[go: up one dir, main page]

KR101235255B1 - Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles - Google Patents

Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles Download PDF

Info

Publication number
KR101235255B1
KR101235255B1 KR1020110079629A KR20110079629A KR101235255B1 KR 101235255 B1 KR101235255 B1 KR 101235255B1 KR 1020110079629 A KR1020110079629 A KR 1020110079629A KR 20110079629 A KR20110079629 A KR 20110079629A KR 101235255 B1 KR101235255 B1 KR 101235255B1
Authority
KR
South Korea
Prior art keywords
polyethylene
silica particles
nano
multifilament
nano silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020110079629A
Other languages
Korean (ko)
Other versions
KR20120062608A (en
Inventor
윤광중
김승훈
정상영
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Publication of KR20120062608A publication Critical patent/KR20120062608A/en
Application granted granted Critical
Publication of KR101235255B1 publication Critical patent/KR101235255B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/224Selection or control of the temperature during stretching
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • D10B2321/0211Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene high-strength or high-molecular-weight polyethylene, e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법에 관한 것으로서, (S1) 결정화도가 60~65%인 폴리에틸렌 펠렛과 평균입경이 5 내지 30nm인 나노 실리카 입자를 폴리에틸렌 100 중량부를 기준으로 0.01 내지 0.3 중량부로 혼합하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하는 단계; (S2) 상기 폴리에틸렌-나노 실리카 입자 마스터배치를 온도가 260 내지 280 ℃로 유지되는 압출기에 투입하여 폴리에틸렌을 용융시킨 다음, 온도가 280 내지 300 ℃인 방사구금을 통과시켜 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 제조하는 단계; (S3) 상기 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 300 내지 400배로 드레프트시키면서 동시에 냉각시켜, 결정화도가 40 내지 50%인 미연신사를 제조하는 단계; 및 (S4) 상기 미연신사를 온도가 100 내지 120 ℃인 가열챔버를 통과시키면서 18배 이상으로 연신하여 결정화도가 80% 이상인 폴리에틸렌 멀티필라멘트 연신사를 제조하는 단계를 포함한다.
본 발명에 따라 나노 실리카 입자의 크기와 함량 및 공정 조건을 제어하면, 고강도의 폴리에틸렌 멀티필라멘트 연신사를 제조할 수 있다.
The present invention relates to a method for producing a high strength polyethylene multifilament drawn yarn containing nano silica particles, (S1) based on 100 parts by weight of polyethylene pellets having a crystallinity of 60 to 65% and nano silica particles having an average particle diameter of 5 to 30 nm. To prepare a polyethylene-nano silica particles masterbatch by mixing to 0.01 to 0.3 parts by weight; (S2) The polyethylene-nano silica particle masterbatch is put into an extruder having a temperature of 260 to 280 ° C. to melt polyethylene, and then passed through a spinneret having a temperature of 280 to 300 ° C. to contain polyethylene nanoparticles. Preparing a multifilament; (S3) simultaneously cooling the polyethylene multifilament containing the nano-silica particles by 300 to 400 times while preparing a non-drawn yarn having a crystallinity of 40 to 50%; And (S4) stretching the unstretched yarn 18 times or more while passing the heating chamber having a temperature of 100 to 120 ° C. to produce polyethylene multifilament drawn yarn having a crystallinity of 80% or more.
By controlling the size and content of the nano-silica particles and the process conditions according to the present invention, it is possible to produce a high strength polyethylene multifilament drawn yarn.

Description

나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법{MANUFACTURING METHOD OF HIGH STRENGTH POLYETHYLENE MULTIFILAMENT DRAWN FIBERS CONTAINING NANO SILICA PARTICLES}MANUFACTURING METHOD OF HIGH STRENGTH POLYETHYLENE MULTIFILAMENT DRAWN FIBERS CONTAINING NANO SILICA PARTICLES}

본 발명은 안전장갑, 방호의류, 방검복, 산업용 로프, 양식 어망, 지오텍스타일, 작업 네트 등 다양한 용도로 사용될 수 있는, 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법에 관한 것이다.The present invention relates to a method for producing high strength polyethylene multifilament drawn yarn containing nano silica particles, which can be used for various purposes such as safety gloves, protective clothing, protective clothing, industrial ropes, aquaculture nets, geotextiles, work nets and the like.

산업 또는 민간용 로프류, 양식 어망류, 안전장갑, 방호의류, 방검복 등의 고성능 텍스타일류, 토목, 건축 분야의 지오텍스타일류나 작업 네트 등에는 고강도를 갖는 폴리에틸렌 멀티필라멘트 연신사가 사용되고 있다. High-performance textiles such as industrial or civilian ropes, farmed fishing nets, safety gloves, protective clothing, and sword suits, polyethylene multifilament yarns having high strength are used for geotextiles and work nets in civil engineering and construction.

고강도 폴리에틸렌 멀티필라멘트 연신사를 제조하는 방법으로서,분자량 4백만 이상의 초고분자량 폴리에틸렌 수지를 이용하는 방법이 잘 알려져 있다. 초고분자량의 폴리에틸렌 수지는 높은 분자량으로 인하여 용융압출이 불가능하다. 따라서, 1단계로 다량의 오일에 초고분자량 폴리에틸렌 수지를 겔화시킨 후 압출기의 방사구금으로 방사시켜 미연신사를 제조한 다음, 2단계로 오일이 다량 포함된 미연신사에서 오일을 치환한 후 연신하므로서 고강도 폴리에틸렌 멀티필라멘트 연신사를 제조한다. 그러나, 이 방법은 용매를 사용 및 처리해야 하므로 제조공정이 복잡하고 제조비용이 많이 드는 단점이 있다. As a method for producing a high strength polyethylene multifilament drawn yarn, a method using an ultra high molecular weight polyethylene resin having a molecular weight of 4 million or more is well known. Ultra high molecular weight polyethylene resins cannot be melt-extruded due to their high molecular weight. Therefore, in one step gelling the ultra-high molecular weight polyethylene resin to a large amount of oil and spinning with spinneret of the extruder to produce a non-drawn yarn, and then in two steps to replace the oil in the undrawn yarn containing a large amount of oil, Polyethylene multifilament drawn yarns are prepared. However, this method has a disadvantage in that the manufacturing process is complicated and the manufacturing cost is high because the solvent must be used and treated.

고강도 폴리에틸렌 멀티필라멘트 연신사를 제조하는 다른 방법으로는, 폴리에틸렌 수지를 용융방사한 후 얻은 미연신사를 연신하여 고강도 폴리에틸렌 멀티필라멘트 연신사를 얻는 방법이 있다.Another method for producing a high strength polyethylene multifilament drawn yarn is a method of stretching a non-drawn yarn obtained after melt spinning a polyethylene resin to obtain a high strength polyethylene multifilament drawn yarn.

예를 들어, 한국 공개특허공보 제1989-0004001호에는 고밀도 폴리에틸렌 수지를 용융 압출시 점탄성적 고유 특성에 기인하는 주기적 또는 연속적 멜트 프렉쳐 현상과 샤크스킨 현상을 방지하므로서, 방사 필라멘트 사이의 균제도를 향상시키고 연신 사절을 방지하여 연신 후 고강도 폴리에틸렌 멀티필라멘트 연신사를 얻는 방법이 개시되어 있다. 또한, 한국 공개특허공보 제2009-0049099호에는 메탈로센 촉매를 사용하여 제조한, 중량 평균 분자량이 300,000 이하, 중량 평균 분자량과 수평균 분자량의 비(Mw/Mn)가 3.0 이하, 탄소수 5 이상의 분지쇄가 주쇄 1000 탄소당 0.01 내지 3.0개인 폴리에틸렌 수지를 용융 압출한 후 연신하여 고강도 폴리에틸렌 멀티필라멘트 연신사를 제조하는 방법을 개시하고 있다.For example, Korean Laid-Open Patent Publication No. 1989-0004001 improves the uniformity between spinning filaments by preventing cyclic or continuous melt fracture phenomena and sharkskin phenomena caused by viscoelastic intrinsic properties during melt extrusion of high density polyethylene resins. A method of obtaining high strength polyethylene multifilament drawn yarns after stretching is disclosed. In addition, Korean Patent Publication No. 2009-0049099 discloses a weight average molecular weight of 300,000 or less, a ratio of weight average molecular weight to number average molecular weight (Mw / Mn) of 3.0 or less and 5 or more carbon atoms produced using a metallocene catalyst. A method for producing a high strength polyethylene multifilament drawn yarn is disclosed by melt extruding a polyethylene resin having a branched chain of 0.01 to 3.0 per 1000 carbons of a main chain and then stretching.

그러나, 폴리에틸렌 수지를 용융방사하면, 수지 중의 분자쇄 얽힘이 매우 많아서 결정화 속도가 빠르다. 즉, 방사구금을 통하여 용융된 폴리에틸렌 수지를 냉각시켜 미연신사를 인취할 때 결정화가 급속히 진행되므로, 이미 결정화도가 높아진 미연신사가 얻어진다. 이에 따라, 미연신사를 높은 연신비로 연신하기 어려우므로, 고강도 폴리에틸렌 멀티필라멘트 연신사를 얻기에는 한계가 있다.However, when melt spinning the polyethylene resin, the molecular chain entanglement in the resin is very high and the crystallization rate is high. That is, since the crystallization proceeds rapidly when the polyethylene resin melted through the spinneret is cooled to take out the undrawn yarn, an undrawn yarn having a high degree of crystallinity is obtained. Thereby, since it is difficult to extend | stretch unstretched yarn with a high draw ratio, there exists a limit in obtaining high strength polyethylene multifilament stretched yarn.

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 나노 실리카 입자의 크기와 함량 및 공정 조건 등을 제어하여 고강도 폴리에틸렌 멀티필라멘트 연신사를 제조할 수 있는 방법을 제공하는데 있다.The present invention has been made to solve the above problems, to provide a method for manufacturing a high-strength polyethylene multifilament drawn yarn by controlling the size and content of nano silica particles and process conditions.

상기 과제를 달성하기 위하여, 본 발명에 따른 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법은,In order to achieve the above object, the manufacturing method of high-strength polyethylene multifilament drawn yarn containing nano silica particles according to the present invention,

(S1) 결정화도가 60~65%인 폴리에틸렌 펠렛과 평균입경이 5 내지 30nm인 나노 실리카 입자를 폴리에틸렌 100 중량부를 기준으로 0.01 내지 0.3 중량부로 혼합하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하는 단계;(S1) preparing a polyethylene-nano silica particle masterbatch by mixing polyethylene pellets having a crystallinity of 60 to 65% and nano silica particles having an average particle diameter of 5 to 30 nm at 0.01 to 0.3 parts by weight based on 100 parts by weight of polyethylene;

(S2) 상기 폴리에틸렌-나노 실리카 입자 마스터배치를 온도가 260 내지 280 ℃로 유지되는 압출기에 투입하여 폴리에틸렌을 용융시킨 다음, 온도가 280 내지 300 ℃인 방사구금을 통과시켜 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 제조하는 단계; (S2) The polyethylene-nano silica particle masterbatch is put into an extruder having a temperature of 260 to 280 ° C. to melt polyethylene, and then passed through a spinneret having a temperature of 280 to 300 ° C. to contain polyethylene nanoparticles. Preparing a multifilament;

(S3) 상기 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 300 내지 400배로 드레프트시키면서 동시에 냉각시켜, 결정화도가 40 내지 50%인 미연신사를 제조하는 단계; 및(S3) simultaneously cooling the polyethylene multifilament containing the nano-silica particles by 300 to 400 times while preparing a non-drawn yarn having a crystallinity of 40 to 50%; And

(S4) 상기 미연신사를 온도가 100 내지 120 ℃인 가열챔버를 통과시키면서 18배 이상으로 연신하여 결정화도가 80% 이상인 폴리에틸렌 멀티필라멘트 연신사를 제조하는 단계를 포함한다.(S4) stretching the unstretched yarn 18 times or more while passing the heating chamber having a temperature of 100 to 120 ℃ to prepare a polyethylene multifilament stretched yarn having a crystallinity of 80% or more.

본 발명에 따른 폴리에틸렌 섬유의 제조방법에 있어서, 상기 (S1) 단계에 따라 폴리에틸렌-나노 실리카 입자 마스터배치를 제조할 때, 상용화제를 더 첨가하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하는 것이 바람직하다. 이러한 상용화제로는 스티렌-에틸렌-부틸렌-스티렌(styrene-ethylene-buthylene-styrene SEBS) 공중합체 또는 말레익 안하이드라이드(Maleic Anhydride)가 그래프트된 폴리프로필렌(MAN-g-PP)를 각각 단독으로 또는 이들을 혼합하여 사용할 수 있다. In the method for producing polyethylene fiber according to the present invention, when preparing a polyethylene-nano silica particle masterbatch according to the step (S1), it is preferable to prepare a polyethylene-nano silica particle masterbatch by adding a compatibilizer. . Such compatibilizers include styrene-ethylene-butylene-styrene (SEBS) copolymer or maleic anhydride-grafted polypropylene (MAN-g-PP) alone. Or these can be mixed and used.

또한, 본 발명에 따른 폴리에틸렌 섬유의 제조방법에 있어서, 나노 실리카 입자는 계면활성제로 표면이 개질된 것을 사용하는 것이 바람직하다. 이러한 계면활성제로는 4급 암모늄염으로 된 양이온성 계면활성제를 사용인 것이 더욱 바람직하다. In addition, in the method for producing polyethylene fiber according to the present invention, it is preferable that the nano silica particles use those whose surface is modified with a surfactant. As such a surfactant, it is more preferable to use the cationic surfactant which consists of a quaternary ammonium salt.

본 발명에 따르면, 폴리에틸렌-나노 실리카 입자 마스터배치에 함유된 소정 크기와 함량의 실리카 입자들이 융융방사 후 냉각과정에서 미연신사의 결정화 속도를 지연시켜 결정화도가 낮아진 미연신사를 얻을 수 있게 한다. 또한, 폴리에틸렌 수지의 단계별 결정화도와 용융 및 방사온도 등의 조건을 최적으로 설계함으로서, 공정성을 확보하면서도 고강도의 폴리에틸렌 멀티필라멘트 연신사를 제조할 수 있게 된다.According to the present invention, silica particles of a predetermined size and content contained in the polyethylene-nano silica particle masterbatch delay the crystallization rate of the undrawn yarn in the cooling process after melt spinning, thereby obtaining undrawn yarn having low crystallinity. In addition, by optimally designing conditions such as the degree of crystallinity and melting and spinning temperature of the polyethylene resin, it is possible to produce a high-strength polyethylene multifilament drawn yarn while ensuring fairness.

이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. Hereinafter, the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

이하, 본 발명에 따른 폴리에틸렌 섬유의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method for producing polyethylene fiber according to the present invention will be described in detail.

먼저, 결정화도가 60~65%인 폴리에틸렌 펠렛과 평균입경이 5 내지 30nm인 나노 실리카 입자를 폴리에틸렌 100 중량부를 기준으로 0.01 내지 0.3 중량부로 혼합하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조한다(S1 단계). 마스터배치를 준비하는 방법으로는 나노 실리카 입자들을 폴리에틸렌 수지에 충분히 분산시킬 수 있는 방법이면 모두 사용이 가능하다. 예를 들어 실리카 입자들과 폴리에틸렌 펠렛을 이축 압출기에 투입하여 혼합한 다음 펠렛 형태의 폴리에틸렌-나노 실리카 입자 마스터배치로 제조할 수 있다.First, a polyethylene-nano silica particle masterbatch is prepared by mixing polyethylene pellets having a crystallinity of 60 to 65% and nano silica particles having an average particle diameter of 5 to 30 nm at 0.01 to 0.3 parts by weight based on 100 parts by weight of polyethylene (S1 step). . As a method of preparing the masterbatch, any method capable of sufficiently dispersing the nano silica particles in the polyethylene resin may be used. For example, silica particles and polyethylene pellets may be added to a twin screw extruder, mixed, and then prepared as pellet-type polyethylene-nano silica particle master batches.

폴리에틸렌 수지로는 초고분자량 폴리에틸렌과 달리 용융방사가 가능한 정도의 분자량이라면 모두 사용이 가능한데, 예를 들어 용융지수가 0.5 내지 1.5 g/10min인 폴리에틸렌 수지를 사용할 수 있다. 폴리에틸렌의 종류로는 지글러-나타 촉매나 메탈로센 촉매를 이용하여 제조한 고밀도 폴리에틸렌을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 폴리에틸렌 펠렛은 결정화도가 60~65%인 폴리에틸렌 수지로 된 것을 사용한다. 결정화도가 60% 미만일 경우에는 고강도 발현이 어렵고, 65% 이상일 경우에는 후술하는 드래프트 및 냉각 단계에서 결정화도가 40~50%인 미연신사를 제조하기 어려워 결과적으로 고강도 폴리에틸렌 멀티필라멘트 연신사를 제조할 수 없게 된다. Unlike the ultra high molecular weight polyethylene, any polyethylene can be used as long as it has a molecular weight capable of melt spinning. For example, a polyethylene resin having a melt index of 0.5 to 1.5 g / 10 min may be used. As a kind of polyethylene, it is preferable to use a high density polyethylene manufactured using a Ziegler-Natta catalyst or a metallocene catalyst, but is not limited thereto. Polyethylene pellets are made of polyethylene resin having a crystallinity of 60 to 65%. If the degree of crystallinity is less than 60%, it is difficult to express high strength, and if it is 65% or more, it is difficult to produce undrawn yarn having a crystallinity of 40 to 50% in the draft and cooling steps described later, and as a result, it is impossible to produce a high strength polyethylene multifilament drawn yarn. do.

폴리에틸렌-나노 실리카 입자 마스터배치를 제조하기 위해 첨가되는 실리카 입자들의 평균 입경은 5 내지 30 nm이다. 실리카 입자들의 평균 입경이 5 nm 미만이거나 30 nm를 초과하면 최종적으로 얻어지는 폴리에틸렌 멀티필라멘트 연신사의 강도가 저하된다. 실리카 입자로는 유기 실리콘 화합물의 연소에 의해 얻어지는 무정형 실리콘 디옥사이드로 된 실리카 입자가 바람직한데, 독일의 데구사에서 에어로질(Aerosil) 등의 제품명으로 상품화되어 있다. 실리카 입자들의 함량은 폴리에틸렌 수지 100 중량부를 기준으로 0.01 내지 0.3 중량부이다. 실리카 입자들의 함량이 0.01 중량부 미만인 경우 실리카 입자의 첨가에 따른 효과가 거의 나타나지 않고, 0.3 중량부를 초과하는 경우 실리카 입자의 분산성이 저하되어 오히려 얻어지는 폴리에틸렌 멀티필라멘트 연신사의 강도가 저하된다.The average particle diameter of the silica particles added to prepare the polyethylene-nano silica particle masterbatch is 5 to 30 nm. If the average particle diameter of the silica particles is less than 5 nm or more than 30 nm, the strength of the finally obtained polyethylene multifilament drawn yarn is lowered. As the silica particles, silica particles made of amorphous silicon dioxide obtained by combustion of an organic silicon compound are preferable, but are commercially available from Degussa, Germany under a product name such as Aerosil. The content of the silica particles is 0.01 to 0.3 parts by weight based on 100 parts by weight of polyethylene resin. When the content of the silica particles is less than 0.01 parts by weight, the effect of the addition of the silica particles is hardly exhibited, and when the content of the silica particles is more than 0.3 parts by weight, the dispersibility of the silica particles is lowered, and the strength of the polyethylene multifilament drawn yarn is lowered.

본 발명에 따른 폴리에틸렌 섬유의 제조방법에 있어서, 상기 (S1) 단계에 따라 폴리에틸렌-나노 실리카 입자 마스터배치를 제조할 때, 상용화제를 더 첨가하여 나노 실리카 입자의 분산성을 개선하는 것이 바람직하다. 이러한 상용화제로는 스티렌-에틸렌-부틸렌-스티렌(styrene-ethylene-buthylene-styrene SEBS) 공중합체 또는 말레익 안하이드라이드(Maleic Anhydride)가 그래프트된 폴리프로필렌(MAN-g-PP)를 각각 단독으로 또는 이들을 혼합하여 사용할 수 있다. 특히, 표면에 말레익안하이드라이드가 그래프트되어 있어서 표면에 -NH2기를 갖는 무기물과 올레핀계 고분자와의 접착성을 향상시키는 MAN-g-PP가 더욱 바람직하다. 상용화제의 바람직한 함량은 폴리에틸렌 수지 100 중량부를 기준으로 0.1 내지 3.0 중량부이다.In the method for producing polyethylene fiber according to the present invention, when preparing the polyethylene-nano silica particle masterbatch according to the step (S1), it is preferable to add a compatibilizer to improve the dispersibility of the nano silica particles. Such compatibilizers include styrene-ethylene-butylene-styrene (SEBS) copolymer or maleic anhydride-grafted polypropylene (MAN-g-PP) alone. Or these can be mixed and used. In particular, MAN-g-PP is more preferable because the maleic anhydride is grafted on the surface to improve the adhesion between the inorganic material having an -NH 2 group and the olefinic polymer. The preferred content of the compatibilizer is 0.1 to 3.0 parts by weight based on 100 parts by weight of polyethylene resin.

또한, 본 발명에 따른 폴리에틸렌 섬유의 제조방법에 있어서, 나노 실리카 입자는 계면활성제로 표면이 개질된 것을 사용하는 것이 바람직하다. 계면활성제에 의해 실리카 입자의 분산성이 개선되며, 특히 상용화제와의 상호작용에 의해 분산성이 더욱 개선될 수 있다. 이러한 계면활성제로는 이온성 계면활성제, 비이온성 계면활성제, 양쪽성 계면활성제 등을 모두 사용할 수 있으나, 특히 4급 암모늄염으로 된 양이온성 계면활성제를 사용인 것이 더욱 바람직하다. 이러한 4급 암모늄염으로는, 알킬트리메틸암모늄 클로라이드, 알킬디메틸벤질암모늄 클로라이드, 알킬디메틸메타아릴암모늄 클로라이드 등이 있다. 계면활성제의 바람직한 함량은 실리카 입자 100 중량부를 기준으로 45 내지 55 중량부이다.In addition, in the method for producing polyethylene fiber according to the present invention, it is preferable that the nano silica particles use those whose surface is modified with a surfactant. The dispersibility of the silica particles is improved by the surfactant, and in particular, the dispersibility may be further improved by interaction with the compatibilizer. As such a surfactant, all of an ionic surfactant, a nonionic surfactant, an amphoteric surfactant, etc. can be used, but it is more preferable to use the cationic surfactant which consists of quaternary ammonium salts especially. Such quaternary ammonium salts include alkyltrimethylammonium chloride, alkyldimethylbenzylammonium chloride, alkyldimethylmetharylammonium chloride and the like. The preferred content of the surfactant is 45 to 55 parts by weight based on 100 parts by weight of the silica particles.

이어서, 제조한 폴리에틸렌-나노 실리카 입자 마스터배치를 온도가 260 내지 280 ℃로 유지되는 압출기에 투입하여 폴리에틸렌을 용융시킨 다음, 온도가 280 내지 300 ℃인 방사구금을 통과시켜 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 제조한다(S2 단계).Subsequently, the prepared polyethylene-nano silica particle masterbatch is placed in an extruder having a temperature of 260 to 280 ° C. to melt polyethylene, and then passed through a spinneret having a temperature of 280 to 300 ° C. to contain polyethylene nanoparticles. To prepare a multifilament (step S2).

압출기의 온도가 260 ℃보다 낮으면 폴리에틸렌이 충분히 용융되지 않아 방사가 어려우며, 압출기의 온도가 280 ℃ 보다 높으면 폴리에틸렌의 용융점도가 낮아져 고강도가 발현되기 어려울 뿐만 아니라 일정한 속도 이상으로 권취하기 어렵다. 폴리에틸렌이 완전히 용융된 결과물은 기어펌프를 이용하여 온도가 280~300℃가 되도록 가열된 방사구금을 통과시켜 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 제조한다. 방사구금의 온도가 280℃보다 낮으면 방사 작업성이 좋지 않으며 방사구금의 온도가 300℃보다 높으면 폴리에틸렌의 열분해가 발생하기 때문에 연신비를 높여 고강도의 폴리에틸렌 멀티필라멘트를 제조할 수 없게 된다.When the temperature of the extruder is lower than 260 ° C., the polyethylene is not sufficiently melted and spinning is difficult. When the temperature of the extruder is higher than 280 ° C., the melt viscosity of the polyethylene is lowered, so that high strength is difficult to be expressed and it is difficult to wind more than a certain speed. The result of completely melting the polyethylene is passed through a spinneret heated to a temperature of 280 ~ 300 ℃ using a gear pump to produce a polyethylene multifilament containing nano silica particles. If the temperature of the spinneret is lower than 280 ° C, the spinning workability is not good. If the temperature of the spinneret is higher than 300 ° C, thermal decomposition of polyethylene occurs, so that it is impossible to manufacture high-strength polyethylene multifilament by increasing the draw ratio.

이렇게 방사구금을 통과한, 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 300 내지 400배로 드레프트시키면서 동시에 냉각시켜, 결정화도가 40 내지 50%인 미연신사를 제조한다(S3 단계).Thus, the multi-filament containing the nano-silica particles passed through the spinneret is simultaneously cooled while being drafted at 300 to 400 times to prepare undrawn yarn having a crystallinity of 40 to 50% (step S3).

드래프트비가 300배보다 낮으면 미연신사의 결정화도가 40% 미만으로 결정화도가 너무 낮으므로, 이를 고배율로 연신해도 고강도 발현이 어렵다. 또한, 400배보다 높으면 응력 증가로 인한 결정화도 증가로 인해 미연신사의 결정화도가 50% 이상으로 높아지게 된다. 이에 따라 후술하는 연신단계에서의 연신율을 높일 수 없게 되므로 고강도 폴리에틸렌 멀티필라멘트를 제조할 수 없다. If the draft ratio is lower than 300 times, the crystallinity of the undrawn yarn is less than 40%, so the crystallinity is too low, and even if it is drawn at a high magnification, it is difficult to express high strength. In addition, when it is higher than 400 times, the crystallinity of the non-drawn yarn is increased to 50% or more due to the increase of the crystallinity due to the stress increase. Accordingly, it is not possible to increase the elongation in the stretching step described later, it is not possible to produce a high strength polyethylene multifilament.

그런 다음, 상기 미연신사를 온도가 100 내지 120 ℃인 가열챔버를 통과시키면서 18배 이상으로 연신하여 결정화도가 80% 이상인 폴리에틸렌 멀티필라멘트 연신사를 제조한다(S4 단계).Then, the unstretched yarn is stretched 18 times or more while passing through a heating chamber having a temperature of 100 to 120 ° C. to prepare polyethylene multifilament stretched yarn having a crystallinity of 80% or more (step S4).

가열챔버의 온도가 100℃보다 낮으면 폴리에틸렌 사슬이 움직일 수 있는 에너지가 부족하여 18배 이상의 연신을 할 수 없어 고강도의 섬유를 제조할 수 없게 된다. 또한, 가열챔버의 온도가 120℃보다 높으면 연신시 파단이나 사슬의 재접힘이 발생하여 고강도 섬유를 제조할 수 없다. When the temperature of the heating chamber is lower than 100 ° C., the polyethylene chain may not have enough energy to move, and thus it may not be stretched more than 18 times, thereby making it impossible to manufacture high strength fibers. In addition, when the temperature of the heating chamber is higher than 120 ° C, breakage or refolding of the chain occurs at the time of stretching and high strength fibers cannot be produced.

전술한 방법으로 제조한 폴리에틸렌 멀티필라멘트는 고뎃롤러에서 수축시킨 후 와인더에 권취하므로서 결정화도가 80% 이상인 폴리에틸렌 멀티필라멘트를 얻었다.Polyethylene multifilament prepared by the above-described method was obtained by shrinking in a high speed roller and then wound in a winder to obtain polyethylene multifilament having a crystallinity of 80% or more.

본 발명에 의한 폴리에틸렌 멀티필라멘트는 모노필라멘트 섬도가 1~2 데니어이고, 모노필라멘트 개수가 200~400개의 집합체로 이루어진다. 모노필라멘트 섬도가 1데니어 미만이면 모우 발생이 심각하여 사의 품질이 떨어지고, 2 데니어를 초과하면 냉각이 어려워 연신성이 떨어진다. 또한, 모노필라멘트 개수가 200개 미만이면 고강도 섬유를 제조할 수 없고 400개를 초과하면 균일한 냉각이 이뤄지지 않아 미연신사의 연신성이 떨어진다.
The polyethylene multifilament according to the present invention has a monofilament fineness of 1 to 2 deniers and an aggregate of 200 to 400 monofilament number. If the monofilament fineness is less than 1 denier, the occurrence of wool is serious and the quality of the yarn is lowered. In addition, when the number of monofilaments is less than 200, high strength fibers cannot be manufactured. When the number of monofilaments is more than 400, uniform cooling is not achieved, and thus the stretchability of the undrawn yarn is inferior.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.

결정화도Crystallinity

결정화도는 시료의 밀도(ρ)로부터 중량분율에 의한 아래의 식으로 계산하였으며, 이때 결정과 비결정의 밀도값은 각각 1.000 g/cm3과 0.855 g/cm3를 사용하였다. The degree of crystallinity was calculated by the following formula based on the weight fraction from the density (ρ) of the sample, wherein the density values of the crystal and amorphous were 1.000 g / cm 3 and 0.855 g / cm 3 , respectively.

Figure 112011061864045-pat00001
Figure 112011061864045-pat00001

상기 식에서 Xc는 결정화도, ρ는 시료의 밀도, ρc는 결정영역의 밀도, 그리고, ρa는 비결정영역의 밀도를 나타낸다. Where X c is the crystallinity, ρ is the density of the sample, ρ c is the density of the crystal region, and ρ a is the density of the amorphous region.

강도 및 신도 : Strength and elongation: ASTMASTM D 2256 D 2256

강도와 신도는 강신도 측정기(Instron 5567)를 이용하여 200 mm/min의 인장속도로 측정하였다. Strength and elongation were measured at a tensile speed of 200 mm / min using an elongation tester (Instron 5567).

결정화시간 ( t 1 /2 ) The half-crystallization time (t 1/2)

하기 실시예 및 비교예에 사용된 펠렛 시료를 160℃에서 10분간 완전히 용융시킨 후, 이를 각각의 반결정화온도(105℃, 110℃, 115℃)로 신속히 온도를 낮춘 후 측정하여 얻었다.
The pellet samples used in the following Examples and Comparative Examples were completely melted at 160 ° C. for 10 minutes, and then measured by rapidly lowering the temperature to the respective semicrystallization temperatures (105 ° C., 110 ° C., and 115 ° C.).

실시예Example 1 One

양이온성 계면활성제인 oleyldimethylbenzylammonium chloride 9g을 가성소다 용액 25g 및 증류수 193.1g에 용해한 후, 이 용액에 입자의 평균입경이 7 nm인 실리카 19.25g을 투입하고 3시간 동안 교반한 다음, 80 ℃ 탈이온수로 세정하여 잉여 계면활성제를 제거한 후, 실온에서 건조하여 표면이 계면활성제로 개질된 실리카 입자를 제조하였다.After dissolving 9 g of cationic surfactant oleyldimethylbenzylammonium chloride in 25 g of caustic soda solution and 193.1 g of distilled water, 19.25 g of silica having an average particle diameter of 7 nm was added to the solution and stirred for 3 hours, followed by 80 ° C. deionized water. After washing to remove excess surfactant, it was dried at room temperature to prepare silica particles whose surface was modified with a surfactant.

결정화도가 62%인 폴리에틸렌 펠렛 100 중량부와, 전술한 방법으로 제조한 표면 개질 실리카 입자 0.05 중량부 및 상용화제(MAN-g-PP) 0.5 중량부를 이축 압출기에 투입하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하였다. Polyethylene-nano silica particles masterbatch by adding 100 parts by weight of polyethylene pellets having a crystallinity of 62%, 0.05 parts by weight of surface-modified silica particles and 0.5 parts by weight of compatibilizer (MAN-g-PP) prepared by the above-described method in a twin screw extruder. Was prepared.

이어서, 폴리에틸렌-나노 실리카 입자 마스터배치를 온도가 280 ℃인 압출기에 투입하여 용융시키고 기어펌프를 이용하여 온도가 290 ℃인 방사구금을 통하여 방사하고, 350배로 드래프트시키면서 냉각시키고 권취하여 결정화도가 45%인 미연신사를 제조하였다. 제조한 미연신사를 110℃의 히팅챔버에 통과시키면서 22배로 연신하여 결정화도가 81.3%인 폴리에틸렌 멀티필라멘트를 제조하였다. Subsequently, the polyethylene-nano silica particle masterbatch was put into an extruder having a temperature of 280 ° C., melted, spun through a spinneret having a temperature of 290 ° C. using a gear pump, and cooled and wound while drafting at 350 times to obtain a crystallinity of 45%. Phosphorous undrawn yarn was prepared. The unstretched yarn was stretched 22 times while passing through a heating chamber at 110 ° C. to produce polyethylene multifilament having a crystallinity of 81.3%.

실시예Example 2~3 2 ~ 3

실리카의 함량을 표 1에 기재된 함량으로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다. The same process as in Example 1 was carried out except that the content of silica was changed to the content shown in Table 1.

실시예Example 4~6 4 to 6

실리카 입자의 크기를 표 1에 기재된 크기로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다. The same procedure as in Example 1 was conducted except that the size of the silica particles was changed to the size shown in Table 1.

실시예Example 7~8 7-8

드래프트비를 표 1에 기재된 비율로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having changed the draft ratio in the ratio of Table 1.

비교예Comparative example 1~3 1-3

실리카의 함량을 표 2에 기재된 함량으로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다. The same process as in Example 1 was carried out except that the content of silica was changed to the content shown in Table 2.

비교예Comparative example 4~7 4 to 7

실리카 입자의 크기를 표 2에 기재된 크기로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the size of the silica particles was changed to the size shown in Table 2.

비교예Comparative example 8~9 8 ~ 9

드래프트비를 표 2에 기재된 비율로 변화시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다. It carried out similarly to Example 1 except having changed the draft ratio in the ratio of Table 2.

실시예 및 비교예에 사용된 원료 물질의 조성 및 공정조건과, 이에 따라 얻어진 마스터배치, 미연신사 및 연신사의 주요 물성을 각각 하기 표 1 및 2에 나타냈다. The composition and process conditions of the raw materials used in the examples and comparative examples, and the main physical properties of the masterbatch, undrawn yarn and drawn yarn thus obtained are shown in Tables 1 and 2, respectively.

Figure 112011061864045-pat00002
Figure 112011061864045-pat00002

Figure 112011061864045-pat00003
Figure 112011061864045-pat00003

표 1 및 2를 참조하면, 실리카 입자의 함량에 따른 실시예 1~3과 비교예 1~3을 보면, 비교예 1~2는 실리카가 첨가되지 않았거나 그 함량이 너무 낮아 실리카 입자에 의한 결정화 지연효과가 나타나지 않았고, 비교에 3은 실리카 함량이 높아 반결정화속도가 증가하여 오히려 미연신사의 결정화도가 높게 나타남을 알 수 있다. Referring to Tables 1 and 2, Examples 1 to 3 and Comparative Examples 1 to 3 according to the content of the silica particles, Comparative Examples 1 to 2 is not added to the silica or its content is too low crystallization by the silica particles There was no retardation effect, and in comparison, 3 has a high silica content, and thus the semi-crystallization rate is increased, and thus the crystallinity of undrawn yarn is high.

실리카 입자의 크기가 본원에서 정한 평균입경 범위(5-30 nm)를 벗어난 3, 32, 35, 40 nm인 실리카 입자를 각각 사용한 비교예 4 ~ 7의 경우에는 실리카 입자를 포함하지 않은 비교예 1과 비교하여 반결정화시간이 비슷하거나, 오히려 감소됨을 알 수 있다. 즉, 통상적으로는 실리카 입자가 작을수록 결정화 지연효과가 크다고 알려져 있으나, 실제 입자의 크기가 3 nm인 실리카 입자를 첨가한 결과, 실리카 입자를 첨가하지 않은 경우에 비해 반결정화시간이 감소하여 미연신사의 결정화도가 50% 이상으로 높게 나타났다. 또한, 실리카 입자의 크기가 30 nm 초과시, 결정화지연효과가 나타나지 않고 실리카 입자의 기핵작용으로 인하여 결정화가 빠르게 진행하여 미연신사의 결정화도가 증가함을 알 수 있다. In Comparative Examples 4 to 7 using silica particles having a size of silica particles having a size of 3, 32, 35, and 40 nm outside the average particle size range (5-30 nm) defined herein, Comparative Example 1, which did not include silica particles, was used. It can be seen that the semicrystallization time is similar or reduced compared to In other words, it is generally known that the smaller the silica particles, the larger the crystallization retardation effect is. However, as a result of adding the silica particles having the actual particle size of 3 nm, the semi-crystallization time is reduced compared to the case where the silica particles are not added. The crystallinity of was higher than 50%. In addition, when the size of the silica particles exceeds 30 nm, the crystallization delay effect does not appear, it can be seen that the crystallization proceeds rapidly due to the nucleation of the silica particles to increase the crystallinity of the undrawn yarn.

한편, 드래프트가 본원에서 정한 범위(300~400배)에 못미치는 비교예 8은 결정화도가 낮아 고강도가 발현되지 않았고, 드래프트비가 지나치게 높은 비교예 9는 미연신사의 결정화도가 55%로 너무 높아서 고연신이 불가능하게 되어 고강도가 발현되지 않았다. On the other hand, Comparative Example 8 in which the draft falls short of the range (300 to 400 times) determined by the present application has low crystallinity, and thus high strength is not expressed. This became impossible and high strength was not expressed.

Claims (5)

(S1) 결정화도가 60~65%인 폴리에틸렌 펠렛과 평균입경이 5 내지 30nm인 나노 실리카 입자를 폴리에틸렌 100 중량부를 기준으로 0.01 내지 0.3 중량부로 혼합하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하는 단계;
(S2) 상기 폴리에틸렌-나노 실리카 입자 마스터배치를 온도가 260 내지 280 ℃로 유지되는 압출기에 투입하여 폴리에틸렌을 용융시킨 다음, 온도가 280 내지 300 ℃인 방사구금을 통과시켜 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 제조하는 단계;
(S3) 상기 나노 실리카 입자가 포함된 폴리에틸렌 멀티필라멘트를 300 내지 400배로 드레프트시키면서 동시에 냉각시켜, 결정화도가 40 내지 50%인 미연신사를 제조하는 단계; 및
(S4) 상기 미연신사를 온도가 100 내지 120 ℃인 가열챔버를 통과시키면서 18배 이상으로 연신하여 결정화도가 80% 이상인 폴리에틸렌 멀티필라멘트 연신사를 제조하는 단계를 포함하는 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법.
(S1) preparing a polyethylene-nano silica particle masterbatch by mixing polyethylene pellets having a crystallinity of 60 to 65% and nano silica particles having an average particle diameter of 5 to 30 nm at 0.01 to 0.3 parts by weight based on 100 parts by weight of polyethylene;
(S2) The polyethylene-nano silica particle masterbatch is put into an extruder having a temperature of 260 to 280 ° C. to melt polyethylene, and then passed through a spinneret having a temperature of 280 to 300 ° C. to contain polyethylene nanoparticles. Preparing a multifilament;
(S3) simultaneously cooling the polyethylene multifilament containing the nano-silica particles by 300 to 400 times while preparing a non-drawn yarn having a crystallinity of 40 to 50%; And
(S4) high-strength polyethylene including nano-silica particles comprising the step of stretching the unstretched yarn 18 times or more while passing through a heating chamber having a temperature of 100 to 120 ℃ to produce a polyethylene multifilament stretched yarn having a crystallinity of 80% or more Method for manufacturing multifilament drawn yarns.
제1항에 있어서,
상기 (S1) 단계에서 상용화제를 더 첨가하여 폴리에틸렌-나노 실리카 입자 마스터배치를 제조하는 것을 특징으로 하는 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법.
The method of claim 1,
The method of producing a high-strength polyethylene multifilament drawn yarn containing nano-silica particles, characterized in that to further prepare a polyethylene-nano silica particles masterbatch by adding a compatibilizer in the step (S1).
제2항에 있어서,
상기 상용화제는 스티렌-에틸렌-부틸렌-스티렌(styrene-ethylene-buthylene-styrene SEBS) 공중합체, 말레익 안하이드라이드(Maleic Anhydride)가 그래프트된 폴리프로필렌(MAN-g-PP) 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법.
The method of claim 2,
The compatibilizer is a styrene-ethylene-butylene-styrene (SEBS) copolymer, maleic anhydride-grafted polypropylene (MAN-g-PP) and mixtures thereof Method for producing a high strength polyethylene multifilament drawn yarn containing nano-silica particles, characterized in that any one selected from the group consisting of.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 나노 실리카 입자는 계면활성제로 표면이 개질된 것을 특징으로 하는 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법.
4. The method according to any one of claims 1 to 3,
The nano silica particles are a method of producing a high strength polyethylene multifilament drawn yarn containing nano silica particles, characterized in that the surface is modified with a surfactant.
제4항에 있어서,
상기 계면활성제는 4급 암모늄염으로 된 양이온성 계면활성제인 것을 특징으로 하는 나노 실리카 입자가 포함된 고강도 폴리에틸렌 멀티필라멘트 연신사의 제조방법.
5. The method of claim 4,
The surfactant is a method of producing a high strength polyethylene multifilament drawn yarn containing nano silica particles, characterized in that the cationic surfactant of the quaternary ammonium salt.
KR1020110079629A 2010-12-06 2011-08-10 Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles Expired - Fee Related KR101235255B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100123719 2010-12-06
KR20100123719 2010-12-06

Publications (2)

Publication Number Publication Date
KR20120062608A KR20120062608A (en) 2012-06-14
KR101235255B1 true KR101235255B1 (en) 2013-02-20

Family

ID=46683500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110079629A Expired - Fee Related KR101235255B1 (en) 2010-12-06 2011-08-10 Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles

Country Status (1)

Country Link
KR (1) KR101235255B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019186696A1 (en) * 2018-03-27 2021-04-22 東洋紡株式会社 Polyethylene fiber and products using it

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381545B (en) * 2016-10-21 2018-08-24 赣州恒大塑料包装工贸有限公司 A kind of preparation method of high crystallinity polypropylenes non-woven cloth fiber
TWI795248B (en) * 2017-11-13 2023-03-01 美商比瑞全球股份有限公司 Nonwoven fabrics including multi-component fibers with improved inter-component adhesion and methods of forming the same
KR102809624B1 (en) * 2022-11-16 2025-05-21 주식회사 휴비스 High-strength polyethylene fiber having improved cut resistance, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055834A (en) 2001-08-09 2003-02-26 Toyobo Co Ltd High-strength polyethylene fiber for mesh woven or knitted fabric and mesh woven or knitted fabric
KR100499220B1 (en) 2003-06-30 2005-07-01 주식회사 효성 High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
EP2154274A1 (en) 2008-02-26 2010-02-17 Shandong Icd High Performance Fibres Co., Ltd Colored high strength polyethylene fiber and preparation method thereof
JP2010159403A (en) 2008-12-12 2010-07-22 Sumitomo Chemical Co Ltd Resin composition for filament, and the resultant filament

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055834A (en) 2001-08-09 2003-02-26 Toyobo Co Ltd High-strength polyethylene fiber for mesh woven or knitted fabric and mesh woven or knitted fabric
KR100499220B1 (en) 2003-06-30 2005-07-01 주식회사 효성 High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
EP2154274A1 (en) 2008-02-26 2010-02-17 Shandong Icd High Performance Fibres Co., Ltd Colored high strength polyethylene fiber and preparation method thereof
JP2010159403A (en) 2008-12-12 2010-07-22 Sumitomo Chemical Co Ltd Resin composition for filament, and the resultant filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019186696A1 (en) * 2018-03-27 2021-04-22 東洋紡株式会社 Polyethylene fiber and products using it
JP7070667B2 (en) 2018-03-27 2022-05-18 東洋紡株式会社 Polyethylene fiber and products using it

Also Published As

Publication number Publication date
KR20120062608A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP6963040B2 (en) Method for manufacturing graphene composite material
WO2012062053A1 (en) Preparation method for ultrahigh molecular weight polyethylene fiber
Wu et al. Preparation and properties of heat resistant polylactic acid (PLA)/Nano-SiO2 composite filament
KR101235255B1 (en) Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles
Dastjerdi et al. Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns
JP2008031572A (en) Polyamide fiber for fishnet, and fishnet using the same
JP4617872B2 (en) Polylactic acid fiber
JP6838282B2 (en) Polypropylene fiber and manufacturing method of polypropylene fiber
JP2011226023A (en) Stretch-broken spun yarn composed of meta-type wholly aromatic polyamide
CN107709640B (en) Polypropylene fiber and method for producing the same
Ibrahim et al. Spinning Techniques of Poly (vinyl Alcohol) Fibers for Various Textile Applications
CN113279087B (en) Polylactic acid fiber with high hydrolysis resistance and preparation method thereof
JP6676895B2 (en) Method for producing polypropylene fiber and polypropylene fiber obtained by the same method
CN114737272A (en) A kind of preparation method of polylactic acid fiber with good hydrolysis resistance and heat resistance
JP6597020B2 (en) Polypropylene fiber manufacturing method and high-strength polypropylene fiber
CN114197070A (en) Preparation method of ultra-high molecular weight polyethylene fiber
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
CN109563645B (en) Vinylidene fluoride resin fiber and sheet-like structure
CN107326474B (en) Graphene and polyester composite fiber for cord and preparation method thereof
JP2011106060A (en) Polyarylene sulfide fiber
Gupta et al. Tensile failure of polyacrylonitrile fibers
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
Suntamit et al. Effect of ZnO nanoparticles on hydrophobicity, biological and mechanical properties of side-by-side bicomponent PP fibers
JPH10325018A (en) Conjugate filament having high specific gravity and its production

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110810

PA0201 Request for examination
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20111222

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20130129

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130214

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130214

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20151204

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20171125