KR101267218B1 - A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite - Google Patents
A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite Download PDFInfo
- Publication number
- KR101267218B1 KR101267218B1 KR1020090116493A KR20090116493A KR101267218B1 KR 101267218 B1 KR101267218 B1 KR 101267218B1 KR 1020090116493 A KR1020090116493 A KR 1020090116493A KR 20090116493 A KR20090116493 A KR 20090116493A KR 101267218 B1 KR101267218 B1 KR 101267218B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon nanotube
- polymer composite
- substrate
- polymer
- patterning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 156
- 229920000642 polymer Polymers 0.000 title claims abstract description 81
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000002131 composite material Substances 0.000 title claims abstract description 59
- 238000000059 patterning Methods 0.000 title claims abstract description 35
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 81
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000000523 sample Substances 0.000 claims abstract description 25
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 14
- 239000004094 surface-active agent Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 230000001939 inductive effect Effects 0.000 claims abstract description 5
- 238000001179 sorption measurement Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 42
- 239000010931 gold Substances 0.000 claims description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 239000002073 nanorod Substances 0.000 claims description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 6
- 239000012620 biological material Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 239000002070 nanowire Substances 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 241000700605 Viruses Species 0.000 claims description 4
- -1 alkylbenzene sulfonate Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 claims description 3
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229960000686 benzalkonium chloride Drugs 0.000 claims description 3
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 claims description 3
- 229910021387 carbon allotrope Inorganic materials 0.000 claims description 3
- 229960000541 cetyl alcohol Drugs 0.000 claims description 3
- 229960001927 cetylpyridinium chloride Drugs 0.000 claims description 3
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 claims description 3
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 claims description 3
- 229910003472 fullerene Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000002086 nanomaterial Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229940055577 oleyl alcohol Drugs 0.000 claims description 3
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 claims description 3
- 238000009832 plasma treatment Methods 0.000 claims description 3
- 229920001987 poloxamine Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims 2
- 239000011521 glass Substances 0.000 claims 2
- 229920003023 plastic Polymers 0.000 claims 2
- 239000004033 plastic Substances 0.000 claims 2
- 239000002096 quantum dot Substances 0.000 claims 2
- ZOXMZBDUWWCWDA-UHFFFAOYSA-N [Na].CCCCCCCCCCCCSCc1ccccc1 Chemical group [Na].CCCCCCCCCCCCSCc1ccccc1 ZOXMZBDUWWCWDA-UHFFFAOYSA-N 0.000 claims 1
- COHIUILBPQNABR-UHFFFAOYSA-N dodecyl phenylmethanesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)CC1=CC=CC=C1 COHIUILBPQNABR-UHFFFAOYSA-N 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000008346 aqueous phase Substances 0.000 abstract 1
- 238000005329 nanolithography Methods 0.000 abstract 1
- 238000000979 dip-pen nanolithography Methods 0.000 description 25
- 238000004630 atomic force microscopy Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 7
- 238000000089 atomic force micrograph Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000000609 electron-beam lithography Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005079 FT-Raman Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 229910021404 metallic carbon Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 230000005233 quantum mechanics related processes and functions Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명에 의하여 수용액상의 탄소노나노튜브 분산용액, 계면활성제 및 폴리에틸렌이민을 포함하는 탄소나노튜브-고분자 복합체가 개시되며, 탄소나노튜브를 기판에 패터닝 하기 위한 준비 단계로써 폴리에틸렌아민을 사용하여 탄소나노튜브-고분자 복합체 용액을 준비하는 단계; 상기 탄소나노튜브-고분자 복합체 용액을 AFM 탐침 표면에 물리적 흡착을 유도하는 단계; 상기 탄소나노튜브-고분자 복합체 용액이 함침된 AFM 탐침을 기판 상에서 이동시키며 탄소나노튜브-고분자 복합체를 전사하는 단계; 상기 전사된 탄소나노튜브-고분자 복합체에서 고분자 부분을 화학적 처리를 통해 제거하는 단계; 및 소자를 형성하여 전도성을 확인하는 단계를 포함하는 탄소나노튜브의 패터닝 방법이 개시된다.Disclosed is a carbon nanotube-polymer composite comprising a carbon nanotube dispersion solution, a surfactant, and polyethyleneimine in an aqueous phase, and a carbon nanotube using polyethyleneamine as a preparation step for patterning a carbon nanotube on a substrate. Preparing a polymer complex solution; Inducing physical adsorption of the carbon nanotube-polymer composite solution on an AFM probe surface; Transferring the carbon nanotube-polymer complex by moving the AFM probe impregnated with the carbon nanotube-polymer complex solution onto a substrate; Removing the polymer part from the transferred carbon nanotube-polymer composite through chemical treatment; And a method of patterning carbon nanotubes including forming a device to check conductivity.
딥펜-나노리소그래피, 탄소나노튜브-고분자 복합체, 배향성, 패터닝 Dip-Nano Lithography, Carbon Nanotube-Polymer Composites, Orientation, Patterning
Description
본 발명은 수용액상의 탄소나노튜브 분산용액, 계면활성제 및 폴리에틸렌이민으로 이루어지는 기판에 특정 방향으로 배향성을 가지는 직접 패터닝을 형성하기 위한 탄소나노튜브-고분자 복합체에 관한 것이다. 또한, 폴리에틸렌이민을 사용하여 고농도의 탄소나노튜브-고분자 복합체 용액을 준비하는 단계; 상기 탄소나노튜브-고분자 복합체 용액을 AFM 탐침 표면에 물리적 흡착을 유도하는 단계; 상기 탄소나노튜브-고분자 복합체 용액이 함침된 AFM 탐침을 기판 상에서 이동시키며 탄소나노튜브-고분자 복합체를 전사하는 단계; 및 상기 전사된 탄소나노튜브-고분자 복합체에서 고분자 부분을 화학적 처리를 통해 제거하는 단계를 포함하는, 기판에 탄소나노튜브를 특정 방향으로 직접 패터닝하는 방법에 관한 것이다.The present invention relates to a carbon nanotube-polymer composite for forming direct patterning having an orientation in a specific direction on a substrate composed of an aqueous carbon nanotube dispersion solution, a surfactant, and polyethyleneimine. In addition, using a polyethyleneimine to prepare a high concentration of carbon nanotube-polymer composite solution; Inducing physical adsorption of the carbon nanotube-polymer composite solution on an AFM probe surface; Transferring the carbon nanotube-polymer complex by moving the AFM probe impregnated with the carbon nanotube-polymer complex solution onto a substrate; And removing the polymer part from the transferred carbon nanotube-polymer composite through chemical treatment, and directly patterning the carbon nanotube on the substrate in a specific direction.
기존의 포토리소그래피 (photolithography)나 이빔리소그래피 (e-beam lithography) 공정의 경우 복잡하며 값비싼 공정 문제로 인하여, 최근 전자소자의 더 높은 집적도와 효율성을 얻기 위한 방법으로 원자힘 현미경 (Atomic Force Microscopy; AFM)을 이용한 딥펜-나노리소그래피 (Dip-pen nanolithography; DPN) 기술이 각광 받고 있다. 미국 노스웨스턴 대학의 Chad A. Mirkin 교수에 의해 개발된 (Chad A. Mirkin et al. Science 283, 661 (1999) 딥펜-나노리소그래피 (Dip-pen nanolithography; DPN) 방법은 기존의 포토리소그래피 (photolithography) 나 이빔리소그래피 (e-beam lithography) 와는 다른 패턴화 방법들로 보다 간단한 과정들로 진행된다. In the conventional photolithography or e-beam lithography process, due to the complicated and expensive process problem, recently, Atomic Force Microscopy (Atomic Force Microscopy) is a method for obtaining higher integration and efficiency of electronic devices. Dip-pen nanolithography (DPN) technology using AFM is in the spotlight. Developed by Professor Chad A. Mirkin of Northwestern University in the United States (Chad A. Mirkin et al. Science 283, 661 (1999) Dip-pen nanolithography (DPN) method is a conventional photolithography technique. Patterning methods differ from e-beam lithography in simpler processes.
딥펜-나노리소그래피 방법은 주사탐침현미경 (SPM) 팁을 ‘펜’ 으로 하고, 고체기판을 ‘종이’ 로 하여, 고체 상태의 기판에 대하여 화학적 친화력을 가진 분자나 생체물질을 ‘잉크’ 로서 SPM 팁과 기판 사이에 형성되는 물 매니스커스 (water meniscus)를 용매로 사용하여 확산 현상에 의해서 다양한 단분자나 바이오 물질을 기판에 코팅하는 기술이며, 이러한 딥펜-나노리소그래피 방식은 잉크로 사용하는 물질의 제약이 거의 없을 뿐만 아니라, 기능성 유기분자나 무기물질 또는 생체물질을 그 구조의 손상 없이 직접적으로 패터닝 할 수 있는 매우 큰 장점을 지니고 있다. 그러나 이러한 많은 장점에도 불구하고 아직까지 분자량이 큰 물질이나 마이크로 수준의 유-무기 물질들의 패터닝에는 그 제약이 따른다. The dip pen-nano lithography method uses a scanning probe microscope (SPM) tip as a pen, a solid substrate as a paper, and an SPM tip as a ink or a molecule or biomaterial having chemical affinity for a solid substrate. A technique of coating various substrates or biomaterials onto a substrate by diffusion using water meniscus formed between the substrate and the substrate. This dip pen-nano lithography method is a method of Not only are there few constraints, but it has the great advantage of being able to directly pattern functional organic molecules, inorganic materials or biomaterials without damaging their structure. However, despite these many advantages, there are still restrictions on the patterning of high molecular weight materials and micro-organic materials.
한편, 탄소나노튜브는 (Carbon Nanotube; CNT)는1991년 일본의 Iijima 박사에 의해 발견되었으며, 그들의 준 1차원적인 양자구조로 인하여 특이한 여러 양자역학적 현상이 관측되었으며, 그들의 직경이 수에서 수십 나노미터(nm)로 굉장히 작고, 종횡비가 크고, 속이 비어있는 특징이 있다. 이러한 탄소나노튜브의 매우 독특한 1차원 탄소구조로 인하여 우수한 기계적, 열적, 전기적 성질을 나타내며, 현 존하는 물질 중 가장 이상적인 반도체 소재로 평가되며, 차세대 신소재 물질로 평가 받고 있다. 여러 가지 장점들 중 특히, 기계적 물성이 뛰어난 것과 동시에 전기전도성과 열전도성이 높은 특성을 이용하여 산업전반에 걸쳐 전계효과 트랜지스터, 평판표시소자, 전자소자 등의 응용이 연구되고 있다.Carbon nanotubes (CNTs) were discovered by Dr. Iijima of Japan in 1991. Several qualitative quantum mechanical phenomena were observed due to their quasi one-dimensional quantum structure, and their diameters ranged from tens of nanometers to several nanometers. It is very small at (nm), has a large aspect ratio, and is hollow. Due to the very unique one-dimensional carbon structure of the carbon nanotubes, it exhibits excellent mechanical, thermal, and electrical properties, and is considered as the most ideal semiconductor material among the existing materials, and is evaluated as a next-generation new material material. Among various advantages, applications of field effect transistors, flat panel display devices, electronic devices, etc. have been studied throughout the industry by using excellent mechanical properties and high electrical and thermal conductivity.
그러나 아직까지 탄소나노튜브를 이용한 소자를 제작하는 데에 있어서 해결해야 하는 큰 과제가 남아있다. 궁극적으로 탄소나노튜브를 전자소자에 이용하는데 있어서 반도체성 탄소나노튜브를 얻어야 하는데, 현재 합성되는 과정을 보면 반도체성과 금속성 탄소나노튜브가 혼재되어 합성되고 있다. 따라서 혼재된 두 반도체성과 금속성 탄소나노튜브를 선택적으로 분리하는 것이 전자소자의 적용에 있어서 매우 중요하며, 향후 탄소나노튜브를 전자소자에 적용하기 위해서는 분리공정 기술뿐만 아니라 직경 및 길이의 제어가 가능해야 하고, 다양한 표면 처리 기술 및 원하는 기판 위에 요구하는 곳에 위치시킬 수 있는 어레이(array) 패터닝 기술이 확립되어야 할 필요가 있다.However, there are still big challenges to be solved in manufacturing devices using carbon nanotubes. Ultimately, in order to use carbon nanotubes in electronic devices, semiconducting carbon nanotubes should be obtained. In the present synthesis process, semiconducting and metallic carbon nanotubes are mixed and synthesized. Therefore, the selective separation of two mixed semiconductors and metallic carbon nanotubes is very important in the application of electronic devices. In order to apply carbon nanotubes to electronic devices in the future, control of diameter and length as well as separation process technology must be possible. In addition, there is a need to establish a variety of surface treatment techniques and array patterning techniques that can be placed on demand on desired substrates.
상기 탄소나노튜브를 어레이 하는데 있어, 현재 산업계에서는 포토리소그래피나 이빔리소그래피 공정을 주로 이용하는데 이 경우 복잡한 공정 절차, 소자에 무리가 가는 화학공정 및 값 비싼 제조 비용의 부담이라는 문제가 존재한다. 최근 이러한 문제점을 해결하기 위하여 딥펜-나노리소그래피 방법을 이용한 탄소나노튜브의 패턴화 기술이 여러 그룹에서 소개 되고 있다. 딥펜-나노리소그래피 방식을 이용한 탄소나노튜브의 어레이 기술을 살펴보면 2006년 미국의 노스웨스턴 대학의 멀킨 그룹의 연구진들은 간접적인 딥펜-나노리소그래피 방법을 이용하여 금속 기판 표면에 탄소나노튜브에 대하여 친화력을 가지는 유기 물질을 패터닝 한 후 탄소나노튜브 용액에 기판을 침지하여 간접적으로 탄소나노튜브를 기판위에 패터닝 하는 기술을 개발하였다. (Yuhuang Wang 등, PNAS., 2006, 103, 2026) 최근 일본의 니가타 대학의 연구원들은 전형적인 딥펜-나노리소그래피 방식인 물 메니스커스를 통한 패터닝 방법으로 직접적인 탄소나노튜브를 기판위에 전이 하는데 성공하였다. (Akira Baba 등, Nanotechnology, 2009, 20, 085301)In arranging the carbon nanotubes, the current industry mainly uses a photolithography or an e-beam lithography process. In this case, there are problems such as complicated process procedures, unreasonable chemical processes, and expensive manufacturing costs. Recently, in order to solve this problem, a patterning technique of carbon nanotubes using a dip pen-nano lithography method has been introduced from various groups. In the array technology of carbon nanotubes using dip pen-nano lithography, researchers from the Merkin Group of Northwestern University in the United States in 2006 used an indirect dip pen-nano lithography method to affinity carbon nanotubes on metal substrate surfaces. After patterning the organic material, the technology was developed to indirectly pattern carbon nanotubes on a substrate by immersing the substrate in a carbon nanotube solution. (Yuhuang Wang et al., PNAS., 2006, 103, 2026) Recently, researchers at Niigata University in Japan have succeeded in transferring direct carbon nanotubes onto a substrate by patterning through water meniscus, a typical dippen-nanolithography method. (Akira Baba et al., Nanotechnology, 2009, 20, 085301)
그러나 아직까지 딥펜-나노리소그래피 방식으로 특정 방향으로 배향된 탄소나노튜브를 기판에 직접적으로 패턴화하는 기술은 발표 되지 않았다.However, the technique of directly patterning carbon nanotubes oriented in a specific direction by dip pen nanolithography onto a substrate has not been published.
따라서 본 발명은 종래기술의 문제점을 해결하기 위해서 점도성을 가지는 고농도의 탄소나노튜브 용액을 제조하는 방법을 제공하는 것을 개시하며, 상기에서 개발된 점도성을 가지는 탄소나노튜브 용액을 잉크로 사용하여 딥펜-나노리소그래피 방법으로 특정 방향으로 배향된 탄소나노튜브의 직접적인 패터닝 기법을 제공하는 것이며, 더 나아가 딥펜-나노리소그래피 방법으로 패터닝된 탄소나노튜브의 전기적 특성을 확인하여 전자소자로써의 응용 가능성을 제공하는 것이다. Therefore, the present invention discloses a method for producing a carbon nanotube solution having a high concentration of viscosity in order to solve the problems of the prior art, by using the carbon nanotube solution having a viscosity developed above as an ink It provides a direct patterning technique of carbon nanotubes oriented in a specific direction by the dip pen-nano lithography method, and further provides the possibility of application as an electronic device by checking the electrical properties of the patterned carbon nanotubes by the dip pen-nano lithography method. It is.
상기와 같은 과제를 해결하기 위하여 본 발명은 점도성의 고농도의 탄소나노튜브-고분자 복합체를 잉크로 사용하여 딥펜-나노리소그래피 방법으로 특정 방향으로 배향된 탄소나노튜브의 직접적인 패터닝 기법과 그 응용을 개시한다. In order to solve the above problems, the present invention discloses a direct patterning technique of carbon nanotubes oriented in a specific direction by a dip pen nanolithography method and application thereof using a viscous high-concentration carbon nanotube-polymer composite as an ink. .
보다 구체적으로 본 발명은 More specifically, the present invention
특정 방향으로 배향된 탄소나노튜브의 패턴을 제작하기 위해서 탄소나노튜브-고분자 복합체 용액을 사용한다. 탄소나노튜브-고분자 복합체 용액은 다양한 방법으로 제조할 수 있으나, 수용액을 용매로 하여 탄소나노튜브를 안정하게 분산시키는 방법으로 제조하는 것이 바람직하다. 그 이유는 약간의 수분을 함유해서 AFM 탐침에 탄소나노튜브-고분자 복합체 용액이 마르는 현상을 방지하기 때문이다. A carbon nanotube-polymer composite solution is used to fabricate a pattern of carbon nanotubes oriented in a specific direction. The carbon nanotube-polymer composite solution may be prepared by various methods. However, it is preferable to prepare the carbon nanotube-polymer composite solution by a method of stably dispersing carbon nanotubes using an aqueous solution as a solvent. The reason is that it contains some moisture to prevent the carbon nanotube-polymer complex solution from drying out on the AFM probe.
본 발명에서 탄소나노튜브의 서로간의 엉김이 없으며 수용액 혹은 휘발성 유기용매에 침전되지 않은 상태로 분산될 수 있는 성질을 갖는 것이거나 또는 탄소나 노튜브의 표면처리를 통하여 상기한 성질을 갖게 하는 것이 바람직하다. In the present invention, the carbon nanotubes are not entangled with each other and may be dispersed in an aqueous solution or a volatile organic solvent without being precipitated, or may have the above properties through surface treatment of carbon or tube. .
탄소나노튜브의 서로간의 엉김이 없으며 수용액 혹은 휘발성 유기용매에 침전되지 않은 상태로 분산될 수 있는 성질을 갖도록 탄소나노튜브를 전처리 하는 데에는 여러 가지 방법이 이용될 수 있다. 예를 들어 전처리 과정에서 탄소나노튜브 표면의 일부에 수용액 혹은 휘발성 유기용매와 친화성이 있는 기능기를 부여하면 탄소나노튜브의 서로간에 엉김이 없으며 수용액 혹은 휘발성 용매에 침전되지 않은 상태로 분산될 수 있는 성질을 갖게 된다. 예컨대, 대한민국 등록특허 제10-675334호에 상기와 같은 기술이 개시되어 있다.Various methods can be used to pre-treat the carbon nanotubes so that they can be dispersed without being precipitated in an aqueous solution or a volatile organic solvent. For example, in the pretreatment process, if a portion of the surface of the carbon nanotubes is provided with a functional group having an affinity with an aqueous solution or a volatile organic solvent, the carbon nanotubes may not be entangled with each other and may be dispersed without being precipitated in the aqueous solution or the volatile solvent. It will have a property. For example, the above technology is disclosed in Korean Patent No. 10-675334.
상기 탄소나노튜브의 서로간에 엉김이 없으며 안정한 분산상태를 유지하기 위해서는 다양한 유기 물질 혹은 고분자 물질의 도입이 필요하다. 우선, 고농도, 예컨대, 3mg/ml의 고농도 탄소나노튜브 분산액을 제조하기 위하여 소듐도데실벤젠 설퍼네이트 (Sodiumdodecylbenzene sulphonate, SDBS 점도, 200,000cps)를 계면활성제로 이용하여 수용액상의 분산용액을 준비하고, 점도성을 부여하기 위하여 폴리에틸렌이민 (Polyethyleneimine, PEI)을 도입하여 점도성을 갖는 고농도의 탄소나노튜브-고분자 복합체 용액을 상기 탄소나노튜브 분산용액에 혼합한다.It is necessary to introduce various organic materials or polymer materials in order to maintain a stable dispersion state without being entangled with each other of the carbon nanotubes. First, in order to prepare a high concentration of carbon nanotube dispersion of high concentration, for example, 3mg / ml, using sodium dodecylbenzene sulphonate (SDBS viscosity, 200,000cps) as a surfactant to prepare a dispersion solution in aqueous solution, In order to impart conductivity, polyethyleneimine (PEI) is introduced to mix the carbon nanotube-polymer composite solution having high viscosity to the carbon nanotube dispersion solution.
본 발명에서 서로간에 엉김이 없는 안정한 탄소나노튜브 분산용액을 제조하기 위한 계면활성제는 상기의 소듐도데실벤젠설퍼네이트 외에 퍼플루오로옥타네이트, 퍼플루오로옥탄설퍼네이트, 소듐라우릴에테르설페이트, 알킬벤젠설포네이트, 세틸트리메틸암모늄브로마이드, 세틸피리디늄클로라이드, 폴리에틸티올실레이티드탈로우아민, 벤즈알코늄클로라이드, 벤즈에토늄클로라이드, 알킬폴리에틸렌옥사이드, 알킬페놀폴리에틸렌옥사이드, 폴로옥사민, 알킬폴리글루코사이드, 세틸알코올, 올레일알코올, 코카마이드MEA 또는 DEA, Tween 20, 80, 도데실디메틸아민옥사이드, 또는 이들의 혼합물 등을 사용할 수 있으며, CNT 분산용액에 점도를 부여하기 위하여 폴리에틸렌이민을 사용할 수 있다.In the present invention, the surfactant for preparing a stable carbon nanotube dispersion solution without entanglement with each other is perfluorooctanate, perfluorooctane sulfonate, sodium lauryl ether sulfate, alkyl in addition to the sodium dodecylbenzene sulfonate. Benzenesulfonate, cetyltrimethylammonium bromide, cetylpyridinium chloride, polyethylthiol silicated tallowamine, benzalkonium chloride, benzethium chloride, alkyl polyethylene oxide, alkyl phenol polyethylene oxide, poloxamine, alkyl polyglucoside , Cetyl alcohol, oleyl alcohol, cocamide MEA or DEA, Tween 20, 80, dodecyldimethylamine oxide, or a mixture thereof may be used, and polyethyleneimine may be used to impart viscosity to the CNT dispersion solution. .
상기 탄소나노튜브는 단일벽 혹은 다중벽 혹은 이중벽 탄소나노튜브가 쓰일 수 있으며, 본 실시 예에서는 다중벽 탄소나노튜브가 사용되었다.The carbon nanotubes may be single-walled or multi-walled or double-walled carbon nanotubes, and in this embodiment, multi-walled carbon nanotubes were used.
상기 탄소나노튜브는 화학적, 물리적 공정을 통해 길이를 제어하여 다양한 길이의 탄소나노튜브 패턴을 유도 할 수 있으며, 바람직하게는 탄소나노튜브의 결점을 최소화하고 본래의 고유한 화학적, 전기적 성질을 유지할 수 있도록 결점이 없는 순수한 탄소나노튜브를 사용할 수 있다. 본 실시예에서는 산처리 공정을 거치지 않은 결점이 없는 순수한 탄소나노튜브를 사용하여 점도성을 가지는 고농도의 탄소나노튜브-고분자 복합체를 사용하였다. The carbon nanotubes can induce carbon nanotube patterns of various lengths by controlling the lengths through chemical and physical processes, and preferably minimize the defects of carbon nanotubes and maintain their original chemical and electrical properties. Pure carbon nanotubes without defects can be used. In this embodiment, a high concentration of carbon nanotube-polymer composite having viscosity using pure carbon nanotubes without defects without an acid treatment process was used.
본 발명에서 탄소나노뷰브-고분자 복합체 수용액 혹은 휘발성 용매에 안정되게 분산된 상태는 탄소나노튜브의 패터닝에 있어 배향 및 정렬에 있어서 반드시 요구된다. 탄소나노튜브의 안정되게 분산된 상태는 당업자가 용이하게 제조할 수 있으며, 예컨대, 대한민국 등록특허 제10-675334호에 개시되어 있다.In the present invention, stably dispersed in a carbon nanobub-polymer composite aqueous solution or a volatile solvent is required for orientation and alignment in the patterning of carbon nanotubes. The stable dispersed state of the carbon nanotubes can be easily prepared by those skilled in the art, for example, disclosed in Korean Patent No. 10-675334.
본 발명에서 사용되는 탄소나노튜브를 대체 할 수 있는 물질의 예로는 탄소동소체인 플러린 (Fullerene, C60), 그래핀 (Graphene), 나노와이어 (Nanowire), 나노로드 (Nano rod) 등과 같이 막대 형상을 가진 나노물질 및 나노점 (Nano dot)등이 적용될 수 있으며, 상기 탄소나노튜브를 대체할 수 있는 일차원 구조체로는 산화아연(ZnO), 갈륨비소(GaAs), 갈륨질소(GaN), 인듐인(InP), 실리콘(Si), 금(Au), 은(Ag), 알루미늄(Al), 백금(Pt), 망간(Mn), 철(Fe), 니켈(Ni), 코발트(Co), 티타늄(Ti), 팔라듐(Pd)등이 될 수 있으며, 바이오 물질인 DNA, 단백질 (Protein), 바이러스 (Virus)등도 포함될 수 있다. Examples of materials that can replace the carbon nanotubes used in the present invention include rods such as the carbon allotropes (Fullerene, C 60 ), graphene, Graphene, Nanowire, Nano rod, etc. Shaped nanomaterials and nano dots can be applied, and one-dimensional structures that can replace the carbon nanotubes include zinc oxide (ZnO), gallium arsenide (GaAs), gallium nitrogen (GaN), and indium. Phosphorus (InP), silicon (Si), gold (Au), silver (Ag), aluminum (Al), platinum (Pt), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), It may be titanium (Ti), palladium (Pd), and the like, and may also include biomaterials such as DNA, protein, virus, and the like.
본 발명에 있어서 점도성을 가지는 고농도의 탄소나노튜브-고분자 복합체 용액을 잉크로 사용하여 딥펜-나노리소그래피 방식을 이용하여 원하는 기판상에 패터닝 하기 위해서 사용되는 원자힘 현미경 탐침으로는 이산화규소 또는 실리콘 질화물 등과 같은 재질의 소수성 팁이 사용될 수 있다. In the present invention, an atomic force microscopy probe used for patterning onto a desired substrate using a dippen-nano lithography method using a highly concentrated carbon nanotube-polymer composite solution having viscosity as an ink is silicon dioxide or silicon nitride. Hydrophobic tips of materials such as the like may be used.
상기에서 명시된 원하는 기판상에 탄소나노튜브를 패터닝 하기 위한 과정으로 상기의 이산화규소 또는 실리콘 질화물 등으로 원자힘 현미경 탐침의 표면처리가 바람직하다. Surface treatment of the atomic force microscope probe with silicon dioxide or silicon nitride is preferred as the process for patterning the carbon nanotubes on the desired substrate specified above.
상기 원자력 현미경 탐침의 표면처리는 화학적 처리를 통한 소수성또는 친수성 표면개질 및 오존-플라즈마 처리를 통한 OH를 부여한 친수성 표면 제공방법 또는 H2SO4/H2O2 3-6:1-2의 혼합용액을 이용하는 등의 방법이 있으며, 본 발명의 바람직한 예에서는 오존-플라즈마 처리를 통한 친수성을 부여한 원자힘 현미경 탐침을 제공하는 것이 바람직하다. The surface treatment of the atomic force microscope probe is a hydrophobic or hydrophilic surface modification through chemical treatment and a hydrophilic surface providing method to give OH through ozone-plasma treatment or mixing of H 2 SO 4 / H 2 O 2 3-6: 1-2 There is a method such as using a solution, and in a preferred embodiment of the present invention, it is preferable to provide an atomic force microscope probe imparted hydrophilicity through ozone-plasma treatment.
본 발명의 탄소나노튜브를 패터닝하는 과정으로 표면 처리된 원자힘 현미경 탐침을 탄소나노튜브-고분자 복합체 용액을 담지하고 원하는 기판 상에 패터닝하여 전이하는 것이 바람직하다.In the process of patterning the carbon nanotubes of the present invention, it is preferable to transfer the surface-treated atomic force microscope probe carrying the carbon nanotube-polymer composite solution and patterning the pattern on a desired substrate.
상기 패턴된 탄소나노튜브-고분자 복합체는 그 자체로써 뿐 아니라 고분자가 제거된 순수한 탄소나노튜브만이 존재하는 상태로 제작하는 것이 가능하며, 이는, 아세톤, 메탄올, 에탄올 등의 다양한 유기용매 및 H2O를 통한 제거가 가능하다.The patterned carbon nanotube-polymer composite may be manufactured in a state in which only pure carbon nanotubes in which polymers have been removed are present, as well as various organic solvents such as acetone, methanol, ethanol, and H 2. Removal through O is possible.
상기 탄소나노튜브의 패턴은 회로가 패턴된 소자에 적용되어 바람직하게는 전도성을 갖는 탄소나노튜브의 패턴을 제공하여 다양한 전자소자의 센서에 응용이 가능하다. The pattern of the carbon nanotubes is applied to the device is a circuit patterned pattern is preferably applied to the sensor of various electronic devices by providing a pattern of carbon nanotubes having conductivity.
상기한 바와 같이 점도성을 가지는 고농도의 탄소나노튜브 용액을 제조하여, 딥펜-나노리소그래피 방법으로 특정 방향으로 배향된 탄소나노튜브의 직접적인 패터닝 기법은 전자소자에 응용되어 바이오센서 및 화학적 센서에 응용이 가능하다. As described above, a carbon nanotube solution having a high concentration of viscosity is prepared, and a direct patterning technique of carbon nanotubes oriented in a specific direction by a dip pen-nano lithography method is applied to an electronic device and thus to a biosensor and a chemical sensor. It is possible.
이하, 본 발명을 첨부한 도면을 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 단, 하기 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시 예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
본 발명은 상술한 기술적 과제를 달성하기 위해 다음과 같은 구성에 의해 달 성되었다. The present invention has been achieved by the following configuration to achieve the above technical problem.
탄소나노튜브를 기판에 패터닝 하기 위한 준비 단계로써, 계면활성제와 함께 폴리에틸렌이민을 사용하여 고농도의 탄소나노튜브-고분자 복합체 용액을 준비하는 단계; 상기 탄소나노튜브-고분자 복합체 용액을 AFM 탐침 표면에 물리적 흡착을 유도하는 단계; 상기 탄소나노튜브-고분자 복합체 용액이 함침된 AFM 탐침을 기판 상에서 이동시키며 탄소나노튜브-고분자 복합체를 전사하는 단계; 및 상기 전사된 탄소나노튜브-고분자 복합체에서 고분자 부분을 화학적 처리를 통해 제거하는 단계를 포함하는 탄소나노튜브의 패터닝 방법을 제공한다. A preparatory step for patterning carbon nanotubes on a substrate, comprising: preparing a high concentration of carbon nanotube-polymer composite solution using polyethyleneimine together with a surfactant; Inducing physical adsorption of the carbon nanotube-polymer composite solution on an AFM probe surface; Transferring the carbon nanotube-polymer complex by moving the AFM probe impregnated with the carbon nanotube-polymer complex solution onto a substrate; And removing the polymer part from the transferred carbon nanotube-polymer composite through chemical treatment.
이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to the drawings.
본 발명은 점도성을 가지는 고농도의 탄소나노튜브 용액을 제조하는 방법을 제공하는 것을 개시하며, 상기한 방법으로 개발된 탄소나노튜브 용액을 잉크로 사용하여 딥펜-나노리소그래피 방법으로 특정 방향으로 배향된 탄소나노튜브의 직접적인 패터닝 기법에 대한 내용에 관한 것으로 종래의 딥펜-나노리소그래피 방식인 물 매니스커스를 통한 확산 방식에 비해서 별도의 습도 조절 없이 상대적으로 낮은 습도에서도 물리적 접촉 방식으로 용이하게 CNT를 전사시킬 수 있으며, 더 나아가 딥펜-나노리소그래피 방법으로 패터닝된 탄소나노튜브의 전기적 특성을 확인하여 전자소자로써의 응용을 개시하는 방법에 관한 것이다.The present invention discloses a method for producing a highly concentrated carbon nanotube solution having a viscosity, wherein the carbon nanotube solution developed by the above method is used as an ink and oriented in a specific direction by a dip pen-nano lithography method. It is about the direct patterning technique of carbon nanotubes, and it is easier to transfer CNTs by physical contact method at a relatively low humidity without controlling the humidity compared to the diffusion method through water maniscus, which is a conventional dip pen-nano lithography method. In addition, the present invention relates to a method of initiating an application as an electronic device by checking the electrical properties of a carbon nanotube patterned by a dip pen-nano lithography method.
도 1의 (a) 및 (b)는 종래의 딥펜-나노리소그래피 방법을 이용한 탄소나노튜브-고분자 복합체의 직접적인 패터닝 과정과 패턴 된 후의 복합체의 고분자 부분을 제거하는 과정을 개략적으로 도시한 도면이다. 1 (a) and (b) schematically illustrate a process of directly patterning a carbon nanotube-polymer composite using a conventional dip pen-nano lithography method and removing a polymer portion of the composite after being patterned.
본 발명에서 사용된 점도성의 고농도 탄소나노튜브-고분자 복합체의 제조는 소듐도데실벤젠 설퍼네이트 (Sodiumdodecylbenzene sulphonate, SDBS)를 계면활성제로 이용하여 수용액상의 고농도 (30 mg/ml) 분산용액을 만든 후 SWNT (60mg, Arc, Iljin)를 20 ml의 SDBS 수용액에 넣고 팁 소니케이터(tip sonicator; 200W)를 이용하여 30분간 분산한다. 분산한 용액을 1000rpm의 속도로 3 분간 원심분리하고 상등액을 따로 모은다. 여기에 점도성 고분자 용액인 폴리에틸렌이민 (PEI, 0.2ml 을 섞어 최종적으로 점도성을 가지는 3mg/ml의 고농도의 탄소나노튜브-고분자 복합체를 형성 한다.The preparation of a viscous high-concentration carbon nanotube-polymer composite used in the present invention uses sodium dodecylbenzene sulphonate (SDBS) as a surfactant to make a high concentration (30 mg / ml) dispersion in aqueous solution and then SWNT (60mg, Arc, Iljin) is added to 20 ml of SDBS aqueous solution and dispersed for 30 minutes using a tip sonicator (200W). The dispersed solution is centrifuged at 1000 rpm for 3 minutes and the supernatant is collected separately. Polyethyleneimine (PEI, 0.2ml), a viscous polymer solution, is mixed with it to form a highly concentrated carbon nanotube-polymer complex of 3mg / ml.
도 2는 상기한 방법으로 제조한 탄소나노튜브-고분자 복합체의 FT-IR과 FT-라만(Raman) 데이터로써, 탄소나노튜브-고분자 복합체가 서로 균일하게 형성되어 있음을 알 수 있다. 2 is FT-IR and FT-Raman data of the carbon nanotube-polymer composite prepared by the above method, and it can be seen that the carbon nanotube-polymer composite is uniformly formed with each other.
상기 탄소나노튜브-고분자 복합체 용액의 구조적 형태는 주사전자현미경(SPM) 사진과 원자힘 현미경(AFM)을 통하여 분석하였다. 도 3의(a)는 본 발명에 따라 제조된 탄소나노튜브-고분자 복합체 용액을 실리콘 웨이퍼 기판위에 떨어뜨린 후 질소 가스로 불어서 기판에 흡착된 용액을 메탄올로 씻어낸 후 주사전자 현미경으로 찍은 이미지이고, (b)는 상기와 같은 방법과 같은 형태로 샘플을 준비하여 원자힘 현미경으로 찍은 이미지이며, (c)는 그림 (b)의 파란색 라인의 원자힘 현미경 이미지에 나타난 탄소나노튜브-고분자 복합체의 높이를 나타낸 데이터이다. 이를 통하여 탄소나노튜브-고분자 복합체의 직경이 약 2 nm로 탄소나노튜브가 균일하게 형성 되어 있음을 확인 할 수 있으며, 도 3의 a)를 통하여 수 내지 수십 나노미터 의 두께로 균일하게 탄소나노튜브가 형성되어 있는 것을 확인할 수 있다.The structural form of the carbon nanotube-polymer composite solution was analyzed by scanning electron microscopy (SPM) and atomic force microscopy (AFM). 3 (a) is a carbon nanotube-polymer composite solution prepared according to the present invention dropped on a silicon wafer substrate and blown with nitrogen gas to wash the solution adsorbed on the substrate with methanol after scanning electron microscope image , (b) is an image taken by atomic force microscopy to prepare a sample in the same manner as described above, (c) is a carbon nanotube-polymer composite of the atomic force microscopy image of the blue line in Figure (b) Height data. Through this, it can be seen that the carbon nanotube-polymer composite has a diameter of about 2 nm, and the carbon nanotubes are uniformly formed. The carbon nanotubes uniformly have a thickness of several to several tens of nanometers through FIG. It can be seen that is formed.
상기의 탄소나노튜브-고분자 복합체를 기판에 패터닝 하는 과정으로써, 먼저 실리콘 소재인 AFM 탐침의 표면에 친수성을 부여 하기 위하여 오존-플라즈마를 15분간 처리를 하여 표면에 -OH기를 도입한다. 이후 상기에서 제조된 탄소나노튜브 복합체 용액을 실리콘 기판위에 20ul 떨어뜨려, 친수성이 도입된 AFM 탐침을 10분간 침지한다.As a process of patterning the carbon nanotube-polymer composite on the substrate, in order to impart hydrophilicity to the surface of the AFM probe, which is a silicon material, ozone-plasma is treated for 15 minutes to introduce -OH groups onto the surface. Thereafter, 20 ul of the carbon nanotube composite solution prepared above was dropped on the silicon substrate, and the hydrophilic AFM probe was immersed for 10 minutes.
이후 탄소나노튜브-고분자 복합체 용액이 침지된 AFM 탐침을 이용하여 AFM의 접촉식 모드를 이용하여, 딥펜-나노리소그래피 기법을 골드 전극이 형성된 실리콘옥사이드 기판 표면위에 패터닝 한다. 보다 구체적으로, 상기 탄소나노튜브-고분자 복합체 용액이 함침된 AFM 탐침을 이용하여 AFM의 접촉식 모드로 실리콘옥사이 기판 표면위에 접근시킨다. 이후 y축 방향으로 스캔 속도 0.1 Hz로 하여 45 m의 탄소나노튜브-고분자 복합체 라인 패턴을 긋는다. 이후 20~30초 후 AFM 탐침을 들어올리면, 기판에 라인형태로 탄소나노튜브-고분자 복합체가 직접적으로 패터닝 되며, 스캔 방향인 y축 방향으로 탄소나노튜브가 정렬된 것을 얻을 수 있다. A dip pen-nano lithography technique is then patterned on the surface of the silicon oxide substrate on which gold electrodes are formed using AFM's contact mode using an AFM probe immersed in a carbon nanotube-polymer composite solution. More specifically, an AFM probe impregnated with the carbon nanotube-polymer composite solution is used to contact the silicon oxy substrate surface in the contact mode of AFM. Then, a carbon nanotube-polymer composite line pattern of 45 m is drawn at a scan speed of 0.1 Hz in the y-axis direction. After 20-30 seconds, the AFM probe is lifted, and the carbon nanotube-polymer composite is directly patterned in a line shape on the substrate, and the carbon nanotubes are aligned in the y-axis direction in the scanning direction.
상기한 방법으로 패터닝된 기판을 도 3에서 나타낸 바, 도 3 의 (a) 및 (b)는 탄소나노튜브-고분자 복합체의 주사전자 현미경 이미지와 원자힘 현미경 이미지로서, (b)에 의해서 y축 방향으로 탄소나노튜브가 정렬되었음을 알 수 있다. 도 3의 (c)는 도 3 (b)의 파란색 라인의 원자힘 현미경 이미지에 나타난 탄소나노튜브-고분자 복합체의 높이를 나타낸 데이터이다. The substrate patterned by the above method is shown in FIG. 3, and FIGS. 3A and 3B are scanning electron microscope images and atomic force microscope images of carbon nanotube-polymer composites, and the y-axis by (b). It can be seen that the carbon nanotubes are aligned in the direction. Figure 3 (c) is the data showing the height of the carbon nanotube-polymer composite shown in the atomic force microscope image of the blue line of Figure 3 (b).
상기 패터닝된 탄소나노튜브-고분자 복합체의 전기적 특성을 확인하기 위하 여, 탄소나노튜브-고분자 복합체 패터닝의 여분의 고분자를 메탄올을 이용하여 제거하고, 전기적 특성을 확인 할 수 있는 키슬리 장비를 (Keithley 2400 electrometer 이용하여 전기적 특성을 확인하였다. 도 4의 (a)는 골드 전극으로 형성된 소자의 광학 이미지이며, (b)는 (a)의 소자에 딥펜-나노리소그래피 방법을 이용하여 탄소나노튜브를 패턴 한 후의 원자힘 현미경 이미지이다. 도 4의 (c)는 도 4의 (a)소자에 형성된 탄소나노튜브의 전기적 성질을 나타낸 데이터이다. 서로 연결되어 있지 않은 골드 전극 사이를 딥-펜 나노리소그래피 공정을 통하여 탄소나노튜브를 패터닝하고, 두 골드 전극사이에 형성된 탄소나노튜브의 전기적 특성은 소스와 드래인 사이의 전압이 5 V 일때, 전류가 약 124 로 흐름을 확인하였다.In order to confirm the electrical properties of the patterned carbon nanotube-polymer composite, the excess polymer of carbon nanotube-polymer composite patterning was removed using methanol, and Keithley equipment (Keithley) was able to check the electrical properties. The electrical properties were confirmed using a 2400 electrometer, Figure 4 (a) is an optical image of a device formed of a gold electrode, (b) is a pattern of carbon nanotubes using a dip pen-nano lithography method to the device of (a) (C) is data showing the electrical properties of the carbon nanotubes formed in the device (a) of Fig. 4. A dip-pen nanolithography process between gold electrodes not connected to each other. The carbon nanotubes are patterned through and the electrical properties of the carbon nanotubes formed between the two gold electrodes indicate that when the voltage between the source and the drain is 5 V, the current The flow was confirmed at about 124.
이상에서 본 발명에 따른 바람직한 실시 예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가지는 자라면 이로부터 균등한 타 실시 예가 가능하다는 것을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의하여 정해져야 한다. Although the preferred embodiment according to the present invention has been described above, this is merely illustrative, and those skilled in the art may understand that other equivalent embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be defined by the appended claims.
도 1의 (a) 및 (b)는 종래의 딥펜-나노리소그래피 방법을 이용한 탄소나노튜브-고분자 복합체의 직접적인 패터닝 과정과 패턴 된 후의 복합체의 고분자 부분을 제거하는 과정을 개략적으로 도시한 도면이다.1 (a) and (b) schematically illustrate a process of directly patterning a carbon nanotube-polymer composite using a conventional dip pen-nano lithography method and removing a polymer portion of the composite after being patterned.
도 2는 균일하게 형성된 탄소나노튜브-고분자 복합체 용액의FI-IR과 FT-Raman의 데이터이다. 2 is data of FI-IR and FT-Raman of uniformly formed carbon nanotube-polymer composite solution.
도 3 의 (a) 및 (b)는 탄소나노튜브-고분자 복합체의 주사전자 현미경 이미지와 원자힘 현미경 이미지이며, (c)는 그림 (b)의 파란색 라인의 원자힘 현미경 이미지에 나타난 탄소나노튜브-고분자 복합체의 높이를 나타낸 데이터이다. (A) and (b) of FIG. 3 are scanning electron microscopy images and atomic force microscopy images of carbon nanotube-polymer composites, and (c) is carbon nanotubes shown in atomic force microscopy images of blue lines in FIG. Data showing the height of the polymer complex.
도 4 의(a)는 골드 전극으로 형성된 소자의 광학 이미지이며, (b)는(a)의 소자에 딥펜-나노리소그래피 방법을 이용하여 탄소나노튜브를 패턴 한 후의 원자힘 현미경 이미지이며, 그림 (c)는(a)소자에 형성된 탄소나노튜브의 전기적 성질을 나타낸 데이터이다.(A) is an optical image of a device formed of a gold electrode, (b) is an atomic force microscope image after carbon nanotubes are patterned on the device of (a) using a dip pen-nano lithography method. c) is (a) data showing the electrical properties of the carbon nanotubes formed in the device.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1: AFM 탐침 2: 탄소나노튜브-고분자 복합체1: AFM probe 2: Carbon nanotube-polymer composite
3: 실리콘 기판3: silicon substrate
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090116493A KR101267218B1 (en) | 2009-11-30 | 2009-11-30 | A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090116493A KR101267218B1 (en) | 2009-11-30 | 2009-11-30 | A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110060028A KR20110060028A (en) | 2011-06-08 |
KR101267218B1 true KR101267218B1 (en) | 2013-05-23 |
Family
ID=44394868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090116493A Active KR101267218B1 (en) | 2009-11-30 | 2009-11-30 | A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101267218B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101360404B1 (en) | 2012-05-02 | 2014-02-11 | 서강대학교산학협력단 | A Method for Manufacturing Modular Microfluidic Paper Chips Using Inkjet Printing |
CN102749373B (en) * | 2012-07-06 | 2014-04-23 | 济南大学 | Preparation method and application of an electrochemical immunosensor for environmental estrogen |
KR102407818B1 (en) * | 2016-01-26 | 2022-06-10 | 삼성전자주식회사 | Cantilever set for atomic force microscope, apparatus for substrate surface inspection comprising the same, method of analyzing a surface of a semiconductor substrate using the same, and method of forming a micropattern using the same |
CN110480002B (en) * | 2019-08-14 | 2022-02-18 | 太原理工大学 | Synthesis method of silver nanowire with high length-diameter ratio |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090143246A1 (en) * | 2007-06-20 | 2009-06-04 | Northwestern University | Patterning with compositions comprising lipid |
-
2009
- 2009-11-30 KR KR1020090116493A patent/KR101267218B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090143246A1 (en) * | 2007-06-20 | 2009-06-04 | Northwestern University | Patterning with compositions comprising lipid |
Non-Patent Citations (1)
Title |
---|
Nano Lett., 2003* |
Also Published As
Publication number | Publication date |
---|---|
KR20110060028A (en) | 2011-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Aligned nanotubes | |
Ravindran et al. | Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications | |
Ko et al. | Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces | |
Choi et al. | Controlled deposition of carbon nanotubes on a patterned substrate | |
Huang et al. | Patterned growth of well-aligned carbon nanotubes: A soft-lithographic approach | |
Liu et al. | Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates | |
Kumar et al. | Influence of electric field type on the assembly of single walled carbon nanotubes | |
US8691180B2 (en) | Controlled placement and orientation of nanostructures | |
Huang et al. | Orientated assembly of single-walled carbon nanotubes and applications | |
CN101506413A (en) | Methods of making spatially aligned nanotubes and nanotube arrays | |
Zhang et al. | Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution | |
Druzhinina et al. | Strategies for post‐synthesis alignment and immobilization of carbon nanotubes | |
US8080314B2 (en) | Nanotube assembly | |
CN100490076C (en) | Self-assembly method, method for manufacturing cathode and device for depositing material | |
KR101267218B1 (en) | A carbon nanotube-polymer composite for patterning formation and the method for patterning formation using the composite | |
Lee et al. | Large-scale direct patterning of aligned single-walled carbon nanotube arrays using dip-pen nanolithography | |
Huang et al. | Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication | |
Li et al. | Transfer printing of submicrometer patterns of aligned carbon nanotubes onto functionalized electrodes | |
Xiao et al. | Formation of gradient multiwalled carbon nanotube stripe patterns by using evaporation-induced self-assembly | |
Lee et al. | Fabrication of carbon nanotube AFM probes using the Langmuir–Blodgett technique | |
Vajtai et al. | Building and testing organized architectures of carbon nanotubes | |
Zou et al. | Simple thermal chemical vapor deposition synthesis and electrical property of multi-walled carbon nanotubes | |
Vijayaraghavan | Bottom‐up assembly of nano‐carbon devices by dielectrophoresis | |
Muhlbauer et al. | A review on the synthesis of carbon nanotube thin films | |
Peng et al. | Patterned deposition of multi-walled carbon nanotubes on self-assembled monolayers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20091130 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110810 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120424 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20121024 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130516 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130516 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130516 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160325 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160325 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170327 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170327 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180411 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20180411 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200416 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20210401 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230405 Start annual number: 11 End annual number: 11 |