KR101274592B1 - MCFC cathode coated with mixed conducting oxide - Google Patents
MCFC cathode coated with mixed conducting oxide Download PDFInfo
- Publication number
- KR101274592B1 KR101274592B1 KR1020100041509A KR20100041509A KR101274592B1 KR 101274592 B1 KR101274592 B1 KR 101274592B1 KR 1020100041509 A KR1020100041509 A KR 1020100041509A KR 20100041509 A KR20100041509 A KR 20100041509A KR 101274592 B1 KR101274592 B1 KR 101274592B1
- Authority
- KR
- South Korea
- Prior art keywords
- cathode
- molten carbonate
- fuel cell
- carbonate fuel
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 claims abstract description 30
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 20
- 239000011148 porous material Substances 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 37
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 14
- 238000006722 reduction reaction Methods 0.000 abstract description 13
- 238000000576 coating method Methods 0.000 abstract description 12
- 239000011248 coating agent Substances 0.000 abstract description 10
- 239000002002 slurry Substances 0.000 abstract description 4
- 238000007598 dipping method Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- -1 oxygen ion Chemical class 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QBYHSJRFOXINMH-UHFFFAOYSA-N [Co].[Sr].[La] Chemical compound [Co].[Sr].[La] QBYHSJRFOXINMH-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HHWBWNRYGPXTSW-UHFFFAOYSA-N [Co]=O.[Sr].[Gd] Chemical compound [Co]=O.[Sr].[Gd] HHWBWNRYGPXTSW-UHFFFAOYSA-N 0.000 description 1
- MGYPLPRYNYINRY-UHFFFAOYSA-N [Cu]=O.[Sr].[La] Chemical compound [Cu]=O.[Sr].[La] MGYPLPRYNYINRY-UHFFFAOYSA-N 0.000 description 1
- UCZPLOPQBJXLFF-UHFFFAOYSA-N [Ni].[Ca].[La] Chemical compound [Ni].[Ca].[La] UCZPLOPQBJXLFF-UHFFFAOYSA-N 0.000 description 1
- FZJJTYLFARYPAT-UHFFFAOYSA-N [Ni].[Sr].[La] Chemical compound [Ni].[Sr].[La] FZJJTYLFARYPAT-UHFFFAOYSA-N 0.000 description 1
- YMVZSICZWDQCMV-UHFFFAOYSA-N [O-2].[Mn+2].[Sr+2].[La+3] Chemical compound [O-2].[Mn+2].[Sr+2].[La+3] YMVZSICZWDQCMV-UHFFFAOYSA-N 0.000 description 1
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- LFKMKZZIPDISEK-UHFFFAOYSA-L magnesium;4-carboxy-2,6-dihydroxyphenolate Chemical compound [Mg+2].OC1=CC(C([O-])=O)=CC(O)=C1O.OC1=CC(C([O-])=O)=CC(O)=C1O LFKMKZZIPDISEK-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8689—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Inert Electrodes (AREA)
Abstract
본 발명은 니켈 성형 전극판 위에 Mixed-conducting oxide를 분산하여 제조한 슬러리를 붓거나 담근 후, 내부 기공에 코팅함으로써 제조된 용융탄산염 연료전지용 공기극을 제공함으로써, 공기극의 산소환원 반응 속도가 증가되어 전극의 성능을 증가시키면서 종래의 용융탄산염 연료전지용 공기극보다 수명이 긴 공기극 전극을 얻을 수 있다.The present invention provides a cathode for a molten carbonate fuel cell prepared by pouring or dipping a slurry prepared by dispersing mixed-conducting oxide on a nickel-formed electrode plate and coating the inner pores, thereby increasing the oxygen reduction reaction rate of the cathode. It is possible to obtain a cathode electrode having a longer life than the cathode for a molten carbonate fuel cell while increasing the performance of the anode.
Description
일반적으로, 연료전지는 화학연료가 가지고 있는 화학 에너지를 전기에너지로 직접 전환시키는 장치로, 600℃이상의 고온에서 작동하는 연료전지로는 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC)와 고체 산화물형 연료전지를 들 수 있다. 용융탄산염 연료전지의 경우, 650℃의 고온에서 운전되기 때문에 인산형 또는 고분자 연료전지와 같은 저온형 연료전지에서 기대할 수 없는 장점이 있다. 즉, 고온에서의 빠른 전기화학 반응은 전극재료를 값비싼 백금 대신 저렴한 니켈의 사용을 가능하게 하여 경제성에서 유리할 뿐만 아니라, 백금전극에 피복 물질로 작용하는 일산화탄소 마저도 수성가스 전환반응을 통하여 연료로 이용할 수 있다. 그 밖에도 니켈전극의 특성은 석탄가스, 천연가스, 메탄올, 바이오 매스 등 다양한 연료 선택성을 가지고 있어, 다른 연료전지에 비해 경제성이 매우 높은 장점을 가지고 있다.In general, the fuel cell is a device that directly converts the chemical energy of the chemical fuel into electrical energy. Fuel cells operating at a high temperature of more than 600 ℃ are molten carbonate fuel cell (MCFC) and solid oxide type And fuel cells. The molten carbonate fuel cell has an advantage that cannot be expected in a low temperature fuel cell such as a phosphoric acid type or a polymer fuel cell because it is operated at a high temperature of 650 ° C. In other words, the rapid electrochemical reaction at high temperature enables the use of inexpensive nickel instead of expensive platinum, which is advantageous in economics, and even carbon monoxide acting as a coating material on the platinum electrode can be used as fuel through the water gas shift reaction. Can be. In addition, the characteristics of the nickel electrode has a variety of fuel selectivity, such as coal gas, natural gas, methanol, biomass, has the advantage of very economical compared to other fuel cells.
아래는 용융탄산염 연료전지에서의 수소 산화반응과 산소 환원반응에 대한 화학식을 나타낸다.Below are the chemical formulas for hydrogen oxidation and oxygen reduction in molten carbonate fuel cells.
연료극 : H2 + CO3 2 - → H2O + CO2 +2e- (수소 산화반응) Anode: H 2 + CO 3 2 - → H 2 O +
공기극 : 1/2 O2 + CO2 + 2e- → CO3 2 - (산소 환원반응) Cathode: 1/2 O 2 + CO 2 + 2e - → CO 3 2 - ( oxygen reduction reaction)
연료극에서는 수소가 산화되면서 전자가 공여되고, 공기극에서는 산소가 환원되면서 전자를 공여받는다. 이 때 연료극의 수소 산화반응보다 공기극의 산소 환원반응이 매우 느려 전지 성능 감소의 주요 원인이 된다.Electrons are donated as hydrogen is oxidized in the anode, and electrons are donated as oxygen is reduced in the cathode. At this time, the oxygen reduction reaction of the cathode is much slower than the hydrogen oxidation of the anode, which is a major cause of battery performance reduction.
종래의 용융탄산염 연료전지용 공기극은 니켈판을 제조하여 전지를 만든 후 in-situ 산화반응과 리튬 lithiation을 거쳐 사용된다. 즉 전지 내에 장착된 Ni 성형 전극은 연료가스인 산소에 의해 산화되고 동시에 전해질로 공급되는 탄산 리튬과 반응하여 다공성의 lithiated NiO로 변하게 되며 리튬의 lithiation에 의해 전기 전도도가 급격히 증가한다. 종래의 용융탄산염 연료전지용 공기극인 lithiated NiO의 경우 다양한 연료를 사용할 수 있다는 장점이 있으나, 산소 환원반응이 연료극의 수소 산화반응보다 느려 작동온도를 내릴 경우, 전지 성능을 크게 감소시키는 단점이 있다.Conventional cathodes for molten carbonate fuel cells are used through in-situ oxidation and lithium lithiation after a nickel plate is made to produce a cell. In other words, the Ni-formed electrode mounted in the cell is oxidized by oxygen, which is a fuel gas, and reacts with lithium carbonate supplied to the electrolyte to change into porous lithiated NiO, and the electrical conductivity is rapidly increased by lithiation of lithium. Lithiated NiO, which is a cathode for a molten carbonate fuel cell, has the advantage of using a variety of fuels. However, when the oxygen reduction reaction is slower than the hydrogen oxidation of the anode, the operating temperature is lowered.
그러므로, 빠른 산소환원 반응속도를 유지할 수 있는 새로운 공기극의 발명이 매우 중요하다고 할 수 있다. 그러나, 아직까지 낮은 작동온도에서도 빠른 산소환원 반응속도를 통해 분극 저항을 감소시켜 용융탄산염 연료전지의 성능을 향상시키고, 장시간의 운전 시에도 안정적으로 전지를 이용할 수 있는 공기극에 대한 연구가 부족한 실정이다. 일본 공개특허공보 1994-275283에서는 상기와 같은 연구를 개시한 바 있다. 그러나 상기 특허의 경우, 공기극 전체를 고가의 페로브스카이트 구조의 산화물로 구성하기 때문에 경제성이 떨어지고, 이로 인해, 대량 생산에 문제가 있으므로, 현재 상용화된 MCFC 시스템에서는 적용되고 있지 않는 실정이다. 따라서 경제성이 있고 대량생산이 가능한 방식으로 제조할 수 있는 공기극의 개발이 매우 필요하다.Therefore, it can be said that the invention of a new air electrode that can maintain a fast oxygen reduction reaction rate is very important. However, there is a lack of research on the air cathode which can improve the performance of molten carbonate fuel cell by reducing the polarization resistance through the fast oxygen reduction reaction rate even at low operating temperature and stably use the battery even in long time operation. . Japanese Laid-Open Patent Publication No. 1994-275283 has disclosed such a study. However, in the case of the above patent, since the entire air electrode is composed of an oxide having an expensive perovskite structure, it is economically inferior, and thus, there is a problem in mass production, and thus it is not currently applied in a commercially available MCFC system. Therefore, there is a great need for the development of cathodes which can be manufactured in an economical and mass-producible manner.
용융탄산염 연료전지의 경우, 650℃의 고온에서 작동되는 특징을 가지고 있다. 만일, 이 높은 작동 온도를 600℃ 내지 620℃로 낮춘다면, 장시간 운전에 유리하며 운전비용을 감소시키는 장점을 갖게 된다. 반면, 공기극에서 일어나는 산화환원 반응 속도가 현저히 떨어져 운전 성능의 저하를 일으키게 된다. 본 발명에서는 작동 온도를 낮출 경우 발생되는 공기극의 분극저항 증가로 인한 성능 감소를 보완하고자, 기존 공기극 lithiated NiO 내부 기공 표면에 전기전도성과 산소이온 전도성을 동시에 지니고 있다고 알려진 Mixed conducting oxide, 그 중에서도 페로브스카이트 물질을 코팅하여 용융탄산염 연료전지 운전 시, 연료극에 비해 현저히 느린 공기극의 산화환원 반응 속도를 빠르게 하여 낮은 작동 온도에서도 안정적이면서 높은 성능을 내며 장시간 운전이 가능하도록 하고자 한다.Molten carbonate fuel cells have the characteristic of operating at high temperatures of 650 ° C. If this high operating temperature is lowered to 600 ° C. to 620 ° C., it is advantageous for long time operation and has the advantage of reducing operating costs. On the other hand, the redox reaction rate that occurs at the air electrode is significantly lowered, causing a decrease in operating performance. In the present invention, in order to compensate for the decrease in performance due to the increased polarization resistance of the cathode generated when the operating temperature is lowered, mixed conducting oxide, which is known to have both electrical conductivity and oxygen ion conductivity at the surface of the existing air cathode lithiated NiO, among other perovskites When the molten carbonate fuel cell is operated by coating the sky material, the redox reaction rate of the cathode is significantly slower than that of the anode, so that it is stable and has high performance even at a low operating temperature, and can be operated for a long time.
본 발명에 따른 용융탄산염 연료전지의 공기극은 니켈 성형 전극판 위에 Mixed-conducting oxide를 분산하여 제조한 슬러리를 붓거나 담근 후, 내부 기공에 코팅함으로써 제조된다.The cathode of the molten carbonate fuel cell according to the present invention is prepared by pouring or immersing a slurry prepared by dispersing mixed-conducting oxide on a nickel-formed electrode plate and then coating the inner pores.
본 발명에 사용될 수 있는 Mixed-conducting oxide로는 다양한 물질을 사용할 수 있다. 예를 들어, 600 ~ 800℃에서 전기전도성과 산소이온전도성을 지니고 있는 ABO3구조의 페로브스카이트 계열 물질을 사용할 수 있다. Various materials may be used as the mixed-conducting oxide that may be used in the present invention. For example, a perovskite-based material having an ABO 3 structure having electrical conductivity and oxygen ion conductivity at 600 to 800 ° C. may be used.
일반적으로 ABO3로 명명되는 페로브스카이트 구조는 매우 기본적인 구조라 할 수 있다. 입방 단위체(cubic unit)의 꼭지점인 A자리에는 일반적으로 크고 낮은 원자가를 가지는 La, Sr, Ca, Gd, Ba, Mg 등의 희토금속 또는 알칼리토금속과 같은 양이온이 채워진다. 이러한 원자들은 산소와 더불어서 12배위수를 가진다. 입방체 중심에 있는 B자리는 작고, 일반적으로 높은 원자가를 가진 양이온(Ti, Cr, Mn, Ni, Fe, Co, Cu 그리고 Zr 등의 전위금속)에 의해서 채워진다. 이러한 원자들은 8면체 배위에서 6개의 산소 이온들에 의해서 배위된다. 페로브스카이트 구조는 도핑과 A 혹은 B 양이온들의 부분적인 치환이 가능하여 상당히 탄력적인 구조로 알려져 있다. 그러므로, LSM(Lanthanum strontium manganese oxide), LSCF(Lanthanum strontium cobalt ferrite), LSGM(Lanthanum strontium gallium magnesium oxide), LSNF(Lanthanum strontium nickel ferrite), LCNF(Lanthanum calcium nickel ferrite), LSC(Lanthanum strontium copper oxide), GSC(Gadolinium strontium cobalt oxide) 등이 가능하게 된다. The perovskite structure, generally named ABO 3 , is a very basic structure. The A site, which is a vertex of a cubic unit, is generally filled with cations such as rare earth metals or alkaline earth metals such as La, Sr, Ca, Gd, Ba, and Mg, which have large and low valences. These atoms, along with oxygen, have 12 coordination numbers. The B site in the center of the cube is filled with small, generally high valence cations (potential metals such as Ti, Cr, Mn, Ni, Fe, Co, Cu and Zr). These atoms are coordinated by six oxygen ions in the octahedral coordination. Perovskite structures are known to be highly resilient because they allow doping and partial substitution of A or B cations. Therefore, Lanthanum strontium manganese oxide (LSM), Lanthanum strontium cobalt ferrite (LSCF), Lanthanum strontium gallium magnesium oxide (LSGM), Lanthanum strontium nickel ferrite (LSNF), Lanthanum calcium nickel ferrite (LCNF), Lanthanum strontium copper oxide , GSC (Gadolinium strontium cobalt oxide) is possible.
본 발명의 ABO3 구조의 페로브스카이트 물질로는 LaxSr1 - xCoyFe1 - yO3(단, 0.5 ≤ x ≤ 0.9, 0.1 ≤ y ≤ 0.5)이 바람직하다. 이와 같은 조성 외의 LSCF는 전기 전도도가 낮고 전기화학적 촉매 특성이 떨어지는 경향을 보이므로, 본 발명의 목적을 이루기 어렵다. As the perovskite material of the ABO 3 structure of the present invention, La x Sr 1 - x Co y Fe 1 - y O 3 (where 0.5 ≦ x ≦ 0.9 and 0.1 ≦ y ≦ 0.5) is preferable. LSCF other than this composition tends to have low electrical conductivity and inferior electrochemical catalyst properties, and thus it is difficult to achieve the object of the present invention.
ABO3 구조의 페로브스카이트 물질을 포함하는 코팅층의 함량은 용융탄산염 연료전지의 공기극 특성을 향상시키고, 경제성을 함께 고려할 때, 다공성 니켈 기판 중량 대비 30중량% 이하인 것이 바람직하다.The content of the coating layer including the ABO 3 structure of the perovskite material is preferably 30% by weight or less based on the weight of the porous nickel substrate in consideration of the economical characteristics of the cathode of the molten carbonate fuel cell and economical efficiency.
또한, 본 발명의 페로브스카이트 입자가 니켈 베이스 전극의 공극으로 침투하여 최종적으로 니켈 입자에 흡착되기 위한 크기는 공기극의 기공 크기를 고려할 때, 5㎛ 이하가 바람직하다.In addition, the size of the perovskite particles of the present invention to penetrate into the pores of the nickel base electrode and finally adsorbed to the nickel particles is preferably 5 μm or less, considering the pore size of the air electrode.
본 발명의 용융탄산염 연료전지가 페로브스카이트 코팅층을 갖기 위해서는 a) 페로브스카이트 물질을 용매에 분산하는 단계, b) 분산된 페로브스카이트 코팅액을 다공성 니켈 기판 위에 도포하는 단계, c) 도포된 코팅액이 내부 기공으로 침투한 후, 건조하는 단계를 포함하여야 한다.In order for the molten carbonate fuel cell of the present invention to have a perovskite coating layer, a) dispersing the perovskite material in a solvent, b) applying the dispersed perovskite coating solution on a porous nickel substrate, c) After the applied coating liquid penetrates into the internal pores, it should include the step of drying.
상기 페로브스카이트 물질을 용매에 분산할 경우에는 분산제를 페로브스카이트 물질 대비 1 내지 10 중량%를 첨가하여 코팅액을 제조하는 것이 바람직하다.When the perovskite material is dispersed in a solvent, it is preferable to add 1 to 10% by weight of the dispersant relative to the perovskite material to prepare a coating solution.
본 발명에서는 니켈 베이스 전극에 페로브스카이트 물질을 분산한 슬러리를 붓거나 담가서 내부 기공에 침투시킨 후, Ni에 흡착시키므로, 기존 전극이 가지고 있는 기공의 크기 5 내지 10㎛, 기공율 60 내지 80 %인 종래의 일반 공기극과 동일한 수준으로 유지하면서도 Mixed conducting oxide의 산소 환원반응에 대한 촉매 역할로 공기극의 산화환원 반응 속도를 증가시켜 공기극의 분극 저항을 감소시킬 수 있다. 상기 제조된 페로브스카이트 슬러리의 점도는 100 ~ 5,000cp인 것이 바람직하다. 여기에서의 흡착은 코팅을 포함하는 개념이며, 이와 관련하여 하기와 같은 방법들이 가능하다.In the present invention, since the slurry in which the perovskite material is dispersed in the nickel base electrode is poured or soaked into the internal pores and then adsorbed to Ni, the pore size of the existing electrode has a pore size of 5 to 10 μm and porosity of 60 to 80%. The polarization resistance of the cathode may be reduced by increasing the redox reaction rate of the cathode as a catalyst for the oxygen reduction reaction of the mixed conducting oxide while maintaining the same level as a conventional cathode. The viscosity of the prepared perovskite slurry is preferably 100 ~ 5,000cp. Adsorption here is a concept including a coating, and the following methods are possible in this regard.
니켈 베이스 전극에 페로브스카이트 물질을 코팅하는 방법으로는 솔-젤(Sol-gel)법, 딥코팅(Deep coating)법, 스프레이 코팅(Spray coating)법, 진공 증착법 등 대부분의 코팅방법이 사용될 수 있다.As a method of coating the perovskite material on the nickel base electrode, most coating methods such as the Sol-gel method, the deep coating method, the spray coating method, and the vacuum deposition method are used. Can be.
도 1은 니켈 베이스 전극의 다공성 니켈 입자(120)와 페로브스카이트 입자(110)가 흡착되어 이루어진 공기극(100)의 개략도 및 SEM 사진을 나타낸다. FIG. 1 shows a schematic view and a SEM photograph of an
본 발명의 방법에 따라 용융탄산염 연료전지용 공기극을 제조함으로써, 공기극 표면 및 내부 기공 표면에 Mixed-conducting oxide을 균일하게 코팅할 수 있고, 이로 인해 공기극의 산소환원 반응 속도가 증가되어 전극의 성능을 증가시키면서 종래의 용융탄산염 연료전지용 공기극보다 수명이 긴 공기극 전극을 얻을 수 있다.By manufacturing the cathode for the molten carbonate fuel cell according to the method of the present invention, it is possible to uniformly coat the mixed-conducting oxide on the surface of the cathode and the inner pore surface, thereby increasing the oxygen reduction reaction rate of the cathode to increase the performance of the electrode In addition, it is possible to obtain a cathode electrode having a longer life than the conventional cathode for molten carbonate fuel cells.
나아가, 본 발명에 따른 공기극 전극은 낮은 작동 온도에서도 공기극의 산소환원 반응을 빠르게 하여 공기극에서 발생하는 분극 저항을 낮추는 역할을 하여 용융탄산염 연료전지의 장시간 운전에도 적용할 수 있는 한층 개선된 공기극을 제공할 수 있다.Furthermore, the cathode electrode according to the present invention serves to lower the polarization resistance generated in the cathode by accelerating the oxygen reduction reaction of the cathode even at a low operating temperature to provide an improved cathode that can be applied to long-term operation of the molten carbonate fuel cell. can do.
도 1은 LSCF가 코팅된 개략도 및 SEM 사진을 나타낸 것이다.
도 2은 LSCF가 코팅된 공기극을 이용한 단위전지 운전결과를 나타낸 것이다.
도 3는 LSCF가 코팅되지 않은 공기극을 이용한 단위전지 운전결과를 나타낸 것이다.
도 4은 LSCF가 코팅된 공기극을 이용한 단위전지를 1,000시간 운전한 후, 작동온도를 600℃에서 700℃까지 변화시켜가면서 전지 성능 변화를 관찰한 것이다.
도 5는 LSCF가 코팅되지 않은 공기극을 이용한 단위전지를 610℃, 630℃, 650℃ 작동온도에서의 전지 성능 변화를 관찰한 것이다.1 shows a schematic and SEM photograph of LSCF coated.
2 shows a unit cell operation result using the LSCF-coated cathode.
Figure 3 shows the unit cell operation results using the cathode without the LSCF coating.
FIG. 4 illustrates a change in battery performance after operating the unit cell using the LSCF-coated cathode for 1,000 hours while changing the operating temperature from 600 ° C. to 700 ° C. FIG.
FIG. 5 illustrates changes in cell performance at 610 ° C., 630 ° C., and 650 ° C. operating temperature of a unit cell using a cathode without LSCF.
<< 실시예Example >>
LSCF(Lanthanum strontium cobalt ferrite oxide)를 에탄올과 분산제가 있는 용액에 넣고 초음파 분산기로 1시간 정도 분산시켰다. 이 때 LSCF의 양은 단위전지에 사용할 공기극 무게 대비 5 중량%로 하였으며 분산제로 BYK-110을 사용하였다. 제조된 분산액은 진공흡착 방법으로 Ni 성형 전극에 코팅하였다. 이후, 내부 기공으로 LSCF를 효과적으로 침투시키기 위해 30분 동안 진공 흡착상태를 유지한 후, 100℃의 오븐에서 한 시간 가량 건조하여 코팅된 전극을 완성한다.Lanthanum strontium cobalt ferrite oxide (LSCF) was added to a solution containing ethanol and a dispersant and dispersed for 1 hour with an ultrasonic disperser. At this time, the amount of LSCF was 5% by weight based on the weight of the cathode used in the unit cell, and BYK-110 was used as a dispersant. The prepared dispersion was coated on a Ni molded electrode by vacuum adsorption. Subsequently, in order to effectively penetrate the LSCF into the internal pores, the vacuum adsorption state was maintained for 30 minutes, followed by drying in an oven at 100 ° C. for one hour to complete the coated electrode.
<< 실험예Experimental Example >>
도 2에 나타난 바와 같이, LSCF를 코팅한 공기극을 이용한 단위전지 운전 결과는 도 3의 코팅층이 형성되지 않은 공기극과 비교하여 35 내지 40 mV 정도 높게 나타난 것을 확인할 수 있다. 뿐만 아니라, 내부저항값(Internal resistance, IR)을 비교해 보면 LSCF가 코팅된 공기극 내부저항값의 경우, 평균적으로 4.1mΩ을 보임으로써 코팅하지 않은 공기극의 내부저항값(4.7mΩ)에 비해 현저히 낮게 나타난 것을 확인했다. 이는 LSCF가 가지는 600℃ 이상에서의 높은 전기 전도성에 의해 결과적으로 전기 전도성이 높은 공기극의 특성을 지니게 됨으로써 나타난 내부저항의 감소라고 볼 수 있다. 또한 약 2000 시간 정도 단위전지를 운전했을 경우, 0.83V 이상의 성능을 유지하여 LSCF를 코팅한 공기극이 긴 시간의 운전에도 전혀 문제가 없음을 확인하였다.As shown in FIG. 2, the unit cell operation result using the LSCF-coated cathode was found to be about 35 to 40 mV higher than that of the cathode in which the coating layer of FIG. 3 was not formed. In addition, when comparing internal resistance (IR), LSCF-coated cathode internal resistance showed 4.1mΩ on average, which was significantly lower than that of uncoated cathode (4.7mΩ). Confirmed that. This can be seen as a decrease in internal resistance that is exhibited by the high electrical conductivity of the LSCF has a characteristic of the air electrode having high electrical conductivity as a result. In addition, when the unit cell was operated for about 2000 hours, it was confirmed that the cathode electrode coated with LSCF had no problem even for long time operation by maintaining the performance of 0.83V or more.
또한, LSCF 코팅한 공기극을 이용한 단위 전지에서 1,000시간 운전한 후 작동온도를 변화시켜 보았다. 작동온도를 600℃에서 700℃까지 변화시켜가면서 전지 성능 변화를 관찰하여 도 4에 나타내었다. 비교를 위해 코팅하지 않은 공기극을 이용한 단위전지에서도 1,000시간 운전한 후, 610℃, 630℃, 650℃에서의 성능을 함께 측정하였으며 그 결과를 도 5에 나타내었다. In addition, the operation temperature was changed after 1,000 hours of operation in a unit cell using the LSCF-coated cathode. The battery performance was observed while changing the operating temperature from 600 ° C. to 700 ° C., and is shown in FIG. 4. For comparison, after 1,000 hours of operation even in a unit cell using an uncoated cathode, the performance was measured together at 610 ° C., 630 ° C., and 650 ° C., and the results are shown in FIG. 5.
LSCF를 코팅한 공기극을 이용한 단위전지에서는 작동온도가 600℃일 때 성능이 0.781V가 나왔으나, 코팅하지 않은 공기극을 이용한 단위전지에서는 610℃ 일 때 0.751V로, LSCF를 코팅한 경우보다 높은 온도임에도 불구하고 더 낮은 성능을 보였다. 이는 LSCF가 낮은 온도에서도 산소 환원반응 속도를 높여 공기에서의 전기 환원반응을 빠르게 하여, 온도 저하에 따른 성능 감소 정도를 줄여주는 역할을 한다는 것을 간접적으로 알 수 있다.In the unit cell using the LSCF-coated cathode, the performance was 0.781V when the operating temperature was 600 ° C. In the unit cell using the uncoated cathode, the performance was 0.751V at 610 ° C. Despite the lower performance. It can be seen that LSCF indirectly plays a role of reducing the decrease in performance due to the temperature decrease by increasing the rate of oxygen reduction reaction at low temperature to accelerate the electric reduction reaction in air.
<도면의 주요 부분에 대한 부호의 설명>
100 : 공기극 110 : 페로브스카이트 입자
120 : 니켈 입자Description of the Related Art
100: air electrode 110: perovskite particles
120: nickel particles
Claims (10)
상기 니켈 입자에 부착되는 페로브스카이트(Perovskite)형 산화물 입자 ; 를 포함하고,
상기 페로브스카이트형 산화물 입자는 LaxSr1-xCoyFe1-yO3(단, 0.5 ≤ x ≤ 0.9, 0.1 ≤ y ≤ 0.5)인 것을 특징으로 하는 용융탄산염 연료전지용 공기극.
A nickel base electrode formed of nickel particles and having a porous structure by the gap between the nickel particles; And
Perovskite type oxide particles adhered to the nickel particles; Lt; / RTI >
The perovskite oxide particles are La x Sr 1-x Co y Fe 1-y O 3 (wherein 0.5 ≤ x ≤ 0.9, 0.1 ≤ y ≤ 0.5) cathode for molten carbonate fuel cell.
The cathode for a molten carbonate fuel cell according to claim 1, wherein the content of perovskite particles is 30% by weight or less based on the weight of the porous nickel base electrode.
The cathode for the molten carbonate fuel cell of claim 1, wherein the porosity of the cathode is 60 to 80%.
The cathode for a molten carbonate fuel cell according to claim 1, wherein the size of all the pores of the cathode is 5 to 10 µm.
The cathode of claim 1, wherein the size of the perovskite particles is 5 µm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100041509A KR101274592B1 (en) | 2010-05-03 | 2010-05-03 | MCFC cathode coated with mixed conducting oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100041509A KR101274592B1 (en) | 2010-05-03 | 2010-05-03 | MCFC cathode coated with mixed conducting oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110121968A KR20110121968A (en) | 2011-11-09 |
KR101274592B1 true KR101274592B1 (en) | 2013-06-13 |
Family
ID=45392675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100041509A Expired - Fee Related KR101274592B1 (en) | 2010-05-03 | 2010-05-03 | MCFC cathode coated with mixed conducting oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101274592B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190138999A (en) | 2018-06-07 | 2019-12-17 | 한국생산기술연구원 | Laminate for fuel cell and cathod comflex comprising the same, and molten carbonate fuel cell comprising the same |
KR20210068172A (en) | 2019-11-29 | 2021-06-09 | 한국생산기술연구원 | MCFC cathode to reduce nickel melt |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3181282A1 (en) | 2021-11-11 | 2023-05-11 | Bloom Energy Corporation | Ni-fe based cathode functional layers for solid oxide fuel cells |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11214014A (en) * | 1998-01-28 | 1999-08-06 | Tokyo Gas Co Ltd | Air electrode of solid oxide fuel cell and method of manufacturing the same |
JP2005339904A (en) * | 2004-05-25 | 2005-12-08 | Kyocera Corp | Fuel cell stack and fuel cell |
-
2010
- 2010-05-03 KR KR1020100041509A patent/KR101274592B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11214014A (en) * | 1998-01-28 | 1999-08-06 | Tokyo Gas Co Ltd | Air electrode of solid oxide fuel cell and method of manufacturing the same |
JP2005339904A (en) * | 2004-05-25 | 2005-12-08 | Kyocera Corp | Fuel cell stack and fuel cell |
Non-Patent Citations (4)
Title |
---|
논문1 ; JOURNAL OF POWER SOURCES 115 (2003)12-18 * |
논문1 ; JOURNAL OF POWER SOURCES 115 (2003)12-18* |
논문2 ; JOURNAL OF POWER SOURCES 143 (2005)84-92 * |
논문2 ; JOURNAL OF POWER SOURCES 143 (2005)84-92* |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190138999A (en) | 2018-06-07 | 2019-12-17 | 한국생산기술연구원 | Laminate for fuel cell and cathod comflex comprising the same, and molten carbonate fuel cell comprising the same |
KR20210068172A (en) | 2019-11-29 | 2021-06-09 | 한국생산기술연구원 | MCFC cathode to reduce nickel melt |
Also Published As
Publication number | Publication date |
---|---|
KR20110121968A (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gou et al. | Pr-doping motivating the phase transformation of the BaFeO3-δ perovskite as a high-performance solid oxide fuel cell cathode | |
Shen et al. | Progress and prospects of reversible solid oxide fuel cell materials | |
Chen et al. | Review of SOFC cathode performance enhancement by surface modifications: recent advances and future directions | |
Maric et al. | Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni‐Samaria‐Doped Ceria Cermet Anode | |
US7976686B2 (en) | Efficient reversible electrodes for solid oxide electrolyzer cells | |
Hu et al. | Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells | |
Kan et al. | Challenges and prospects of anodes for solid oxide fuel cells (SOFCs) | |
Kong et al. | Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells | |
US6946213B2 (en) | Perovskite electrodes and method of making the same | |
US8354011B2 (en) | Efficient reversible electrodes for solid oxide electrolyzer cells | |
KR20160037136A (en) | Air electrodes including perovskites | |
Lv et al. | SrCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells | |
Huang et al. | Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells | |
CN106887604A (en) | A kind of cathode material for solid-oxide fuel cell | |
Chen et al. | Electrochemical characterization of Fe–rich BaFe0. 7Co0. 2Nb0. 1O3–δ as cathode material for IT–SOFC | |
KR20190131744A (en) | Method of manufacturing an electrode material having exsoluted and exchanged transition metal catalyst, and solid oxide fuel cell, metal air battery, and solid oxide electrolyzer cell having the same | |
KR102137987B1 (en) | Method of manufacturing an electrode material having perovskite crystal structure material using infiltration method, and metal air battery, solid oxide fuel cell, and solid oxide electrolyzer cell having the electrode material manufactured by the same | |
KR101274592B1 (en) | MCFC cathode coated with mixed conducting oxide | |
KR102159510B1 (en) | Method of manufacturing an electrode material having exsoluted and exchanged transition metal catalyst, and metal air battery, solid oxide fuel cell, and solid oxide electrolyzer cell having the same | |
Silva et al. | Synthesis and electrocatalytic properties of La0. 8Sr0. 2FeO3− δ perovskite oxide for oxygen reactions | |
KR101903652B1 (en) | Method of manufacturing an electrode material using infiltration method | |
Osinkin et al. | Structural stability and features of electrical and electrochemical behavior under reducing conditions of Pr 0.4 Sr 0.6 Co 0.2 Fe 0.7 Nb 0.1 O 3–δ material for the symmetrical SOFCs | |
He et al. | Cathodes for solid oxide fuel cell | |
KR20140070761A (en) | A electrode for solid oxide fuel cell, a solid oxide fuel cell therewith and method for manufacturing the same | |
Kisa et al. | Fabrication and performance analysis of A-site metal-promoted La0. 595V0. 005Sr0. 4CoO3−∂ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20100503 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111109 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120810 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130527 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130607 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130610 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160308 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160308 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170308 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170308 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20190401 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20200401 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20210401 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230329 Start annual number: 11 End annual number: 11 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20250318 |