[go: up one dir, main page]

KR101275370B1 - A method for producing diethylene glycol from ethylene oxide with high yield - Google Patents

A method for producing diethylene glycol from ethylene oxide with high yield Download PDF

Info

Publication number
KR101275370B1
KR101275370B1 KR1020110011456A KR20110011456A KR101275370B1 KR 101275370 B1 KR101275370 B1 KR 101275370B1 KR 1020110011456 A KR1020110011456 A KR 1020110011456A KR 20110011456 A KR20110011456 A KR 20110011456A KR 101275370 B1 KR101275370 B1 KR 101275370B1
Authority
KR
South Korea
Prior art keywords
water
ethylene oxide
reaction
meg
diethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020110011456A
Other languages
Korean (ko)
Other versions
KR20120091594A (en
Inventor
조영진
이진석
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020110011456A priority Critical patent/KR101275370B1/en
Publication of KR20120091594A publication Critical patent/KR20120091594A/en
Application granted granted Critical
Publication of KR101275370B1 publication Critical patent/KR101275370B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 에틸렌옥사이드, 물 및 모노에틸렌글리콜로 이루어진 3성분계 혼합용액을 제조하고, 이를 고온 고압에서 수화반응시킴으로써, 디에틸렌글리콜을 높은 수율로 생성시키는 방법에 관한 것이다. 본 발명에 의하면, 에틸렌옥사이드로부터 디에틸렌글리콜로의 전환이 높은 선택도로 이루어져서, 디에틸렌글리콜의 생산성을 크게 향상시킬 수 있다.The present invention relates to a method of producing diethylene glycol in high yield by preparing a three-component mixed solution consisting of ethylene oxide, water, and monoethylene glycol, and hydrating it at a high temperature and high pressure. According to the present invention, the conversion from ethylene oxide to diethylene glycol is made with high selectivity, and the productivity of diethylene glycol can be greatly improved.

Description

에틸렌옥사이드로부터 높은 수율로 디에틸렌글리콜을 생성시키는 방법{A method for producing diethylene glycol from ethylene oxide with high yield}A method for producing diethylene glycol from ethylene oxide with high yield}

본 발명은 에틸렌옥사이드를 물과 에틸렌글리콜로 이루어진 액상에서 수화반응을 시켜 글리콜 혼합 생성물을 얻을 때 디에틸렌글리콜을 높은 수율로 생성시키는 방법에 관한 것이다. The present invention relates to a method of producing diethylene glycol in high yield when ethylene oxide is hydrated in a liquid phase composed of water and ethylene glycol to obtain a glycol mixture product.

디에틸렌글리콜(diethylene glycol, 이하 'DEG'로 칭함)은 2분자의 에틸렌글리콜(ethylene glycol 또는 monoethylene glycol, 이하 'EG' 또는 'MEG'로 칭함)이 에테르형으로 탈수축합된 것이며, 상업적으로는 에틸렌옥사이드(ethylene oxide, 이하 'EO'로 칭함)로부터 에틸렌글리콜을 생성할 때에 부산물로서 함께 생성되며, 점차로 그 용도가 확대되고 있다. DEG는 무색, 무취의 점조성 액체로 흡습성이 있으며,  물, 알코올, 에테르, 아세톤, 에틸렌글리콜과 잘 혼화되고, 물의 빙점을 저하시키는 특성을 갖고 있다. Diethylene glycol (hereinafter referred to as 'DEG') is a dehydrocondensation of two molecules of ethylene glycol (ethylene glycol or monoethylene glycol, hereinafter referred to as 'EG' or 'MEG') in ether form. When ethylene glycol is produced from ethylene oxide (hereinafter referred to as 'EO'), it is formed together as a by-product, and its use is gradually expanding. DEG is a colorless, odorless, viscous liquid, hygroscopic, blends well with saline, alcohol, ether, acetone, and ethylene glycol, and has the property of lowering the freezing point of water.

DEG는 주로 플라스틱용(알키드, 폴리에스테르, 폴리우레탄 등), 인쇄잉크, 섬유용 접착제, 브레이크액, 가소제, 가스탈수제, 셀로판의 유연제 등으로 사용되며,  태양광 기술의 발전에 따라 수요가 급증하는 태양전지용 잉곳의  절단에 사용되는 수용성 절삭유나 태양광 웨이퍼 세정제의 주성분으로 활용되기 시작하는 등 그 수요가  꾸준히 증가하고 있다.DEG is mainly used for plastics (alkyds, polyesters, polyurethanes, etc.), printing inks, adhesives for textiles, brake fluids, plasticizers, gas dehydrating agents, and cellophane softeners. The demand is steadily increasing, such as the use of water-soluble cutting oils used in the cutting of solar cell ingots and solar wafer cleaners as main components.

이러한 DEG는 상업적으로는 별도의 제조 공법이 없어, 주로 에틸렌옥사이드로부터 에틸렌글리콜(EG 또는 MEG)을 제조할 때 부생된다.Such DEG commercially has no separate manufacturing method, and is mainly a by-product when preparing ethylene glycol (EG or MEG) from ethylene oxide.

여기서 에틸렌글리콜은 상업적으로 제조될 시에, 전형적으로 큰 몰 과량의 물의 존재하에서 상응하는 에틸렌옥사이드의 액상 수화 공정에 의해 제조된다[Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 11, Third Edition, page 929(1980) 참조].Here ethylene glycol is commercially prepared, typically by the liquid phase hydration process of the corresponding ethylene oxide in the presence of a large molar excess of water [Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 11, Third Edition, page 929 (1980).

에틸렌글리콜은 통상 에틸렌옥사이드와 물의 비촉매성 반응에 의해 제조되는데, 이 반응은 발열반응으로 1몰의 EO가 1몰의 물과 반응하여 1몰의 MEG가 생성될 때 21.8kcal의 열이 발생한다. 따라서 당해 반응이 단열 반응으로 수행될 때, 반응 열은 온도 증가에 응답하는 반응 유체에 의해 흡수된다. 반응 온도는 반응기의 유입구에서는 통상 120℃ 이상이고, 배출구에서는 180℃를 초과한다.Ethylene glycol is usually produced by a non-catalytic reaction between ethylene oxide and water, which generates 21.8 kcal of heat when 1 mole of EO reacts with 1 mole of water to produce 1 mole of MEG. . Thus, when the reaction is carried out as adiabatic reaction, the heat of reaction is absorbed by the reaction fluid in response to the temperature increase. The reaction temperature is usually at least 120 ° C. at the inlet of the reactor and exceeds 180 ° C. at the outlet.

상업 공정에서는 EO로부터 MEG로의 전환율을 최대로 하는데 초점을 맞추고 있다. 이를 위해 부반응을 억제할 목적으로 EO에 대해 물을 과량으로 공급하게 되는데, 통상적으로 EO 1몰에 대해 20몰 이상의 물을 공급한다. 물 양이 증가할수록 부반응은 억제되며, MEG 선택성이 높아진다.Commercial processes focus on maximizing the conversion rate from EO to MEG. To this end, an excessive amount of water is supplied to EO for the purpose of suppressing side reactions. Typically, 20 mol or more of water is supplied to 1 mol of EO. As the amount of water increases, side reactions are suppressed and the MEG selectivity is increased.

가장 일반적인 공정조건인 EO:물의 공급비율이 몰비로 1:22, 즉 중량비로 1:9일 경우, EO의 반응에 의한 선택도는 MEG:DEG:TEG에 대해 88.5:10.5:0.5 정도로 알려져 있으며, 생성물 중의 MEG:DEG:TEG의 분포는 중량비로 90중량%, 9.5중량%, 0.5중량% 정도이다. 이러한 여건에서 DEG의 공급은 DEG 시장수요에 맞춰 이뤄지기보다는 MEG 수요 및 가동률에 의해 좌우되고 있는 실정이다. 이에 따라 DEG 수요 증가에 비해  공급이 이에 맞춰 따라가지 못하고 있는 상황이며, DEG 증산을 위해서는 MEG의 생산량을 증대시켜야 하는 문제가 발생한다.When the feed ratio of EO: water, which is the most common process condition, is 1:22 in molar ratio, that is, 1: 9 in weight ratio, the selectivity by EO reaction is known as 88.5: 10.5: 0.5 for MEG: DEG: TEG. The distribution of MEG: DEG: TEG in the product is about 90% by weight, 9.5% by weight, and 0.5% by weight. In this situation, the supply of DEG depends on the demand and utilization rate of MEG, rather than the demand of DEG. As a result, supply is not keeping up with DEG demand, and MEG production needs to be increased to increase DEG production.

이와 같이, DEG의 원료물질인 EO로부터 MEG의 생산량과 연동되어 DEG의 생성량이 결정되는 게 아닌, EO로부터 DEG로 전환되는 비율, 즉 DEG 생성 선택도를 높여서, 높은 수율로 DEG를 생성시키는 방법은 이제까지 별다르게 알려진 방법이 없었다. 특히, 무촉매 반응조건에서 EO에 대해 과량의 물이 사용되는 조건에서도 DEG를 높은 수율로 얻는 방법은 기존에는 알려지지 않았다.As described above, a method of generating DEG with high yield by increasing the rate of conversion from EO to DEG, that is, DEG generation selectivity, is not determined in conjunction with the production amount of DEG from EO, which is a raw material of DEG, and is determined. There is no known way so far. In particular, there is no known method for obtaining DEG in a high yield even when an excessive amount of water is used for EO under a catalyst-free reaction condition.

본 발명의 목적은 에틸렌옥사이드를 액상에서 무촉매 반응시켜 글리콜  혼합물을 생성시킬 때, DEG 생성에 대한 선택도를 높여 DEG를 높은 수율로 생성시킴으로써, DEG 생산성을 증대시키는 방법을 제공하는 것이다. It is an object of the present invention to provide a method for increasing DEG productivity by producing DEG in high yield by increasing the selectivity for DEG production when the glycolene mixture is produced by non-catalyzed reaction of ethylene oxide in a liquid phase.

본 발명자는 통상적인 에틸렌글리콜 생산 공정에서 반응기구와 에틸렌옥사이드의 반응속도론적 고찰 및 반응 조건에 따른 반응 특성 등을 면밀하게 검토 연구한 결과, 놀랍게도 과량의 물에 추가적으로 상당량의 MEG를 공용매 및 공반응물로 첨가하여 실질적으로 EO, 물 및 MEG로 구성되는 3성분계 용액을 제조하고, 이를 촉매 없이 고온 고압에서 반응시킴으로써, 이제까지는 알려져 있지 않았던 높은 수준으로 EO의 DEG로의 선택적 전환이 이루어진다는 사실을 발견하고, 본 발명을 완성하였다.The present inventors have carefully studied the reaction kinetics of the reactor and the ethylene oxide in the conventional ethylene glycol production process and the reaction characteristics according to the reaction conditions, and surprisingly, in addition to the excess water, a considerable amount of co-solvent and co-solvents are added. By adding as a reactant to prepare a three-component solution consisting essentially of EO, water and MEG, and reacting it at high temperature and high pressure without a catalyst, it was found that selective conversion of EO to DEG was achieved at a high level not previously known. The present invention was completed.

따라서 본 발명은, EO, 물 및 MEG의 3성분계 혼합용액을 고온 고압에서 실질적으로 촉매가 없는 무촉매 반응 하에 반응을 진행시켜, 에틸렌옥사이드(EO)의 디에틸렌글리콜(DEG)로의 높은 전환선택성을 갖는 제조 방법을 제공하며, 본 발명의 방법에 의해 EO로부터 높은 수율로 DEG가 생성된다.Therefore, the present invention is to proceed the reaction of the three-component mixed solution of EO, water and MEG under a catalyst-free reaction substantially at high temperature and high pressure, so that high conversion selectivity of ethylene oxide (EO) to diethylene glycol (DEG) And a process for producing DEG from the EO in high yield.

본 발명에 있어서, 상기 3성분계 혼합용액은, EO가 과량의 물에 녹아 있는 희박 EO 수용액에 MEG 를 첨가하여 제조하거나, 또는 과량의 물에 MEG가 혼합되어 있는 용액에 EO를 용해시켜 제조할 수 있으며, 또는 물, EO 및 MEG를 각각 개별적으로 반응에 도입할 수도 있다. 반응 공급물인 상기 각 성분의 상(phase)에 관해서는, EO, 물 및 MEG 각각이 기체로서, 액체로서, 또는 이의 배합물로서 공급될 수 있다.In the present invention, the three-component mixed solution may be prepared by adding MEG to an aqueous solution of lean EO in which EO is dissolved in excess water, or by dissolving EO in a solution in which MEG is mixed with excess water. Alternatively, water, EO and MEG may each be introduced into the reaction separately. Regarding the phase of each of the above components as the reaction feed, each of EO, water and MEG can be supplied as a gas, as a liquid, or as a combination thereof.

상기한 방법으로 얻어지는 EO, 물 및 MEG로 구성되는 3성분계 혼합용액을 고온 고압의 반응조건에서 실질적으로 촉매 없이 반응을 진행시켜 EO의 수화반응을 진행시킨다.The three-component mixed solution composed of EO, water, and MEG obtained by the above method is subjected to the reaction without substantially a catalyst under the reaction conditions of high temperature and high pressure to proceed with the hydration reaction of EO.

본 발명에 사용되는 EO는 순수한 EO이거나, 소량의 불순물, 예를 들면, 알데히드를 함유하는 비처리 EO일 수 있다. The EO used in the present invention may be pure EO or untreated EO containing a small amount of impurities, for example aldehydes.

본 발명에서 상기 3성분계 혼합용액의 제조에 사용되는 물은 광범위하게 다양한 공급원으로부터 유래할 수 있으며, 순도에 관해서는 특수한 조건을 충족시킬 필요가 없다. 예를 들어, 공정상 수처리 플랜트로부터, 또는 예를 들어 상수도로부터 일반적으로 얻을 수 있는 신선한 물, 또는 이온 교환 공정으로 처리한 물, 증기 응축물 및 물 제거 반응을 수반하는 화학 반응의 과정에서 전형적으로 이용 가능한 반응수 등을 제한없이 사용할 수 있다.In the present invention, the water used in the preparation of the three-component mixed solution may be derived from a wide variety of sources, and there is no need to satisfy special conditions with regard to purity. For example, in the process of chemical reactions involving fresh water, usually obtained from, for example, tap water, for example from tap water, or water treated by ion exchange processes, steam condensate and water removal reactions, in-process. The reaction water available can be used without limitation.

본 발명에 있어서, 사용되는 물은 EO에 비해 과량인 양으로 제공되는 것이 바람직하고, 과량으로 제공되는 한 그 사용비율에는 특별히 제한이 없으나, 바람직하게는, EO:물의 몰 비는 1:15 이상, 더욱 바람직하게는 1:20 이상이다. 바람직하게는, 상기 몰비는 1:40 이하, 더욱 바람직하게는 1:35 이하, 보다 더 바람직하게 1:30 이하이다. EO에 대한 물의 몰 비가 15 미만이면 EO의 완벽한 흡수나 안정적인 액상 운전에 지장을 초래할 수 있다. EO에 대한 물의 몰 비의 상한은 특별히 제한이 없으나, 물의 양이 지나치게 과량이면 물제거를 위한 증발 및 증류 과정에서 과도한 에너지 비용이 발생하게 되므로 경제적인 측면에서 40 이하인 것이 바람직하지 않다.In the present invention, the water to be used is preferably provided in an excess amount compared to EO, and as long as it is provided in excess, the use ratio is not particularly limited. Preferably, the molar ratio of EO: water is 1:15 or more. More preferably, it is 1:20 or more. Preferably, the molar ratio is 1:40 or less, more preferably 1:35 or less, even more preferably 1:30 or less. If the molar ratio of water to EO is less than 15, it may interfere with the complete absorption of EO or stable liquid phase operation. The upper limit of the molar ratio of water to EO is not particularly limited, but if the amount of water is excessively excessive, excessive energy costs are generated during evaporation and distillation for water removal.

본 발명에서 사용되는 MEG는 순수 MEG이거나 물과 혼합되어 혼합용액 상태로 존재하는 것도 사용가능한데, 물과 혼합된 용액 상태의 경우, MEG농도 90중량% 이상의 용액을 사용하는 것이 바람직하다. 반응 공정에서 증류후 응축되어 회수된 약간의 불순물을 함유하는 것도 사용될 수 있다. The MEG used in the present invention may be pure MEG or mixed with water and present in a mixed solution. In the case of a mixed solution with water, it is preferable to use a solution having a MEG concentration of 90% by weight or more. It may also be used to contain some impurities recovered by condensation after distillation in the reaction process.

본 발명에서 사용되는 EO:MEG의 중량비는 바람직하게는 1:0.03 내지 1:10의 범위, 특히 바람직하게는 1:0.05 내지 1:5의 범위이다. EO:MEG의 중량비가 상기 범위 미만이면 DEG 선택도 향상효과가 미흡하고, 상기 범위를 초과하면 반응기 부하가 증대되고, 반응후 분리 정제과정의 에너지 비용이 필요 이상으로 증가하여 바람직하지 않다.The weight ratio of EO: MEG used in the present invention is preferably in the range of 1: 0.03 to 1:10, particularly preferably in the range of 1: 0.05 to 1: 5. If the weight ratio of EO: MEG is less than the above range, the effect of improving DEG selectivity is insufficient, and if it exceeds the above range, the reactor load is increased, and the energy cost of the separation and purification process after the reaction increases more than necessary, which is not preferable.

본 발명에 있어서, 실질적으로 EO, 물 및 MEG로 구성되는 3성분계 용액을 촉매 없이 고온 고압에서 반응시킴에 있어서, 상기 반응은 전형적으로 단열 반응기와 비단열 반응기의 상이한 두 가지 유형의 상업적 반응기에서 수행될 수 있다. In the present invention, in the reaction of a three-component solution consisting substantially of EO, water and MEG at high temperature and high pressure without a catalyst, the reaction is typically carried out in two different types of commercial reactors, adiabatic and non-insulated reactors. Can be.

단열 반응기에서 반응을 수행하는 경우, 어떠한 열도 반응기로부터 제거되지 않는다. 이 경우, 반응에 따른 온도 상승은 과량의 물을 공급하여 열이 수분 공급에 의하여 흡수되도록 함으로써 조절한다. 단열 반응기는 통상적으로 하나의 원통형 용기이거나 용기 사이에 아무런 열 이동도 없는 직렬 용기로, 플러그 유동 방식(plug flow manner)으로 작동한다.  When the reaction is carried out in an adiabatic reactor, no heat is removed from the reactor. In this case, the temperature rise according to the reaction is controlled by supplying excess water so that heat is absorbed by the water supply. The adiabatic reactor is typically a cylindrical vessel or a tandem vessel with no heat transfer between the vessels and operates in a plug flow manner.

비단열 반응기에서 반응을 수행하는 경우, 반응이 진행됨에 따라 열을 냉각제로 이동시킴으로써 반응기로부터 제거한다. 이때 물과 EO를 합한 공급물을 열 교환 반응기로 공급하고, 열이 형성되면 이를 열 교환기로 즉시 제거한다. 적합한 제어 및 반응기 설계를 사용하여, 거의 등온적 조건이 유지될 수 있고, 반응열이 냉각제에 의해 제거되기 때문에 반응 생성물은 공급물과 거의 동일한 온도에 방치된다. 이러한 비단열 유형의 반응기로서 가장 빈번하게 사용되는 반응기로는, 쉘-앤드-튜브(shell-and-tube) 열 교환기(튜브형 또는 다중튜브형 등온 반응기 또는 열교환 반응기라고도 함)를 들 수 있으며, 여기서 반응 혼합물은 수개의 길고 좁은 튜브를 통과하고, 냉각제는 튜브의 외부를 통과한다. When the reaction is carried out in a non-insulated reactor, as the reaction proceeds, heat is removed from the reactor by transferring heat to the coolant. The feed of water and EO combined is then fed to a heat exchange reactor and once heat is formed it is immediately removed by a heat exchanger. Using suitable control and reactor designs, nearly isothermal conditions can be maintained and the reaction product is left at about the same temperature as the feed because the heat of reaction is removed by the coolant. Reactors most frequently used as such non-insulated type reactors include shell-and-tube heat exchangers (also called tubular or multitube type isothermal reactors or heat exchange reactors), where the reactions The mixture passes through several long narrow tubes and the coolant passes outside of the tubes.

바람직하게는, 본 발명의 반응은 단열 반응으로 수행되는 것이 바람직하며, 본 발명의 반응에 의해 발생하는 반응 열은 온도 증가에 응답하는 반응 유체에 의해 흡수된다. Preferably, the reaction of the present invention is preferably carried out in adiabatic reaction, and the reaction heat generated by the reaction of the present invention is absorbed by the reaction fluid in response to the temperature increase.

"단열"이란, 열의 실질적 이동이 반응기 시스템내로 또는 반응기 시스템으로부터 전혀 발생하지 않음을 의미한다. 따라서, 반응기 시스템은, 열 교환기가 반응기 공급물과 생성물 스트림에서 열을 상호 교환하는 데 사용되는 경우 이를 포함할 수 있고, 이로써 주위로의 열의 이동이나, 외부 공정 스트림 또는 외부 장치로의 열의 이동, 또는 이들로부터의 어떠한 열의 이동이 일어나지 않고, 반응 혼합물 중의 열을 모두 보존한다."Insulation" means that no substantial transfer of heat occurs into or out of the reactor system. Thus, the reactor system may comprise a heat exchanger where it is used to exchange heat in the reactor feed and product stream, thereby transferring heat to the surroundings, or transferring heat to an external process stream or external device, Or no heat transfer from them occurs and all of the heat in the reaction mixture is preserved.

본 발명에서의 상기 반응은 고온에서 이루어지는 것이 바람직한데, 그 이유는 반응 속도가 극대화되고, 선택률이 고온에 의해 영향을 받지 않기 때문이다. 고온 작업의 추가의 장점은 반응 생성물로부터 미반응수를 분리 및 회수하기 위해 다운스트림(downstream) 정제 장치로 열의 외부 공급원을 제공할 필요가 감소한다는 것이다.The reaction in the present invention is preferably performed at a high temperature because the reaction rate is maximized and the selectivity is not affected by the high temperature. A further advantage of the high temperature operation is that there is a reduction in the need to provide an external source of heat to the downstream purification apparatus to separate and recover the unreacted water from the reaction product.

구체적으로 바람직한 반응 온도는, 단열반응기를 사용하는 경우, 바람직하게는 유입구에서는 80℃ 이상, 더욱 바람직하게는 100℃ 이상,  더더욱 바람직하게는 120 ℃  이상이다. 배출구 온도는 바람직하게는 250 ℃ 이하, 더욱 바람직하게는 230 ℃ 이하, 더더욱 바람직하게는 210 ℃ 이하로 조절하여 관리한다.Specifically, the reaction temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, even more preferably 120 ° C. or higher at the inlet when using an adiabatic reactor. The outlet temperature is preferably controlled by controlling the temperature to 250 ° C or lower, more preferably 230 ° C or lower, even more preferably 210 ° C or lower.

본 발명에 있어서, 상기 반응의 압력 범위는 증기 형성을 피하려는 의도에서, 일반적으로 100 내지 10000kPa, 바람직하게는 500 내지 약 5000kPa이다.In the present invention, the pressure range of the reaction is generally from 100 to 10000 kPa, preferably from 500 to about 5000 kPa, with the intention of avoiding vapor formation.

본 발명에 의하면, EO, 물 및 MEG로 이루어진 3성분계 혼합용액을 제조하여 EO를 수화반응(또는 가수분해 반응) 시킴으로써, EO로부터 DEG로 전환되는 비율(전환 선택도)을 증대시켜 반응 선택성을 향상시킬 수 있고, 따라서 높은 수율로 DEG를 생산할 수 있다. 이렇게 함으로써 DEG 생산을 늘리기 위하여 MEG 생산까지 연동하여 늘리지 않고도 DEG 생산성을 크게 높일 수 있다.According to the present invention, a three-component mixed solution composed of EO, water, and MEG is prepared, and EO is hydrated (or hydrolyzed) to increase the ratio (conversion selectivity) converted from EO to DEG to improve reaction selectivity. So that DEG can be produced in high yield. In this way, DEG productivity can be greatly increased without increasing the MEG production to increase DEG production.

이하, 본 발명을 예시적으로 설명하고, 본 발명을 사용할 경우에 달성될 수 있는 몇 가지 이점을 나타내기 위한 실시예들을 통하여 본 발명을 상세히 설명한다. 그러나, 하기의 실시예들은 예시적인 목적으로 제시되며, 본 발명이 이들 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in detail, and the present invention will be described in detail through examples for showing some advantages that can be achieved when using the present invention. However, the following examples are presented for illustrative purposes, and the present invention is not limited by these examples.

실시예Example

하기 실시예들에서, 'EO 전환율', 'DEG 선택도', 'MEG 선택도' 및 'DEG 수율' 은 다음과 같이 정의된다.In the following examples, 'EO conversion rate', 'DEG selectivity', 'MEG selectivity' and 'DEG yield' are defined as follows.

EO 전환율 : (반응하여 소모된 EO몰수)/(반응에 투입된 EO몰수) x 100EO conversion rate: (moles of EO consumed by the reaction) / (moles of EO introduced into the reaction) x 100

DEG 선택도 : (DEG생성에 소모된 EO몰수)/(반응에 투입된 EO몰수) x 100 = (생성된 DEG몰수) x 2 / (반응에 투입된 EO몰수) x 100DEG selectivity: (number of moles of EO consumed in the generation of DNA) / (number of moles of EO added to the reaction) x 100 = (number of moles of DEG generated) x 2 / (number of moles of EO added to the reaction) x 100

MEG 선택도 : (MEG생성에 소모된 EO몰수) / (반응에 투입된 EO몰수) x 100 = (생성된 MEG 몰수) / (반응에 투입된 EO 몰수) x 100MEG selectivity: (moles of EO consumed to generate MEG) / (moles of EO introduced into the reaction) x 100 = (moles of generated MEG) / (moles of EO introduced into the reaction) x 100

DEG 수율 : EO 전환율 x DEG 선택도
DEG yield: EO conversion rate x DEG selectivity

실시예Example 1 One

반응기는 높이 1M, 내경 3/8인치에 재킷을 씌운 스테인레스강 이중자켓 튜브 반응기(tube reactor)를 사용하였다.  열 전달 유체는 재킷을 통하여 순환하면서 반응온도를 일정하게 유지시키도록 항온조와 연결되었다.  반응기 배출구 측에  열전쌍 온도계와 압력계를 설치하여 반응 생성물의 온도와 반응 압력을 측정하였다.The reactor used a stainless steel double jacketed tube reactor 1 M high and 3/8 inch inside diameter jacketed. The heat transfer fluid was connected to a thermostat to keep the reaction temperature constant while circulating through the jacket. A thermocouple thermometer and a pressure gauge were installed on the reactor outlet side to measure the temperature and the reaction pressure of the reaction product.

에틸렌옥사이드 수용액에 순수 모노에틸렌글리콜을 첨가하여 교반하면서 균일한 3성분계 혼합용액을 제조하고,  정량펌프를 사용하여 반응 공급물 스트림을 일정한 유량으로 반응기 입구측으로 공급하였다.  반응기는 증기 형성을 방지하기 위하여 17.4bar에서 작동시켰다. 반응기 온도는 150℃ 로 유지하였다.Pure monoethylene glycol was added to the aqueous ethylene oxide solution to prepare a homogeneous three-component mixed solution while stirring, and the reaction feed stream was fed to the reactor inlet side at a constant flow rate using a quantitative pump. The reactor was operated at 17.4 bar to prevent steam formation. The reactor temperature was maintained at 150 ° C.

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 각 성분 조성은 EO:물:MEG의 중량비로 각각 9.68%:87.15%:3.17%(1:9:0.327)였다. 반응물의 반응기로의 공급 속도는 4ml/min이었다. The composition of each component in the three-component mixed solution (reaction feed) of EO, water, and MEG was 9.68%: 87.15%: 3.17% (1: 9: 0.327) by weight ratio of EO: water: MEG, respectively. The feed rate of the reactants to the reactor was 4 ml / min.

생성물을 에틸렌 옥사이드(EO), 모노에틸렌 글리콜(MEG), 디에틸렌 글리콜(DEG) 및 트리에틸렌 글리콜(TEG)에 대한 기체 크로마토그래프로 분석하였다. 몰 선택도는 주어진 생성물을 형성하는 데 소비된 EO의 몰수를 모든 생성물로 전환된 EO의 총 몰 수로 나눔으로써 계산하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 85.0몰%, 14.0몰% 및 1.0몰% 미만이었다.The product was analyzed by gas chromatograph for ethylene oxide (EO), monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). Molar selectivity was calculated by dividing the number of moles of EO consumed to form a given product by the total number of moles of EO converted to all products. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was less than 85.0 mol%, 14.0 mol% and 1.0 mol%, respectively.

실시예Example 2 2

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:9:0.827인 것을 제외하고는 실시예 1과 동일하게 실시하였다.  EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 82.2몰%, 16.8몰% 및 1.0몰% 미만이었다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 9: 0.827. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was less than 82.2 mol%, 16.8 mol% and 1.0 mol%, respectively.

 실시예 3 Example 3

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:9:1.327인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 79.6몰%, 19.3몰% 및 1.0몰% 미만이었다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 9: 1.327. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was less than 79.6 mol%, 19.3 mol% and 1.0 mol%, respectively.

 실시예 4 Example 4

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:9:1.907인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 76.6몰%, 22.3몰% 및 1.107몰% 미만이었다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 9: 1.907. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was less than 76.6 mol%, 22.3 mol% and 1.107 mol%, respectively.

 이상의 실시예 1~4의 결과를 하기 표 1에 정리하였다. The results of the above Examples 1 to 4 are summarized in Table 1 below.

Figure 112011009246614-pat00001
Figure 112011009246614-pat00001

 실시예 5 Example 5

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:10.23:0.3298인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 85.3몰%, 13.7몰% 및 1.05몰% 미만이었다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 10.23: 0.3298. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was less than 85.3 mol%, 13.7 mol% and 1.05 mol%, respectively.

 실시예 6 Example 6

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:10.23:1.3298인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 78.8몰%, 20.0몰% 및 1.23몰%였다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 10.23: 1.3298. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was 78.8 mol%, 20.0 mol% and 1.23 mol%, respectively.

 실시예 7 Example 7

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:10.23:3.3298인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 67.4몰%, 31.1몰% 및 1.61몰%였다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 10.23: 3.3298. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was 67.4 mol%, 31.1 mol% and 1.61 mol%, respectively.

 실시예 8 Example 8

EO, 물 및 MEG의 3성분계 혼합용액(반응 공급물) 중의 EO:물:MEG의 중량비가 1:10.23:4.3298인 것을 제외하고는 실시예 1과 동일하게 실시하였다. EO 전환율은 100몰%, MEG, DEG 및 TEG로의 선택도는 각각 각각 63.3몰%, 35.1몰% 및 1.64몰%였다.The same procedure as in Example 1 was conducted except that the weight ratio of EO: water: MEG in the three-component mixed solution of EO, water, and MEG was 1: 10.23: 4.3298. EO conversion was 100 mol%, selectivity to MEG, DEG and TEG was 63.3 mol%, 35.1 mol% and 1.64 mol%, respectively.

 이상의 실시예 5~8의 결과를 하기 표 2에 정리하였다. 
The results of the above Examples 5 to 8 are summarized in Table 2 below.

Figure 112011009246614-pat00002
Figure 112011009246614-pat00002

상기 표 1 및 표 2로부터 알 수 있는 바와 같이, 본 발명의 방법에 의하면, 에틸렌옥사이드로부터 디에틸렌글리콜로의 전환 선택도를 10% 이상으로 현저히 높일 수 있고, 이에 따라 디에틸렌글리콜의 생산성을 현저히 향상시킬 수 있다.As can be seen from Table 1 and Table 2, according to the method of the present invention, the selectivity of conversion from ethylene oxide to diethylene glycol can be remarkably increased to 10% or more, thereby significantly increasing the productivity of diethylene glycol. Can be improved.

Claims (8)

에틸렌옥사이드의 수화반응에 의해 에틸렌글리콜 혼합물을 제조함에 있어서, 에틸렌 옥사이드, 물 및 모노에틸렌글리콜로 구성된 3성분계 혼합용액을 수화반응시키는 것을 포함하고, 상기 에틸렌옥사이드:물의 몰비를 1:15~1:40로 하고, 에틸렌옥사이드:모노에틸렌글리콜의 중량비를 1:0.03~1:10으로 하여 수화반응시킴으로써 에틸렌글리콜 혼합물 중의 디에틸렌글리콜의 수율을 향상시키는 방법.In preparing an ethylene glycol mixture by hydration of ethylene oxide, the method comprises hydrating a three-component mixed solution composed of ethylene oxide, water, and monoethylene glycol, wherein the molar ratio of ethylene oxide: water is 1:15 to 1 :: A method of improving the yield of diethylene glycol in the ethylene glycol mixture by setting the amount to 40 and hydrating the weight ratio of ethylene oxide: monoethylene glycol to 1: 0.03 to 1:10. 제 1항에 있어서, 상기 3성분계 혼합용액은, 에틸렌옥사이드가 물에 용해된 에틸렌옥사이드 수용액에 모노에틸렌글리콜을 첨가하거나, 또는 물에 모노에틸렌글리콜이 혼합되어 있는 용액에 에틸렌옥사이드를 용해시켜 제조된 것임을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.The method of claim 1, wherein the three-component mixed solution is prepared by adding monoethylene glycol to an aqueous solution of ethylene oxide in which ethylene oxide is dissolved in water, or dissolving ethylene oxide in a solution in which monoethylene glycol is mixed in water. Method for improving the yield of diethylene glycol, characterized in that. 제 1항 또는 제2항에 있어서, 상기 수화반응이 단열반응기에서 수행되는 것을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.The method for improving the yield of diethylene glycol according to claim 1 or 2, wherein the hydration reaction is carried out in an adiabatic reactor. 제3항에 있어서, 상기 수화반응이 무촉매반응으로 수행되는 것을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.The method of claim 3, wherein the hydration reaction is carried out in a non-catalytic reaction. 삭제delete 제1항에 있어서, 상기 수화반응 온도가 80~250℃이고, 반응압력이 100~10000kPa인 것을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.The method for improving the yield of diethylene glycol according to claim 1, wherein the hydration reaction temperature is 80 to 250 ° C and the reaction pressure is 100 to 10000 kPa. 제6항에 있어서, 에틸렌옥사이드:물의 몰비가 1:20~1:30이고, 상기 수화반응 온도가 100~250℃, 반응압력이 500~5000kPa인 것을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.The method of claim 6, wherein the molar ratio of ethylene oxide: water is 1:20 to 1:30, the hydration reaction temperature is 100 to 250 ° C, and the reaction pressure is 500 to 5000 kPa. Way. 제7항에 있어서, 상기 에틸렌옥사이드:모노에틸렌글리콜의 중량비가 1:0.05~1:5인 것을 특징으로 하는 디에틸렌글리콜의 수율을 향상시키는 방법.8. The method according to claim 7, wherein the weight ratio of ethylene oxide: monoethylene glycol is 1: 0.05 to 1: 5.
KR1020110011456A 2011-02-09 2011-02-09 A method for producing diethylene glycol from ethylene oxide with high yield Active KR101275370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110011456A KR101275370B1 (en) 2011-02-09 2011-02-09 A method for producing diethylene glycol from ethylene oxide with high yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110011456A KR101275370B1 (en) 2011-02-09 2011-02-09 A method for producing diethylene glycol from ethylene oxide with high yield

Publications (2)

Publication Number Publication Date
KR20120091594A KR20120091594A (en) 2012-08-20
KR101275370B1 true KR101275370B1 (en) 2013-06-17

Family

ID=46883931

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110011456A Active KR101275370B1 (en) 2011-02-09 2011-02-09 A method for producing diethylene glycol from ethylene oxide with high yield

Country Status (1)

Country Link
KR (1) KR101275370B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321397A (en) * 2020-10-19 2021-02-05 中国石油化工股份有限公司 Novel method for increasing yield of triethylene glycol by EOEG device
CN112358382A (en) * 2020-10-19 2021-02-12 中国石油化工股份有限公司 Novel method for continuously increasing yield of triethylene glycol
CN119097938A (en) * 2024-09-03 2024-12-10 盛虹炼化(连云港)有限公司 An ethylene glycol production system for increasing the production of diethylene glycol and triethylene glycol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040092B1 (en) * 1997-12-18 2003-07-23 Dow Global Technologies Inc. A method for making glycol in an adiabatic reactor system
US20100036176A1 (en) 2008-08-05 2010-02-11 Noronha Joseph C Two-Stage, Gas Phase Process for the Manufacture of Alkylene Glycol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040092B1 (en) * 1997-12-18 2003-07-23 Dow Global Technologies Inc. A method for making glycol in an adiabatic reactor system
KR100624998B1 (en) 1997-12-18 2006-09-20 다우 글로벌 테크놀로지스 인크. Method for preparing glycol in adiabatic reactor system
US20100036176A1 (en) 2008-08-05 2010-02-11 Noronha Joseph C Two-Stage, Gas Phase Process for the Manufacture of Alkylene Glycol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Robert Fulton Dye. Ethylene glycols technology. Korean J.Chem.Eng, 2001, vol.18, no.5, pp.571-579. *
Robert Fulton Dye. Ethylene glycols technology. Korean J.Chem.Eng, 2001, vol.18, no.5, pp.571-579.*

Also Published As

Publication number Publication date
KR20120091594A (en) 2012-08-20

Similar Documents

Publication Publication Date Title
JP6935399B2 (en) Method for producing isopropyl alcohol
US9242919B2 (en) Process to prepare olefins from aliphatic alcohols
FI82679C (en) FOERFARANDE FOER KONTINUERLIG FRAMSTAELLNING AV ALKOHOL.
CN106414385B (en) The production method of γ, δ-unsaturated alcohol
EP2219779A1 (en) Conversion of glycerine to dichlorohydrins and epichlorohydrin
JP4713642B2 (en) Decomposition of cumene hydroperoxide
KR101275370B1 (en) A method for producing diethylene glycol from ethylene oxide with high yield
KR101499846B1 (en) Process and apparatus for coupling separation and purification of ethyl tert-butyl ether
WO2016194983A1 (en) Method for producing conjugated diene
TWI246999B (en) Catalytic process for producing an alkylene glycol with reactor-output recycle
US6211419B1 (en) Process for the preparation of alkylene glycols
NO154834B (en) PROCEDURE FOR THE PREPARATION OF LOWER ALCOHOLS.
CN107935888A (en) A kind of method for preparing 3 aminopropionitriles at supercritical conditions
AU2001243703A1 (en) Improved process for the preparation of alkylene glycols
CN101357880A (en) A process and system for preparing dichloropropanol by self-catalyzed reaction of glycerin and hydrogen chloride
JPS60149535A (en) Alcohol continuous manufacture
CN109134212A (en) The method that continuous reaction prepares dipropylene glycol methyl ether
KR101307060B1 (en) Preparation method for diethyleneglycol by using multiple feeding of raw materials
JP2004528390A (en) Method for producing alkylene glycol
JP2015504090A (en) Method for producing choline hydroxide from trimethylamine and ethylene oxide
CN106146265A (en) A kind of 2, the synthetic method of 2-dialkoxy propane
JP6521372B2 (en) Process for producing 1,2-disubstituted imidazole
CN115974657B (en) Process and system for preparing vinyl ether by reacting high boiling point monohydric alcohol with acetylene
CN114920621B (en) Preparation method of high-selectivity 3-chloro-2-chloromethyl propylene
JP5290937B2 (en) Method for producing alcohol

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110209

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120910

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20130321

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20120910

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20130321

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20121112

Comment text: Amendment to Specification, etc.

PX0701 Decision of registration after re-examination

Patent event date: 20130603

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

Patent event date: 20130422

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20130321

Comment text: Decision to Refuse Application

Patent event code: PX07011S01I

Patent event date: 20121112

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130610

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130610

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160329

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170329

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20190325

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20210322

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20220322

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20240327

Start annual number: 12

End annual number: 12