KR101226624B1 - Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning - Google Patents
Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning Download PDFInfo
- Publication number
- KR101226624B1 KR101226624B1 KR1020090133817A KR20090133817A KR101226624B1 KR 101226624 B1 KR101226624 B1 KR 101226624B1 KR 1020090133817 A KR1020090133817 A KR 1020090133817A KR 20090133817 A KR20090133817 A KR 20090133817A KR 101226624 B1 KR101226624 B1 KR 101226624B1
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- hydrophilic
- substrate
- zno
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 239000011521 glass Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000000059 patterning Methods 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 230000002209 hydrophobic effect Effects 0.000 title 1
- 239000010409 thin film Substances 0.000 claims abstract description 48
- 239000005871 repellent Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 230000002940 repellent Effects 0.000 claims abstract description 25
- 230000008021 deposition Effects 0.000 claims abstract description 18
- 238000002834 transmittance Methods 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 19
- 238000007654 immersion Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 claims description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000004246 zinc acetate Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000005660 hydrophilic surface Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 238000004381 surface treatment Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 7
- 238000000018 DNA microarray Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/002—Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0007—Compositions for glass with special properties for biologically-compatible glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/75—Hydrophilic and oleophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/111—Deposition methods from solutions or suspensions by dipping, immersion
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/31—Pre-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Surface Treatment Of Glass (AREA)
- Catalysts (AREA)
Abstract
본 발명은 LPD법을 이용하여 유리 기판 위에 발수/친수 패터닝 기판을 제조하기 위한 것으로서, 발수 표면은 거친 표면을 갖는 ZnO 박막을 FAS를 이용한 표면 개질에 의하여 만들어졌고, 친수 표면은 자외선을 조사하여 FAS를 제거함으로써 만들어졌다. Hexagonal ZnO rod는 LPD법에 의하여 ZnO seed 층이 코팅된 유리 기판 위에 수직으로 성장되었다. 침적시간이 증가함에 따라 ZnO rod의 직경과 두께는 증가하였다. 제조된 ZnO 박막의 표면구조, 두께, 결정구조, 투과율과 접촉각은 FE-SEM, XRD, UV-vis 와 contact angle meter를 이용하여 측정하였다. 20°~30° 의 접촉각을 갖는 친수 ZnO 박막은 FAS 표면 처리에 의해 145°~161°의 접촉각을 갖는 표면으로 바뀌었다. 제조된 발수 표면은 300㎛, 3 mm 의 dot size를 갖는 shadow mask 를 이용하여 자외선을 조사하여 패터닝 되었다. 최종적으로 자외선이 조사된 발수 표면은 친수 표면으로 바뀌었다.The present invention is to produce a water-repellent / hydrophilic patterning substrate on a glass substrate by using the LPD method, the water-repellent surface is made by the surface modification using a FAS ZnO thin film having a rough surface, the hydrophilic surface is irradiated with ultraviolet rays FAS Was made by removing it. Hexagonal ZnO rod was grown vertically on the glass substrate coated with ZnO seed layer by LPD method. As deposition time increased, the diameter and thickness of ZnO rod increased. The surface structure, thickness, crystal structure, transmittance and contact angle of the prepared ZnO thin films were measured using FE-SEM, XRD, UV-vis and contact angle meter. The hydrophilic ZnO thin film having a contact angle of 20 ° to 30 ° was changed to a surface having a contact angle of 145 ° to 161 ° by FAS surface treatment. The prepared water repellent surface was patterned by irradiating ultraviolet rays using a shadow mask having a dot size of 300 μm and 3 mm. Finally, the water-repellent surface irradiated with ultraviolet rays turned into a hydrophilic surface.
친수, 발수, 패터닝 Hydrophilic, water-repellent, patterning
Description
본 발명은 LPD법을 이용하여 유리 기판 위에 발수/친수 패터닝 기판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a water / hydrophilic patterned substrate on a glass substrate using the LPD method.
생체 바이오 칩은 인구의 고령화로 인한 사회의 의료복지 수요가 증가함에 따라 그 중요성이 크게 부각되고 있지만 아직 낮은 민감도, 재현성 및 생체분자의 안정성 문제가 해결되어야 한다.Bio-biochips are of great importance as the demand for medical welfare in society increases due to the aging of the population, but low sensitivity, reproducibility, and stability of biomolecules must be solved.
본 발명은 종래 기술의 문제점을 해결하기 위하여 바이오칩 용 기판재료로 사용하여 바이오 분자를 쉽게 선택적으로 고정화시킬 수 있는 친수/발수 패터닝 유리기판을 제조하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to manufacture a hydrophilic / water-repellent patterned glass substrate which can be easily immobilized with biomolecules by using it as a substrate material for a biochip.
상기 목적을 달성하기 위하여 본 발명은 기판을 세정 및 친수 처리하고, 상기 기판의 상부에 ZnO 박막을 형성하고, 상기 Zno 박막의 표면에 FAS처리한 후 shadow mask를 덮고 자외선을 조사하여 패터닝하는 친수/발수 패터닝 유리기판 제조하기 위한 제조방법을 제공한다.In order to achieve the above object, the present invention cleans and hydrophilizes a substrate, forms a ZnO thin film on top of the substrate, and performs a FAS treatment on the surface of the Zno thin film to cover a shadow mask and irradiate ultraviolet rays to pattern the pattern. Provided is a manufacturing method for producing a water repellent patterned glass substrate.
또한, 본 발명은 ZnO 박막을 FAS처리한 후 박막 위에 shadow mask를 덮고 자외선을 조사하여 자외선에 의해 조사된 부분은 친수성을 나타내고, 비조사된 부분은 발수성을 나타내는 친수/발수 패터닝 유리기판을 제공한다.In addition, the present invention provides a hydrophilic / water repellent patterned glass substrate having a ZnO thin film by FAS treatment and covering a shadow mask on the thin film and irradiating with ultraviolet rays, the portions irradiated by ultraviolet rays exhibit hydrophilicity, and the non-irradiated portions exhibit water repellency. .
본 발명은 친수/발수 패터닝 유리기판 제조할 수 있으며, 또한 바이오칩 용 기판재료로 사용될 경우 바이오 분자를 쉽게 선택적으로 고정화시켜 더 명확하게 결과를 분석할 수 있는 효과를 갖는다.The present invention can produce a hydrophilic / water-repellent patterned glass substrate, and when used as a substrate material for biochips, has the effect of easily and selectively immobilizing biomolecules to more clearly analyze the results.
전술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The above objects, features and advantages will become more apparent through the following examples in conjunction with the accompanying drawings. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
생체 바이오 칩은 인구의 고령화로 인한 사회의 의료복지 수요가 증가함에 따라 그 중요성이 크게 부각되고 있지만 아직 낮은 민감도, 재현성 및 생체분자의 안정성 문제가 해결되어야 한다. 적은 량의 시료로 많은 정보를 신속하게 측정해야 하는 바이오 칩의 기판 재료로는 slide glass, silicon, nylon, 유기 폴리머 (PMMA, PC, Teflon), Pt 혹은 Au가 코팅된 기판을 사용한다. 또한 친수 특성을 나타내는 바이오 분자를 선택적으로 고정화하기 위하여 기판을 친수 혹은 발수성 표면을 개질하여 사용한다. 초발수 박막을 제조하기 위해서는 연꽃 잎 구조에서 확인 할 수 있듯이, 기판의 표면에 우선 요철 구조를 갖는 거친 표면을 형성시키는 공정과 그 표면을 낮은 표면에너지를 갖는 화합물을 이용하여 표면을 개질 하는 공정이 요구된다. 초발수 막을 제조하기 위해 필요한 나노 구조의 거친 표면을 갖는 막으로써는 SiO2, TiO2, ZnO 박막이 많이 이용된다. 특히 ZnO는 반도성, 압전성, 형광성, 광도전성과 같은 특성을 갖기 때문에 가스센서, 촉매 바리스터, 전자사진용 감광제, 형광 표시판 등에 응용되고 있으며 이런 특성들은 ZnO가 나노 사이즈의 가질 때 더 우수한 특성으로 나타난다. ZnO 박막은 electrochemical deposition, suputtering, sol-gel, chemical vapor deposition, pulsed-laser deposition등의 방법에 의해 제조된다.Bio-biochips are of great importance as the demand for medical welfare in society increases due to the aging of the population, but low sensitivity, reproducibility, and stability of biomolecules must be solved. Substrate materials for biochips that need to measure a lot of information quickly with a small amount of sample include a substrate coated with slide glass, silicon, nylon, organic polymers (PMMA, PC, Teflon), Pt or Au. In addition, in order to selectively immobilize biomolecules exhibiting hydrophilic properties, a substrate is used by modifying a hydrophilic or water repellent surface. In order to manufacture a super water-repellent thin film, as can be seen in the lotus leaf structure, a process of first forming a rough surface having an uneven structure on the surface of the substrate and a process of modifying the surface using a compound having a low surface energy is used. Required. SiO 2 , TiO 2 , and ZnO thin films are widely used as a film having a rough surface of nanostructures necessary for producing a super water-repellent film. In particular, ZnO is applied to gas sensors, catalytic varistors, electrophotographic photosensitizers, and fluorescent displays because it has properties such as semiconductivity, piezoelectricity, fluorescence, and photoconductivity. These characteristics are more excellent when ZnO has nano size. . ZnO thin films are manufactured by electrochemical deposition, suputtering, sol-gel, chemical vapor deposition, and pulsed-laser deposition.
요철 구조의 표면을 소수성으로 개질하기 위해서 불소 혹은 실리콘 화합물들이 많이 이용되고 있고 그 중에서 특히 매우 낮은 표면에너지(~8mJ/㎡) 를 갖고 있는 fluoroalkyltrimethoxysilane(FAS, CF3(CF2)7CH2CH2Si(OCH3)3,)가 널리 사용되고 있다. 본 발명에서는 발수/친수 패터닝 기판을 제조하기 위하여 용액 공정법인 liquid phase deposition(LPD)법을 이용하여 침적시간에 따라 성장되는 ZnO rod의 미세 구조와 광학특성을 측정하였고, FAS를 이용하여 발수처리를 한 후 제조된 박막의 접촉각 특성을 확인하였다. 제조된 초발수 박막을 shadow mask로 덮고 자외선을 조사하여 발수/친수 패터닝 기판을 제조하였다.In order to hydrophobically modify the surface of the uneven structure, fluorine or silicon compounds are widely used, and among them, fluoroalkyltrimethoxysilane (FAS, CF 3 (CF 2 ) 7 CH 2 CH 2 , which has a very low surface energy (~ 8 mJ / m 2 ) Si (OCH 3 ) 3 ,) is widely used. In the present invention, the microstructure and optical properties of ZnO rods grown by deposition time were measured by using liquid phase deposition (LPD), a solution process method, in order to manufacture a water / hydrophilic patterned substrate. After that, the contact angle characteristics of the prepared thin film were confirmed. The prepared superhydrophobic thin film was covered with a shadow mask and irradiated with ultraviolet rays to prepare a water / hydrophilic patterned substrate.
유리기판에 ZnO seed 층을 코팅하기 위하여 zinc acetate dehydrate (Zn(CH3COO)2·2H2O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako)을 0.02 : 0.02 : 0.51의 몰비로 섞은 후 60℃에서 2시간 동안 stirring하여 용액을 제조하였다. 코팅 전 유리기판의 세정 및 친수 처리를 위해 기판을 KOH(1.0 wt.%) 용액과 증류수에 침적시켜 각각 5분간 초음파 처리를 한 후 사용하였다. 제조된 코팅 용액에 유리 기판을 침적시킨 후 1.0 mm/s의 인상속도로 dip 코팅을 실시하였다. 코팅된 유리기판을 상온에서 건조한 후 90℃에서 1시간 건조하였고 최종적으로 400℃에서 1시간 열처리를 하였다. Seed 층 위에 LPD 법에 의한 wurtzite-type ZnO 막을 제조하기 하여, H2O(95ml)와 NaOH( aq )(25%, 5ml)의 혼합용매에 zinc nitrate hexahydrate (Zn(NO3)26H2O) : ammonium chloride (NH4Cl) : urea (Co(NH2)2) = 1 : 2 : 1의 몰비로 혼합하여 코팅용액을 제조하였다. Seed 층이 코팅된 유리기판은 90 ℃에서, 1시간에서 2.5시간 동안 수용성 ZnO 코팅용액 속에 침적되어 유지되었다. 이후 증류수를 사용하여 코팅된 기판을 세정하였다. 초발수 ZnO 박막을 제조하기 위한 발수처리 용액은 fluoroalkyltrimethoxysilane(FAS)를 헥산에 2.0 wt.% 첨가하여 사용하였다. ZnO 박막이 코팅된 유리기판을 이 발수 용액에 침적시켜 상온에서 20분 동안 두었다. 초발수 ZnO 박막에 발수/친수 패터닝을 하기 위하여 제조된 초발수 ZnO 박막 위에 shadow mask(dot size: 300㎛, 3.0mm)를 덮고 자외선 램프(20W, 352nm)를 2시간 동안 조사하여 자외선이 조사된 부분의 발수기를 제거하였다.In order to coat the ZnO seed layer on the glass substrate, the molar ratio of zinc acetate dehydrate (Zn (CH 3 COO) 2 · 2H 2 O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako) was 0.02: 0.02: 0.51. After mixing with stirring for 2 hours at 60 ℃ to prepare a solution. For cleaning and hydrophilic treatment of the glass substrate before coating, the substrate was immersed in KOH (1.0 wt.%) Solution and distilled water and sonicated for 5 minutes. A glass substrate was deposited on the prepared coating solution, and dip coating was performed at a pulling speed of 1.0 mm / s. The coated glass substrate was dried at room temperature, dried at 90 ° C. for 1 hour, and finally heat treated at 400 ° C. for 1 hour. A wurtzite-type ZnO film was prepared on the seed layer by LPD method, and zinc nitrate hexahydrate (Zn (NO 3 ) 2 6H 2 O was mixed with H 2 O (95 ml) and NaOH ( aq ) (25%, 5 ml) in a mixed solvent. ): ammonium chloride (NH 4 Cl): urea (Co (NH 2 ) 2 ) = 1: 2: 1: A coating solution was prepared by mixing in a molar ratio. The glass substrate coated with the Seed layer was kept soaked in an aqueous ZnO coating solution at 90 ° C. for 1 to 2.5 hours. Then, the coated substrate was cleaned using distilled water. As a water repellent solution for preparing a super water-repellent ZnO thin film, 2.0 wt.% Of fluoroalkyltrimethoxysilane (FAS) was added to hexane. A glass substrate coated with a ZnO thin film was deposited on the water repellent solution and left at room temperature for 20 minutes. The super water-repellent ZnO thin film prepared for water repellent / hydrophilic patterning was covered with a shadow mask (dot size: 300㎛, 3.0mm) and irradiated with UV light (20W, 352nm) for 2 hours. The water repellent part was removed.
제조된 박막의 표면 미세구조와 박막의 두께를 확인하기 위하여 field emission scanning electron microscope(FE-SEM, JSM 6700, JEOL)를 사용하였고, ZnO의 결정 구조 분석은 X-ray diffraction(XRD, KFX-987228-SE, Mac Science)에 의해 확인되었다. UV-Vis spectrophotometer(V-570, JASCO)를 이용하여 박막의 투과율을 측정하였고, 박막 표면의 물 접촉각을 확인하기 위해 contact angle meter(Easy Drop, KRUSS)를 이용하였다.A field emission scanning electron microscope (FE-SEM, JSM 6700, JEOL) was used to confirm the surface microstructure and thickness of the prepared thin film. The crystal structure of ZnO was analyzed by X-ray diffraction (XRD, KFX-987228). -SE, Mac Science). The transmittance of the thin film was measured using a UV-Vis spectrophotometer (V-570, JASCO), and a contact angle meter (Easy Drop, KRUSS) was used to check the water contact angle on the thin film surface.
도 1은 LPD법에 의해서 ZnO 수용액 속에서 유리기판의 표면에 성장된 hexagonal rod 형상을 갖는 ZnO 막의 미세구조를 나타낸다. 제조된 ZnO rod들은 수직방향으로 성장되어 있으며 침적시간이 늘어남에 따라 rod의 직경이 약 50 nm 에서 300 nm까지 커지는 것을 확인하였다. 도 2는 침적시간의 변화에 따라 성장된 박막의 두께 변화를 보여준다. 침적시간이 1.0h, 1.5h, 2.0h, 2.5h로 증가됨에 따라 제조된 박막의 두께는 약 0.225, 1.434, 2.250, 3.010 ㎛ 로 성장되었다.1 shows the microstructure of a ZnO film having a hexagonal rod shape grown on the surface of a glass substrate in an ZnO aqueous solution by LPD method. The prepared ZnO rods were grown in the vertical direction and the rod diameter was increased from about 50 nm to 300 nm as the deposition time increased. Figure 2 shows the change in thickness of the thin film grown with the change of deposition time. As the deposition time was increased to 1.0h, 1.5h, 2.0h, 2.5h, the thickness of the prepared thin film was grown to about 0.225, 1.434, 2.250, 3.010 μm.
도 3은 2.5시간 동안 seed 층이 코팅된 유리기판을 ZnO 수용액에 침적시켜 성장시킨 박막의 XRD pattern이다. 제조된 박막은 (002) 강한 회절피크를 갖는 hexagonal wurtzite-type의 ZnO임을 확인할 수 있었다. 도 4는 침적시간에 따라 제조된 ZnO 박막의 투과율 나타낸다. ZnO 수용액에 1시간 동안 침적시켜 제조한 박막은 가시광선 영역에서 약 89 %의 투과율을 갖는다. 도 1의 (a)와 도 2의 (a)에서 확인된 것처럼 약 50 nm의 직경과 약 225 nm의 두께를 갖는 박막은 가시광선 영역에서 투과율의 감소가 거의 없었지만 침적시간이 1.5시간으로 늘어남에 따라 ZnO 로드의 크기와 막 두께의 성장과 함께 투과율이 현저히 떨어짐을 알 수 있었다. 또한 자외선 차단 특성을 갖는 ZnO를 코팅한 유리 기판은 도면에서 확인할 수 있듯이, 1.5시간이상 침적하여 제조한 막은 우수한 자외선 차단 특성을 보여주었다. 1.0 ~ 2.5시간 동안 침적시켜 제조한 ZnO rod 가 코팅된 유리기판의 물 접촉각을 측정해 본 결과, 약 20°~30°의 접촉각을 갖는 친수 표면 특성을 보여 주었고 침적시간이 증가함에 따라 약간 감소하는 경향을 보여주었다.3 is an XRD pattern of a thin film grown by depositing a seed layer coated glass substrate in a ZnO aqueous solution for 2.5 hours. The prepared thin film was confirmed to be hexagonal wurtzite-type ZnO having a (002) strong diffraction peak. Figure 4 shows the transmittance of the ZnO thin film prepared according to the deposition time. The thin film prepared by immersion in an aqueous solution of ZnO for 1 hour has a transmittance of about 89% in the visible region. As shown in (a) and (a) of FIG. 1, a thin film having a diameter of about 50 nm and a thickness of about 225 nm has almost no decrease in transmittance in the visible region, but the deposition time is increased to 1.5 hours. As a result, it was found that the transmittance significantly decreased with the growth of the ZnO rod size and the film thickness. In addition, the ZnO-coated glass substrate having UV blocking properties, as shown in the drawing, the film prepared by immersion for more than 1.5 hours showed excellent UV blocking properties. The water contact angle of ZnO rod-coated glass substrates prepared by deposition for 1.0 to 2.5 hours showed hydrophilic surface characteristics with contact angles of about 20 ° to 30 ° and decreased slightly with increasing deposition time. Showed a tendency.
이것은 도 1에서 확인한 것처럼 침적시간이 늘어남에 따라 성장된 ZnO rod의 직경이 커짐에 따라 물과 접촉할 수 있는 면적이 늘어났기 때문이다. 위에서 제조된 ZnO 박막을 발수제 FAS용액에 침적시켜 표면을 발수 처리하였다. FAS용액에 의해 발수처리 된 박막은 도 5에 보이는 것 같이 약 161°~ 145°의 높은 접촉각을 나타내었다. 특히 1시간, 1.5시간 동안 침적시켜 제조한 ZnO 박막은 155°이상의 초발수 특성을 나타냈다.This is because, as confirmed in FIG. 1, as the deposition time increases, the area of contact with water increases as the diameter of the grown ZnO rod increases. The ZnO thin film prepared above was immersed in a water repellent FAS solution to water repellent treatment. The thin film water-repelled by FAS solution showed a high contact angle of about 161 ° to 145 ° as shown in FIG. In particular, the ZnO thin film prepared by immersion for 1 hour, 1.5 hours showed a super water-repellent property of more than 155 °.
도 6은 1시간 동안 침적시켜 제조한 ZnO 박막에 대하여 FAS 처리 전후의 접촉각을 보여주는 이미지다. FAS 처리 이후의 접촉각은 30°에서 161°로 향상되었다. 발수/친수 패터닝 기판을 제조하기 위하여 FAS 처리를 통해 제조된 초발수 ZnO 박막 위에 shadow mask를 올려두고 UV를 조사하였다. 유기물을 분해하는 광촉매 특성을 갖는 ZnO가 UV가 조사된 부분의 발수기를 분해함으로써 그 부분은 발수에서 친수 특성을 보이는 표면으로 바뀌게 된다.6 is an image showing the contact angle before and after the FAS treatment for the ZnO thin film prepared by immersion for 1 hour. The contact angle after FAS treatment improved from 30 ° to 161 °. In order to manufacture a water repellent / hydrophilic patterned substrate, a shadow mask was placed on a super water-repellent ZnO thin film manufactured by FAS and irradiated with UV. ZnO, which has a photocatalytic property of decomposing organic matter, decomposes the water repellent of the UV-irradiated portion, and the portion is changed to a surface showing hydrophilic property in water repellency.
도 7의 (a)는 2시간 동안 침적시켜 제조한 ZnO가 코팅된 기판 위에 300㎛의 dot size를 갖는 마스크를 올려두고 패터닝한 샘플의 광학현미경 이미지다. 발수/친수 패터닝한 기판 위에 물을 떨어뜨렸을 때, ZnO에 의해 FAS가 분해된 부분에만 물이 묻어 발수, 친수 부분의 영역을 확실히 보여주고 있다. 도 7의 (b)는 1시간 동안 침적시켜 제조한 높은 투과율을 갖는 초발수 기판을 3mm dot size를 갖는 마스크를 이용하여 제조한 기판의 이미지다. 그림에서 확인 할 수 있듯이, 기판 위에 물방울이 친수 부분에만 선택적으로 묻어 있는 있으며 유리기판 밑의 글씨가 명확히 보이는 높은 투과율을 보이고 있다. 이런 발수/친수 패터닝 기판을 바이오칩 용 기판재료로 사용한다면 바이오 분자를 쉽게 선택적으로 고정화 시킴으로써 훨씬 더 명확하게 결과를 분석할 수 있을 것이다.FIG. 7A is an optical microscope image of a sample patterned by placing a mask having a dot size of 300 μm on a ZnO-coated substrate prepared by immersion for 2 hours. When water was dropped on the water-repellent / hydrophilic patterned substrate, only water where the FAS was decomposed by ZnO was found to show the water-repellent and hydrophilic regions. FIG. 7B is an image of a substrate manufactured by using a mask having a 3 mm dot size of a super water-repellent substrate having a high transmittance prepared by immersion for 1 hour. As can be seen from the figure, the water droplets on the substrate are selectively buried only in the hydrophilic part, and it shows a high transmittance in which the letters under the glass substrate are clearly visible. If these water-repellent / hydrophilic patterned substrates are used as substrate materials for biochips, the results can be analyzed much more clearly by easily and selectively immobilizing biomolecules.
ZnO rod가 코팅된 발수/친수 패터닝 기판을 용액 공정법을 이용하여 제조하였다. 유리 기판 위에 ZnO seed 층을 코팅한 후, LPD법에 의해 ZnO 수용액에 기판을 침적시켜 제조한 ZnO 박막은 002 회절피크를 갖는 wurtzite-type의 ZnO 결정구조를 나타내었고, 침적시간이 1시간에서 2.5시간으로 증가됨에 따라 제조된 ZnO rod 의 직경은 약 50 nm에서 300 nm로, 막의 두께는 225 nm 에서 3.01 ㎛로 커지는 것을 확인하였다. FAS를 이용하여 발수처리를 한 박막들은 20°~30°의 친수 표면에서 145°~161° 발수 표면으로 바뀌었다. 특히 1시간 동안 침적시켜 제조한 ZnO rod가 코팅된 유리기판은 가시광선에서 89%의 높은 투과율과 161°의 초발수 접촉각을 보여주었다. Shadow mask를 기판 위에 두고 자외선을 조사하여 ZnO의 광촉매 특성을 이용하여 자외선이 조사된 부분의 발수기를 제거함으로써 제조한 발수/친수 기판은 300㎛ 와 3mm의 dot size로 명확하게 패터닝 되었다. A water-repellent / hydrophilic patterned substrate coated with ZnO rods was prepared using a solution process method. The ZnO thin film prepared by coating a ZnO seed layer on a glass substrate and then depositing the substrate in an aqueous ZnO solution by LPD method exhibited a wurtzite-type ZnO crystal structure having a 002 diffraction peak, and the deposition time was 2.5 at 1 hour. It was confirmed that the diameter of the prepared ZnO rod increases with time, from about 50 nm to 300 nm, and the thickness of the film increases from 225 nm to 3.01 μm. Thin films treated with FAS were converted from a hydrophilic surface of 20 ° to 30 ° to a 145 ° to 161 ° water repellent surface. In particular, ZnO rod-coated glass substrate prepared by immersion for 1 hour showed high transmittance of 89% in visible light and super water-repellent contact angle of 161 °. The water-repellent / hydrophilic substrate prepared by placing a shadow mask on the substrate and irradiating ultraviolet rays and removing the water repellent of the portion irradiated with ultraviolet rays by using the photocatalytic properties of ZnO was clearly patterned to a dot size of 300 μm and 3 mm.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Will be clear to those who have knowledge of.
도 1은 수용액 내에서 침적시간에 따른 ZnO 박막의 FE-SEM 이미지이다.1 is an FE-SEM image of a ZnO thin film according to deposition time in an aqueous solution.
도 2는 수용액 내에서 침적시간에 따른 ZnO 박막의 단면 이미지이다.2 is a cross-sectional image of a ZnO thin film according to the deposition time in an aqueous solution.
도 3은 2시간의 침적시간 동안 성장된 ZnO 박막의 XRD 패턴을 나타낸 도면이다.3 is a diagram showing an XRD pattern of a ZnO thin film grown for 2 hours of deposition time.
도 4는 수용액 내에서 침적시간에 따른 ZnO 박막의 투과 스펙트럼을 나타낸 도면이다.4 is a diagram showing a transmission spectrum of a ZnO thin film according to deposition time in an aqueous solution.
도 5는 FAS 처리 전/후 ZnO 박막의 접촉각을 나타낸 도면이다.5 is a view showing the contact angle of the ZnO thin film before and after the FAS treatment.
도 6은 1시간 동안 침적시켜 제조한 ZnO 박막에 대하여 FAS 처리 전/후의 물방울 이미지이다.6 is a droplet image before and after the FAS treatment for the ZnO thin film prepared by immersion for 1 hour.
도 7은 Shadow mask를 사용하여 성장시킨 ZnO 박막의 친수/발수 패터닝 이미지이다.7 is a hydrophilic / water repellent patterned image of a ZnO thin film grown using a shadow mask.
도 8은 투명 초발수-초친수 패터닝 제조과정을 나타낸 도면이다.8 is a view showing a transparent super water-repellent superhydrophilic patterning process.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090103651 | 2009-10-29 | ||
KR20090103651 | 2009-10-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110047098A KR20110047098A (en) | 2011-05-06 |
KR101226624B1 true KR101226624B1 (en) | 2013-01-28 |
Family
ID=44238428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090133817A Active KR101226624B1 (en) | 2009-10-29 | 2009-12-30 | Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101226624B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101470293B1 (en) * | 2013-07-17 | 2014-12-08 | 코닝정밀소재 주식회사 | Method of fabricating light extraction substrate for oled |
KR102106491B1 (en) * | 2018-08-22 | 2020-05-04 | 울산대학교 산학협력단 | Superhydrophobic patterned biochip and its making method |
KR102423770B1 (en) * | 2020-03-31 | 2022-07-22 | 경북대학교 산학협력단 | Super hydrophobic pattern formation method using laser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344804A (en) * | 1997-08-08 | 1999-12-14 | Dainippon Printing Co Ltd | Pattern forming body and pattern forming method therefor |
-
2009
- 2009-12-30 KR KR1020090133817A patent/KR101226624B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344804A (en) * | 1997-08-08 | 1999-12-14 | Dainippon Printing Co Ltd | Pattern forming body and pattern forming method therefor |
Non-Patent Citations (4)
Title |
---|
Materials Letters 61 (2007) 2775-2778 * |
Materials Letters 61 (2007) 2775-2778* |
Thin Solid Films 516 (2008) 2495-2501 * |
Thin Solid Films 516 (2008) 2495-2501* |
Also Published As
Publication number | Publication date |
---|---|
KR20110047098A (en) | 2011-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Masuda et al. | Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution | |
Li et al. | Ordered Co 3 O 4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity | |
Rao et al. | Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method | |
JP5511159B2 (en) | Photocatalyst film, method for producing photocatalyst film, article and method for hydrophilization | |
Zhang et al. | Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface | |
KR20090037574A (en) | Method for producing zinc oxide nanostructures and zinc oxide nanostructures prepared therefrom | |
Frysali et al. | Functional surfaces with photocatalytic behavior and reversible wettability: ZnO coating on silicon spikes | |
Santiago et al. | Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction | |
KR101226624B1 (en) | Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning | |
Yu et al. | Bionic micro-nano-bump-structures with a good self-cleaning property: the growth of ZnO nanoarrays modified by polystyrene spheres | |
Lai et al. | Controllable construction of ZnO/TiO 2 patterning nanostructures by superhydrophilic/superhydrophobic templates | |
KR101175633B1 (en) | Method of preparing superhydrophobic surface capable of reversible switching | |
JP2009013038A (en) | Superhydrophilic / hydrophobic patterned surface, anatase TiO2 crystal pattern and methods for their preparation | |
Peng et al. | Dense and high-hydrophobic rutile TiO2 nanorod arrays | |
Hassan et al. | Fabrication of Pd nanoparticles on Al substrate with excellent superhydrophobicity and photocatalytic activity | |
JP4738736B2 (en) | Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure | |
Pinton et al. | Development of an automated and cost-effective apparatus for sol-gel solution deposition using spray coating technique and its application for TiO2-based photocatalytic films | |
Ma et al. | Morphology-controllable synthesis and application of TiO 2 nanotube arrays with “photocatalysis and self-cleaning” synergism | |
Carneiro et al. | Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering | |
Maver et al. | Low-temperature synthesis and characterization of TiO2 and TiO2–ZrO2 photocatalytically active thin films | |
Srivastava et al. | Improving the hydrophobicity of ZnO by PTFE incorporation | |
US20170296995A1 (en) | Oxide shell structures and methods of making oxide shell structures | |
Wirandorn et al. | Characterization and photocatalytic activity of titanium dioxide deposited on stainless steel by pulsed-pressure MOCVD | |
US20050175852A1 (en) | Thin silica film and silica-titania composite film, and method for preparing them | |
Verma et al. | Real-time degradation of Methylene Blue dye using bio-inspired superhydrophobic PDMS tube with Ta-ZnO composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20091230 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110803 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20120412 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20121022 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130121 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130121 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160108 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160108 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170119 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170119 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180122 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20180122 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190307 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20190307 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20200102 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20210104 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20211215 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20231221 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20241205 Start annual number: 13 End annual number: 13 |