[go: up one dir, main page]

KR101226624B1 - Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning - Google Patents

Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning Download PDF

Info

Publication number
KR101226624B1
KR101226624B1 KR1020090133817A KR20090133817A KR101226624B1 KR 101226624 B1 KR101226624 B1 KR 101226624B1 KR 1020090133817 A KR1020090133817 A KR 1020090133817A KR 20090133817 A KR20090133817 A KR 20090133817A KR 101226624 B1 KR101226624 B1 KR 101226624B1
Authority
KR
South Korea
Prior art keywords
thin film
hydrophilic
substrate
zno
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020090133817A
Other languages
Korean (ko)
Other versions
KR20110047098A (en
Inventor
임태영
김진호
황종희
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of KR20110047098A publication Critical patent/KR20110047098A/en
Application granted granted Critical
Publication of KR101226624B1 publication Critical patent/KR101226624B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/002Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 LPD법을 이용하여 유리 기판 위에 발수/친수 패터닝 기판을 제조하기 위한 것으로서, 발수 표면은 거친 표면을 갖는 ZnO 박막을 FAS를 이용한 표면 개질에 의하여 만들어졌고, 친수 표면은 자외선을 조사하여 FAS를 제거함으로써 만들어졌다. Hexagonal ZnO rod는 LPD법에 의하여 ZnO seed 층이 코팅된 유리 기판 위에 수직으로 성장되었다. 침적시간이 증가함에 따라 ZnO rod의 직경과 두께는 증가하였다. 제조된 ZnO 박막의 표면구조, 두께, 결정구조, 투과율과 접촉각은 FE-SEM, XRD, UV-vis 와 contact angle meter를 이용하여 측정하였다. 20°~30° 의 접촉각을 갖는 친수 ZnO 박막은 FAS 표면 처리에 의해 145°~161°의 접촉각을 갖는 표면으로 바뀌었다. 제조된 발수 표면은 300㎛, 3 mm 의 dot size를 갖는 shadow mask 를 이용하여 자외선을 조사하여 패터닝 되었다. 최종적으로 자외선이 조사된 발수 표면은 친수 표면으로 바뀌었다.The present invention is to produce a water-repellent / hydrophilic patterning substrate on a glass substrate by using the LPD method, the water-repellent surface is made by the surface modification using a FAS ZnO thin film having a rough surface, the hydrophilic surface is irradiated with ultraviolet rays FAS Was made by removing it. Hexagonal ZnO rod was grown vertically on the glass substrate coated with ZnO seed layer by LPD method. As deposition time increased, the diameter and thickness of ZnO rod increased. The surface structure, thickness, crystal structure, transmittance and contact angle of the prepared ZnO thin films were measured using FE-SEM, XRD, UV-vis and contact angle meter. The hydrophilic ZnO thin film having a contact angle of 20 ° to 30 ° was changed to a surface having a contact angle of 145 ° to 161 ° by FAS surface treatment. The prepared water repellent surface was patterned by irradiating ultraviolet rays using a shadow mask having a dot size of 300 μm and 3 mm. Finally, the water-repellent surface irradiated with ultraviolet rays turned into a hydrophilic surface.

친수, 발수, 패터닝 Hydrophilic, water-repellent, patterning

Description

친수/발수 패터닝 유리기판 제조방법{METHOD FOR MANUFACTURING GLASS SUBSTRATE OF HYDROPHILIC/HYDROPHOBIC PATTERNING}METHOD FOR MANUFACTURING GLASS SUBSTRATE OF HYDROPHILIC / HYDROPHOBIC PATTERNING}

본 발명은 LPD법을 이용하여 유리 기판 위에 발수/친수 패터닝 기판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a water / hydrophilic patterned substrate on a glass substrate using the LPD method.

생체 바이오 칩은 인구의 고령화로 인한 사회의 의료복지 수요가 증가함에 따라 그 중요성이 크게 부각되고 있지만 아직 낮은 민감도, 재현성 및 생체분자의 안정성 문제가 해결되어야 한다.Bio-biochips are of great importance as the demand for medical welfare in society increases due to the aging of the population, but low sensitivity, reproducibility, and stability of biomolecules must be solved.

본 발명은 종래 기술의 문제점을 해결하기 위하여 바이오칩 용 기판재료로 사용하여 바이오 분자를 쉽게 선택적으로 고정화시킬 수 있는 친수/발수 패터닝 유리기판을 제조하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to manufacture a hydrophilic / water-repellent patterned glass substrate which can be easily immobilized with biomolecules by using it as a substrate material for a biochip.

상기 목적을 달성하기 위하여 본 발명은 기판을 세정 및 친수 처리하고, 상기 기판의 상부에 ZnO 박막을 형성하고, 상기 Zno 박막의 표면에 FAS처리한 후 shadow mask를 덮고 자외선을 조사하여 패터닝하는 친수/발수 패터닝 유리기판 제조하기 위한 제조방법을 제공한다.In order to achieve the above object, the present invention cleans and hydrophilizes a substrate, forms a ZnO thin film on top of the substrate, and performs a FAS treatment on the surface of the Zno thin film to cover a shadow mask and irradiate ultraviolet rays to pattern the pattern. Provided is a manufacturing method for producing a water repellent patterned glass substrate.

또한, 본 발명은 ZnO 박막을 FAS처리한 후 박막 위에 shadow mask를 덮고 자외선을 조사하여 자외선에 의해 조사된 부분은 친수성을 나타내고, 비조사된 부분은 발수성을 나타내는 친수/발수 패터닝 유리기판을 제공한다.In addition, the present invention provides a hydrophilic / water repellent patterned glass substrate having a ZnO thin film by FAS treatment and covering a shadow mask on the thin film and irradiating with ultraviolet rays, the portions irradiated by ultraviolet rays exhibit hydrophilicity, and the non-irradiated portions exhibit water repellency. .

본 발명은 친수/발수 패터닝 유리기판 제조할 수 있으며, 또한 바이오칩 용 기판재료로 사용될 경우 바이오 분자를 쉽게 선택적으로 고정화시켜 더 명확하게 결과를 분석할 수 있는 효과를 갖는다.The present invention can produce a hydrophilic / water-repellent patterned glass substrate, and when used as a substrate material for biochips, has the effect of easily and selectively immobilizing biomolecules to more clearly analyze the results.

전술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The above objects, features and advantages will become more apparent through the following examples in conjunction with the accompanying drawings. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

생체 바이오 칩은 인구의 고령화로 인한 사회의 의료복지 수요가 증가함에 따라 그 중요성이 크게 부각되고 있지만 아직 낮은 민감도, 재현성 및 생체분자의 안정성 문제가 해결되어야 한다. 적은 량의 시료로 많은 정보를 신속하게 측정해야 하는 바이오 칩의 기판 재료로는 slide glass, silicon, nylon, 유기 폴리머 (PMMA, PC, Teflon), Pt 혹은 Au가 코팅된 기판을 사용한다. 또한 친수 특성을 나타내는 바이오 분자를 선택적으로 고정화하기 위하여 기판을 친수 혹은 발수성 표면을 개질하여 사용한다. 초발수 박막을 제조하기 위해서는 연꽃 잎 구조에서 확인 할 수 있듯이, 기판의 표면에 우선 요철 구조를 갖는 거친 표면을 형성시키는 공정과 그 표면을 낮은 표면에너지를 갖는 화합물을 이용하여 표면을 개질 하는 공정이 요구된다. 초발수 막을 제조하기 위해 필요한 나노 구조의 거친 표면을 갖는 막으로써는 SiO2, TiO2, ZnO 박막이 많이 이용된다. 특히 ZnO는 반도성, 압전성, 형광성, 광도전성과 같은 특성을 갖기 때문에 가스센서, 촉매 바리스터, 전자사진용 감광제, 형광 표시판 등에 응용되고 있으며 이런 특성들은 ZnO가 나노 사이즈의 가질 때 더 우수한 특성으로 나타난다. ZnO 박막은 electrochemical deposition, suputtering, sol-gel, chemical vapor deposition, pulsed-laser deposition등의 방법에 의해 제조된다.Bio-biochips are of great importance as the demand for medical welfare in society increases due to the aging of the population, but low sensitivity, reproducibility, and stability of biomolecules must be solved. Substrate materials for biochips that need to measure a lot of information quickly with a small amount of sample include a substrate coated with slide glass, silicon, nylon, organic polymers (PMMA, PC, Teflon), Pt or Au. In addition, in order to selectively immobilize biomolecules exhibiting hydrophilic properties, a substrate is used by modifying a hydrophilic or water repellent surface. In order to manufacture a super water-repellent thin film, as can be seen in the lotus leaf structure, a process of first forming a rough surface having an uneven structure on the surface of the substrate and a process of modifying the surface using a compound having a low surface energy is used. Required. SiO 2 , TiO 2 , and ZnO thin films are widely used as a film having a rough surface of nanostructures necessary for producing a super water-repellent film. In particular, ZnO is applied to gas sensors, catalytic varistors, electrophotographic photosensitizers, and fluorescent displays because it has properties such as semiconductivity, piezoelectricity, fluorescence, and photoconductivity. These characteristics are more excellent when ZnO has nano size. . ZnO thin films are manufactured by electrochemical deposition, suputtering, sol-gel, chemical vapor deposition, and pulsed-laser deposition.

요철 구조의 표면을 소수성으로 개질하기 위해서 불소 혹은 실리콘 화합물들이 많이 이용되고 있고 그 중에서 특히 매우 낮은 표면에너지(~8mJ/㎡) 를 갖고 있는 fluoroalkyltrimethoxysilane(FAS, CF3(CF2)7CH2CH2Si(OCH3)3,)가 널리 사용되고 있다. 본 발명에서는 발수/친수 패터닝 기판을 제조하기 위하여 용액 공정법인 liquid phase deposition(LPD)법을 이용하여 침적시간에 따라 성장되는 ZnO rod의 미세 구조와 광학특성을 측정하였고, FAS를 이용하여 발수처리를 한 후 제조된 박막의 접촉각 특성을 확인하였다. 제조된 초발수 박막을 shadow mask로 덮고 자외선을 조사하여 발수/친수 패터닝 기판을 제조하였다.In order to hydrophobically modify the surface of the uneven structure, fluorine or silicon compounds are widely used, and among them, fluoroalkyltrimethoxysilane (FAS, CF 3 (CF 2 ) 7 CH 2 CH 2 , which has a very low surface energy (~ 8 mJ / m 2 ) Si (OCH 3 ) 3 ,) is widely used. In the present invention, the microstructure and optical properties of ZnO rods grown by deposition time were measured by using liquid phase deposition (LPD), a solution process method, in order to manufacture a water / hydrophilic patterned substrate. After that, the contact angle characteristics of the prepared thin film were confirmed. The prepared superhydrophobic thin film was covered with a shadow mask and irradiated with ultraviolet rays to prepare a water / hydrophilic patterned substrate.

유리기판에 ZnO seed 층을 코팅하기 위하여 zinc acetate dehydrate (Zn(CH3COO)2H2O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako)을 0.02 : 0.02 : 0.51의 몰비로 섞은 후 60℃에서 2시간 동안 stirring하여 용액을 제조하였다. 코팅 전 유리기판의 세정 및 친수 처리를 위해 기판을 KOH(1.0 wt.%) 용액과 증류수에 침적시켜 각각 5분간 초음파 처리를 한 후 사용하였다. 제조된 코팅 용액에 유리 기판을 침적시킨 후 1.0 mm/s의 인상속도로 dip 코팅을 실시하였다. 코팅된 유리기판을 상온에서 건조한 후 90℃에서 1시간 건조하였고 최종적으로 400℃에서 1시간 열처리를 하였다. Seed 층 위에 LPD 법에 의한 wurtzite-type ZnO 막을 제조하기 하여, H2O(95ml)와 NaOH( aq )(25%, 5ml)의 혼합용매에 zinc nitrate hexahydrate (Zn(NO3)26H2O) : ammonium chloride (NH4Cl) : urea (Co(NH2)2) = 1 : 2 : 1의 몰비로 혼합하여 코팅용액을 제조하였다. Seed 층이 코팅된 유리기판은 90 ℃에서, 1시간에서 2.5시간 동안 수용성 ZnO 코팅용액 속에 침적되어 유지되었다. 이후 증류수를 사용하여 코팅된 기판을 세정하였다. 초발수 ZnO 박막을 제조하기 위한 발수처리 용액은 fluoroalkyltrimethoxysilane(FAS)를 헥산에 2.0 wt.% 첨가하여 사용하였다. ZnO 박막이 코팅된 유리기판을 이 발수 용액에 침적시켜 상온에서 20분 동안 두었다. 초발수 ZnO 박막에 발수/친수 패터닝을 하기 위하여 제조된 초발수 ZnO 박막 위에 shadow mask(dot size: 300㎛, 3.0mm)를 덮고 자외선 램프(20W, 352nm)를 2시간 동안 조사하여 자외선이 조사된 부분의 발수기를 제거하였다.In order to coat the ZnO seed layer on the glass substrate, the molar ratio of zinc acetate dehydrate (Zn (CH 3 COO) 2 · 2H 2 O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako) was 0.02: 0.02: 0.51. After mixing with stirring for 2 hours at 60 ℃ to prepare a solution. For cleaning and hydrophilic treatment of the glass substrate before coating, the substrate was immersed in KOH (1.0 wt.%) Solution and distilled water and sonicated for 5 minutes. A glass substrate was deposited on the prepared coating solution, and dip coating was performed at a pulling speed of 1.0 mm / s. The coated glass substrate was dried at room temperature, dried at 90 ° C. for 1 hour, and finally heat treated at 400 ° C. for 1 hour. A wurtzite-type ZnO film was prepared on the seed layer by LPD method, and zinc nitrate hexahydrate (Zn (NO 3 ) 2 6H 2 O was mixed with H 2 O (95 ml) and NaOH ( aq ) (25%, 5 ml) in a mixed solvent. ): ammonium chloride (NH 4 Cl): urea (Co (NH 2 ) 2 ) = 1: 2: 1: A coating solution was prepared by mixing in a molar ratio. The glass substrate coated with the Seed layer was kept soaked in an aqueous ZnO coating solution at 90 ° C. for 1 to 2.5 hours. Then, the coated substrate was cleaned using distilled water. As a water repellent solution for preparing a super water-repellent ZnO thin film, 2.0 wt.% Of fluoroalkyltrimethoxysilane (FAS) was added to hexane. A glass substrate coated with a ZnO thin film was deposited on the water repellent solution and left at room temperature for 20 minutes. The super water-repellent ZnO thin film prepared for water repellent / hydrophilic patterning was covered with a shadow mask (dot size: 300㎛, 3.0mm) and irradiated with UV light (20W, 352nm) for 2 hours. The water repellent part was removed.

제조된 박막의 표면 미세구조와 박막의 두께를 확인하기 위하여 field emission scanning electron microscope(FE-SEM, JSM 6700, JEOL)를 사용하였고, ZnO의 결정 구조 분석은 X-ray diffraction(XRD, KFX-987228-SE, Mac Science)에 의해 확인되었다. UV-Vis spectrophotometer(V-570, JASCO)를 이용하여 박막의 투과율을 측정하였고, 박막 표면의 물 접촉각을 확인하기 위해 contact angle meter(Easy Drop, KRUSS)를 이용하였다.A field emission scanning electron microscope (FE-SEM, JSM 6700, JEOL) was used to confirm the surface microstructure and thickness of the prepared thin film. The crystal structure of ZnO was analyzed by X-ray diffraction (XRD, KFX-987228). -SE, Mac Science). The transmittance of the thin film was measured using a UV-Vis spectrophotometer (V-570, JASCO), and a contact angle meter (Easy Drop, KRUSS) was used to check the water contact angle on the thin film surface.

도 1은 LPD법에 의해서 ZnO 수용액 속에서 유리기판의 표면에 성장된 hexagonal rod 형상을 갖는 ZnO 막의 미세구조를 나타낸다. 제조된 ZnO rod들은 수직방향으로 성장되어 있으며 침적시간이 늘어남에 따라 rod의 직경이 약 50 nm 에서 300 nm까지 커지는 것을 확인하였다. 도 2는 침적시간의 변화에 따라 성장된 박막의 두께 변화를 보여준다. 침적시간이 1.0h, 1.5h, 2.0h, 2.5h로 증가됨에 따라 제조된 박막의 두께는 약 0.225, 1.434, 2.250, 3.010 ㎛ 로 성장되었다.1 shows the microstructure of a ZnO film having a hexagonal rod shape grown on the surface of a glass substrate in an ZnO aqueous solution by LPD method. The prepared ZnO rods were grown in the vertical direction and the rod diameter was increased from about 50 nm to 300 nm as the deposition time increased. Figure 2 shows the change in thickness of the thin film grown with the change of deposition time. As the deposition time was increased to 1.0h, 1.5h, 2.0h, 2.5h, the thickness of the prepared thin film was grown to about 0.225, 1.434, 2.250, 3.010 μm.

도 3은 2.5시간 동안 seed 층이 코팅된 유리기판을 ZnO 수용액에 침적시켜 성장시킨 박막의 XRD pattern이다. 제조된 박막은 (002) 강한 회절피크를 갖는 hexagonal wurtzite-type의 ZnO임을 확인할 수 있었다. 도 4는 침적시간에 따라 제조된 ZnO 박막의 투과율 나타낸다. ZnO 수용액에 1시간 동안 침적시켜 제조한 박막은 가시광선 영역에서 약 89 %의 투과율을 갖는다. 도 1의 (a)와 도 2의 (a)에서 확인된 것처럼 약 50 nm의 직경과 약 225 nm의 두께를 갖는 박막은 가시광선 영역에서 투과율의 감소가 거의 없었지만 침적시간이 1.5시간으로 늘어남에 따라 ZnO 로드의 크기와 막 두께의 성장과 함께 투과율이 현저히 떨어짐을 알 수 있었다. 또한 자외선 차단 특성을 갖는 ZnO를 코팅한 유리 기판은 도면에서 확인할 수 있듯이, 1.5시간이상 침적하여 제조한 막은 우수한 자외선 차단 특성을 보여주었다. 1.0 ~ 2.5시간 동안 침적시켜 제조한 ZnO rod 가 코팅된 유리기판의 물 접촉각을 측정해 본 결과, 약 20°~30°의 접촉각을 갖는 친수 표면 특성을 보여 주었고 침적시간이 증가함에 따라 약간 감소하는 경향을 보여주었다.3 is an XRD pattern of a thin film grown by depositing a seed layer coated glass substrate in a ZnO aqueous solution for 2.5 hours. The prepared thin film was confirmed to be hexagonal wurtzite-type ZnO having a (002) strong diffraction peak. Figure 4 shows the transmittance of the ZnO thin film prepared according to the deposition time. The thin film prepared by immersion in an aqueous solution of ZnO for 1 hour has a transmittance of about 89% in the visible region. As shown in (a) and (a) of FIG. 1, a thin film having a diameter of about 50 nm and a thickness of about 225 nm has almost no decrease in transmittance in the visible region, but the deposition time is increased to 1.5 hours. As a result, it was found that the transmittance significantly decreased with the growth of the ZnO rod size and the film thickness. In addition, the ZnO-coated glass substrate having UV blocking properties, as shown in the drawing, the film prepared by immersion for more than 1.5 hours showed excellent UV blocking properties. The water contact angle of ZnO rod-coated glass substrates prepared by deposition for 1.0 to 2.5 hours showed hydrophilic surface characteristics with contact angles of about 20 ° to 30 ° and decreased slightly with increasing deposition time. Showed a tendency.

이것은 도 1에서 확인한 것처럼 침적시간이 늘어남에 따라 성장된 ZnO rod의 직경이 커짐에 따라 물과 접촉할 수 있는 면적이 늘어났기 때문이다. 위에서 제조된 ZnO 박막을 발수제 FAS용액에 침적시켜 표면을 발수 처리하였다. FAS용액에 의해 발수처리 된 박막은 도 5에 보이는 것 같이 약 161°~ 145°의 높은 접촉각을 나타내었다. 특히 1시간, 1.5시간 동안 침적시켜 제조한 ZnO 박막은 155°이상의 초발수 특성을 나타냈다.This is because, as confirmed in FIG. 1, as the deposition time increases, the area of contact with water increases as the diameter of the grown ZnO rod increases. The ZnO thin film prepared above was immersed in a water repellent FAS solution to water repellent treatment. The thin film water-repelled by FAS solution showed a high contact angle of about 161 ° to 145 ° as shown in FIG. In particular, the ZnO thin film prepared by immersion for 1 hour, 1.5 hours showed a super water-repellent property of more than 155 °.

도 6은 1시간 동안 침적시켜 제조한 ZnO 박막에 대하여 FAS 처리 전후의 접촉각을 보여주는 이미지다. FAS 처리 이후의 접촉각은 30°에서 161°로 향상되었다. 발수/친수 패터닝 기판을 제조하기 위하여 FAS 처리를 통해 제조된 초발수 ZnO 박막 위에 shadow mask를 올려두고 UV를 조사하였다. 유기물을 분해하는 광촉매 특성을 갖는 ZnO가 UV가 조사된 부분의 발수기를 분해함으로써 그 부분은 발수에서 친수 특성을 보이는 표면으로 바뀌게 된다.6 is an image showing the contact angle before and after the FAS treatment for the ZnO thin film prepared by immersion for 1 hour. The contact angle after FAS treatment improved from 30 ° to 161 °. In order to manufacture a water repellent / hydrophilic patterned substrate, a shadow mask was placed on a super water-repellent ZnO thin film manufactured by FAS and irradiated with UV. ZnO, which has a photocatalytic property of decomposing organic matter, decomposes the water repellent of the UV-irradiated portion, and the portion is changed to a surface showing hydrophilic property in water repellency.

도 7의 (a)는 2시간 동안 침적시켜 제조한 ZnO가 코팅된 기판 위에 300㎛의 dot size를 갖는 마스크를 올려두고 패터닝한 샘플의 광학현미경 이미지다. 발수/친수 패터닝한 기판 위에 물을 떨어뜨렸을 때, ZnO에 의해 FAS가 분해된 부분에만 물이 묻어 발수, 친수 부분의 영역을 확실히 보여주고 있다. 도 7의 (b)는 1시간 동안 침적시켜 제조한 높은 투과율을 갖는 초발수 기판을 3mm dot size를 갖는 마스크를 이용하여 제조한 기판의 이미지다. 그림에서 확인 할 수 있듯이, 기판 위에 물방울이 친수 부분에만 선택적으로 묻어 있는 있으며 유리기판 밑의 글씨가 명확히 보이는 높은 투과율을 보이고 있다. 이런 발수/친수 패터닝 기판을 바이오칩 용 기판재료로 사용한다면 바이오 분자를 쉽게 선택적으로 고정화 시킴으로써 훨씬 더 명확하게 결과를 분석할 수 있을 것이다.FIG. 7A is an optical microscope image of a sample patterned by placing a mask having a dot size of 300 μm on a ZnO-coated substrate prepared by immersion for 2 hours. When water was dropped on the water-repellent / hydrophilic patterned substrate, only water where the FAS was decomposed by ZnO was found to show the water-repellent and hydrophilic regions. FIG. 7B is an image of a substrate manufactured by using a mask having a 3 mm dot size of a super water-repellent substrate having a high transmittance prepared by immersion for 1 hour. As can be seen from the figure, the water droplets on the substrate are selectively buried only in the hydrophilic part, and it shows a high transmittance in which the letters under the glass substrate are clearly visible. If these water-repellent / hydrophilic patterned substrates are used as substrate materials for biochips, the results can be analyzed much more clearly by easily and selectively immobilizing biomolecules.

ZnO rod가 코팅된 발수/친수 패터닝 기판을 용액 공정법을 이용하여 제조하였다. 유리 기판 위에 ZnO seed 층을 코팅한 후, LPD법에 의해 ZnO 수용액에 기판을 침적시켜 제조한 ZnO 박막은 002 회절피크를 갖는 wurtzite-type의 ZnO 결정구조를 나타내었고, 침적시간이 1시간에서 2.5시간으로 증가됨에 따라 제조된 ZnO rod 의 직경은 약 50 nm에서 300 nm로, 막의 두께는 225 nm 에서 3.01 ㎛로 커지는 것을 확인하였다. FAS를 이용하여 발수처리를 한 박막들은 20°~30°의 친수 표면에서 145°~161° 발수 표면으로 바뀌었다. 특히 1시간 동안 침적시켜 제조한 ZnO rod가 코팅된 유리기판은 가시광선에서 89%의 높은 투과율과 161°의 초발수 접촉각을 보여주었다. Shadow mask를 기판 위에 두고 자외선을 조사하여 ZnO의 광촉매 특성을 이용하여 자외선이 조사된 부분의 발수기를 제거함으로써 제조한 발수/친수 기판은 300㎛ 와 3mm의 dot size로 명확하게 패터닝 되었다. A water-repellent / hydrophilic patterned substrate coated with ZnO rods was prepared using a solution process method. The ZnO thin film prepared by coating a ZnO seed layer on a glass substrate and then depositing the substrate in an aqueous ZnO solution by LPD method exhibited a wurtzite-type ZnO crystal structure having a 002 diffraction peak, and the deposition time was 2.5 at 1 hour. It was confirmed that the diameter of the prepared ZnO rod increases with time, from about 50 nm to 300 nm, and the thickness of the film increases from 225 nm to 3.01 μm. Thin films treated with FAS were converted from a hydrophilic surface of 20 ° to 30 ° to a 145 ° to 161 ° water repellent surface. In particular, ZnO rod-coated glass substrate prepared by immersion for 1 hour showed high transmittance of 89% in visible light and super water-repellent contact angle of 161 °. The water-repellent / hydrophilic substrate prepared by placing a shadow mask on the substrate and irradiating ultraviolet rays and removing the water repellent of the portion irradiated with ultraviolet rays by using the photocatalytic properties of ZnO was clearly patterned to a dot size of 300 μm and 3 mm.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Will be clear to those who have knowledge of.

도 1은 수용액 내에서 침적시간에 따른 ZnO 박막의 FE-SEM 이미지이다.1 is an FE-SEM image of a ZnO thin film according to deposition time in an aqueous solution.

도 2는 수용액 내에서 침적시간에 따른 ZnO 박막의 단면 이미지이다.2 is a cross-sectional image of a ZnO thin film according to the deposition time in an aqueous solution.

도 3은 2시간의 침적시간 동안 성장된 ZnO 박막의 XRD 패턴을 나타낸 도면이다.3 is a diagram showing an XRD pattern of a ZnO thin film grown for 2 hours of deposition time.

도 4는 수용액 내에서 침적시간에 따른 ZnO 박막의 투과 스펙트럼을 나타낸 도면이다.4 is a diagram showing a transmission spectrum of a ZnO thin film according to deposition time in an aqueous solution.

도 5는 FAS 처리 전/후 ZnO 박막의 접촉각을 나타낸 도면이다.5 is a view showing the contact angle of the ZnO thin film before and after the FAS treatment.

도 6은 1시간 동안 침적시켜 제조한 ZnO 박막에 대하여 FAS 처리 전/후의 물방울 이미지이다.6 is a droplet image before and after the FAS treatment for the ZnO thin film prepared by immersion for 1 hour.

도 7은 Shadow mask를 사용하여 성장시킨 ZnO 박막의 친수/발수 패터닝 이미지이다.7 is a hydrophilic / water repellent patterned image of a ZnO thin film grown using a shadow mask.

도 8은 투명 초발수-초친수 패터닝 제조과정을 나타낸 도면이다.8 is a view showing a transparent super water-repellent superhydrophilic patterning process.

Claims (9)

기판을 세정 및 친수 처리하고Cleaning and hydrophilizing the substrate 상기 기판의 상부에 ZnO 박막을 형성하고Forming a ZnO thin film on top of the substrate 상기 ZnO 박막을 FAS용액에 1시간 내지 1.5시간 동안 침적시켜 FAS처리한 후 After the ZnO thin film was immersed in the FAS solution for 1 to 1.5 hours and subjected to FAS treatment shadow mask를 덮고 자외선을 조사하여 패터닝하며,cover the shadow mask and irradiate with UV 상기 ZnO 박막의 형성은 상기 기판에 ZnO 씨드층을 코팅한 후, 상기 씨드층이 형성된 기판을 H2O(95ml)와 NaOH(aq)(25%, 5ml)의 혼합용매에 zinc nitrate hexahydrate (Zn(NO3)26H2O) : ammonium chloride (NH4Cl) : urea (Co(NH2)2) = 1 : 2 : 1의 몰비로 혼합하여 코팅용액에 침수하여 형성하는The ZnO thin film is formed by coating a ZnO seed layer on the substrate, and then coating the substrate on which the seed layer is formed with a mixed solvent of H 2 O (95 ml) and NaOH (aq) (25%, 5 ml) in zinc nitrate hexahydrate (Zn). (NO 3 ) 2 6H 2 O): ammonium chloride (NH 4 Cl): urea (Co (NH 2 ) 2 ) = 1: 2: Mixing in a molar ratio of 1: 1 to form by immersion in the coating solution 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항에 있어서, The method of claim 1, 상기 기판의 세정 및 친수 처리는Cleaning and hydrophilic treatment of the substrate KOH 용액과 증류수의 혼합액에 상기 기판을 침적하여 딥 코팅을 한 후, 상온, 90℃에서 순차적으로 건조하고 400℃에서 열처리하는 After dip coating the substrate in a mixed solution of KOH solution and distilled water, and then sequentially dried at room temperature, 90 ℃ and heat treated at 400 ℃ 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 삭제delete 제 1항에 있어서, 상기 씨드층은The method of claim 1, wherein the seed layer zinc acetate dehydrate (Zn(CH3COO)2H2O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako)을 0.02 : 0.02 : 0.51의 몰비로 섞은 후 60℃에서 2시간 동안 stirring한 용액에 상기 기판을 침수하여 형성하는Mix zinc acetate dehydrate (Zn (CH 3 COO) 2 · 2H 2 O, Wako), monoethanolamine (MEA, Wako), 2-methoxyehanol (Wako) at molar ratio of 0.02: 0.02: 0.51, and then stir at 60 ℃ for 2 hours. Formed by immersing the substrate in a solution 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항에 있어서,The method of claim 1, 상기 FAS처리는,The FAS process, FAS 용액에 헥산을 첨가하여 발수용액을 형성하고, 상기 발수 용액에 상기 ZnO 박막이 형성된 기판을 침적시키는Hexane is added to the FAS solution to form a water repellent solution, and the substrate on which the ZnO thin film is formed is deposited on the water repellent solution. 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항에 있어서, The method of claim 1, 상기 shadow mask의 dot size는 300㎛, 3.0mm인 Dot size of the shadow mask is 300㎛, 3.0mm 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항에 있어서,The method of claim 1, 상기 ZnO 박막의 투과율은The transmittance of the ZnO thin film is 침적시간의 증가에 따라 상기 ZnO 박막의 두께가 증가하고,As the deposition time increases, the thickness of the ZnO thin film increases, 상기 두께의 증가에 의해 가시광선 영역에서 투과율이 감소하는 The transmittance decreases in the visible region by increasing the thickness. 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항에 있어서, The method of claim 1, 상기 ZnO 박막의 투과율은The transmittance of the ZnO thin film is 침적시간은 1시간에서 2.5시간으로 증가함에 따라 상기 ZnO 박막의 두께가 증가하고,As the deposition time increases from 1 hour to 2.5 hours, the thickness of the ZnO thin film increases, 상기 ZnO 박막 두께의 증가에 의해 가시광선 영역의 380nm ~ 780nm 파장에서 투과율이 감소하는 The transmittance decreases at a wavelength of 380 nm to 780 nm in the visible region by increasing the thickness of the ZnO thin film. 친수/발수 패터닝 유리기판의 제조방법.Method for producing hydrophilic / water repellent patterned glass substrate. 제 1항, 제 2항 및 제 4항 내지 제 8항 중 어느 하나의 청구항의 제조방법에 의해 제조되어 자외선에 의해 조사된 부분은 친수성을 나타내고, 비조사된 부분은 발수성을 나타내는 친수/발수 패터닝 유리기판.A hydrophilic / water repellent patterning part produced by the manufacturing method of any one of claims 1, 2 and 4 to 8, irradiated with ultraviolet light, exhibits hydrophilicity, and non-irradiated part exhibits water repellency. Glass substrate.
KR1020090133817A 2009-10-29 2009-12-30 Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning Active KR101226624B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090103651 2009-10-29
KR20090103651 2009-10-29

Publications (2)

Publication Number Publication Date
KR20110047098A KR20110047098A (en) 2011-05-06
KR101226624B1 true KR101226624B1 (en) 2013-01-28

Family

ID=44238428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090133817A Active KR101226624B1 (en) 2009-10-29 2009-12-30 Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning

Country Status (1)

Country Link
KR (1) KR101226624B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470293B1 (en) * 2013-07-17 2014-12-08 코닝정밀소재 주식회사 Method of fabricating light extraction substrate for oled
KR102106491B1 (en) * 2018-08-22 2020-05-04 울산대학교 산학협력단 Superhydrophobic patterned biochip and its making method
KR102423770B1 (en) * 2020-03-31 2022-07-22 경북대학교 산학협력단 Super hydrophobic pattern formation method using laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344804A (en) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd Pattern forming body and pattern forming method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344804A (en) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd Pattern forming body and pattern forming method therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Materials Letters 61 (2007) 2775-2778 *
Materials Letters 61 (2007) 2775-2778*
Thin Solid Films 516 (2008) 2495-2501 *
Thin Solid Films 516 (2008) 2495-2501*

Also Published As

Publication number Publication date
KR20110047098A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
Masuda et al. Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution
Li et al. Ordered Co 3 O 4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity
Rao et al. Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method
JP5511159B2 (en) Photocatalyst film, method for producing photocatalyst film, article and method for hydrophilization
Zhang et al. Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface
KR20090037574A (en) Method for producing zinc oxide nanostructures and zinc oxide nanostructures prepared therefrom
Frysali et al. Functional surfaces with photocatalytic behavior and reversible wettability: ZnO coating on silicon spikes
Santiago et al. Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction
KR101226624B1 (en) Method for manufacturing glass substrate of hydrophilic/hydrophobic patterning
Yu et al. Bionic micro-nano-bump-structures with a good self-cleaning property: the growth of ZnO nanoarrays modified by polystyrene spheres
Lai et al. Controllable construction of ZnO/TiO 2 patterning nanostructures by superhydrophilic/superhydrophobic templates
KR101175633B1 (en) Method of preparing superhydrophobic surface capable of reversible switching
JP2009013038A (en) Superhydrophilic / hydrophobic patterned surface, anatase TiO2 crystal pattern and methods for their preparation
Peng et al. Dense and high-hydrophobic rutile TiO2 nanorod arrays
Hassan et al. Fabrication of Pd nanoparticles on Al substrate with excellent superhydrophobicity and photocatalytic activity
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
Pinton et al. Development of an automated and cost-effective apparatus for sol-gel solution deposition using spray coating technique and its application for TiO2-based photocatalytic films
Ma et al. Morphology-controllable synthesis and application of TiO 2 nanotube arrays with “photocatalysis and self-cleaning” synergism
Carneiro et al. Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering
Maver et al. Low-temperature synthesis and characterization of TiO2 and TiO2–ZrO2 photocatalytically active thin films
Srivastava et al. Improving the hydrophobicity of ZnO by PTFE incorporation
US20170296995A1 (en) Oxide shell structures and methods of making oxide shell structures
Wirandorn et al. Characterization and photocatalytic activity of titanium dioxide deposited on stainless steel by pulsed-pressure MOCVD
US20050175852A1 (en) Thin silica film and silica-titania composite film, and method for preparing them
Verma et al. Real-time degradation of Methylene Blue dye using bio-inspired superhydrophobic PDMS tube with Ta-ZnO composite

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20091230

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110803

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20120412

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20121022

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130121

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130121

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160108

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170119

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20180122

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20180122

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20190307

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20190307

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20200102

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210104

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20211215

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20231221

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20241205

Start annual number: 13

End annual number: 13