid was used as a dopant, 1-hydroxy-cyclohexyl-phenyl-ketone was used as a radical initiator, and tetrahydrofuran was used as an organic solvent. As the acrylic monomer, 40 wt.% Of 1,6-hexanedioldiacrylate (HDDA, UCB chemicals) and 30 wt.% Of trimethyolpropane triacrylate (TMPTA, Miwon Co.) and Ali 30 wt.% Of aliphatic polyurethane diacrylate (U600C, Miwon Co.) was used. Of course, the content of 1,6-hexanediol diacrylate, trimethylpropane triacrylate and aliphatic polyurethane diacrylate constituting the acrylic monomer may be variously changed, 1,6-hexanediol diacrylate The content of 40 to 80wt.%, The content of trimethylpropane triacrylate is 30 to 60 wt.%, The content of aliphatic polyurethane diacrylate may be variously changed within the range of 30 to 70 wt.%. .
이러한 과정을 통해 ES-PANI 나노섬유를 전도성 필러로 이용하는 광경화 대전방지 코팅액을 얻었고, 이를 0.64mm 두께의 폴리메틸메타크릴레이트(이하, 'PMMA'라 한다) 시트(I-commponents Co., Korea)에 도포한(drop-casted) 후, 진공 오븐에서 70℃로 2분 동안 가열하여 용매를 증발시키고, PMMA 시트 위의 코팅층을 365nm에서 40mW/cm2의 광도(light intensity)를 갖는 고압 수은 램프(high pressure mercury lamp, Oriel Co. London, UK)로 800W 세기로 10초 동안 자외선 경화시켰다. 경화된 코팅층의 두께를 surface profiler(Kosaka Lab., Japan)로 측정한 결과 5㎛로 나타났다.
Through this process, a photocurable antistatic coating solution using ES-PANI nanofibers as a conductive filler was obtained, and a polymethyl methacrylate (hereinafter referred to as 'PMMA') sheet having a thickness of 0.64 mm (I-commponents Co., Korea) After drop-casting, the solvent was evaporated by heating at 70 ° C. for 2 minutes in a vacuum oven, and the coating layer on the PMMA sheet was light pressure with a light intensity of 40 mW / cm 2 at 365 nm. (high pressure mercury lamp, Oriel Co. London, UK) was UV cured for 10 seconds at 800W intensity. The thickness of the cured coating layer was measured by a surface profiler (Kosaka Lab., Japan) and found to be 5 μm.
광경화Photocuring 대전방지제의 평가 Evaluation of Antistatic Agent
도 2는 화학 산화 중합법을 통해 얻은 ES-PANI 나노섬유의 TEM 이미지(JEOL microscope)이다.2 is a TEM image (JEOL microscope) of ES-PANI nanofibers obtained through chemical oxidation polymerization.
도 2를 보면, 평균적으로 약 300nm의 길이와 약 20nm의 두께를 갖는 1차원 ES-PANI 나노섬유를 확인할 수 있다. 1차원 나노섬유는 구형 나노입자에 비해 높은 전기 전도도를 갖는 것으로 알려져 있으므로, 합성된 ES-PANI 나노섬유는 형태학적으로 훌륭한 전도성 필러가 될 수 있음을 예상할 수 있다.2, one-dimensional ES-PANI nanofibers having an average length of about 300 nm and a thickness of about 20 nm can be identified. Since one-dimensional nanofibers are known to have higher electrical conductivity than spherical nanoparticles, it can be expected that the synthesized ES-PANI nanofibers can be excellent morphologically good conductive fillers.
도 3은 ES-PANI과 EB-PANI의 특성 흡수(characteristic absorption)를 적외선 분광광도계(Fourier transform infrared spectroscopy, FT-IR, Bomem MB 100 spectrometer)를 이용하여 조사한 결과이다.FIG. 3 shows the results of investigating the characteristic absorption of ES-PANI and EB-PANI using Fourier transform infrared spectroscopy (FT-IR, Bomem MB 100 spectrometer).
도 3의 스펙트럼 분석에서, 823cm-1에서의 피크(peak)는 para-disubstituted rings에서 C-H의 평면위아래 굽힘 진동(out-of-plane bending vibration)에 의한 것이고, 1299cm-1에서의 피크는 C-N의 신축 진동(stretching vibration)에 의한 것이며, 1128과 1572cm-1에서의 피크는 C=C 퀴노이드 링(quinoid ring)의 신축 진동에 의한 것이고, 1487cm-1에서의 피크는 C=C 벤제노이드 링(benzenoid ring)의 신축 진동에 의한 것이다.In the spectral analysis of FIG. 3, the peak at 823 cm −1 is due to the out-of-plane bending vibration of CH in the para-disubstituted rings, and the peak at 1299 cm −1 is the It is due to stretching vibration, the peak at 1128 and 1572cm -1 is due to the stretching vibration of the C = C quinoid ring, and the peak at 1487cm -1 is the C = C benzenoid ring ( due to the stretching vibration of the benzenoid ring).
ES-PANI의 스펙트럼에서 퀴노이드 링 및 벤제노이드 링의 상대적인 강도는 산화상태로서의 퀴노이드 링 및 벤제노이드 링의 양이 거의 같음을 알 수 있다. 이와 비교해서, EB-PANI의 스펙트럼에서 1380cm-1에서의 약한 밴드와 1150cm-1에서의 크고 넓은 밴드가 관찰된다. 이것은 EB-PANI가 수산화암모늄에 의해 성공적으로 디도프되었고(dedopped) 광경화 수지에 섞여 대전방지성 필러로 이용될 수 있음을 나타낸다.It can be seen that the relative strengths of the quinoid ring and the benzenoid ring in the spectrum of ES-PANI are almost equal in the amount of the quinoid ring and the benzenoid ring as the oxidation state. In comparison, the large and wide band at 1150cm -1 and a weak band at 1380cm -1 are observed in the spectra of PANI-EB. This indicates that EB-PANI has been successfully dedoped with ammonium hydroxide and mixed with the photocurable resin to be used as an antistatic filler.
도 4는 리도핑 공정을 통해 만들어진 본 발명의 실시예에 의한 광경화 대전방지 코팅액과 대조 실험예로 만든 광경화 코팅액의 용액 안정성을 비교하여 나타낸 것이다.Figure 4 is a comparison of the solution stability of the photocurable antistatic coating solution prepared by the embodiment of the present invention through a re-doping process and the photocurable coating solution prepared in a control experiment.
대조 실험예에 의한 광경화 코팅액은 종래 기술로 만들어진 ES-PANI을 전도성 필러로 이용하는 것으로, 본 발명에 의한 광경화 대전방지 코팅액과 대조 실험예에 의한 광경화 코팅액은 동일한 ES-PANI 농도를 갖는 것이다.The photocurable coating liquid according to the control experiment example uses ES-PANI made in the prior art as a conductive filler, and the photocurable antistatic coating liquid according to the present invention and the photocurable coating liquid according to the control experiment example have the same ES-PANI concentration. .
도 4의 (a)에 나타난 것과 같이, 대조 실험예에 의한 광경화 코팅액은 ES-PANI이 용액에서 분리되어 침전되었고, PMMA 시트에 코팅했을 때에서 PMMA 시트의 가장자리부분에서도 그 퇴적물이 관찰되었다. 반면, 도 4의 (b)에 나타난 것과 같이, 본 발명에 의한 광경화 대전방지 코팅액은 1달 동안 침전물이 생기지 않고 높은 용액 안정성을 보였고, PMMA 시트 위에 코팅 후에도 퇴적물 발생없이 깨끗하고 투명한 표면을 나타내었다. 그리고 대전방지를 위한 6.5×108Ω/□의 표면 저항은 본 발명에 의한 광경화 대전방지 코팅액에서만 측정되었다.As shown in (a) of FIG. 4, the photocurable coating solution according to the control example was precipitated by separating ES-PANI from the solution, and the deposit was also observed at the edge of the PMMA sheet when the PMMA sheet was coated. On the other hand, as shown in Figure 4 (b), the photo-curing antistatic coating solution according to the present invention showed a high solution stability without a precipitate for 1 month, even after coating on the PMMA sheet shows a clear and transparent surface without the generation of deposits It was. And the surface resistance of 6.5 × 10 8 Ω / □ for the antistatic was measured only in the photocuring antistatic coating liquid according to the present invention.
전도성 필러로 사용된 폴리아닐린의 농도에 따른 대전방지 특성(antistatic characteristic) 및 광학 특성(optical characteristic)은 도 5 및 표 1에 나타낸 것과 같다.The antistatic and optical characteristics according to the concentration of polyaniline used as the conductive filler are shown in FIGS. 5 and 1.
도 5는 본 발명의 실시예에 의한 광경화 대전방지제에 있어서 DBSA(도데실벤젠술폰산)/PANI(폴리아닐린)의 몰비(molar ratio)에 따른 자외선 흡수 스펙트럼을 나타낸 것이다.Figure 5 shows the ultraviolet absorption spectrum according to the molar ratio of DBSA (dodecylbenzenesulfonic acid) / PANI (polyaniline) in the photocuring antistatic agent according to the embodiment of the present invention.
일반적으로, ES-PANI은 약 330nm에서 π-π* 전이 피크, 약 430nm에서 π-폴라론 밴드(polaron band) 전이 피크, 약 800nm에서 폴라론 밴드-π* 전이 피크를 포함한 세 개의 특징적인 흡수 피크를 갖는다. 반면, EB-PANI는 퀴노이드 링과 그에 인접한 이민-페닐-아민군(imine-phenyl-amine units)의 지역적 전하 이동(local charge transfer)에 의해 약 600nm에서 강한 피크를 나타낸다.In general, ES-PANI has three characteristic absorptions, including a π-π * transition peak at about 330 nm, a π-polaron band transition peak at about 430 nm, and a polaron band-π * transition peak at about 800 nm. Has a peak. In contrast, EB-PANI exhibits a strong peak at about 600 nm by local charge transfer of the quinoid ring and adjacent imine-phenyl-amine units.
도 5를 보면, 몰비가 증가함에 따라 자외선 흡수 스펙트럼이 EB-PANI 형태에서 ES-PANI 형태로 바뀌고, 1.5의 몰비에서 완전히 ES-PANI 형태로 리도핑 되었음을 알 수 있다. 이러한 결과로부터, EB-PANI를 ES-PANI로 도핑하기 위해 폴리아닐린보다 많은 도펀트가 필요하다는 것을 알 수 있다.Referring to FIG. 5, it can be seen that as the molar ratio increases, the ultraviolet absorption spectrum is changed from the EB-PANI form to the ES-PANI form and completely doped into the ES-PANI form at a molar ratio of 1.5. From these results, it can be seen that more dopant than polyaniline is needed to dope EB-PANI with ES-PANI.
표 1은 본 발명의 실시예에 의한 광경화 대전방지 코팅액을 코팅하여 만든 대전방지 필름에 있어서 폴리아닐린의 농도에 따른 표면 저항과 광학적 투과율을 비교하여 나타낸 것이다.Table 1 compares the surface resistance and the optical transmittance according to the concentration of polyaniline in the antistatic film prepared by coating the photocurable antistatic coating liquid according to the embodiment of the present invention.
표 1에서 폴리아닐린 농도는 10ml의 광경화 수지에서의 농도이다. 그리고 표면 저항은 사침탐법(Keithely 2400 sourcemeter)으로 측정한 것이고, 투과율은 550nm에서 측정한 것이다.The polyaniline concentration in Table 1 is the concentration in 10 ml of photocuring resin. The surface resistance is measured by a needle probe method (Keithely 2400 sourcemeter), and the transmittance is measured at 550 nm.
(wt.%)PANI
(wt.%)
Transmittance (%)
표 1을 보면, 자외선 경화후 대전방지 필름의 표면 저항은 폴리아닐린 농도가 증가함에 따라 감소하였고, 대전방지 필름의 투과율은 폴리아닐린 농도가 증가함에 따라 감소함을 알 수 있다. 1.4wt.%의 폴리아닐린 농도에서 표면 저항은 6.5×108Ω□이고, 투과율은 91.1 %로 나타났다. 이러한 결과로부터, 1.4wt.%의 ES-PANI의 농도를 갖는 광경화 대전방지제가 90%의 투명도와 대전방지 성능을 발휘하는데 적합하다는 것을 알 수 있다.Referring to Table 1, it can be seen that the surface resistance of the antistatic film after UV curing decreased with increasing polyaniline concentration, and the transmittance of the antistatic film decreased with increasing polyaniline concentration. The surface resistance was 6.5 × 10 8 Ω □ and the transmittance was 91.1% at a polyaniline concentration of 1.4wt.%. From these results, it can be seen that a photocurable antistatic agent having a concentration of ES-PANI of 1.4 wt.% Is suitable for exhibiting transparency and antistatic performance of 90%.
앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above and shown in the drawings should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and modify the technical idea of the present invention in various forms. Accordingly, these modifications and variations are intended to fall within the scope of the present invention as long as it is obvious to those skilled in the art.
Claims (11)
(b) 상기 ES-PANI 나노섬유를 환원시켜 EB-PANI 나노섬유(polyaniline emeraldine base nanofiber)를 만드는 단계; 및
(c) 상기 EB-PANI 나노섬유를 광경화가 가능한 아크릴 모노머와 도펀트(dopant)인 유기산을 포함하는 광경화 수지액에 첨가하여 상기 EB-PANI 나노섬유를 리도핑(re-doping)시켜 상기 광경화 수지액 속에 균일하게 분산된 ES-PANI를 얻는 단계;를 포함하는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.(a) preparing an ES-PANI nanofiber (polyaniline emeraldine salt nanofiber);
(b) reducing the ES-PANI nanofibers to form EB-PANI nanofibers (polyaniline emeraldine base nanofiber); And
(c) adding the EB-PANI nanofibers to a photocurable resin solution containing an acrylic monomer capable of photocuring and an organic acid that is a dopant, thereby re-doping the EB-PANI nanofibers to photocuring Obtaining the ES-PANI uniformly dispersed in the resin liquid; Method of producing a liquid photocurable antistatic agent comprising a.
상기 (a) 단계는 화학 산화 중합법(chemical oxidation polymerization)으로 아닐린 단량체를 상기 ES-PANI 나노섬유로 합성하는 단계를 포함하는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 1,
The step (a) is a method of producing a liquid photocurable antistatic agent comprising the step of synthesizing the aniline monomer into the ES-PANI nanofibers by chemical oxidation polymerization (chemical oxidation polymerization).
상기 (a) 단계는,
상기 아닐린 단량체를 도펀트와 라디칼 개시제가 혼합된 혼합 용액에 첨가하는 단계,
상기 아닐린 단량체가 첨가된 상기 혼합 용액을 교반하여 합성된 상기 ES-PANI 나노섬유를 침전시키는 단계, 및
침전된 상기 ES-PANI 나노섬유를 건조하는 단계를 포함하는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.3. The method of claim 2,
The step (a)
Adding the aniline monomer to a mixed solution in which a dopant and a radical initiator are mixed,
Stirring the mixed solution to which the aniline monomer is added to precipitate the synthesized ES-PANI nanofibers, and
Method for producing a liquid photocuring antistatic agent comprising the step of drying the precipitated ES-PANI nanofibers.
상기 (a) 단계에서 상기 도펀트는 염산염(HCl)이고, 상기 라디칼 개시제는 과황산암모늄(APS), 염화제이철(FeCl3), 염화제이구리(CuCl2) 중에서 선택된 어느 하나인 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 3, wherein
In step (a), the dopant is hydrochloride (HCl), and the radical initiator is a liquid phase, characterized in that any one selected from ammonium persulfate (APS), ferric chloride (FeCl 3 ), copper chloride (CuCl 2 ) Method of producing a photocuring antistatic agent.
상기 (b) 단계는,
상기 ES-PANI 나노섬유를 수화암모늄(NH4OH) 용액에 첨가하는 단계,
상기 ES-PANI 나노섬유가 첨가된 상기 수화암모늄 용액을 교반하여 상기 ES-PANI 나노섬유를 상기 EB-PANI 나노섬유로 환원시키고 침전시키는 단계, 및
침전된 상기 EB-PANI 나노섬유를 건조하는 단계를 포함하는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 1,
The step (b)
Adding the ES-PANI nanofibers to an ammonium hydride (NH 4 OH) solution,
Stirring the ammonium hydride solution to which the ES-PANI nanofibers are added to reduce and precipitate the ES-PANI nanofibers to the EB-PANI nanofibers, and
Method for producing a liquid photocuring antistatic agent comprising the step of drying the precipitated EB-PANI nanofibers.
상기 (c) 단계에서 상기 도펀트는 도데실벤젠술폰산(DBSA)인 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 1,
In the step (c), the dopant is dodecylbenzene sulfonic acid (DBSA), characterized in that the manufacturing method of the liquid photocurable antistatic agent.
상기 (c) 단계에서 상기 광경화가 가능한 아크릴 모노머는 1,6-헥산디올디아크릴레이트(1,6-hexanedioldiacrylate, HDDA), 트리메틸프로판 트리아크릴레이트(trimethyolpropane triacrylate, TMPTA) 및 알리파틱 폴리우레탄 다이아크릴레이트(aliphatic polyurethane diacrylate)로 이루어진 군에서 선택된 1종 이상으로 구성되는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 1,
In the step (c), the photocurable acrylic monomers include 1,6-hexanediol diacrylate (1,6-hexanedioldiacrylate (HDDA)), trimethylpropane triacrylate (TMPTA) and aliphatic polyurethane diacrylamide. A method for producing a liquid photocurable antistatic agent, characterized in that it is composed of one or more selected from the group consisting of aliphatic polyurethane diacrylate.
상기 (c) 단계 이후,
상기 EB-PANI 나노섬유가 리도핑된 상기 광경화 수지액을 투명 기판 위에 코팅하여 코팅층을 형성하고, 상기 코팅층을 건조시키는 단계를 더 포함하는 것을 특징으로 하는 액상 광경화 대전방지제의 제조방법.The method of claim 1,
After the step (c)
The EB-PANI nanofiber redoped with a photocurable resin solution on the transparent substrate to form a coating layer, and further comprising the step of drying the coating layer of the liquid photocurable antistatic agent manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110042572A KR101306429B1 (en) | 2011-05-04 | 2011-05-04 | UV curable antistatic agent and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110042572A KR101306429B1 (en) | 2011-05-04 | 2011-05-04 | UV curable antistatic agent and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120124739A KR20120124739A (en) | 2012-11-14 |
KR101306429B1 true KR101306429B1 (en) | 2013-09-09 |
Family
ID=47510028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110042572A Active KR101306429B1 (en) | 2011-05-04 | 2011-05-04 | UV curable antistatic agent and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101306429B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070087852A (en) * | 2005-12-29 | 2007-08-29 | 제일모직주식회사 | Antistatic hard coating composition, coating method thereof and antistatic transparent panel using same |
US7374703B2 (en) | 2004-06-28 | 2008-05-20 | The Ohio State University | Synthesis of nanofibers of polyaniline and substituted derivatives |
KR20090073062A (en) * | 2009-05-20 | 2009-07-02 | 광 석 서 | Antistatic Coating Composition For Polarizing Film And Antistatic Polarizing Film Using The Same |
-
2011
- 2011-05-04 KR KR1020110042572A patent/KR101306429B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7374703B2 (en) | 2004-06-28 | 2008-05-20 | The Ohio State University | Synthesis of nanofibers of polyaniline and substituted derivatives |
KR20070087852A (en) * | 2005-12-29 | 2007-08-29 | 제일모직주식회사 | Antistatic hard coating composition, coating method thereof and antistatic transparent panel using same |
KR20090073062A (en) * | 2009-05-20 | 2009-07-02 | 광 석 서 | Antistatic Coating Composition For Polarizing Film And Antistatic Polarizing Film Using The Same |
Non-Patent Citations (2)
Title |
---|
Materials Chemistry and Physics, Vol.113, p.829-838 (2009) * |
Materials Chemistry and Physics, Vol.113, p.829-838 (2009)* |
Also Published As
Publication number | Publication date |
---|---|
KR20120124739A (en) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ouyang | “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices | |
Liu et al. | Enhancements in conductivity and thermal and conductive stabilities of electropolymerized polypyrrole with caprolactam-modified clay | |
KR100221383B1 (en) | Crosslinked electroconductive polymer and method for producing the precursor thereof | |
Kotal et al. | Enhancements in conductivity and thermal stabilities of polypyrrole/polyurethane nanoblends | |
US20070200099A1 (en) | Composition For Coating Organic Electrode And Method Of Manufacturing Organic Electrode Having Excellent Transparency Using The Composition | |
US20140170405A1 (en) | Processes for preparing cured films, the resulting films, and plasma-initiated polymerizable compositions | |
EP2762536A1 (en) | Electrically conductive films formed from dispersions comprising polythiophenes and ether containing polymers | |
JP2007246905A (en) | Conductive coating composition for protective film and method of manufacturing coating film using the same | |
KR102058735B1 (en) | Conductive ink comprising diacetylene diol momomer and conductive polymer, and method for preparing micropattern using the same | |
Zareh et al. | Synthesis and characterization of conductive nanoblends based on poly (aniline‐co‐3‐aminobenzoic acid) in the presence of poly (styrene‐alt‐maleic acid) | |
JP2019137815A (en) | Method of producing conductive polymer dispersion, and method of producing conductive film | |
TW201934660A (en) | Conductive polymer dispersion and method of manufacturing the same, and method of manufacturing conductive film | |
KR101976760B1 (en) | Transparent Conducting Film based on Nanowire and a Method for Preparing Thereof) | |
JP2021074951A (en) | Conductive laminate and method for producing the same | |
KR101306429B1 (en) | UV curable antistatic agent and method for preparing the same | |
KR101289768B1 (en) | Conductive polymer composition and manufacturing method thereof | |
Taghipour et al. | Modification of polyaniline/polystyrene and polyaniline/metal oxide structure by surfactant | |
JP2021095459A (en) | Conductive polymer dispersion and method for producing the same, and conductive film and method for producing the same | |
KR101738136B1 (en) | Preparation method of conductive polymer marterial | |
US9378860B2 (en) | Polyvinyl copolymer, dopant having the same, and conductive polymer composite having the dopant | |
JP2021105072A (en) | Method for manufacturing high conductive composite, method for manufacturing aqueous dispersion of high conductive composite, method for manufacturing organic solvent dispersion of high conductive composite, conductive film and method for manufacturing the same | |
KR101147536B1 (en) | Transparent Electrically Conductive Coatings for the Electromagnetic Interference | |
JP2012056990A (en) | Conductive benzothiadiazole copolymer composition | |
JP2021020977A (en) | Method of producing highly conductive composite, method of producing dispersion of highly conductive composite in organic solvent, conductive film, and method of producing the same | |
KR100481665B1 (en) | Electrical conductive poly(thiophene) non-aqueous dispersion, method for preparing thereof, and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20110504 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20121030 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130829 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130903 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130903 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160823 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160823 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170627 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170627 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee |