[go: up one dir, main page]

KR101274816B1 - Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same - Google Patents

Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same Download PDF

Info

Publication number
KR101274816B1
KR101274816B1 KR1020080013503A KR20080013503A KR101274816B1 KR 101274816 B1 KR101274816 B1 KR 101274816B1 KR 1020080013503 A KR1020080013503 A KR 1020080013503A KR 20080013503 A KR20080013503 A KR 20080013503A KR 101274816 B1 KR101274816 B1 KR 101274816B1
Authority
KR
South Korea
Prior art keywords
weight
thermal conductivity
melting point
heat resistance
light emitting
Prior art date
Application number
KR1020080013503A
Other languages
Korean (ko)
Other versions
KR20090088134A (en
Inventor
권태훈
최기대
나상욱
채희숙
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020080013503A priority Critical patent/KR101274816B1/en
Publication of KR20090088134A publication Critical patent/KR20090088134A/en
Application granted granted Critical
Publication of KR101274816B1 publication Critical patent/KR101274816B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 90%이상의 높은 반사율과 0.35w/m.k이상의 우수한 열전도도를 가지며, 260℃ 이상의 우수한 내열도를 가지는 소재의 제조방법에 관한 것이다. 본 발명은 용융점이 270℃ 이상인 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리페닐렌아마이드(PPA)등의 슈퍼엔지니어링 플라스틱에 백색 무기 물질 및 열전도도를 높여주는 첨가 물질 및 유리섬유(Glass Fiber)등의 재료를 이축 압출기를 이용하여 혼련 되도록 하는 것이다. 주요 용도로는 발광다이오드 패키지 하우징 등으로 사용 될 수 있다.The present invention relates to a method for producing a material having a high reflectivity of 90% or more and excellent thermal conductivity of 0.35 w / m.k or more and an excellent heat resistance of 260 ° C or more. The present invention is an additive material and glass fiber to improve the white inorganic material and thermal conductivity in a super-engineering plastic such as polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyphenylene amide (PPA) having a melting point of 270 ℃ or more ( Materials such as glass fiber) are kneaded using a twin screw extruder. Its main purpose can be used as LED package housing.

내열도, 반사율, 열전도성, 발광다이오드 패키지 (LED Package) Heat Resistance, Reflectance, Thermal Conductivity, Light Emitting Diode Package (LED Package)

Description

내열도, 반사율 및 열전도도가 우수한 수지 조성물 및 제조 방법{RESIN COMPOSITION HAVING HIGH HEAT RESISTANCE, THERMAL CONDUCTIVITY AND REFLECTIVITY AND THE METHOD OF THE SAME}RESIN COMPOSITION HAVING HIGH HEAT RESISTANCE, THERMAL CONDUCTIVITY AND REFLECTIVITY AND THE METHOD OF THE SAME}

본 발명은 90%이상의 높은 반사율과 0.35w/m.k이상의 우수한 열전도도를 가지며, 260℃ 이상의 우수한 내열도를 가지는 소재의 조성물 및 그 제조방법에 관한 것이다. 본 발명은 높은 반사율, 우수한 내열성 및 열전도도를 가지는 소재의 제조방법에 관한 것이다. 주요 용도로는 발광다이오드 패키지 하우징 용으로 사용될 수 있다.The present invention relates to a composition of a material having a high reflectance of 90% or more and an excellent thermal conductivity of 0.35 w / m.k or more, and having an excellent heat resistance of 260 ° C or more, and a method of manufacturing the same. The present invention relates to a method for producing a material having high reflectance, excellent heat resistance and thermal conductivity. Its main use can be used for light emitting diode package housings.

발광다이오드는 저열발산 및 긴 수명, 적은 크기, 저 전력 소비와 같은 장점들로 인해 조명기기 등의 가정용 장치 및 다양한 기구에서 표시기 또는 광 소스로서 광범위하게 사용되어 왔다. 최근에, 발광다이오드는 다중 칼라 및 고 휘도의 목적을 추구하도록 개발되어 왔으며, 이로써 이러한 발광다이오드의 사용 범위는 대형 옥외 디스플레이 보드 및 교통 신호등 및 자동차 후미등, 휴대폰 램프 등으로 확장되고 있다. 향후에는, 이 발광다이오드가 전력을 절감하는 기능 및 주변 환경을 보호하는 기능을 갖는 발광 소스로서 텅스텐 필라멘트 램프 및 수은 램프를 대체할 것으로 예상되며, 최근에 개발된 아크리치는 기존 발광다이오드 보다 수명이 길고, 교류를 직렬로 바꾸는 변환회로가 필요 없어서 비용과 공간을 절약할 수 있으며, 보다 중요한 것은, AC 교류전원에서 작동하는 기존의 건물조명, 등기구, 기계조명을 DC 발광다이오드로 바로 교체하는 것은 불가능한데 비해, 아크리치로는 바로 교체 가능한 것으로 알려져 있어 그 효용성은 조명 전체 시장으로 확대될 것으로 보인다. 발광다이오드 패키지의 작동원리를 살펴보면, 발광다이오드 패키지의 발광다이오드 칩이 전류에 의해 구동되어 발광할 때에, 이 칩에 의해 방출된 광의 일부는 백색 패키지 하우징에 의해서 반사되고, 이어서 리드 프레임으로부터 멀어지는 방향으로 방출된다. 종래의 발광다이오드 패키지 하우징용 소재들은 칩이 전류에 의해 구동되어 발광 할 때에 방출된 광의 일부를 반사하며, 또한 광의 일부는 흡수할 것이다. 흡수된 광으로 인해 발열이 발생하고, 열전도가 낮은 재질이므로 열 전달이 잘되지 않아 발광다이오드 패키지 하우징의 온도는 상승되었으며, 이로 인해 발광다이오드의 수명 및 휘도 등을 저하시키는 역할을 해왔다. 또한 발광다이오드를 PCB 기판등에 접합시키는 공정으로 표면실장(Surface mount technology)을 하게 되는데, 환경규제로 인해 납 제거 공정으로의 이행이 강제화 됨으로 인해, 발광다이오드 패키지 하우징용 소재는 260℃이상의 내열도가 요구되었다. 종래기술 현황을 살펴보면, PC 등의 소재에 백색 무기질을 첨가하여 반사율을 높일 수 있다는 것에 대해서는 미국특허 제 5,837,757, 일본공개 특허 공보 평 7-242781호 및 일본공개 특허 공보 평 9-176471등에서 백색 폴리카보네이트 수지의 반사율, 내 충격성에 관한 기술을 개시하고 있다. 그러나 상기 소재 중 하우징용으로 260℃이상의 내열도, 90%이상의 반사율, 흡수된 열을 방출하여 낮은 온도로 유지될 수 있는 즉, 0.35w/m.k이상의 열전도도 특성을 모두 만족하는 소재에 대한 특허는 개시된 바가 없다. 상기 종래의 제조 기술에 의해 제조된 발광다이오드 패키지 하우징은 주로 PC에 백색 분말의 무기질을 첨가한 것이나, 환경 규제 등으로 표면실장 온도가 상승됨에 따라 폴리페닐렌아마이드 등의 높은 내열도를 가지는 수지에 백색 분말의 무기질을 첨가한 소재가 등장했다. 이 경우 우수한 내열도 및 반사율 성능은 얻을 수 있으나, 폴리페닐렌아마이드가 가지고 있는 수분흡수에 의한 치수 변화로 인해 인서트 된 금속물과 하우징과의 틈새 발생으로 인해 수분 등에 노출되어 발광다이오드의 수명을 단축시키는 역할을 할 뿐 아니라, 낮은 열전도도로 인해 흡수된 열을 분산시키지 못함으로 인해, 발광 다이오드의 수명을 감소시킨다는 치명적인 단점은 여전히 해결되지 않았었다.Light emitting diodes have been widely used as indicators or light sources in household appliances such as lighting equipment and various appliances due to advantages such as low heat dissipation and long life, low size, and low power consumption. Recently, light emitting diodes have been developed to pursue the purpose of multi-color and high brightness, and thus the use range of such light emitting diodes has been extended to large outdoor display boards, traffic signals, automobile tail lights, mobile phone lamps, and the like. In the future, the LEDs are expected to replace tungsten filament lamps and mercury lamps as light emitting sources with power saving and environmental protection features, and the recently developed acriche has a longer lifespan than conventional LEDs. It does not require a long, alternating circuit that converts alternating current in series, saving cost and space. More importantly, it is not possible to replace existing building, luminaire, and mechanical lights that operate on AC alternating current directly with DC light emitting diodes. On the other hand, Acrichero is known to be replaceable immediately, and its utility is expected to extend to the entire lighting market. Referring to the operation principle of the light emitting diode package, when the light emitting diode chip of the light emitting diode package is driven by light and emits light, part of the light emitted by the chip is reflected by the white package housing and then away from the lead frame. Is released. Conventional light emitting diode package housing materials will reflect some of the light emitted when the chip is driven by a current to emit light and will also absorb some of the light. The heat generated by the absorbed light, the material is low thermal conductivity, so the heat transfer is not good, the temperature of the light emitting diode package housing has been increased, thereby reducing the lifetime and brightness of the light emitting diode. In addition, surface mount technology is used as a process of bonding the light emitting diodes to a PCB substrate. Due to environmental regulations, the transition to the lead removal process is compulsory, so that the material for the light emitting diode package housing has a heat resistance of more than 260 ° C. Was required. Looking at the state of the art, white polycarbonate is disclosed in U.S. Patent No. 5,837,757, Japanese Patent Application Laid-Open No. 7-242781, and Japanese Patent Application Laid-open No. 9-176471 for the fact that the reflectivity can be increased by adding a white inorganic material to a material such as PC. The technique regarding the reflectance and impact resistance of resin is disclosed. However, the patent for a material that satisfies all thermal conductivity properties of more than 0.35w / mk can be maintained at a low temperature by releasing heat absorbed heat of more than 260 ℃, reflectance of more than 90%, absorbed heat for the housing It has not been disclosed. The light emitting diode package housing manufactured by the above-mentioned conventional manufacturing technique is mainly obtained by adding a white powder inorganic material to a PC, or a resin having high heat resistance such as polyphenylene amide as the surface mounting temperature is increased due to environmental regulations. The material which added the mineral of white powder appeared. In this case, excellent heat resistance and reflectance performance can be obtained, but due to the gap between the inserted metal and the housing due to the dimensional change due to water absorption of polyphenylene amide, the life of the light emitting diode is shortened due to exposure to moisture. In addition to the role of reducing the heat absorption of the light emitting diode due to the failure to dissipate the heat absorbed due to low thermal conductivity, the fatal disadvantage has not yet been solved.

이에 본 발명자들은 우수한 반사율과 열전도성 및 우수한 내열성과 기계적 강도를 가질 수 있도록 하기 위하여, 열가소성 수지 중 슈퍼 엔지니어링 플라스틱과 백색 무기 물질, 열전도성을 부여하는 충진재 및 유리섬유를 포함하는 재료를 압출기에 의하여 압출 가공하는 방법을 연구한 결과, 우수한 반사율과 열전도성 및 기계적 강도를 가지는 소재를 얻을 수 있음을 확인하고, 본 발명에 이르게 되었다. Therefore, the inventors of the present invention by extruder to a material including a super engineering plastic and a white inorganic material, a filler to impart thermal conductivity and a glass fiber in the thermoplastic resin in order to have excellent reflectivity and thermal conductivity and excellent heat resistance and mechanical strength As a result of studying the extrusion process, it was confirmed that a material having excellent reflectance, thermal conductivity, and mechanical strength could be obtained, and the present invention was reached.

본 발명은 발광다이오드 패키지 하우징 등에 사용하기 위한 내열도, 우수한 열전도도 및 광반사 특성을 가지는 수지 조성물을 제공하는 것이다. 특히 90%이상의 반사율, 0.35w/m.k 이상의 우수한 열전도도, 260℃이상의 우수한 내열도 가지는 수지 조성물을 제공하는 것이다. The present invention provides a resin composition having heat resistance, excellent thermal conductivity and light reflection characteristics for use in a light emitting diode package housing or the like. In particular, the present invention provides a resin composition having a reflectance of 90% or more, excellent thermal conductivity of 0.35 w / m.k or more, and excellent heat resistance of 260 ° C or more.

본 발명의 또 다른 목적은 유리섬유를 혼합함으로써 기계적 강성이 우수한 발광다이드 패키지 하우징용 소재를 제조하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method of manufacturing a material for a light emitting dide package housing having excellent mechanical rigidity by mixing glass fibers.

또한, 본 발명은 발광다이오드 패키지 하우징용 소재의 조성물을 이축 압출기를 이용하여 특정한 방법에 의해 용이하게 양산함으로써, 경제성이 있고 외관이 우수한 수지 제조와 그 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to mass-produce a composition of a material for a light emitting diode package housing by a specific method using a twin screw extruder, thereby providing an economical and excellent resin production method and a manufacturing method thereof.

본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명의 구성에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the configuration of the present invention described below.

상기 목적을 달성하기 위하여 본 발명은, 하기 기재된 내열도가 높은 열가소성 수지, 백색의 무기 물질 및 유리섬유를 포함하는 것을 특징으로 하는 발광 다이오드 패키징용 조성물을 제공한다: In order to achieve the above object, the present invention provides a light emitting diode packaging composition comprising a high heat resistance thermoplastic resin, a white inorganic material and glass fiber described below:

(a) 용융점이 270℃ 이상인 결정성 수지 40 내지 70 중량%,(a) 40 to 70% by weight of the crystalline resin having a melting point of at least 270 ° C,

(b) 백색무기물 5 내지 50중량% (b) 5 to 50% by weight of white minerals

(c) 열전도성 필러 1 내지 40중량% 및(c) 1 to 40 wt% of the thermally conductive filler and

(d) 강성 증가제 5 내지 30중량%(d) 5 to 30 weight percent of stiffness increasing agent

또한, 상기 발광 다이오드 패키징용 조성물에는 선택적으로, 내흡습성 수지, 산화방지제, 광 안정제, 이형제, 가소제, 핵형성제, 안료, 가교제, 형광증백제 등의 첨가제를 첨가하거나, 개질을 하는 것도 가능하다. In addition, the light emitting diode packaging composition may optionally include additives such as hygroscopic resins, antioxidants, light stabilizers, mold release agents, plasticizers, nucleating agents, pigments, crosslinking agents, optical brighteners, or the like.

특히, 상기 내흡습성을 위해 신디오택틱 폴리스티렌 또는 폴리아마이드 12를 추가적으로 포함할 수 있다. 이 때 상기 결정성 수지에 대하여 상기 신디오택틱 폴리스티렌 또는 폴리아마이드 12는 97:3 내지 50:50의 비율로 포함될 수 있다.In particular, syndiotactic polystyrene or polyamide 12 may be additionally included for the hygroscopicity. In this case, the syndiotactic polystyrene or polyamide 12 may be included in a ratio of 97: 3 to 50:50 with respect to the crystalline resin.

또한, 본 발명은 용융점이 270℃ 이상인 결정성 수지 40 내지 70 중량%와 백색 무기물 5 내지 50중량%와 열전도성 필러 1 내지 40%중량%와 강성 증가제 5 내지 30중량%를 배럴온도 280 내지 360 ℃의 이축 압출기에서 압출 혼합하는 단계를 통해 펠렛 형태로 제조하는 단계를 포함하는 발광 다이오드 패키징용 소재의 제조방법을 제공한다. In addition, the present invention is 40 to 70% by weight of the crystalline resin having a melting point of 270 ℃ or more, 5 to 50% by weight of the white inorganic material, 1 to 40% by weight of the thermally conductive filler and 5 to 30% by weight of the rigidity increasing agent barrel temperature of 280 to Provided is a method of manufacturing a light emitting diode packaging material comprising the step of manufacturing in pellet form through extrusion mixing in a twin screw extruder at 360 ℃.

상기와 같이 본 발명에 따른 수지 조성물은 내열도가 우수하며, 열전도도 및 광 반사율이 우수하며, 박막 성형 등의 가공성이 뛰어나 노트북, LCD TV, 휴대폰의 발광다이오드 패키지 하우징 등에 사용될 수 있다. Pb-프리 SMT를 하는 모든 부품에 적용 가능하다.As described above, the resin composition according to the present invention has excellent heat resistance, excellent thermal conductivity and light reflectance, and is excellent in processability such as thin film molding, and can be used in a light emitting diode package housing of a notebook computer, an LCD TV, a mobile phone, and the like. Applicable to all parts with Pb-free SMT.

이상에서 본 발명의 기재된 구체 예를 중심으로 상세히 설명되었지만, 본 발 명 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자 에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구 범위에 속하는 것도 당연한 것이다.Although described in detail above with reference to the specific embodiments of the present invention, it will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the present invention and the technical spirit, and such modifications and modifications fall within the scope of the appended claims. It is also natural.

본 발명에 의한 내열도, 반사율, 열전도도가 우수한 발광 다이오드 패키징용 조성물에 있어서, 용융점이 270℃ 이상인 결정성 수지로는 폴리페닐렌아마이드(Polyphenylene amide), 폴리페닐렌설파이드(Polyphenylene sulfide) 또는 액정고분자(Liquid crystalline polymer)을 사용할 수 있다. In the light emitting diode packaging composition excellent in heat resistance, reflectance, and thermal conductivity according to the present invention, the crystalline resin having a melting point of 270 ° C. or higher may be polyphenylene amide, polyphenylene sulfide, or liquid crystal. Liquid crystalline polymer can be used.

상기 폴리페닐렌아마이드는 용융점이 270℃에서 350℃범위인 수지를 사용할 수 있다. 또한, 상기 폴리페닐렌설파이드는 반사율 90%이상의 구현을 위해 유사백색의 색깔을 가지는 선형타입이면서, 용융점이 270℃에서 290℃범위인 수지를 사용 할 수 있다. 액정고분자 또한 내열도가 270℃이상인 것을 사용할 수 있다.The polyphenylene amide may be a resin having a melting point ranging from 270 ° C. to 350 ° C. In addition, the polyphenylene sulfide is a linear type having a similar white color to implement a reflectance of 90% or more, a melting point of 270 ℃ to 290 ℃ range of resin can be used. Liquid crystal polymer can also be used that has a heat resistance of 270 ℃ or more.

본 발명에 의한 발광 다이오드 패키징용 조성물에 있어서 백색 무기물로는 산화티타늄(TiO2)등이 사용 될 수 있으며, 평균입경은 0.1에서 10마이크론 사이의 사이즈를 가지는 재질을 사용할 수 있고, 표면에는 고온에서 견딜 수 있는 코팅제로 처리된 산화티타늄의 사용이 바람직하다.In the light emitting diode packaging composition according to the present invention, a white inorganic material may be used, such as titanium oxide (TiO 2 ), an average particle diameter of 0.1 to 10 microns may be used, and the surface may be used at high temperature. Preference is given to using titanium oxide treated with a tolerable coating.

본 발명에 의한 발광 다이오드 패키징용 조성물에 있어서, 표면에 전달된 열 의 분산능력 향상을 위해 흰색을 띠는 열전도성 필러를 사용할 수 있으며, 이런 열전도성 필러로는 탈크, 월라스토나이트, 보론나이트라이드, 운모, 그라파이트등을 적용할 수 있으며, 사이즈는 1~100마이크론 크기의 필러를 사용 하는 것이 바람직하다.In the light emitting diode packaging composition according to the present invention, a white thermally conductive filler may be used to improve the ability of dissipating heat transferred to the surface, and such thermally conductive fillers may include talc, wollastonite, and boron nitride. , Mica, graphite, etc. can be applied, the size of the filler is preferably 1 to 100 microns in size.

본 발명에 의한 발광 다이오드 패키징용 조성물에 있어서, 내열도 및 강성의 증가를 위해서는 유리섬유, 밀드 유리섬유(Milled Glass fiber), 유리 비드(Glass bead) 등이 사용될 수 있으며, 함량은 내열도 증가를 위해 최소 수량인 5%에서 30%로 한정한다. In the light emitting diode packaging composition according to the present invention, glass fibers, milled glass fibers, glass beads, and the like may be used to increase heat resistance and rigidity, and the content may increase heat resistance. Limit the minimum quantity from 5% to 30%.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시 예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It is natural that such variations and modifications fall within the scope of the appended claims.

먼저 본 발명의 설명을 위해 필요한 측정 및 평가 방법은 아래와 같은 조건에서 행하였다. First, the measurement and evaluation methods necessary for the explanation of the present invention were performed under the following conditions.

[시험 예][Test Example]

(1) 내열도 (1) Heat resistance

ASTM D648 방법에 의거하여 측정하였다.     It measured according to ASTM D648 method.

(2) 기계적 강도(2) mechanical strength

* 굴곡강도 - ASTM D790 방법에 의거하여 측정하였다. Flexural Strength - Determined according to the ASTM D790 method.

* 굴곡 탄성률 - ASTM D790 방법에 의거하여 측정하였다. Flexural modulus-measured according to ASTM D790 method.

* 인장강도 - ASTM D638 방법에 의거하여 측정하였다. * Tensile strength - Measured according to ASTM D638 method.

* 충격강도 - ASTM D256 방법에 의거하여 측정하였다.* Impact strength-measured according to ASTM D256 method.

(3) 흡수율(3) water absorption

ASTM D-570, 칼피셔 방법에 의거하여 측정하였다.    It measured according to ASTM D-570, Karl Fischer method.

(4) 반사율(4) reflectance

스펙트로 포토미터(spectrophotometer, Gretagmacbeth, Color-Eye    Spectrophotometer, Gretagmacbeth, Color-Eye

7000A)로 D65 광원을 이용하여 시야각 10도 조건에서 550nm 파장550nm wavelength at 10 ° viewing angle using D65 light source

의 전 반사율을 측정하였다.The total reflectance of was measured.

(5) 열전도도(5) thermal conductivity

평판법 (엘지화학 테크센타), 레이저 플래쉬법 (ASTM E-1461) 등의 측정 방법에서 10% 오차 이내의 데이터를 사용하였다.    Data within 10% error was used in the measurement methods such as the plate method (LG Chem Tech Center) and the laser flash method (ASTM E-1461).

(6) 유동성 (6) liquidity

ASTM D1238에 의거하여 측정하였다.     It measured according to ASTM D1238.

(7) 선팽창 계수 (7) Coefficient of linear expansion

ASTM D696에 의거하여 선팽창 계수를 측정하였다.    The coefficient of linear expansion was measured according to ASTM D696.

실시예Example 1 One

폴리페닐렌아마이드로 바스프(basf)사의 PPA 수지(융점:295℃) 54 중량% 및 열전도성 필러인 보론나이트라이드 5중량% 및 산화방지제, 활제, 자외선 안정제 및 형광 증백제를 동 방향(co-rotating) 이축 압출기의 스쿠류 시작부분인 주(主)투입구로 투입하고, 백색분말인 산화티타늄(TiO2) 10 중량%를 압출기의 측면 첫 번째 부(副)투입구로 투입하고, 유리섬유(Glass fiber) 30 중량%를 압출기의 측면 두 번째 부투입구로 투입한 한 후, 가공조건을 300℃, 250rmp으로 압출기를 이용하여 펠렛 상태로 제조하였다. 얻어진 펠렛을 충분해 제습 건조하여 사출기로 물성 시편과 내열도 측정을 위한 시편, 열전도도 및 광 반사율을 측정을 위한 시편을 얻었으며, 그 결과를 표 2에 나타내었다. 주요54% by weight of PPA resin (melting point: 295 ° C) by BASF as polyphenylene amide, 5% by weight of boron nitride as a thermally conductive filler, and antioxidants, lubricants, UV stabilizers and fluorescent brighteners in the same direction (co- Rotating Into the main inlet, the beginning of the screw of the twin screw extruder, 10% by weight of titanium oxide (TiO 2 ), white powder, is inserted into the first inlet of the side of the extruder, and the glass fiber ) 30% by weight was added to the second inlet of the side of the extruder, and the processing conditions were prepared in a pellet state using an extruder at 300 ℃, 250rpm. The obtained pellet was sufficiently dehumidified and dried to obtain a specimen for measuring physical properties, a heat resistance, a thermal conductivity, and a light reflectance using an injection molding machine, and the results are shown in Table 2. main

실시예Example 2 2

폴리페닐렌아마이드 수지(융점:295℃) 54 중량% 및 열전도성 필러인 보론나이트라이드 5 중량% 및 산화티타늄(TiO2) 20 중량%, 유리섬유(Glass fiber) 20 중량%을 사용한 것 외에는 실시예 1과 동일한 방법으로 펠렛 제조 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다. 54 wt% of polyphenylene amide resin (melting point: 295 ° C.), 5 wt% of a thermally conductive filler boron nitride, 20 wt% of titanium oxide (TiO 2 ), and 20 wt% of glass fiber were used. Pellet preparation and injection specimens were prepared in the same manner as in Example 1, the results are shown in Table 2.

실시예Example 3 3

폴리페닐렌아마이드 수지(융점:295℃) 54 중량% 및 열전도성 필러인 보론나 이트라이드 5 중량% 및 산화 티타늄(TiO2) 30 중량%, 유리섬유(Glass fiber) 10 중량%을 사용한 것 외에는 실시예 1과 동일한 방법으로 펠렛 제조 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다. 54% by weight of polyphenylene amide resin (melting point: 295 ° C), 5% by weight of boron nitride, a thermally conductive filler, 30% by weight of titanium oxide (TiO 2 ), and 10% by weight of glass fiber Except for the preparation of pellets and injection specimens in the same manner as in Example 1, the results are shown in Table 2.

실시예Example 4 4

폴리페닐렌아마이드 수지(융점:295℃) 49 중량% 및 열전도성 필러인 보론나이트라이드 10 중량% 및 산화티타늄(TiO2) 30 중량%, 유리섬유(Glass fiber) 10 중량%을 사용한 것 외에는 실시예 1과 동일한 방법으로 펠렛 제조 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다. Except for using 49% by weight of polyphenylene amide resin (melting point: 295 ° C.), 10% by weight of boron nitride as a thermally conductive filler, 30% by weight of titanium oxide (TiO 2 ), and 10% by weight of glass fiber. Pellet preparation and injection specimens were prepared in the same manner as in Example 1, the results are shown in Table 2.

실시예Example 5 5

폴리페닐렌아마이드 수지(융점:295℃) 49 중량% 및 열전도성 필러인 보론나이트라이드 20 중량% 및 산화티타늄(TiO2) 20 중량%, 유리섬유(Glass fiber) 10 중량%을 사용한 것 외에는 실시예 1과 동일한 방법으로 펠렛 제조 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다. Except for using 49% by weight of polyphenylene amide resin (melting point: 295 ° C), 20% by weight of boron nitride as a thermally conductive filler, 20% by weight of titanium oxide (TiO 2 ), and 10% by weight of glass fiber. Pellet preparation and injection specimens were prepared in the same manner as in Example 1, the results are shown in Table 2.

실시예Example 6 6

폴리페닐렌아마이드 수지(융점:295℃) 49 중량%, 탈크 10 중량% 및 산화티타늄(TiO2) 30 중량% 및 유리섬유(Glass fiber) 10 중량%을 사용한 것 외에는 실시예 1과 동일한 방법으로 펠렛 제조 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다. Except for using 49% by weight of polyphenylene amide resin (melting point: 295 ℃), 10% by weight of talc, 30% by weight of titanium oxide (TiO 2 ) and 10% by weight of glass fiber (glass fiber) in the same manner as in Example 1 Pellets were prepared and injection specimens were prepared, and the results are shown in Table 2.

실시예Example 7 7

폴리페닐렌아마이드 A로 바스프(basf)사의 PPA 수지(융점: 295℃) 34 중량% 및 또 다른 내열도가 높은 폴리페닐렌아마이드 B로는 더구사(Deggusa)의 PPA 수지(융점 330℃) 20 중량%, 보론나이트라이드 5 중량%, 산화티타늄(TiO2) 30 중량%, 유리섬유(Glass fiber) 10 중량%를 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출시편 제조하였으며, 그 결과를 표 2에 나타내었다.34 wt% BASF's PPA resin (melting point: 295 ° C.) with polyphenylene amide A and 20 wt% Degusa's PPA resin (melting point 330 ° C.) with polyphenyleneamide B having another high heat resistance %, Boron nitride 5% by weight, titanium oxide (TiO 2 ) 30% by weight, glass fiber (Glass fiber) 10% by weight except using a pellet and injection specimens were prepared in the same manner as in Example 1, the results are shown in Table 2 is shown.

실시예Example 8 8

폴리페닐렌아마이드 A로 바스프(basf)사의 PPA 수지(융점: 295℃) 20 중량% 및 또 다른 내열도가 높은 폴리페닐렌아마이드 B로는 더구사(Deggusa)의 PPA 수지(융점 330℃) 34 중량%, 보론나이트라이드 5 중량%, 산화티타늄(TiO2) 30 중량%, 유리섬유(Glass fiber) 10 중량%를 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출시편 제조하였으며, 그 결과를 표 2에 나타내었다.20 wt% of BASF's PPA resin (melting point: 295 ° C.) with polyphenylene amide A and 34 wt% of Degusa's PPA resin (melting point 330 ° C.) with polyphenyleneamide B having another high heat resistance %, Boron nitride 5% by weight, titanium oxide (TiO 2 ) 30% by weight, glass fiber (Glass fiber) 10% by weight except using a pellet and injection specimens were prepared in the same manner as in Example 1, the results are shown in Table 2 is shown.

실시예Example 9 9

폴리페닐렌설파이드수지로 중국 덕양의 Linear type의 PPS 수지(융점: 280℃) 54 중량% 및 보론나이트라이드 5 중량% 및 산화티타늄(TiO2) 30 중량%, 유리섬유(Glass fiber) 10 중량%를 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출 시편 제조하였으며, 그 결과를 표 2에 나타내었다.Polyphenylene sulfide resin with 54% by weight of linear type PPS resin (melting point: 280 ℃), 5% by weight of boron nitride, 30% by weight of titanium oxide (TiO 2 ), 10% by weight of glass fiber Pellets and injection specimens were prepared in the same manner as in Example 1 except for using the results, and the results are shown in Table 2.

비교예Comparative example 1 One

폴리페닐렌아마이드 A로 바스프(Basf)사의 PPA 수지(융점:295℃) 60 중량%, TiO2 30 중량 %, 유리섬유(Glass fiber) 10 중량 %을 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출시편 제조하였으며, 그 결과를 표 4에 나타내었다. Pellets were manufactured in the same manner as in Example 1, except that 60% by weight of PPA resin (melting point: 295 ° C), 30% by weight of TiO 2 , and 10% by weight of glass fiber were used as polyphenylene amide A. And an injection specimen was prepared, the results are shown in Table 4.

비교예Comparative example 2 2

폴리페닐렌아마이드 B로 더구사(Deggusa)의 PPA 수지(융점:330℃) 60중량 %, TiO2 20 중량%, 유리섬유(Glass fiber) 20 중량%을 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출시편 제조하였으며, 그 결과를 표 4에 나타내었다.In the same manner as in Example 1, except that 60% by weight of Deggusa's PPA resin (melting point: 330 ° C), 20% by weight of TiO 2, and 20% by weight of glass fiber were used as polyphenylene amide B. Pellets and injection specimens were prepared, and the results are shown in Table 4.

비교예Comparative example 3 3

폴리페닐렌아마이드 B로 더구사(Deggusa)의 PPA 수지(융점:330℃) 45중량%, 폴리아마이드 6.6로는 로디아(Rhodia)사의 PA6.6(융점:255℃) 15 중량%, TiO2 30 중량%, 유리섬유(Glass fiber) 10 중량%을 사용한 것 이외에는 실시예 1과 동일한 방법으로 펠렛 및 사출시편 제조하였으며, 그 결과를 표 4에 나타내었다. 45 wt% of Deggusa's PPA resin (melting point: 330 ° C) with polyphenylene amide B, 15 wt% of PA6.6 (melting point: 255 ° C) from Rhodia, 30 wt% TiO 2 with Polyamide 6.6 %, Except that 10% by weight glass fiber (Glass fiber) was used to prepare pellets and injection specimens in the same manner as in Example 1, the results are shown in Table 4.

하기 표 1은 본 발명의 실시예들의 구성하는 구성성분의 함량의 조성비를 나타낸 것이다.Table 1 below shows the composition ratio of the constituents of the components of the present invention.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예
5
Example
5
실시예
6
Example
6
실시예
7
Example
7
실시예
8
Example
8
실시예
9
Example
9
PPA APPA A 5454 5454 5454 4949 4949 4949 3434 2020 PPA BPPA B 2020 3434 PPSPPS 5454 TiO2 TiO 2 1010 2020 3030 3030 2020 3030 3030 3030 3030 보론나이트라이드Boron nitride 55 55 55 1010 2020 55 55 55 탈크Talc 1010 유리섬유Fiberglass 3030 2020 1010 1010 1010 1010 1010 1010 1010

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예
6
Example
6
실시예
7
Example
7
실시예
8
Example
8
실시예
9
Example
9
인장강도(Kg/cm2)Tensile strength (Kg / cm 2 ) 1,4301,430 1,2201,220 1,0001,000 950950 920920 890890 980980 960960 900900 인장신율
(%)
Tensile elongation
(%)
8.38.3 7.97.9 6.56.5 4.04.0 3.83.8 3.73.7 5.55.5 5.25.2 2.02.0
굴곡강도
(Kg/cm2)
Flexural strength
(Kg / cm 2 )
2,0702,070 1,7501,750 1,5001,500 1,3501,350 1,3201,320 1,2901,290 1,4901,490 1,4201,420 1,3001,300
굴곡탄성율(Kg/cm2)Flexural modulus (Kg / cm 2 ) 91,00091,000 72,00072,000 55,00055,000 69,00069,000 67,00067,000 65,00065,000 67,00067,000 70,00070,000 74,00074,000 충격강도
(kJ/m2)
Impact strength
(kJ / m 2 )
4.24.2 3.33.3 3.23.2 2.82.8 2.92.9 2.52.5 3.13.1 3.03.0 1.91.9
선팽창
계수(MD)
Linear expansion
Coefficient (MD)
15.915.9 2121 2929 -- -- -- -- -- --
MI
(g/10분)
MI
(g / 10 min)
13.113.1 16.916.9 24.224.2 17.517.5 16.116.1 16.916.9 18.318.3 13.113.1 --
반사율
(%)
reflectivity
(%)
90.190.1 91.591.5 9393 9292 9191 92.692.6 92.292.2 92.192.1 90.390.3
수분
흡수율(%)
moisture
Absorption rate (%)
1.911.91 2.42.4 2.52.5 -- -- -- -- --
열전도율
(w/m.k)
Thermal conductivity
(w / mk)
0.350.35 0.380.38 0.400.40 0.450.45 0.500.50 0.420.42 0.400.40 0.400.40 0.520.52
내열도
(℃)
Heat resistance
(℃)
273273 269269 261261 262262 262262 261261 265265 290290 262262

하기 표 3은 비교예들의 구성하는 구성성분의 함량의 조성비를 나타낸 것이다.Table 3 below shows the composition ratio of the contents of the constituents of the comparative examples.

비교예 1Comparative Example 1 비교예
2
Comparative Example
2
비교예
3
Comparative Example
3
PPA APPA A 6060 PPA BPPA B 6060 4545 PA 6.6PA 6.6 1515 TiO2 TiO 2 3030 2020 3030 유리섬유Fiberglass 1010 2020 1010

비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 인장강도(Kg/cm2)Tensile strength (Kg / cm 2 ) 1,0001,000 1,2501,250 830830 인장신율
(%)
Tensile elongation
(%)
6.56.5 7.77.7 4.14.1
굴곡강도
(Kg/cm2)
Flexural strength
(Kg / cm 2 )
1,5001,500 1,8101,810 1,3901,390
굴곡탄성율(Kg/cm2)Flexural modulus (Kg / cm 2 ) 55,00055,000 73,00073,000 53,00053,000 충격강도
(kJ/m2)
Impact strength
(kJ / m 2 )
3.23.2 3.43.4 2.62.6
선팽창
계수(MD)
Linear expansion
Coefficient (MD)
-- -- --
MI
(g/10분)
MI
(g / 10 min)
24.224.2 -- 110110
반사율
(%)
reflectivity
(%)
9393 91.291.2 91.991.9
수분
흡수율(%)
moisture
Absorption rate (%)
-- -- --
열전도율
(w/m.k)
Thermal conductivity
(w / mk)
0.340.34 0.320.32 0.330.33
내열도
(℃)
Heat resistance
(℃)
261261 295295 230230

상기 실시예에서 보는 바와 같이, 본 발명에 따른 수지 조성물은 광반사율이 92%, 열전도율이 0.5w/m.k, 내열도 260℃이상의 특성을 가지는 소재이다. 또한 표 4에서 알 수 있는 바와 같이 융점이 255℃인 PA 6.6을 사용한 비교예 3의 경우, 실시예에 비하여 물성이 매우 떨어짐을 확인할 수 있다.As shown in the above embodiment, the resin composition according to the present invention is a material having a characteristic of light reflectivity of 92%, thermal conductivity of 0.5w / m.k, heat resistance of 260 ° C or more. In addition, as can be seen in Table 4, in the case of Comparative Example 3 using PA 6.6 having a melting point of 255 ℃, it can be seen that the physical properties are very poor compared to the Example.

Claims (11)

(a) 용융점이 270℃ 이상인 결정성 수지인 폴리페닐렌아마이드 40 내지 70 중량%,(a) 40 to 70% by weight of polyphenylene amide, which is a crystalline resin having a melting point of 270 ° C. or more, (b) 산화티타늄(TiO2) 5 내지 50중량 %, (b) 5 to 50 weight percent of titanium oxide (TiO 2 ), (c) 보론나이트라이드, 탈크, 운모 및 월라스토나이트로 이루어진 그룹으로부터 1종 이상 선택되는 열전도성 필러 1 내지 40 중량 % 및(c) 1 to 40% by weight of thermally conductive fillers selected from the group consisting of boron nitride, talc, mica and wollastonite and (d) 유리섬유(Glass fiber), 유리비드(glass bead) 및 밀드 글래스파이버(Milled Glass fiber)로 이루어진 그룹으로부터 1종 이상 선택되는 강성 증가제 5 내지 30 중량%를 포함하는 것을 특징으로 하는 발광 다이오드 패키징용 조성물.(d) light emission comprising 5 to 30% by weight of a stiffness increasing agent selected from the group consisting of glass fibers, glass beads, and milled glass fibers Diode packaging composition. 삭제delete 삭제delete 제 1항에 있어서, 상기 폴리페닐렌아마이드는 용융점이 270℃에서 350℃범위인 것을 특징으로 하는 발광 다이오드 패키징용 조성물. The composition of claim 1, wherein the polyphenylene amide has a melting point in the range of 270 ° C to 350 ° C. 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 조성물은 신디오택틱 폴리스티렌 또는 폴리아마이드 12를 추가적으로 포함하는 것을 특징으로 하는 발광 다이오드 패키징용 조성물. The composition of claim 1, wherein the composition further comprises syndiotactic polystyrene or polyamide 12. 제 1항에 있어서, 산화방지제, 자외선 안정제, 형광 증백제 또는 활제를 추가로 포함하는 것을 특징으로 하는 발광 다이오드 패키징용 조성물. The light emitting diode packaging composition of claim 1, further comprising an antioxidant, a UV light stabilizer, a fluorescent brightener, or a lubricant. 용융점이 270℃ 이상인 결정성 수지인 폴리페닐렌아마이드 40 내지 70 중량% 및 보론나이트라이드, 탈크, 운모 또는 월라스토나이트로 이루어진 그룹으로부터 1종 이상 선택되는 열전도성 필러 1 내지 40 중량 %를 이축압출기의 주투입구로 투입하고, 산화티타늄(TiO2) 5 내지 50중량 %를 제1 부투입구로 투입하며, 유리섬유(Glass fiber), 유리비드(glass bead) 및 밀드 글래스파이버(Milled Glass fiber)로 이루어진 그룹으로부터 선택되는 1종 이상의 강성 증가제 5 내지 30 중량%를 제2 부투입구로 투입한 후 압출하는 것을 특징으로 하는 발광 다이오드 패키징용 소재의 제조방법.40-70% by weight of polyphenyleneamide, a crystalline resin having a melting point of at least 270 ° C, and 1-40% by weight of a thermally conductive filler selected from the group consisting of boron nitride, talc, mica or wollastonite Injected into the main inlet, and 5 to 50% by weight of titanium oxide (TiO 2 ) to the first secondary inlet, glass fiber (glass glass), glass beads (glass bead) and milled glass fiber (Milled Glass fiber) 5 to 30% by weight of at least one stiffness increasing agent selected from the group consisting of a method for producing a light emitting diode packaging material, characterized in that the extruded after injection. 제 10항에 있어서, 상기 주투입구에는 상기 결정성 수지에 더하여 신디오택틱 폴리스티렌 또는 폴리아마이드 12를 추가로 투입하는 것을 특징으로 하는 발광 다이오드 패키징용 소재의 제조방법.The method of claim 10, wherein the main inlet is further added with syndiotactic polystyrene or polyamide 12 in addition to the crystalline resin.
KR1020080013503A 2008-02-14 2008-02-14 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same KR101274816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080013503A KR101274816B1 (en) 2008-02-14 2008-02-14 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080013503A KR101274816B1 (en) 2008-02-14 2008-02-14 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same

Publications (2)

Publication Number Publication Date
KR20090088134A KR20090088134A (en) 2009-08-19
KR101274816B1 true KR101274816B1 (en) 2013-06-13

Family

ID=41206899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080013503A KR101274816B1 (en) 2008-02-14 2008-02-14 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same

Country Status (1)

Country Link
KR (1) KR101274816B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415532A (en) * 2016-06-21 2019-03-01 沙特基础工业全球技术公司 Show reflexive and thermal conductivity polymer composition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163850B1 (en) 2009-11-23 2012-07-09 엘지이노텍 주식회사 Light emitting device package
KR101963221B1 (en) * 2012-10-15 2019-03-28 엘지이노텍 주식회사 A light emitting device package
KR101478819B1 (en) * 2013-04-05 2015-01-02 한국화학연구원 Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same
KR101519717B1 (en) 2013-08-06 2015-05-12 현대자동차주식회사 Heat transfer device for electronic control units
CA3015631C (en) * 2016-02-23 2023-10-17 Advanced Environmental Recycling Technologies, Inc. Compositions and methods for reducing the surface temperature of composite articles
KR101711892B1 (en) 2016-10-21 2017-03-03 주식회사 파인테크닉스 Plastic injection resin composition having excellent thermal conductivity and LED package using it
CN109111736B (en) * 2018-07-18 2021-03-23 余姚中国塑料城塑料研究院 Friction-resistant anti-aging reinforced nylon and preparation method thereof
CN108976629B (en) * 2018-08-16 2022-01-25 广州市鹏云工程塑料有限公司 High-thermal-conductivity halogen-free flame-retardant syndiotactic polystyrene composite material and preparation method thereof
KR102171410B1 (en) 2019-11-19 2020-10-28 (주)산과들 Thermal Conductive filler inculding carbon nanotube and Polymer compositions inculding thereof
KR102759898B1 (en) * 2020-01-15 2025-01-24 주식회사 엘지화학 Method of estimating glass fiber included in polyphenylene sulfide composition
KR102755875B1 (en) * 2020-01-15 2025-01-17 주식회사 엘지화학 Method of estimating glass fiber included in polyamide composition
KR102684777B1 (en) * 2023-08-10 2024-07-15 김한섭 Lightweight composite composition and molded article using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077988A (en) * 2001-04-03 2002-10-18 한국지이폴리머랜드 유한회사 Polymer Resin for Ion Beam or Ion Injection Treatment to give Surface conductiveness
JP2006022130A (en) 2004-07-06 2006-01-26 Idemitsu Kosan Co Ltd Thermally conductive resin composition and method for producing the same
JP2006328352A (en) 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd Insulating thermally conductive resin composition, molded article, and method for producing the same
KR20070108971A (en) * 2006-05-09 2007-11-15 주식회사 엘지화학 Light reflecting foam sheet with excellent thermal conductivity and light reflectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077988A (en) * 2001-04-03 2002-10-18 한국지이폴리머랜드 유한회사 Polymer Resin for Ion Beam or Ion Injection Treatment to give Surface conductiveness
JP2006022130A (en) 2004-07-06 2006-01-26 Idemitsu Kosan Co Ltd Thermally conductive resin composition and method for producing the same
JP2006328352A (en) 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd Insulating thermally conductive resin composition, molded article, and method for producing the same
KR20070108971A (en) * 2006-05-09 2007-11-15 주식회사 엘지화학 Light reflecting foam sheet with excellent thermal conductivity and light reflectivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415532A (en) * 2016-06-21 2019-03-01 沙特基础工业全球技术公司 Show reflexive and thermal conductivity polymer composition

Also Published As

Publication number Publication date
KR20090088134A (en) 2009-08-19

Similar Documents

Publication Publication Date Title
KR101274816B1 (en) Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same
CN102378791B (en) Wholly aromatic thermotropic liquid-crystal polyester resin composition, molded object, and led reflector
US7009029B2 (en) Polyamide composition
JP5728754B2 (en) Lighting device
JP5024071B2 (en) Heat dissipation resin composition
JP5016548B2 (en) Thermoplastic resin composition for light emitting device, molded product comprising the same, and light emitting device using the same
EP1466944B1 (en) Resin composition for reflecting plate
EP2765350B1 (en) Tubular integrated led lamp housing formed with heat radiation section and light transmission section and method for preparing same
KR101566062B1 (en) Polyester Resin Composition for Reflectors of Light-Emitting Devices and Molded Article Using Same
KR20120066740A (en) Polyamide resin composition having good reflectance, heat resistance, and humidity resistance
JP2006257314A (en) Polyamide resin composition for LED reflector molding and LED reflector
JP2009167358A (en) Heat-dissipating resin composition
JP2010100682A (en) Heat-dissipating resin composition, substrate for led mounting, and reflector
JP2008260830A (en) Heat transfer resin composition
CN102213400A (en) Housing for LED lighting device and LED lighting device
WO2012043936A1 (en) Polyamide composition having excellent surface reflectance and heat resistance
KR20110075703A (en) Polyamide resin composition excellent in reflectivity, impact resistance, heat resistance and moisture resistance, and a method of manufacturing the same
JP2012140619A (en) Polyamide resin composition for reflector excellent in surface glossiness and reflectance and molded product thereof
CN114213829A (en) Flame-retardant light-blocking high-reflectivity PC material and preparation method thereof
CN106461824B (en) Resin composition for reflective material and reflective plate containing same
EP2592117A1 (en) Polyamide composition and article manufactured therefrom
KR102665124B1 (en) Fluoropolymer compositions for components of light-emitting devices
JP6194155B2 (en) RESIN COMPOSITION FOR REFLECTOR, RESIN FRAME FOR REFLECTOR, REFLECTOR, SEMICONDUCTOR LIGHT EMITTING DEVICE, AND MOLDING METHOD
KR101231020B1 (en) Polyamide Resin Composition with Good Reflectance, Impact Strength, Heat resistance, and Water resistance, and Method of Preparing the Same
KR101688278B1 (en) Thermal conductivity resin composition comprising noncarbon based filler, method for preparing extrusion molded products

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20080214

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20101029

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20080214

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120420

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20121130

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20130516

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130607

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130607

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160601

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170328

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20180418

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20190401

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20200421

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210322

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20220502

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20240320

Start annual number: 12

End annual number: 12