[go: up one dir, main page]

KR101305080B1 - Manufacture method of complex aluminum grease for highest pressure and wear resistant - Google Patents

Manufacture method of complex aluminum grease for highest pressure and wear resistant Download PDF

Info

Publication number
KR101305080B1
KR101305080B1 KR1020130028972A KR20130028972A KR101305080B1 KR 101305080 B1 KR101305080 B1 KR 101305080B1 KR 1020130028972 A KR1020130028972 A KR 1020130028972A KR 20130028972 A KR20130028972 A KR 20130028972A KR 101305080 B1 KR101305080 B1 KR 101305080B1
Authority
KR
South Korea
Prior art keywords
grease
extreme pressure
mixture
acid
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020130028972A
Other languages
Korean (ko)
Inventor
강희성
정상호
Original Assignee
그린루브 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그린루브 주식회사 filed Critical 그린루브 주식회사
Priority to KR1020130028972A priority Critical patent/KR101305080B1/en
Application granted granted Critical
Publication of KR101305080B1 publication Critical patent/KR101305080B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Form in which the lubricant is applied to the material being lubricated semi-solid; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

본 발명은 지방산인 벤조산, 스테아린산 및 올레인산과, 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 반응시켜 내극압성을 포함한 각종 성능을 향상시킨 고극압 내마모성 복합알루미늄 그리스의 제조방법에 관한 것이다.
본 발명에 의하면, 윤활기유에 스테아린산(Stearic acid)과 올레인산(Oleic acid)을 가하여 일정온도에서 교반하여 용해시키는 제 1단계; 알콜에 벤조산(Benzoic acid)을 녹여 교반시키고, 상기 교반시킨 알콜 및 벤조산의 혼합물에 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 투입하여 가열시키는 제 2단계; 상기 제 1단계에서 용해된 혼합물과 상기 제 2단계에서 생성된 혼합물을 서로 혼합하여 가열시키는 제 3단계; 상기 제 3단계에서 생성된 혼합물에 물을 가하여 냉각시키는 제 4단계; 및 상기 제 4단계에서 냉각되어 생성된 혼합물에 윤활기유를 가하여 일정온도로 가열시키는 제 5단계;를 포함하는 고극압 내마모성 복합알루미늄 그리스의 제조방법을 제공한다.
The present invention relates to a method for producing a high extreme pressure wear resistant composite aluminum grease in which various fatty acids including benzoic acid, stearic acid and oleic acid and aluminum isopropoxide are reacted to improve various performances including extreme pressure resistance.
According to the present invention, stearic acid (Stearic acid) and oleic acid (Oleic acid) is added to the lubricating base oil by stirring at a predetermined temperature to dissolve; A second step of dissolving and stirring benzoic acid in alcohol, and adding aluminum isopropoxide to the mixture of the stirred alcohol and benzoic acid and heating it; A third step of mixing and heating the mixture dissolved in the first step with the mixture produced in the second step; A fourth step of cooling by adding water to the mixture produced in the third step; And a fifth step of adding a lubricating base oil to the mixture produced by cooling in the fourth step and heating the mixture to a predetermined temperature.

Description

고극압 내마모성 복합알루미늄 그리스의 제조방법{MANUFACTURE METHOD OF COMPLEX ALUMINUM GREASE FOR HIGHEST PRESSURE AND WEAR RESISTANT}MANUFACTURE METHOD OF COMPLEX ALUMINUM GREASE FOR HIGHEST PRESSURE AND WEAR RESISTANT

본 발명은 고극압 내마모성 복합알루미늄 그리스의 제조방법에 관한 것이다. 보다 상세하게 설명하면, 지방산인 벤조산, 스테아린산 및 올레인산과, 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 반응시켜 내극압성을 포함한 각종 성능을 향상시킨 고극압 내마모성 복합알루미늄 그리스의 제조방법에 관한 것이다. The present invention relates to a process for producing high extreme pressure wear resistant composite aluminum grease. More specifically, the present invention relates to a method for producing a high-polarization wear-resistant composite aluminum grease in which fatty acids benzoic acid, stearic acid and oleic acid are reacted with aluminum isopropoxide to improve various performances including extreme pressure resistance.

일반적으로 그리스를 구성하는 물질은 기유, 증주제 및 첨가제의 3가지로 나뉜다. 상기에서 기유는 범용적인 광유와 실리콘유, 에스텔유 같은 합성유로 대별되며, 증주제는 바륨, 리튬, 칼슘, 나트륨, 알루미늄 등의 비누계와 실리카겔, 벤톤, 우레아 등과 같은 비비누계로 나뉘어 진다. 또한 첨가제는 산화방지제, 극압제 등의 다양한 첨가제가 각 특성에 따라 여러 가지 용도로 첨가된다.Generally, grease constituents are divided into three types: base oils, thickeners and additives. In the above, the base oil is roughly divided into general mineral oil, synthetic oil such as silicone oil, and ester oil, and the thickener is divided into soap-based such as barium, lithium, calcium, sodium, aluminum, and soap-based such as silica gel, benton, urea, and the like. In addition, various additives, such as antioxidants and extreme pressure agents, are added for various purposes according to their properties.

종래의 그리스 제조에서는 상기와 같은 증주제 원료와 첨가제를 사용하여 각 업체의 고유한 첨가 배율로 독립적으로 생산라인에 투입하여 그리스를 제조하고 있다.In the conventional grease production, grease is manufactured by using the thickener raw materials and additives as described above, and independently inputting them to a production line at a unique addition ratio of each company.

그러나 국내 그리스의 기술수준은 미국이나 일본 등 선진국에 비하면 아직까지 초보적인 단계에서 벗어나지 못하고 있다. 또한 각종 설비의 특성에 따라 요구되는 성능도 점차 까다로워짐에 따라 이에 맞는 다양한 종류의 그리스가 연구되어 만들어지고 있다.However, Korea's technological level in Greece is still in its infancy compared to developed countries such as the US and Japan. In addition, various types of greases have been researched and made according to the increasingly demanding performance according to the characteristics of various facilities.

특히 증주제를 알루미늄으로 하여 만든 그리스는 주로 많이 제조되는 리튬그리스나 칼슘그리스에 비해 금속면에 대한 점착성이 우수하고 방청성이 뛰어나 극압용 그리스로서 좋은 조건을 가지고 있으므로 이에 대한 연구도 활발히 진행되고 있지만 열에 대한 안정성이 비교적 좋지 않아 이 문제점을 보완하는 것이 시급한 과제이다.In particular, the grease made of aluminum as a thickener is excellent in adhesion to metal surfaces and excellent in rust resistance compared to lithium grease or calcium grease, which is mainly manufactured. Since the stability is relatively poor, it is urgent to solve this problem.

또한 앞에 서술한 바와 같이 주로 많이 제조되고 있는 그리스로서 리튬그리스나 칼슘그리스는 증주제가 리튬비누나 칼슘비누로 만들어진 것으로 이것은 그 독성이 매우 강하여 사실상 인체에 매우 해로운 것으로 나타나고 있다. 그러나 알루미늄을 증주제로 하여 만든 그리스는 그 독성이 전혀 없는 것으로 나타나 주로 식품을 제조하거나 가공하는 공장의 기계나 식품전용기계의 윤활부위의 윤활제로서도 많이 사용되고 있다.In addition, as described above, lithium grease and calcium grease are mainly manufactured as lithium grease or calcium grease, and the thickener is made of lithium soap or calcium soap, which is very toxic and is actually harmful to the human body. However, the grease made of aluminum as a thickener has no toxicity at all, and is mainly used as a lubricant in the lubricating part of a machine or a food-only machine in a food manufacturing or processing plant.

따라서 알루미늄 그리스가 가지고 있는 친환경적인 특성을 유지하면서도 내극압성이나 내열성 등의 성능을 향상시킬 수 있는 그리스의 개발이 시급한 상황이다.Therefore, it is urgent to develop grease that can improve the performance such as extreme pressure resistance and heat resistance while maintaining the environmentally friendly characteristics of aluminum grease.

KR 10-2009-0025642KR 10-2009-0025642 KR 10-2001-0029060KR 10-2001-0029060

본 발명은 이와 같은 문제점을 해결하기 위하여 안출된 것으로서, 지방산인 벤조산, 스테아린산 및 올레인산과, 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 반응시켜 종래의 그리스에 비해 친환경적이면서도 내극압성이나 내열성 등의 성능을 향상시킬 수 있는 고극압 내마모성 복합알루미늄 그리스를 제조하는 방법을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, by reacting the fatty acid benzoic acid, stearic acid and oleic acid with aluminum isopropoxide (Aluminum Isopropoxide) is more environmentally friendly than conventional grease, such as polar pressure resistance and heat resistance performance It is an object of the present invention to provide a method for producing high extreme pressure wear resistant composite aluminum grease that can be improved.

본 발명에 의하면, 윤활기유에 스테아린산(Stearic acid)과 올레인산(Oleic acid)을 가하여 일정온도에서 교반하여 용해시키는 제 1단계; 알콜에 벤조산(Benzoic acid)을 녹여 교반시키고, 상기 교반시킨 알콜 및 벤조산의 혼합물에 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 투입하여 가열시키는 제 2단계; 상기 제 1단계에서 용해된 혼합물과 상기 제 2단계에서 생성된 혼합물을 서로 혼합하여 가열시키는 제 3단계; 상기 제 3단계에서 생성된 혼합물에 물을 가하여 냉각시키는 제 4단계; 및 상기 제 4단계에서 냉각되어 생성된 혼합물에 윤활기유를 가하여 일정온도로 가열시키는 제 5단계;를 포함하는 고극압 내마모성 복합알루미늄 그리스의 제조방법을 제공한다. According to the present invention, stearic acid (Stearic acid) and oleic acid (Oleic acid) is added to the lubricating base oil by stirring at a predetermined temperature to dissolve; A second step of dissolving and stirring benzoic acid in alcohol, and adding aluminum isopropoxide to the mixture of the stirred alcohol and benzoic acid and heating it; A third step of mixing and heating the mixture dissolved in the first step with the mixture produced in the second step; A fourth step of cooling by adding water to the mixture produced in the third step; And a fifth step of adding a lubricating base oil to the mixture produced by cooling in the fourth step and heating the mixture to a predetermined temperature.

한편, 상기 제 5단계 이후에 극압첨가제를 포함하는 첨가제를 투입하여 교반시킨 후, 밀처리를 통해 복합알루미늄 그리스를 제조하는 제 6단계;를 더 포함하는 것을 특징으로 한다.On the other hand, after the fifth step by adding and stirring the additive containing the extreme pressure additive, a sixth step of manufacturing a composite aluminum grease through milling; characterized in that it further comprises.

한편, 상기 제 1단계의 윤활기유는 동점도가 서로 다른 에스테르기유를 혼합한 기유인 것을 특징으로 한다.On the other hand, the lubricating base oil of the first step is characterized in that the base oil is a mixture of ester base oils having different kinematic viscosity.

한편, 상기 벤조산은 전체 그리스량의 1 ~ 3 중량%, 상기 스테아린산은 전체 그리스량의 3 ~ 5 중량%, 상기 올레인산은 전체 그리스량의 0.1 ~ 0.3 중량%, 상기 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 전체 그리스량의 2 ~ 4 중량%가 포함되어 있는 것을 특징으로 한다.On the other hand, the benzoic acid is 1 to 3% by weight of the total amount of grease, the stearic acid is 3 to 5% by weight of the total amount of grease, the oleic acid is 0.1 to 0.3% by weight of the total amount of grease, the aluminum isopropoxide (Aluminum Isopropoxide ) Is characterized in that it contains 2 to 4% by weight of the total amount of grease.

한편, 상기 극압첨가제는 황 및 안티몬계(Antimony dialkyl dithiocarmate) 극압첨가제 또는 불소계(PTFE:Poly tetrafluoroethylene) 극압첨가제인 것을 특징으로 한다.On the other hand, the extreme pressure additive is characterized in that the sulfur and antimony-based (antimony dialkyl dithiocarmate) extreme pressure additive or fluorine-based (PTFE: Poly tetrafluoroethylene) extreme pressure additive.

본 발명에 의한 고극압 내마모성 복합알루미늄 그리스는 지방산인 벤조산, 스테아린산 및 올레인산과, 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 반응시켜 내극압성을 포함한 각종 성능을 향상시킨 효과가 있다. The high-polarization wear-resistant composite aluminum grease according to the present invention has an effect of improving various performances including polar pressure resistance by reacting fatty acid benzoic acid, stearic acid and oleic acid with aluminum isopropoxide.

또한 본 발명은 극압첨가제를 첨가하여 내극압성 등이 우수한 복합알루미늄 그리스를 제조할 수 있었다. In addition, the present invention was able to produce a composite aluminum grease having excellent polar pressure resistance and the like by adding an extreme pressure additive.

또한 본 발명은 일반 광유계가 지니고 있는 여러 가지 단점을 보완하기 위해 우수한 합성유계의 윤활기유를 사용하여 수없는 배합실험을 통해 그 물성평가를 한 결과 기계적 전단안정성, 내열성, 산화안정성, 방청성, 증발성, 내수성, 유분리성 등을 포함한 모든 성능면에서 우수한 효과를 나타내었다. In addition, the present invention is the mechanical shear stability, heat resistance, oxidative stability, rust resistance, evaporation result of the evaluation of the physical properties through the compounding experiment using a synthetic base oil of excellent synthetic oil to compensate for the various disadvantages of general mineral oil system It showed excellent effects in all performances including water resistance, oil resistance and so on.

도 1은 본 발명의 실시예에 따른 고극압 내마모성 복합알루미늄 그리스의 제조방법에 사용되는 윤활기유(합성유계 에스테르)와 광유계의 생분해도를 나타낸 그래프이다.1 is a graph showing the biodegradability of the lubricant base oil (synthetic oil ester) and mineral oil used in the method for producing a high-polarization wear-resistant composite aluminum grease according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예를 상세히 설명한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명의 실시예에 따른 고극압 내마모성 복합알루미늄 그리스의 제조방법은 다음과 같다. Method for producing a high-polarization wear-resistant composite aluminum grease according to an embodiment of the present invention is as follows.

제 1단계는 윤활기유에 스테아린산(Stearic acid)과 올레인산(Oleic acid)을 가하여 일정온도에서 교반하여 용해시키는 단계이다. 상기 제 1단계의 윤활기유는 합성유계로서, 동점도가 서로 다른 에스테르기유를 혼합한 기유로 하는 것이 바람직하다. 도 1을 참조하면, 광유계(우측 도면)와 합성유계(좌측 도면)의 생분해도를 FT-IR 시험기로 시험 전과 시험 후 2930cm-1 흡광도를 비교하여 생분해도를 평가한 결과를 나타낸 것인데, 유계(우측 도면)의 생분해도는 37.2%인 것에 비해, 합성유계인 에스테르기유(좌측 도면)의 생분해도는 89.6%로 그 성능이 월등함을 알 수 있었다. 따라서 광유계가 아닌 합성유계를 사용할 경우, 기존의 그리스에 비해 환경오염의 근원을 근본적으로 차단할 수 있는 친환경적인 그리스를 제조할 수 있는 효과가 있을 것이다. In the first step, stearic acid and oleic acid are added to the lubricating base oil to dissolve by stirring at a predetermined temperature. The lubricating base oil of the first step is a synthetic oil, and is preferably a base oil obtained by mixing ester base oils having different kinematic viscosities. Referring to FIG. 1, the biodegradability of mineral oil (right) and synthetic oil (left) is compared with the FT-IR test before and after the test to show the results of evaluating biodegradability by comparing 2930 cm -1 absorbance. The biodegradability of the right figure is 37.2%, whereas the biodegradability of the ester base oil (left diagram), which is a synthetic oil, is 89.6%. Therefore, using synthetic oils other than mineral oils will have the effect of producing environmentally friendly greases that can fundamentally block the source of environmental pollution compared to conventional greases.

한편, 상기 스테아린산은 전체 그리스량의 3 ~ 5 중량%를 투입하고, 상기 올레인산은 전체 그리스량의 0.1 ~ 0.3 중량%를 투입하는 것이 바람직한다. 그 실시예에 대해서는 아래에서 설명될 것이다. On the other hand, the stearic acid is added to 3 to 5% by weight of the total amount of grease, the oleic acid is preferably added to 0.1 to 0.3% by weight of the total amount of grease. The embodiment will be described below.

제 2단계는 알콜에 벤조산(Benzoic acid)을 녹여 교반시키고, 상기 교반시킨 알콜 및 벤조산의 혼합물에 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 투입하여 가열시키는 단계이다. The second step is a step in which benzoic acid is dissolved in alcohol and stirred, and aluminum isopropoxide is added to the mixture of the stirred alcohol and benzoic acid and heated.

한편, 상기 벤조산은 전체 그리스량의 1 ~ 3 중량%를 투입하고, 상기 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 전체 그리스량의 2 ~ 4 중량%를 투입하는 것이 바람직한데, 그 실시예에 대해서는 아래에서 설명될 것이다. 여기서 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 Aluminum Isopropylate라고 칭하기도 한다. On the other hand, the benzoic acid is added to 1 to 3% by weight of the total amount of grease, the aluminum isopropoxide (Aluminum Isopropoxide) is preferably added to 2 to 4% by weight of the total amount of grease, the embodiment Will be explained below. Aluminum isopropoxide may also be referred to as aluminum isopropylate.

제 3단계는 상기 제 1단계에서 용해된 혼합물과 상기 제 2단계에서 생성된 혼합물을 서로 혼합하여 가열시키는 단계이다.The third step is a step in which the mixture dissolved in the first step and the mixture produced in the second step are mixed with each other and heated.

제 4단계는 상기 제 3단계에서 생성된 혼합물에 물을 가하여 냉각시키는 단계이다.The fourth step is a step of cooling by adding water to the mixture produced in the third step.

제 5단계는 상기 제 4단계에서 냉각되어 생성된 혼합물에 윤활기유를 가하여 일정온도로 가열시키는 단계이다.The fifth step is a step of adding a lubricating base oil to the mixture produced by cooling in the fourth step and heating to a constant temperature.

제 6단계는 상기 제 5단계 이후에 극압첨가제를 포함하는 첨가제를 투입하여 교반시킨 후, 밀처리를 통해 복합알루미늄 그리스를 제조하는 단계이다.In a sixth step, after the fifth step, an additive including an extreme pressure additive is added and stirred to prepare a composite aluminum grease through milling.

상기 제 1단계 내지 제 6단계에 걸쳐 제조되는 복합알루미늄 그리스의 반응 메카니즘은 아래식과 같다. The reaction mechanism of the composite aluminum grease prepared in the first to sixth steps is as follows.

Figure 112013023492918-pat00001
Figure 112013023492918-pat00001

위와 같이 제 1단계에서 제 6단계에 걸쳐 제조된 복합알루미늄 그리스는 내극압성, 내마모성 및 기타 성능 면에서 기존의 그리스에 비해 효과가 있는데, 이는 아래의 실시예를 통해 나타날 것이다. The composite aluminum grease prepared in the first to sixth steps as described above is more effective than the conventional grease in terms of pole pressure resistance, abrasion resistance, and other performance, which will be shown through the following examples.

한편, 상기 벤조산은 전체 그리스량의 1 ~ 3 중량%, 상기 스테아린산은 전체 그리스량의 3 ~ 5 중량%, 상기 올레인산은 전체 그리스량의 0.1 ~ 0.3 중량%, 상기 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 전체 그리스량의 2 ~ 4 중량%가 포함되는 것이 바람직하다. 이는 아래의 실시예를 통해 설명될 것이다.On the other hand, the benzoic acid is 1 to 3% by weight of the total amount of grease, the stearic acid is 3 to 5% by weight of the total amount of grease, the oleic acid is 0.1 to 0.3% by weight of the total amount of grease, the aluminum isopropoxide (Aluminum Isopropoxide ) Is preferably 2 to 4% by weight of the total amount of grease. This will be explained through the following examples.

한편, 상기 극압첨가제는 황 및 안티몬계(Antimony dialkyl dithiocarmate) 극압첨가제 또는 불소계(PTFE:Poly tetrafluoroethylene) 극압첨가제인 것이 바람직하다.On the other hand, the extreme pressure additive is a sulfur and antimony-based (antimony dialkyl dithiocarmate) extreme pressure additive or a fluorine-based (PTFE: Poly tetrafluoroethylene) extreme pressure additive.

이하에 실시예를 통해 본 발명이 더 상세히 설명되지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.The present invention is described in more detail with reference to the following Examples, but the present invention is not limited to these Examples.

[실시예][Example]

i)동점도 약 50 및 400 cSt정도의 두가지 Polyol Ester 기유를 적당한 비율로 혼합하여 동점도가 약 120 cSt로 되도록 조절한 다음 이것의 2/3 정도에 스테아린산과 올레인산을 투입하여 30분 동안 60℃에서 충분히 용해가 되도록 잘 섞었다. ii)그리고 별도의 용기에다 벤조산을 메탄올에 녹인 것을 투입하여 서로가 잘 섞이도록 하였다. 용해가 충분히 된 것을 확인한 다음 서서히 온도를 올리면서 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 투입하여 약 104℃에서 맑은 용액이 나타날 때까지 가열하였다. 이 과정에서 반응촉매제로 이용되었던 메탄올은 증발하였고 또한 많은 거품이 발생하였으나 계속하여 약 30여분간 교반하여 거품을 완전히 소멸시켰다. i) Mix two Polyol Ester base oils with a kinematic viscosity of about 50 and 400 cSt at an appropriate ratio to adjust the kinematic viscosity to about 120 cSt, and then add stearic acid and oleic acid at about two thirds of them, at 60 ° C for 30 minutes. Mix well to dissolve. ii) In a separate container, benzoic acid dissolved in methanol was added to mix well. After confirming that the solution was sufficiently dissolved, aluminum isopropoxide was added while gradually raising the temperature, and heated at about 104 ° C. until a clear solution appeared. Methanol, which was used as a reaction catalyst in this process, evaporated and generated a lot of foam, but continued stirring for about 30 minutes to completely extinguish the foam.

iii) i)에서 혼합된 산의 용해액은 ii)에서 생성된 알루미늄 isopropoxide의 용해액에 첨가되고 isopropanol의 방출과 함께 진한 그리스가 형성되었다. 반응물은 알콜이 제거된 후 40분 동안 150℃까지 가열하였다. 이후 반응물은 약 93℃까지 냉각하여 반응하지 않은 isopropoxide를 중성화시키기 위해 소량의 물을 첨가시켰다. 보다 더 많은 알콜의 방출로서 이러한 결과가 생기고 진한 겔이 형성된다. 여기에다 다시 약 143℃로 가열한 뒤 남아 있는 1/3정도의 Ester 기유를 마저 투입하고 계속 3.5시간 정도 교반하면서 약 204℃까지 가열한 후 반응을 종료하였다. 이후 약 90℃까지 자연 냉각한 다음 극압첨가제 및 고체분말제 이외의 첨가제를 투입하고 밀처리를 통해 제품을 완성하였다.iii) The solution of acid mixed in i) was added to the solution of aluminum isopropoxide produced in ii) and dark grease formed with the release of isopropanol. The reaction was heated to 150 ° C. for 40 minutes after the alcohol had been removed. The reaction was then cooled to about 93 ° C. and a small amount of water added to neutralize unreacted isopropoxide. The release of more alcohol results in this result and a dark gel is formed. The mixture was heated to about 143 ° C. again, and the remaining 1/3 of Ester base oil was added to the mixture, and the mixture was heated to about 204 ° C. while stirring for about 3.5 hours to terminate the reaction. Thereafter, after cooling to about 90 ° C. naturally, additives other than the extreme pressure additive and the solid powder were added, and the product was finished by milling.

상기 [실시예]에서는 고극압 내마모성 복합알루미늄 그리스의 제조방법에 대한 과정을 설명하였으며, 아래 [표 1]에 벤조산, 스테아린산, 올레인산, 알루미늄 이소프로폭시드(Aluminum Isopropoxide)의 배합비율(wt %)에 따라 실시예 1 내지 실시예 9의 경우로 나누어서 나타내었다. [표 1]에서 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 간략히 AIP라고 표기하였다.In the above [Example], the process for the preparation of the high-polarization wear-resistant composite aluminum grease was described. In Table 1 below, the blending ratio of benzoic acid, stearic acid, oleic acid, and aluminum isopropoxide (aluminum isopropoxide) was shown. According to the case of Examples 1 to 9. In Table 1, aluminum isopropoxide is briefly referred to as AIP.

Figure 112013023492918-pat00002
Figure 112013023492918-pat00002

실시예 1 내지 실시예 9의 각 경우 soap의 형성과정과 함께 겔화의 정도를 KS M 2037의 주도시험방법과 KS M ISO 2176의 적정시험방법을 통해 확인하고 그 결과를 [표 2]에 나타내었다.In each case of Examples 1 to 9, the degree of gelation along with the soap formation process was confirmed through the lead test method of KS M 2037 and the titration test method of KS M ISO 2176, and the results are shown in [Table 2]. .

Figure 112013023492918-pat00003
Figure 112013023492918-pat00003

상기 [표 2]를 통해 알 수 있듯이, 배합비율에 따라 soap의 형성이 다르게 나타나는 것을 알 수 있으며, 또한 배합량이 증가할수록 soap의 형성이 잘 되고 겔화가 빠르게 진행되는 것을 알 수 있었다. 그리고 안정된 soap의 형성과 함께 주도가 낮아지며(굳어짐), 동시에 적점이 향상되었다. As can be seen from the above [Table 2], it can be seen that the formation of soap is different depending on the blending ratio, and as the blending amount is increased, the formation of soap is better and the gelation proceeds faster. And with the formation of a stable soap, the lead is lowered (hardened), and at the same time the dropping point is improved.

그리고 실시예 1 내지 실시예 9에 의한 생성물에 대한 반응이 제대로 이루어졌는지에 대한 확인시험은 그리스류의 경우 KS M 2038의 유리산 및 유리알카리의 시험방법을 통해 지방산과 AIP의 반응과정에서 반응하지 않고 남은 유리산과 유리알카리를 확인할 수 있었으며, 그 결과는 [표 3]에 나타내었다.And the confirmatory test whether the reaction to the product according to Examples 1 to 9 was properly performed in the case of greases do not react in the reaction of fatty acids and AIP through the test method of free acid and free alkali of KS M 2038 The remaining free acid and free alkali could be confirmed, and the results are shown in [Table 3].

Figure 112013023492918-pat00004
Figure 112013023492918-pat00004

상기 [표 3]을 통해 알 수 있듯이, 유리알카리는 검출되지 않았으며 유리산의 경우 산의 함량이 높을수록 수치는 높게 나타났다. 그러나 산의 함량이 높아서 미반응의 유리산이 많이 존재한다고 하여 soap의 형성이 되지 않은 것은 아니며, 오히려 유리산의 함량이 적었을 경우 soap의 형성이 잘 되지 않았다. 이것으로 볼 때 반응 메카니즘에 있어서 반드시 이론적으로 일치하는 것은 아님을 알 수 있었다. As can be seen from [Table 3], free alkali was not detected, and in the case of free acid, the higher the acid content, the higher the value. However, the presence of a large amount of unreacted free acid due to the high acid content does not mean that the soap is not formed. Rather, when the content of the free acid is low, soap was not formed well. This suggests that the reaction mechanism is not necessarily theoretically consistent.

상기 [표 1]의 실시예 1 내지 실시예 9 중에서 반응상태가 가장 양호한 실시예 7을 대상으로 하여 극압첨가제를 비롯한 기타 첨가제를 투입하여 최종적으로 품질이 우수하게 나타난 두 가지 제품(배합-1, 배합-2)을 종래 그리스(알루미늄그리스, 리튬그리스)와 비교해 각종 성능을 시험하였고, 그 결과는 아래 [표 4]와 같다. In Example 1 to Example 9 of Table 1, the two reaction products having the best reaction state were added to other additives including extreme pressure additives and finally showed excellent quality (compound-1, Formulation-2) was tested for various performances compared to conventional grease (aluminum grease, lithium grease), and the results are shown in Table 4 below.

Figure 112013023492918-pat00005
Figure 112013023492918-pat00005

[표 4]에서 그리스의 열에 대한 안정성의 평가로 적점시험에 대한 결과를 나타냈었다. 시험방법은 KS M 2276로 하였음을 알려둔다. [표 4]를 통한 적점시험 결과를 살펴보면, 배합-1, 배합-2의 복합알루미늄 그리스는 일반 알루미늄그리스나 리튬그리스보다 적점이 상당히 개선되었음을 알 수 있다. In Table 4, the results of the dropping test were shown by the evaluation of the stability of the heat of the grease. It is noted that the test method was KS M 2276. Looking at the dropping point test results through [Table 4], it can be seen that the composite aluminum grease of the formulation-1 and formulation-2 has a significant improvement in the dropping point than the general aluminum grease or lithium grease.

또한 [표 4]에서 배합-1 및 배합-2의 혼화주도는 개발목표치를 만족하는 값을 나타내었음을 알 수 있다. In addition, in Table 4, it can be seen that the mixing induction of the formulation-1 and the formulation-2 satisfies the development target value.

또한 [표 4]에서 고체인 증주제와 액체인 기유 간의 분리도를 평가하는 실험으로 이유도 실험의 결과를 나타내었다. 시험방법은 KS M 2050에 의하며 시료를 250㎛의 원뿔형 쇠그물에 채우고 규정조건하에서 오일이 그리스에서 분리되어 나오는 것의 양을 조사하여 그 결과를 [표 4]에 나타내었다. [표 4]를 통한 이유도 시험결과를 살펴보면, 배합-1 및 배합-2의 합성유계 그리스는 나프텐계의 광유로 제조한 그리스보다는 유분리성이 다소 좋지 않지만 일반적으로 많이 사용되는 파라핀계 광유로 제조한 그리스보다는 유분리성이 매우 우수한 것으로 나타났다. In addition, in Table 4, the degree of separation between the solid thickener and the liquid base oil was evaluated. The test method was based on KS M 2050, and the sample was filled in a 250 μm conical metal mesh and the amount of oil separated from the grease under the specified conditions was investigated. The results are shown in [Table 4]. Table 4 also shows the results of the test results, synthetic oil-based greases of the formulation-1 and formulation-2 are prepared with paraffinic mineral oil, which is generally used a lot better oil separation than grease prepared with naphthenic mineral oil. Oil separation was much better than grease.

또한 [표 4]에서 그리스의 동판에 대한 부식성을 평가하는 시험인 동판부식시험을 시험방법 KS M 2088에 의해 시행하였으며 이는 규정된 사포지로 연마한 동판을 시료속에 약 2/3 가량 채운 뒤 규정조건하에서 방치한 뒤 동판의 변색유무를 조사하여 그 결과를 [표 4]에 나타내었다. 결과를 살펴보면, 모두 변색이 없는 합격상태를 나타내었다.In addition, the copper plate corrosion test, which is a test for evaluating the corrosiveness of the grease plate in [Table 4], was carried out by the test method KS M 2088. After leaving under the condition of discoloration of copper plate was investigated and the results are shown in [Table 4]. Looking at the results, all showed a pass state without discoloration.

또한 [표 4]에서 KS M 2037의 시험방법을 통해 증발성 시험을 실시한 바, 그 결과는 합성유를 사용한 배합-1 및 배합-2의 그리스가 알루미늄그리스나 리튬그리스보다 매우 우수함을 알 수 있었다. In addition, the evaporation test was performed through the test method of KS M 2037 in Table 4, and the results showed that the greases of the compound-1 and the compound-2 using the synthetic oil were much better than those of the aluminum grease and the lithium grease.

또한 [표 4]에서 그리스의 내수성 즉 수세내수도 시험은 KS M 2087에 의해 시행하며, 이는 구름베어링에 시료를 채운 뒤 규정조건하에서 물을 분사하여 그리스가 씻겨 나간 양을 조사하여 그 결과를 [표 4]에 나타내었다. 결과를 살펴보면, 배합-1 및 배합-2가 다른 그리스에 비해 내수성이 우수함을 알 수 있었다. In addition, in [Table 4], the water resistance, or flush water resistance test of grease is conducted by KS M 2087, which is filled with samples in rolling bearings and sprayed with water under prescribed conditions to investigate the amount of grease washed out. Table 4]. Looking at the results, it can be seen that Formulation-1 and Formulation-2 have better water resistance than other greases.

또한 [표 4]에서 그리스의 기계적 안정성과 전단력에 대한 확인시험인 혼화안정도 시험은 KS M 2137에 의해 시험하였고, 그 결과는 복합알루미늄으로 제조한 배합-1 및 배합-2의 그리스는 일반 리튬으로 제조한 그리스보다 혼화안정도 시험의 결과가 상당히 우수한 것으로 나타났다. In addition, in Table 4, the miscibility test, which is a test for checking the mechanical stability and shear force of grease, was conducted by KS M 2137. The results of the miscibility test showed that the grease produced was significantly better.

또한 [표 4]에서 내극압성 시험인 팀켄법을 시행하였고, 그 중에서도 극압첨가제의 종류와 그 투입량에 따른 KS M 2026의 팀켄법에 의해 시험을 하고 그 결과를 아래 [표 5]에 나타내었다. 그리고 첨가제를 혼합해서 사용할 경우의 첨가량에 따른 팀켄시험결과는 [표 6]에 나타내었다.In addition, the Timken method, which is an extreme pressure resistance test, was performed in [Table 4]. Among them, the test was performed by the Timken method of KS M 2026 according to the type and dosage of the extreme pressure additive, and the results are shown in [Table 5] below. In addition, the Timken test results according to the amount of the additive used when mixed with the additives are shown in [Table 6].

Figure 112013023492918-pat00006
Figure 112013023492918-pat00006

Figure 112013023492918-pat00007
Figure 112013023492918-pat00007

상기 [표 5]를 통해 알 수 있듯이, 불소계 극압첨가제의 내극압성에 대한 효과가 가장 크게 나타났으며, 첨가량에 따라 극압성이 증대하는 것을 알 수 있었다. 그리고 [표 6]을 통해 알 수 있듯이, 황 및 안티몬계 극압첨가제와 불소계 극압첨가제를 혼용해서 사용할 경우 단독으로 사용하는 경우보다 그 효과가 향상되는 것을 알 수 있었다. 특히 [표 6]에 의한 결과는 [표 4]의 팀켄식 내하중성능에 그 결과치가 언급되어 있다. As can be seen from the above [Table 5], the effect on the polar pressure resistance of the fluorine-based extreme pressure additive was the greatest, and it was found that the extreme pressure was increased according to the amount added. And as can be seen from Table 6, when used in combination with a sulfur and antimony-based extreme pressure additive and a fluorine-based extreme pressure additive was found that the effect is improved than when used alone. In particular, the results obtained in [Table 6] are mentioned in the Timken load carrying capacity performance of [Table 4].

또한 [표 4]에서 방청성 시험 즉 습윤시험을 KS M 2130에 의해 시행하였으며, 그 결과는 배합-1 및 배합-2의 결과가 타 그리스보다 훨씬 우수함을 알 수 있었다. In addition, in Table 4, the rust resistance test, that is, the wet test, was conducted by KS M 2130, and the results showed that the results of Formulation-1 and Formula-2 were much better than those of other greases.

또한 [표 4]에서 산화안정성 시험을 KS M 2049에 의해 시행하였으며, 그 결과는 배합-1 및 배합-2의 결과가 타 그리스보다 훨씬 우수함을 알 수 있었다. In addition, the oxidative stability test was carried out by KS M 2049 in [Table 4], and the results showed that the results of Formulation-1 and Formula-2 were much better than those of other greases.

따라서 이러한 결과를 토대로 볼 때, 본 발명에 의한 복합알루미늄 그리스는 우수한 전단안정성과 유동성이 좋으며, 고온에서 분해시 잔사를 거의 남기지 않으며, 또한 일반 베어링그리스보다 적점이 높아 비교적 고온에서도 사용이 가능하며 저온에서의 유지성능도 매우 뛰어나 저온과 고온에서 두루 사용할 수 있는 장점이 있다. 따라서 저온에서도 유동성이 양호하여 기타 다른 그리스보다 펌핑성능에 있어서 매우 탁월한 효과를 발휘하므로 주로 집중급유식 장치에 유리하게 사용될 수 있다. Therefore, on the basis of these results, the composite aluminum grease according to the present invention has excellent shear stability and fluidity, hardly leaves residue when decomposed at high temperatures, and has a higher dropping point than general bearing greases, so that it can be used at relatively high temperatures. It also has excellent merit that it can be used at low temperature and high temperature. Therefore, it has good fluidity even at low temperatures, and thus has a very excellent effect on pumping performance than other greases, and thus can be advantageously used in intensive oil supply equipment.

이외에도 내수성이 뛰어나 냉각수 등 수분이 침투할 수 있는 설비에도 사용가능하며 극압성도 뛰어나 충격, 하중과 부하가 많이 걸리는 곳과 진동이 심한 곳에 사용될 수 있다. In addition, it is excellent in water resistance and can be used in equipment that can penetrate moisture such as cooling water. It also has extreme pressure resistance, so it can be used in places where shocks, loads and loads are high and vibrations are severe.

그러므로 본 발명의 제조방법에 의해 제조된 복합알루미늄 그리스는 주로 환경조건이 열악한 제철설비나 시멘트제조설비 외에 일반 산업용으로 사용이 가능한 효과가 있다.Therefore, the composite aluminum grease produced by the manufacturing method of the present invention has an effect that can be used for general industrial purposes in addition to steelmaking facilities or cement manufacturing facilities, which have poor environmental conditions.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Therefore, the embodiments disclosed in the present specification are intended to illustrate rather than limit the present invention, and the scope and spirit of the present invention are not limited by these embodiments. The scope of the present invention should be construed according to the following claims, and all the techniques within the scope of the present invention should be construed as being included in the scope of the present invention.

Claims (5)

윤활기유에 스테아린산(Stearic acid)과 올레인산(Oleic acid)을 가하여 일정온도에서 교반하여 용해시키는 제 1단계;
알콜에 벤조산(Benzoic acid)을 녹여 교반시키고, 상기 교반시킨 알콜 및 벤조산의 혼합물에 알루미늄 이소프로폭시드(Aluminum Isopropoxide)를 투입하여 가열시키는 제 2단계;
상기 제 1단계에서 용해된 혼합물과 상기 제 2단계에서 생성된 혼합물을 서로 혼합하여 가열시키는 제 3단계;
상기 제 3단계에서 생성된 혼합물에 물을 가하여 냉각시키는 제 4단계; 및
상기 제 4단계에서 냉각되어 생성된 혼합물에 윤활기유를 가하여 일정온도로 가열시키는 제 5단계;를 포함하는 고극압 내마모성 복합알루미늄 그리스의 제조방법.
Stearic acid (Stearic acid) and oleic acid (Oleic acid) is added to the lubricating base oil by stirring at a predetermined temperature to dissolve;
A second step of dissolving and stirring benzoic acid in alcohol, and adding aluminum isopropoxide to the mixture of the stirred alcohol and benzoic acid and heating it;
A third step of mixing and heating the mixture dissolved in the first step with the mixture produced in the second step;
A fourth step of cooling by adding water to the mixture produced in the third step; And
And a fifth step of adding the lubricating base oil to the mixture produced by cooling in the fourth step and heating the mixture to a predetermined temperature.
제 1항에 있어서,
상기 제 5단계 이후에 극압첨가제를 포함하는 첨가제를 투입하여 교반시킨 후, 밀처리를 통해 복합알루미늄 그리스를 제조하는 제 6단계;를 더 포함하는 것을 특징으로 하는 고극압 내마모성 복합알루미늄 그리스의 제조방법.
The method of claim 1,
A sixth step of preparing a composite aluminum grease through milling after adding and stirring the additive including the extreme pressure additive after the fifth step; and a method of manufacturing a high extreme pressure wear-resistant composite aluminum grease further comprising .
제 1항 또는 제 2항에 있어서,
상기 제 1단계의 윤활기유는 동점도가 서로 다른 에스테르기유를 혼합한 기유인 것을 특징으로 하는 고극압 내마모성 복합알루미늄 그리스의 제조방법.
3. The method according to claim 1 or 2,
The first step of the lubricating base oil is a method for producing a high extreme pressure wear-resistant composite aluminum grease, characterized in that the base oil is a mixture of ester base oils having different kinematic viscosity.
제 1항에 있어서,
상기 벤조산은 전체 그리스량의 1 ~ 3 중량%, 상기 스테아린산은 전체 그리스량의 3 ~ 5 중량%, 상기 올레인산은 전체 그리스량의 0.1 ~ 0.3 중량%, 상기 알루미늄 이소프로폭시드(Aluminum Isopropoxide)는 전체 그리스량의 2 ~ 4 중량%가 포함되어 있는 것을 특징으로 하는 고극압 내마모성 복합알루미늄 그리스의 제조방법.
The method of claim 1,
The benzoic acid is 1 to 3% by weight of the total amount of grease, the stearic acid is 3 to 5% by weight of the total amount of grease, the oleic acid is 0.1 to 0.3% by weight of the total amount of grease, the aluminum isopropoxide (Aluminum Isopropoxide) is A method for producing a high extreme pressure wear resistant composite aluminum grease, characterized by containing 2 to 4% by weight of the total amount of grease.
제 2항에 있어서,
상기 극압첨가제는 황 및 안티몬계(Antimony dialkyl dithiocarmate) 극압첨가제 또는 불소계(PTFE:Poly tetrafluoroethylene) 극압첨가제인 것을 특징으로 하는 고극압 내마모성 복합알루미늄 그리스의 제조방법.
The method of claim 2,
The extreme pressure additive is a sulfur and antimony-based (antimony dialkyl dithiocarmate) extreme pressure additive or a fluorine-based (PTFE: poly tetrafluoroethylene) extreme pressure additive, characterized in that the manufacturing method of high extreme pressure wear-resistant composite aluminum grease.
KR1020130028972A 2013-03-19 2013-03-19 Manufacture method of complex aluminum grease for highest pressure and wear resistant Active KR101305080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130028972A KR101305080B1 (en) 2013-03-19 2013-03-19 Manufacture method of complex aluminum grease for highest pressure and wear resistant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130028972A KR101305080B1 (en) 2013-03-19 2013-03-19 Manufacture method of complex aluminum grease for highest pressure and wear resistant

Publications (1)

Publication Number Publication Date
KR101305080B1 true KR101305080B1 (en) 2013-09-26

Family

ID=49455319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130028972A Active KR101305080B1 (en) 2013-03-19 2013-03-19 Manufacture method of complex aluminum grease for highest pressure and wear resistant

Country Status (1)

Country Link
KR (1) KR101305080B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116747B1 (en) * 2020-03-30 2020-06-02 (주)씨엔루브 Method for manufacturing baking equipment oven grease
KR102141087B1 (en) * 2020-03-30 2020-08-04 (주)씨엔루브 Method for manufacturing grease for steel mill gear
KR102318223B1 (en) * 2021-07-20 2021-10-26 이현식 Cutting oil manufacturing method for silicon wafer cutting using anti-settling additive
WO2021217908A1 (en) * 2020-04-28 2021-11-04 江南大学 Food-grade lubricating grease and preparation method therefor
KR20230174001A (en) 2022-06-20 2023-12-27 주식회사 루브캠코리아 Manufacturing Method For Eco-friendly Lubricating Grease Using Epoxidized Soybean Oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286950A (en) * 2008-05-30 2009-12-10 Showa Shell Sekiyu Kk Lubricant composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286950A (en) * 2008-05-30 2009-12-10 Showa Shell Sekiyu Kk Lubricant composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116747B1 (en) * 2020-03-30 2020-06-02 (주)씨엔루브 Method for manufacturing baking equipment oven grease
KR102141087B1 (en) * 2020-03-30 2020-08-04 (주)씨엔루브 Method for manufacturing grease for steel mill gear
WO2021217908A1 (en) * 2020-04-28 2021-11-04 江南大学 Food-grade lubricating grease and preparation method therefor
US11965141B2 (en) 2020-04-28 2024-04-23 Jiangnan University Food-grade lubricating grease and method for preparing same
KR102318223B1 (en) * 2021-07-20 2021-10-26 이현식 Cutting oil manufacturing method for silicon wafer cutting using anti-settling additive
KR20230174001A (en) 2022-06-20 2023-12-27 주식회사 루브캠코리아 Manufacturing Method For Eco-friendly Lubricating Grease Using Epoxidized Soybean Oil
KR102734396B1 (en) 2022-06-20 2024-11-26 주식회사 루브캠코리아 Manufacturing Method For Eco-friendly Lubricating Grease Using Epoxidized Soybean Oil

Similar Documents

Publication Publication Date Title
KR101305080B1 (en) Manufacture method of complex aluminum grease for highest pressure and wear resistant
EP2785821B1 (en) Grease composition
CN104870620B (en) Lubricant composition
BR112012019181B1 (en) process to produce lubricating greases, lubricating grease composition, use of a composition.
US10618865B2 (en) Organometallic salt composition, a method for its preparation and a lubricant additive composition
EP3692121B1 (en) Grease composition
Sánchez et al. Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio
WO2016175258A1 (en) Grease, mechanical component, and method for producing grease
CN101429466A (en) Consistent grease for meter, gear and driving screw of airplane
JP5411457B2 (en) Lubricant composition
JP2016121336A (en) Grease composition
JP2018090690A (en) Grease composition
KR102141087B1 (en) Method for manufacturing grease for steel mill gear
KR101090389B1 (en) Method for preparing lithium composite salt grease composition using dialkyl sabacate
JP2007070461A (en) Waterproof grease composition
KR101635313B1 (en) Non-water-soluble cutting oil
JP6101184B2 (en) Grease composition, method for producing the same, and agent for addition to the grease composition
Abdulbari et al. Renewable Resource‐Based Lubricating Greases from Natural and Synthetic Sources: Insights and Future Challenges
JP5765806B2 (en) Grease composition
EP3060635B1 (en) Use of calcium salicylate to improve roll stability in a grease composition
JP5620080B2 (en) Load resistance improver and improvement method of grease composition
CN105814178A (en) Grease composition
JP2018009119A (en) Flame retardant grease composition
CN107254341A (en) A kind of compound potassium base grease and preparation method thereof
JP2023146941A (en) grease composition

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20130319

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20130320

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20130319

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130508

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20130829

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130902

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130902

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160902

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170717

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170717

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190604

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20190604

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20200901

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210701

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20220823

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20230626

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20240829

Start annual number: 12

End annual number: 12