KR101217951B1 - Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas - Google Patents
Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas Download PDFInfo
- Publication number
- KR101217951B1 KR101217951B1 KR1020120058693A KR20120058693A KR101217951B1 KR 101217951 B1 KR101217951 B1 KR 101217951B1 KR 1020120058693 A KR1020120058693 A KR 1020120058693A KR 20120058693 A KR20120058693 A KR 20120058693A KR 101217951 B1 KR101217951 B1 KR 101217951B1
- Authority
- KR
- South Korea
- Prior art keywords
- nickel
- nickel sludge
- gas
- sludge
- ammonium fluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 78
- 239000010802 sludge Substances 0.000 title claims abstract description 75
- 239000007789 gas Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 10
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000002378 acidificating effect Effects 0.000 claims abstract description 31
- 239000003637 basic solution Substances 0.000 claims abstract description 27
- 238000005266 casting Methods 0.000 claims abstract description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 238000005868 electrolysis reaction Methods 0.000 claims description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 10
- 238000011069 regeneration method Methods 0.000 claims description 7
- 230000008929 regeneration Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 9
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 101100352919 Caenorhabditis elegans ppm-2 gene Proteins 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/245—Fluorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
본 발명은 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지(Ni Sludge)의 재생방법에 관한 것이다. 본 발명은 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지를 염기성 용액에 용해하여, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)을 용해 제거하는 단계; 및 상기 산성 불화암모늄(NH4HF2)이 용해 제거된 니켈 슬러지를 용융시킨 다음, 니켈-전극판으로 주조하는 단계를 포함하는, 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지의 재생방법을 제공한다. 본 발명에 따르면, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)이 염기성 용액을 통해 효과적으로 제거되어, 재생 니켈-전극판의 전류밀도 및 전기전도도 등의 전기적 특성이 향상되고, 니켈 슬러지의 발생량이 최소화되어 수명이 연장된다.The present invention relates to a method for regenerating nickel sludge generated in the production of nitrogen trifluoride (NF 3 ) gas. The present invention comprises the steps of dissolving nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas in a basic solution to dissolve and remove the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge; And the acidic ammonium fluoride (NH 4 HF 2) are dissolved removing molten nickel sludge and then, nickel-a comprising the step of casting the electrode plate, a nitrogen trifluoride (NF 3) gas of nickel sludge generated during the manufacture Provide a playback method. According to the present invention, the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge is effectively removed through the basic solution, thereby improving electrical characteristics such as current density and electrical conductivity of the regenerated nickel-electrode plate, The amount of generation is minimized to extend the life.
Description
본 발명은 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지(Ni Sludge)의 재생방법에 관한 것으로, 보다 상세하게는 삼불화질소(NF3) 가스를 제조하는 과정에서 발생된 니켈 슬러지(Ni Sludge)를 니켈-전극판으로 재생하되, 니켈 슬러지에 포함된 불순물을 염기성 용액을 통해 효과적으로 제거함으로써, 재생 니켈-전극판의 전기적 특성이 향상되고, 니켈 슬러지의 발생량이 최소화되어 수명을 연장할 수 있는 니켈 슬러지의 재생방법에 관한 것이다.
The present invention relates to a method for regenerating nickel sludge (Ni Sludge) generated during the production of nitrogen trifluoride (NF 3 ) gas, more specifically nickel sludge generated in the process of producing nitrogen trifluoride (NF 3 ) gas. (Ni Sludge) is recycled to the nickel-electrode plate, but by effectively removing the impurities contained in the nickel sludge through the basic solution, the electrical characteristics of the recycled nickel-electrode plate is improved, and the amount of nickel sludge is minimized to extend the life. It relates to a method for regenerating nickel sludge which can be performed.
삼불화질소 가스(이하, 'NF3 가스'라 한다.)는 반도체의 드라이 에칭제나 CVD 장치의 클리닝 가스 등으로 유용하게 사용되고 있다. 최근, 반도체 산업의 활성화로 인해 NF3 가스의 수요는 점점 증가되고 있다. Nitrogen trifluoride gas (hereinafter referred to as "NF 3 gas") is usefully used as a dry etching agent for semiconductors or as a cleaning gas for CVD apparatuses. Recently, the demand for NF 3 gas is increasing due to the activation of the semiconductor industry.
일반적으로, NF3 가스는 산성 불화암모늄(NH4HF2)의 용융염을 전해조 내에서 전기 분해하는 방법으로 제조된다. 이때, 상기 전해조에는 양극 및 음극의 전극과, 상기 양극과 음극을 구획하는 격막이 설치되어 있다. 격막은 양극에서 발생되는 양극 가스(NF3 가스 등)와 음극에서 발생되는 음극 가스(H2 등)의 혼합을 방지한다. 전기 분해를 통한 NF3 가스의 제조 공정에 있어서는 열이나 발생 가스에 대한 안정성이 확보되어야 하고, 전극을 장기간 동안 사용할 수 있어야 한다. 또한, 목적물인 NF3 가스의 생성율은 높아야 하고 부산물의 생성율은 낮아야 한다.In general, NF 3 gas is prepared by the electrolysis of a molten salt of acidic ammonium fluoride (NH 4 HF 2 ) in an electrolytic cell. At this time, the electrolytic cell is provided with electrodes of the positive electrode and the negative electrode, and a diaphragm for dividing the positive electrode and the negative electrode. The diaphragm prevents mixing of anode gas (NF 3 gas, etc.) generated at the anode and cathode gas (H 2, etc.) generated at the cathode. In the process of producing NF 3 gas through electrolysis, stability to heat or generated gas must be ensured and the electrode can be used for a long time. In addition, the production rate of NF 3 gas, which is a target product, should be high and the production rate of by-products should be low.
예를 들어, 대한민국 공개특허 제10-1991-0008172호[특허문헌 1]에는 양극(또는 음극)과 격막 간의 거리, 양극(또는 음극)의 하단과 전해조 저면 간의 거리 등을 조절하여 발생 가스에 대한 안정성과 장기간 사용성을 도모한 기술이 제시되어 있다. 그리고 대한민국 등록특허 제10-0742484호[특허문헌 2] 및 대한민국 등록특허 제10-0515412호[특허문헌 3]에는 전해조 상판 등에 냉각관이나 열교환 수단을 설치하여 열이나 발생 가스를 억제하기 위한 기술이 제시되어 있다. 또한, 대한민국 등록특허 제10-0541978호[특허문헌 4]에는 용융염의 전기 분해 시 암모늄산 불화물의 NH4F에 대한 HF의 비율 조절을 통해 NF3 가스의 생성 효율을 증가시키기 위한 기술이 제시되어 있다. For example, Korean Patent Laid-Open Publication No. 10-1991-0008172 [Patent Document 1] describes a distance between an anode (or cathode) and a diaphragm, a distance between a bottom of an anode (or cathode) and a bottom of an electrolytic cell, and the like for a generated gas. Techniques aimed at stability and long-term usability have been proposed. And the Republic of Korea Patent No. 10-0742484 [Patent Document 2] and Republic of Korea Patent No. 10-0515412 [Patent Document 3] has a technology for suppressing heat or generated gas by installing a cooling tube or heat exchange means in the electrolytic cell upper plate Presented. In addition, Korean Patent No. 10-0541978 [Patent Document 4] is proposed a technique for increasing the production efficiency of NF 3 gas through the control of the ratio of HF to NH 4 F of ammonium fluoride during the electrolysis of molten salt have.
상기 선행 특허문헌들에서도 제시된 바와 같이, NF3 가스를 용융염 전기 분해를 통해 제조함에 있어서는 전극으로서 니켈 플레이트(Ni Plate)가 주로 사용된다. 즉, 상기 전해조에는 양극과 음극의 전극으로서 Ni-전극판이 설치된다. 이때, 전기 분해 시에는 니켈 슬러지(Ni Sludge)가 발생된다. 그리고 이러한 니켈 슬러지에는 니켈과 함께 불순물로서 다량의 산성 불화암모늄(NH4HF2)이 포함되어 있다. As also shown in the preceding patent documents, nickel plate (Ni Plate) is mainly used as an electrode in the production of NF 3 gas through molten salt electrolysis. That is, the electrolytic cell is provided with a Ni-electrode plate as an electrode of the positive electrode and the negative electrode. At this time, nickel sludge is generated during electrolysis. The nickel sludge contains a large amount of acidic ammonium fluoride (NH 4 HF 2 ) as an impurity together with nickel.
또한, 일반적으로 상기 니켈-전극판은 위와 같은 니켈 슬러지를 재생하여 사용하고 있다. 구체적으로, 전기 분해 과정에서 발생된 니켈 슬러지를 회수하여 고온의 용광로에서 용융시킨 다음, 주조(casting)를 통해 니켈-전극판으로 재생하여 사용하고 있다. In general, the nickel-electrode plate is used by regenerating the nickel sludge as described above. Specifically, the nickel sludge generated during the electrolysis process is recovered and melted in a high temperature furnace, and then regenerated and used as a nickel-electrode plate through casting.
그러나 위와 같은 종래의 방법으로 재생된 니켈-전극판은 전기적 특성이 낮고, 니켈 슬러지의 발생량이 많아 수명이 짧은 문제점이 있다. 구체적으로, 전술한 바와 같이 니켈 슬러지에는 다량의 산성 불화암모늄(NH4HF2)이 포함되어 있는데, 이러한 니켈 슬러지를 별도의 처리 없이 바로 용융, 주조하게 되면, 고온의 용융 과정에서 산성 불화암모늄(NH4HF2)이 열분해되어 가스가 발생된다. 이때, 니켈-전극판의 표면에 미처 빠져나가지 못한 산성 불화암모늄(NH4HF2)의 가스로 인해, 가스 포집 체류(Gas pocket hold-up) 현상이 발생하고, 이러한 가스 포집 체류 현상에 의해 미세 구멍(hole)이 형성되어 재생 Ni-전극판의 집적도가 현저하게 떨어지게 된다. 이로 인해, 재생 Ni-전극판을 사용하여 전기 분해 시, Ni-전극판이 가지는 전류밀도 및 전기전도도 등의 전기적 특성이 낮고, 기포에 의해 내부 크랙(crack)이 발생한다. However, the nickel-electrode plate regenerated by the conventional method as described above has a problem of low electrical characteristics, and a large amount of nickel sludge is generated, thereby shortening the lifespan. Specifically, as described above, the nickel sludge contains a large amount of acidic ammonium fluoride (NH 4 HF 2 ). If the nickel sludge is melted and cast directly without any treatment, the acidic ammonium fluoride ( NH 4 HF 2 ) is pyrolyzed to generate gas. At this time, a gas pocket hold-up phenomenon occurs due to the gas of the acidic ammonium fluoride (NH 4 HF 2 ) that is not able to escape to the surface of the nickel-electrode plate, and the gas collection retention phenomenon causes fine Holes are formed so that the degree of integration of the regenerated Ni-electrode plate is significantly reduced. For this reason, during electrolysis using the regenerated Ni-electrode plate, the electrical characteristics such as current density and electrical conductivity of the Ni-electrode plate are low, and internal cracks are generated by bubbles.
또한, 상기 발생된 크랙(crack)으로 인해, Ni-전극판이 덩어리 상태로 분리, 침적되어 니켈 슬러지의 발생량이 많고 니켈-전극판의 수명이 단축된다. 이에 따라, 종래 재생 Ni-전극판을 사용하여 전기 분해 후 생성된 니켈 슬러지는 통상 30% 이상으로서 발생량이 많다. 예를 들어, 27.5kg 정도의 재생 니켈-전극판을 사용하는 경우, 전기 분해 후 약 9.0kg 이상의 니켈 슬러지가 발생하고 있다.
In addition, due to the cracks generated, the Ni-electrode plate is separated and deposited in the form of agglomerates, thereby generating a large amount of nickel sludge and shortening the life of the nickel-electrode plate. Accordingly, nickel sludge produced after electrolysis using a conventionally regenerated Ni-electrode plate is usually 30% or more and has a large amount of generation. For example, when using a regenerated nickel-electrode plate of about 27.5 kg, nickel sludge of about 9.0 kg or more is generated after electrolysis.
이에, 본 발명은 삼불화질소(NF3) 가스의 제조 시에 발생된 니켈 슬러지를 재생(재활용)함에 있어, 특정의 처리를 통해 산성 불화암모늄(NH4HF2)을 제거한 후에 재생함으로써, 재생 니켈-전극판의 전기적 특성이 향상되고, 니켈 슬러지의 발생량이 최소화되어 수명을 연장할 수 있는 니켈 슬러지의 재생방법을 제공하는 데에 그 목적이 있다.
Accordingly, in the present invention, in the regeneration (recycling) of the nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas, by regeneration after removing the acidic ammonium fluoride (NH 4 HF 2 ) through a specific treatment, It is an object of the present invention to provide a method for regenerating nickel sludge which can improve the electrical characteristics of the nickel-electrode plate and minimize the amount of nickel sludge to extend its life.
상기 목적을 달성하기 위하여 본 발명은, The present invention to achieve the above object,
삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지를 염기성 용액에 용해하여, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)을 용해 제거하는 단계; 및 Dissolving nickel sludge generated in the preparation of nitrogen trifluoride (NF 3 ) gas in a basic solution to dissolve and remove the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge; And
상기 산성 불화암모늄(NH4HF2)이 용해 제거된 니켈 슬러지를 용융시킨 다음, 니켈-전극판으로 주조하는 단계를 포함하는, 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지의 재생방법을 제공한다. Regeneration of the nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas, comprising melting the nickel sludge in which the acidic ammonium fluoride (NH 4 HF 2 ) is dissolved and then cast into a nickel-electrode plate. Provide a method.
이때, 상기 염기성 용액은 NaOH 수용액 및 KOH 수용액으로부터 선택된 하나 이상인 것이 바람직하다.
At this time, the basic solution is preferably at least one selected from aqueous NaOH and aqueous KOH solution.
본 발명에 따르면, 삼불화질소(NF3) 가스의 제조 시에 발생된 니켈 슬러지를 재생함에 있어, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)이 염기성 용액을 통해 효과적으로 제거되어, 재생 니켈-전극판의 전류밀도 및 전기전도도 등의 전기적 특성이 향상되고, 니켈 슬러지의 발생량이 최소화되어 수명이 연장되는 효과를 갖는다.According to the present invention, in regenerating nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas, the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge is effectively removed through the basic solution, and regenerated. The electrical properties such as current density and electrical conductivity of the nickel-electrode plate are improved, and the amount of nickel sludge is minimized, thereby extending the life.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 삼불화질소(NF3) 가스의 제조 시에 발생된 니켈 슬러지(Ni Sludge)를 니켈-전극판으로 재생함에 있어, 니켈 슬러지를 용융, 주조하기 이전에 염기성 용액을 통해 산성 불화암모늄(NH4HF2)을 용해 제거한 후에 재생한다. The present invention regenerates the nickel sludge (Ni Sludge) generated during the production of nitrogen trifluoride (NF 3 ) gas into a nickel-electrode plate, so that the acidic ammonium fluoride ( NH 4 HF 2 ) is dissolved and removed and regenerated.
구체적으로, 본 발명은 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지를 염기성 용액에 용해하여, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)을 용해 제거하는 용해 단계, 및 상기 산성 불화암모늄(NH4HF2)이 용해 제거된 니켈 슬러지를 용융시킨 다음, 니켈-전극판으로 주조하는 용융/주조 단계를 포함한다. 보다 구체적으로 설명하면 다음과 같다. Specifically, the present invention is a dissolution step of dissolving and removing the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge by dissolving nickel sludge generated in the production of nitrogen trifluoride (NF 3 ) gas in a basic solution, and And melting / casting the molten nickel sludge in which the acidic ammonium fluoride (NH 4 HF 2 ) is dissolved and then cast into a nickel-electrode plate. More specifically described as follows.
먼저, 삼불화질소(NF3) 가스의 제조 시, 전기 분해 과정에서 발생된 니켈 슬러지를 회수한다. 구체적으로, 전해조 내의 니켈 슬러지를 여과 등을 통해 분리, 회수한다. 이후, 상기 회수된 니켈 슬러지를 염기성 용액에 용해시킨다. 이때, 니켈 슬러지에는 니켈 이외에 산성 불화암모늄(NH4HF2)이 포함되어 있는데, 본 발명에 따르면 상기 산성 불화암모늄(NH4HF2)은 염기성 용액에 의해 효과적으로 용해 제거된다. First, in the production of nitrogen trifluoride (NF 3 ) gas, the nickel sludge generated during the electrolysis process is recovered. Specifically, the nickel sludge in the electrolytic cell is separated and recovered by filtration or the like. Thereafter, the recovered nickel sludge is dissolved in a basic solution. In this case, the nickel sludge contains an acidic ammonium fluoride (NH 4 HF 2 ) in addition to nickel, according to the present invention, the acidic ammonium fluoride (NH 4 HF 2 ) is effectively dissolved and removed by a basic solution.
니켈 슬러지에는 산성 불화암모늄(NH4HF2)이 염 형태로 존재하게 되는데, 산성 불화암모늄(NH4HF2)은 물에 녹는다. 이때, 산성 불화암모늄(NH4HF2)을 제거함에 있어서, 물에 녹여 제거하는 방법을 고려해 볼 수 있으나, 물에 녹일 경우 처리 비용이 많아 합리적이지 않다. 즉, 물을 사용하는 경우 다량을 사용해야 하고, 이와 함께 HF 수용액이 생성되어 폐수 발생량이 크게 증가한다. 따라서 다량의 물 사용과 폐수 처리에 따른 비용이 많이 소요된다. 무엇보다 물을 사용하는 경우 제거효율이 낮다. Nickel sludge acidic there is as ammonium fluoride (NH 4 HF 2) is present in a salt form, an acidic ammonium fluoride (NH 4 HF 2) are soluble in water. In this case, in removing the acidic ammonium fluoride (NH 4 HF 2 ), it may be considered to remove the dissolved in water, but if it is dissolved in water, the treatment cost is high and not reasonable. That is, when water is used, a large amount must be used, and along with this, an HF aqueous solution is generated, thereby greatly increasing the amount of wastewater generated. Therefore, the cost of using a large amount of water and wastewater treatment is high. Above all, water removal efficiency is low.
그러나 본 발명에 따라 염기성 용액을 사용하는 경우, 적은 양으로도 효과적인 제거효율을 갖는다. 즉, 본 발명에 따르면, 산성 불화암모늄(NH4HF2)은 염기성 용액에 굉장히 잘 녹아 효과적으로 제거된다. However, in the case of using the basic solution according to the present invention, it has an effective removal efficiency even in a small amount. That is, according to the present invention, the acidic ammonium fluoride (NH 4 HF 2 ) is very well dissolved in the basic solution is effectively removed.
본 발명에서, 상기 염기성 용액은 특별히 제한되지 않으며, 이는 염기성의 용액이면 좋다. 상기 염기성 용액은 용매에 염기성 물질이 용해된 용액으로서, pH 8 ~ 14를 가질 수 있다. 이때, 상기 용매는 제한되지 않으며, 용매는 예를 들어 물, 또는 물과 유기 용제가 혼합된 혼합 용매 등으로부터 선택될 수 있다. 그리고 상기 염기성 물질은 무기물, 유기물 및 무기-유기 복합물 등으로부터 선택될 수 있다. 상기 염기성 물질은, 바람직하게는 NaOH(수산화나트륨), KOH(수산화칼륨), LiOH(수산화리튬) 및 Ca(OH)2(수산화칼슘) 등으로부터 선택된 하나 이상인 것이 좋다. 상기 염기성 물질은, 보다 바람직하게는 강염기이면서 비용 면에서도 유리한 NaOH 및 KOH 등으로부터 선택된 하나 이상이 좋다. In the present invention, the basic solution is not particularly limited and may be a basic solution. The basic solution is a solution in which a basic substance is dissolved in a solvent, and may have a pH of 8 to 14. In this case, the solvent is not limited, and the solvent may be selected from, for example, water or a mixed solvent in which water and an organic solvent are mixed. And the basic material may be selected from inorganic, organic and inorganic-organic composites and the like. The basic substance is preferably at least one selected from NaOH (sodium hydroxide), KOH (potassium hydroxide), LiOH (lithium hydroxide), Ca (OH) 2 (calcium hydroxide) and the like. The basic substance is more preferably at least one selected from NaOH, KOH and the like which are strong bases and are advantageous in terms of cost.
보다 구체적으로, 상기 염기성 용액은 수용액으로서, NaOH 수용액 및 KOH 수용액 등으로부터 선택된 하나 이상을 사용하는 것이 바람직하다. 이때, 염기성 용액은 특별히 한정하는 것은 아니지만, 예를 들어 5 ~ 30wt(중량)%의 농도를 가질 수 있다. 보다 구체적인 예를 들어, 염기성 용액은 5 ~ 30wt%의 NaOH 수용액이나 5 ~ 30wt%의 KOH 수용액 등을 사용할 수 있다. 아울러, 용해 시간은 특별히 한정하는 것은 아니지만, 예를 들어 10분 내지 24시간, 보다 구체적인 예를 들어 30분 내지 12시간 동안 진행할 수 있다. 또한, 용해 온도(염기성 용액의 온도)는 특별히 한정하는 것은 아니지만, 예를 들어 0℃ ~ 50℃가 될 수 있다. More specifically, the basic solution is preferably used as an aqueous solution, at least one selected from NaOH aqueous solution and KOH aqueous solution. At this time, the basic solution is not particularly limited, but may have, for example, a concentration of 5 to 30 wt (%) by weight. For example, the basic solution may be a 5-30 wt% NaOH aqueous solution or a 5-30 wt% KOH aqueous solution. In addition, the dissolution time is not particularly limited, but may be, for example, 10 minutes to 24 hours, more specifically, for example, 30 minutes to 12 hours. The dissolution temperature (temperature of the basic solution) is not particularly limited, but may be, for example, 0 ° C to 50 ° C.
본 발명에 따르면, 위와 같은 염기성 용액에 니켈 슬러지를 용해하는 경우, 높은 용해도(solubility)로 인해 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)의 제거효율이 매우 우수하며, 폐수 발생량도 적다. 그리고 중화반응에 의해 산성 폐수의 발생을 방지할 수 있다. According to the present invention, in the case of dissolving nickel sludge in the basic solution as described above, due to high solubility, the removal efficiency of acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge is very excellent, and the amount of wastewater generated is small. . And it is possible to prevent the generation of acidic waste water by the neutralization reaction.
위와 같이 염기성 용액에 니켈 슬러지를 용해한 다음, 용해액으로부터 니켈 슬러지를 분리 회수한다. 예를 들어, 침전 및 여과 등을 통해 니켈 슬러지를 분리 회수할 수 있다. 이때, 분리 회수된 니켈 슬러지에는 대부분의 산성 불화암모늄(NH4HF2)이 제거되고 극히 미량이 잔존할 수 있다. After dissolving the nickel sludge in the basic solution as above, the nickel sludge is separated and recovered from the solution. For example, nickel sludge may be separated and recovered through precipitation and filtration. In this case, most of the acidic ammonium fluoride (NH 4 HF 2 ) may be removed and a very small amount of nickel sludge may be separated and recovered.
다음으로, 상기 분리 회수된 니켈 슬러지, 즉 염기성 용액을 통해 산성 불화암모늄(NH4HF2)이 제거된 니켈 슬러지를 용융시킨 다음, 주조(casting)를 통해 니켈-전극판으로 재생한다. 이때, 용융시키기 이전에 건조를 진행하여 니켈 슬러지에 포함된 수분 등을 제거하는 것이 좋다. Next, the nickel sludge from which the separated and recovered nickel sludge, that is, the acidic ammonium fluoride (NH 4 HF 2 ) is removed through a basic solution, is melted and then regenerated into a nickel-electrode plate through casting. At this time, it is preferable to remove the moisture contained in the nickel sludge by drying before melting.
상기 용융은 니켈의 융점(melting point) 이상의 온도에서 진행하는 것이면 제한되지 않는다. 상기 용융은, 예를 들어 용광로 등에서 1455℃ 이상의 온도에서 진행할 수 있다. 상기 용융은, 구체적인 예를 들어 1460℃ ~ 1650℃의 온도에서, 더욱 구체적인 예를 들어 1500℃ ~ 1600℃의 온도에서 진행할 수 있다. The melting is not limited as long as it proceeds at a temperature above the melting point of nickel. For example, the melting may be performed at a temperature of 1455 ° C. or higher in a furnace or the like. The melting may be performed at a temperature of 1460 ° C to 1650 ° C, for example, and at a temperature of 1500 ° C to 1600 ° C.
또한, 상기 주조에서는 용융을 통해 얻어진 니켈 용융물을 주조 형틀에 부어 원하는 형상의 니켈-전극판으로 성형하여 재생한다. 이때, 주조 형틀은 다양한 형상 및 크기(용적)를 가질 수 있으며, 이는 특별히 제한되지 않는다. In addition, in the casting, the nickel melt obtained through melting is poured into a casting mold and molded into a nickel-electrode plate having a desired shape and regenerated. At this time, the casting mold may have various shapes and sizes (volumes), which are not particularly limited.
이상에서 설명한 본 발명에 따른 방법으로 재생된 니켈-전극판은 염기성 용액을 통해 산성 불화암모늄(NH4HF2)이 효과적으로 제거되어, 용융/주조 과정에서 가스 발생량이 현저히 작아 니켈의 집적도가 향상된다. 이에 따라, 재생된 니켈-전극판은 전류밀도 및 전기전도도 등의 전기적 특성이 우수하다. 특히, 전기 분해 시, 니켈 슬러지의 발생량이 최소화되어 장수명 특성을 갖는다.
In the nickel-electrode plate regenerated by the method according to the present invention described above, the acidic ammonium fluoride (NH 4 HF 2 ) is effectively removed through the basic solution, so that the amount of gas generated during the melting / casting process is significantly smaller, and the density of nickel is improved. . Accordingly, the regenerated nickel-electrode plate has excellent electrical characteristics such as current density and electrical conductivity. In particular, during electrolysis, the generation amount of nickel sludge is minimized to have a long service life.
이하, 본 발명의 실시예 및 비교예를 예시한다. 하기의 실시예는 본 발명의 이해를 돕도록 하기 위해 예시적으로 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.
Hereinafter, examples and comparative examples of the present invention will be exemplified. The following examples are provided to illustrate the present invention in order to facilitate understanding of the present invention, and thus the technical scope of the present invention is not limited thereto.
[실시예] [Example]
< 용해도(solubility) 평가 ><Solubility Assessment>
니켈 슬러지의 물과 염기성 용액에 대한 용해도(solubility)를 다음과 같이 평가하였다. The solubility of nickel sludge in water and basic solutions was evaluated as follows.
염기성 용액은 10wt%의 NaOH 수용액을 사용하였다. 이때, 삼불화질소(NF3) 가스의 제조 시에 발생된 니켈 슬러지를 각 용액에 동일한 양으로 넣은 다음, 시간 경과에 따른 용액 내의 불소(F) 이온수치(ppm)를 측정하고, 그 결과를 하기 [표 1]에 나타내었다.
As the basic solution, an aqueous 10 wt% NaOH solution was used. At this time, nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas was added to each solution in the same amount, and then the fluorine (F) ion value (ppm) in the solution was measured over time, and the result was measured. It is shown in Table 1 below.
상기 [표 1]에 나타난 바와 같이, NaOH 수용액에 용해했을 때, 물(H2O)보다 불소(F) 이온량(ppm)이 많으며, 또한 시간 경과에 따른 증가폭이 높음을 알 수 있다. 따라서 산성 불화암모늄(NH4HF2)은 물(H2O)보다는 NaOH 수용액에서 매우 효과적으로 제거됨을 알 수 있다.
As shown in Table 1 above, when dissolved in an aqueous NaOH solution, the amount of fluorine (F) ions (ppm) is higher than that of water (H 2 O), and the increase over time is high. Therefore, it can be seen that acidic ammonium fluoride (NH 4 HF 2 ) is more effectively removed from aqueous NaOH solution than water (H 2 O).
< Ni-전극판의 재생 ><Regeneration of Ni-electrode plate>
상기 용해도 평가에서, 10wt%의 NaOH 수용액에 4시간(hr) 동안 용해 처리한 니켈 슬러지를 침점 및 여과 분리한 다음, 건조시켰다. 이후, 건조된 니켈 슬러지를 1500℃에서 용융시킨 다음, 주조 형틀에 부어 27.5kg의 Ni-전극판을 성형(주조)하여 재생하였다. In the solubility evaluation, the nickel sludge which was dissolved in 10wt% NaOH aqueous solution for 4 hours (hr) was immersed and separated by filtration and then dried. Thereafter, the dried nickel sludge was melted at 1500 ° C., and then poured into a casting mold, thereby regenerating by molding (casting) a 27.5 kg Ni-electrode plate.
그리고 상기 재생된 Ni-전극판을 사용하여 산성 불화암모늄(NH4HF2)이 수용된 전해조에서 통상적인 공정으로 전기 분해하였다. 전기 분해 후, 전해조 내에 생성된 니켈 슬러지의 중량(발생량) 및 발생율을 측정하고, 그 결과를 하기 [표 2]에 나타내었다. 이때, [표 2]에서, 발생율(%)은 아래의 수학식 1에 따라 산정된 값이다.
The regenerated Ni-electrode plate was then used for electrolysis in a conventional process in an electrolytic cell containing acidic ammonium fluoride (NH 4 HF 2 ). After the electrolysis, the weight (generation amount) and the generation rate of the nickel sludge generated in the electrolytic cell were measured, and the results are shown in the following [Table 2]. In this case, in Table 2, the occurrence rate (%) is a value calculated according to Equation 1 below.
[수학식 1][Equation 1]
발생율(%) = (전기 분해 후 생성된 니켈 슬러지의 중량/전기 분해 전 재생 니켈-전극판의 중량) x 100
% Incidence = (weight of nickel sludge produced after electrolysis / weight of regenerated nickel-electrode plate before electrolysis) x 100
[비교예] [Comparative Example]
상기 실시예와 비교하여, 니켈 슬러지를 NaOH 수용액에 용해 처리하지 않는 것을 제외하고는 동일한 방법으로 Ni-전극판을 성형(주조)하여 재생하였다. 구체적으로, 삼불화질소(NF3) 가스의 제조 시에 발생된 니켈 슬러지를 NaOH 수용액에 용해 처리하지 않고, 동일한 조건에서 용융 및 주조하여 27.5kg의 Ni-전극판을 재생하였다. 그리고 재생된 Ni-전극판을 이용하여 상기 실시예와 동일한 방법으로 전기 분해한 후, 생성된 니켈 슬러지의 중량(발생량) 및 발생율을 측정하고, 그 결과를 하기 [표 2]에 함께 나타내었다.
Compared with the above example, the Ni-electrode plate was molded (cast) and regenerated in the same manner except that the nickel sludge was not dissolved in NaOH aqueous solution. Specifically, 27.5 kg of Ni-electrode plate was regenerated by melting and casting nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas without dissolving it in an aqueous NaOH solution. After electrolysis using the regenerated Ni-electrode plate in the same manner as in the above example, the weight (generated amount) and the generation rate of the generated nickel sludge were measured, and the results are shown together in the following [Table 2].
재생 Ni-전극판의 중량Before electrolysis
Weight of Regenerated Ni-electrode Plate
니켈 슬러지의 발생량(중량)After electrolysis
Nickel sludge generation amount (weight)
상기 [표 2]에 보인 바와 같이, 본 발명의 실시예에 따라 NaOH 수용액에 용해 처리한 후에 재생하여 사용하는 경우, 니켈 슬러지의 발생율이 15.0% 정도로서 현저히 낮음을 알 수 있다. 또한, 니켈 슬러지의 발생율이 낮으면 Ni-전극판을 장기간 사용할 수 있으므로 수명이 연장됨을 알 수 있다.As shown in Table 2 above, it can be seen that the generation rate of nickel sludge is about 15.0%, which is remarkably low in the case of regeneration after dissolution treatment in aqueous NaOH solution according to the embodiment of the present invention. In addition, when the incidence of nickel sludge is low, it can be seen that the Ni-electrode plate can be used for a long time, thereby extending the life.
Claims (2)
상기 니켈 슬러지를 염기성 용액에 용해하여, 니켈 슬러지에 포함된 산성 불화암모늄(NH4HF2)을 상기 염기성 용액에 용해시켜 제거하는 단계; 및
상기 산성 불화암모늄(NH4HF2)이 용해 제거된 니켈 슬러지를 용융시킨 다음, 니켈-전극판으로 주조하는 단계를 포함하는 것을 특징으로 하는, 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지의 재생방법.
In the production of nitrogen trifluoride (NF 3 ) gas, a method of regenerating nickel sludge generated by electrolysis and regenerating nickel sludge containing an acidic ammonium fluoride (NH 4 HF 2 ) into a nickel-electrode plate To
Dissolving the nickel sludge in a basic solution to dissolve and remove the acidic ammonium fluoride (NH 4 HF 2 ) contained in the nickel sludge in the basic solution; And
Melting the nickel sludge in which the acidic ammonium fluoride (NH 4 HF 2 ) is dissolved and removed, and then casting the nickel sludge into a nickel-electrode plate, which is generated during the production of nitrogen trifluoride (NF 3 ) gas. Regeneration method of nickel sludge.
상기 염기성 용액은 NaOH 수용액 및 KOH 수용액으로부터 선택된 하나 이상인 것을 특징으로 하는, 삼불화질소(NF3) 가스의 제조 시 발생된 니켈 슬러지의 재생방법.The method of claim 1,
The basic solution is one or more selected from the aqueous NaOH and KOH solution, characterized in that the regeneration of nickel sludge generated during the production of nitrogen trifluoride (NF 3 ) gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120058693A KR101217951B1 (en) | 2012-05-31 | 2012-05-31 | Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120058693A KR101217951B1 (en) | 2012-05-31 | 2012-05-31 | Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101217951B1 true KR101217951B1 (en) | 2013-01-02 |
Family
ID=47841041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120058693A Active KR101217951B1 (en) | 2012-05-31 | 2012-05-31 | Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101217951B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049834A1 (en) | 2017-09-06 | 2019-03-14 | 関東電化工業株式会社 | Electrode and production method therefor, and production method for regenerated electrode |
CN116040701A (en) * | 2022-11-08 | 2023-05-02 | 中船(邯郸)派瑞特种气体股份有限公司 | Simple and efficient comprehensive treatment method for nickel-containing waste residues |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900001369B1 (en) * | 1987-07-25 | 1990-03-09 | 한국과학기술원 | Recycling method of nickel waste catalyst |
JP2007031245A (en) * | 2005-07-29 | 2007-02-08 | Shigetaka Ito | Method for refining aluminum hydroxide sludge |
KR20080101004A (en) * | 2007-05-15 | 2008-11-21 | 재단법인 포항산업과학연구원 | Method for producing iron nickel-containing raw material from iron nickel-containing waste liquid and method for producing stainless melt-dissolved raw material using iron nickel-containing raw material |
KR101086715B1 (en) * | 2011-02-11 | 2011-11-24 | 주식회사태산기연 | Nickel recycling method |
-
2012
- 2012-05-31 KR KR1020120058693A patent/KR101217951B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900001369B1 (en) * | 1987-07-25 | 1990-03-09 | 한국과학기술원 | Recycling method of nickel waste catalyst |
JP2007031245A (en) * | 2005-07-29 | 2007-02-08 | Shigetaka Ito | Method for refining aluminum hydroxide sludge |
KR20080101004A (en) * | 2007-05-15 | 2008-11-21 | 재단법인 포항산업과학연구원 | Method for producing iron nickel-containing raw material from iron nickel-containing waste liquid and method for producing stainless melt-dissolved raw material using iron nickel-containing raw material |
KR101086715B1 (en) * | 2011-02-11 | 2011-11-24 | 주식회사태산기연 | Nickel recycling method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049834A1 (en) | 2017-09-06 | 2019-03-14 | 関東電化工業株式会社 | Electrode and production method therefor, and production method for regenerated electrode |
KR20200047446A (en) | 2017-09-06 | 2020-05-07 | 칸토 덴카 코교 가부시키가이샤 | Electrode and method for manufacturing same, and method for producing regenerative electrode |
US11821099B2 (en) | 2017-09-06 | 2023-11-21 | Kanto Denka Kogyo Co., Ltd. | Electrode production method |
KR102614534B1 (en) | 2017-09-06 | 2023-12-14 | 칸토 덴카 코교 가부시키가이샤 | Electrode and its manufacturing method and manufacturing method of regenerative electrode |
CN116040701A (en) * | 2022-11-08 | 2023-05-02 | 中船(邯郸)派瑞特种气体股份有限公司 | Simple and efficient comprehensive treatment method for nickel-containing waste residues |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103741142B (en) | A kind of tin stripper based on hydrochloric acid-pink salt system and the method reclaiming stannum from waste tin stripper | |
EP2813587B1 (en) | Method for recovering lithium | |
JP6864739B2 (en) | Method for producing lithium compound | |
KR101713600B1 (en) | Method of recovering lithium in wastewater obtained from waste lithium battery recycling process | |
CN101946027B (en) | Method of recovering valuable metals from izo scrap | |
CN105970250B (en) | A kind of innoxious method of comprehensive utilization of electrolytic aluminium solid waste | |
US11821099B2 (en) | Electrode production method | |
KR101217951B1 (en) | Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas | |
KR101200185B1 (en) | Method for regenerating nickel sludge occurred in production process of nitrogen trifluoride gas | |
RU2018137322A (en) | METHOD FOR PROCESSING SERVED ELECTRON BEAM PIPES | |
KR101582554B1 (en) | Manufacturing method of pure nickel plate from high fluorine containing nickel slime and treatment of acid washing and water washing solution of nickel slime | |
JP2016222977A5 (en) | ||
KR101086715B1 (en) | Nickel recycling method | |
KR101570795B1 (en) | Manufacturing method of pure nickel from fluorine containing nickel slime | |
CN102642906A (en) | Additive applied to treatment of chlorine containing solution through ion exchange membrane electrolytic technology | |
KR100614890B1 (en) | High purity indium manufacturing method and apparatus | |
CN103205575B (en) | Method for recovering hydrochloric acid and rare earth from oxalate rare earth precipitation waste water | |
KR102522351B1 (en) | Recycling device of waste etchant and recycling method of waste etchant | |
KR101962305B1 (en) | Wasted carbon recycling method in semiconductor manufacturing | |
CN104411797A (en) | Etching fluid, etching force recovery agent, method for manufacturing semiconductor substrate for solar cell, and semiconductor substrate for solar cell | |
KR101883928B1 (en) | Method for collecting nickel from nickel sludge | |
CN110950752A (en) | Preparation method of lithium formate solution | |
KR101208431B1 (en) | Recycling of Nikel sludge | |
JP2016222976A5 (en) | ||
JP2006169134A (en) | Method for producing lignin from which organic acid is removed and lead storage battery obtained by adding lignin from which organic acid is removed to negative electrode active substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120531 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20120601 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20120531 Patent event code: PA03021R01I Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120626 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20121030 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20121226 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20121226 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20151202 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20151202 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161221 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20161221 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171213 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20171213 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181221 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20181221 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20201218 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20221213 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20240826 Start annual number: 13 End annual number: 13 |