KR101196947B1 - Power Supply Device Having Current Control Circuit for Power Factor Improvement - Google Patents
Power Supply Device Having Current Control Circuit for Power Factor Improvement Download PDFInfo
- Publication number
- KR101196947B1 KR101196947B1 KR1020100101925A KR20100101925A KR101196947B1 KR 101196947 B1 KR101196947 B1 KR 101196947B1 KR 1020100101925 A KR1020100101925 A KR 1020100101925A KR 20100101925 A KR20100101925 A KR 20100101925A KR 101196947 B1 KR101196947 B1 KR 101196947B1
- Authority
- KR
- South Korea
- Prior art keywords
- power factor
- circuit
- capacitor
- power supply
- present
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/06—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
본 발명은 소형이고 저가이며 고역률 달성이 가능한 역률 개선 회로를 제공한다.
본 발명은, 역률 개선용 전원 공급 장치에 있어서,
입력되는 교류 전압을 정류하는 정류회로;
부하와 병렬로 연결되는 콘덴서;
상기 정류회로의 출력과 상기 콘덴서 사이에 연결되어, 상기 콘덴서의 충전시간을 늘려주는 정전류 회로를 포함하는 것을 특징으로 한다.
이상과 같은 본 발명의 역율 개선 회로를 이용하면, 소형이면서 저가이며 고역률의 역률 개선 회로를 제공할 수 있다.The present invention provides a power factor improvement circuit that is compact, inexpensive, and capable of achieving high power factor.
The present invention provides a power supply for improving power factor,
A rectifier circuit for rectifying the input AC voltage;
A capacitor connected in parallel with the load;
And a constant current circuit connected between the output of the rectifier circuit and the capacitor to increase the charging time of the capacitor.
By using the power factor correction circuit of the present invention as described above, it is possible to provide a power factor improvement circuit of small size, low cost and high power factor.
Description
본 발명은 LED램프나 컴펙트 형광등, 소형 아답터용 소형 전원공급장치에서 역률을 개선하는 회로에 관한 것이다.The present invention relates to a circuit for improving power factor in LED lamps, compact fluorescent lamps, small power supplies for small adapters.
LED램프나 컴펙트 형광등, 소형 아답터는 크기가 작기 때문에, 내부에 소형 전원 공급 장치가 사용되고, 종래의 전원 공급 장치는, 도1에서와 같은 구성을 가지고 있어서, 교류(AC)가 브리지 다이오드 회로에 공급되어 맥류를 형성하고, 이를 다시 전해 콘덴서를 이용하여 직류(DC)에 근접하게 만들어서 부하들에 공급되게 된다. Since LED lamps, compact fluorescent lamps, and small adapters are small in size, a small power supply is used inside, and a conventional power supply has a configuration as shown in FIG. 1, so that AC is supplied to the bridge diode circuit. To form a pulsation, which is then brought close to direct current (DC) using an electrolytic capacitor and supplied to the loads.
그런데, 이러한 종래기술에서는 단순히 전해 콘덴서를 사용하기 때문에, 도3의 두 번째 그래프처럼 입력 전압의 피크치 근처에서 신속히 충전이 시작하고 신속히 방전되므로, 입력 전류가 흐르는 기간이 짧아서 입력 전압의 파형 중에서 일부 기간에만 입력 전류가 흘러서 역률이 저하되어 전력을 공급하는 전송선로에 손실이 발생한다.However, since such a conventional technique simply uses an electrolytic capacitor, as shown in the second graph of FIG. 3, charging starts and discharges quickly near the peak value of the input voltage. Only when the input current flows, the power factor is lowered, resulting in a loss in the power transmission line.
이를 개선하기 위하여 역률 개선 회로(Power Factor Correction Circuit : PFC)를 가진 전원공급장치를 적용해야 하는데, 이러한 LED램프나 컴펙트 형광등, 소형 아답터에서는, 회로를 수용할 수 있는 내부 공간 크기가 작고 역률 개선회로 추가에 따른 비용 증가가 발생하므로, 역률 개선 회로를 적용한 전원 공급 장치를 저가이고 소형화하기가 어려워서 많은 경우에 이러한 역률 개선 회로를 적용하지 않아서 에너지 낭비가 초래된다.In order to improve this, a power supply with a power factor correction circuit (PFC) must be applied. In such an LED lamp, a compact fluorescent lamp, and a small adapter, the power factor correction circuit has a small internal space that can accommodate the circuit. As additional cost increases, power supplies with power factor correction circuits are inexpensive and difficult to miniaturize, which in many cases results in waste of energy by not applying such power factor correction circuits.
한편, 역률 개선 회로에는 수동(Passive) 방식과 능동(Active) 방식이 있는데, 수동 방식의 대표적인 방법은 도2에서와 같이 전해 콘덴서(C)에 대응하는 인덕터(L)를 사용하는 LC공진회로 방식이고, 이 방식에서는 도3의 세 번째 그래프와 같이 2번째 그래프에 비해 인덕터가 콘덴서의 위상 차이를 보상해 주어 역률이 개선되며(즉, 콘덴서에 의한 진상을 인턱터의 지상으로 보상해 준다), 이 수동방식에서는 보통 0.8정도까지 역률을 개선할 수 있다.Meanwhile, the power factor correction circuit includes a passive method and an active method. An exemplary method of the passive method uses an LC resonant circuit method using an inductor L corresponding to an electrolytic capacitor C as shown in FIG. In this method, as shown in the third graph of FIG. 3, the inductor compensates the phase difference of the capacitor compared to the second graph, thereby improving the power factor (that is, compensating the fact of the capacitor to the ground of the inductor). In manual mode, power factor can be improved to about 0.8.
그러나, 교류 전류가 50Hz 내지 60Hz의 저주파수이므로 저주파 인덕터를 만들기 위해서는 인덕터의 크기가 크고, 이에 따라 무게가 무거워서, 소형 전원 공급 장치에 사용할 수 없다.However, since the alternating current is a low frequency of 50Hz to 60Hz, the size of the inductor is large in order to make a low frequency inductor, and thus the weight is heavy, and thus it cannot be used in a small power supply.
또한, 능동방식은 스위칭 방식을 이용하여 고역률을 구현 가능하지만, 회로가 복잡하여 가격이 비싸고 스위칭에 따른 고조파 발생으로 인하여 EMI 등의 대책을 세워야 하는 문제가 있어서, 내부 공간이 협소하고 저가격 제조가 필요한 소형 전원 공급 장치에서는 능동 방식의 역률 개선 회로를 사용하기 어렵다.In addition, the active method can implement a high power factor using a switching method, but the circuit is expensive, and there is a problem in that countermeasures such as EMI due to harmonics generated by switching have to be taken. It is difficult to use active power factor correction circuits in necessary small power supplies.
본 발명은 상기와 같은 종래의 능동 방식 및 수동 방식의 역률 개선 장치의 문제점을 감안하여, 소형이고 저가이며 고역률 달성이 가능한 역률 개선 회로를 제공한다.The present invention provides a power factor improvement circuit capable of achieving a compact, low cost, and high power factor in view of the problems of the conventional active and passive power factor correction devices.
이와 같은 목적을 달성하기 위하여, 본 발명은, 역률 개선용 전원 공급 장치에 있어서,In order to achieve the above object, the present invention provides a power supply for improving power factor,
입력되는 교류 전압을 정류하는 정류회로;A rectifier circuit for rectifying the input AC voltage;
부하와 병렬로 연결되는 콘덴서;A capacitor connected in parallel with the load;
상기 정류회로의 출력과 상기 콘덴서 사이에 연결되어, 상기 콘덴서의 충전시간을 늘려주는 정전류 회로를 포함하는 것을 특징으로 한다.And a constant current circuit connected between the output of the rectifier circuit and the capacitor to increase the charging time of the capacitor.
이상과 같은 본 발명의 역율 개선 회로를 이용하면, LED램프나 컴펙트 형광등, 소형 아답터에 사용하기에 적합한, 소형이면서 저가이며 고역률의 역률 개선 회로를 제공할 수 있다.By using the power factor improvement circuit of the present invention as described above, it is possible to provide a compact, low cost and high power factor power factor improvement circuit suitable for use in LED lamps, compact fluorescent lamps, and small adapters.
도1은 종래기술에 따른 전원 공급 장치를 도시함.
도2는 종래기술에서, 전해 콘덴서(C)에 대응하는 인덕터(L)를 사용하는 LC공진회로 방식의 역률개선회로를 도시함.
도3은 종래기술과 본 발명에 따른 입력 전류의 파형을 도시함.
도4는 본 발명의 제1실시예에 따른 전원 공급 장치를 도시함.
도5는 본 발명의 제2실시예에 따른 전원 공급 장치를 도시함.1 shows a power supply according to the prior art.
Fig. 2 shows a power factor improvement circuit of the LC resonant circuit method using the inductor L corresponding to the electrolytic capacitor C in the prior art.
Figure 3 shows the waveform of the input current according to the prior art and the present invention.
Figure 4 shows a power supply according to a first embodiment of the present invention.
Figure 5 shows a power supply according to a second embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described more specifically with reference to the drawings.
본 발명은 도4와 같이, 교류 전원이 브리지 다이오드 회로(1)에 의해 맥류 형태로 정류되고, 기존의 부피가 크고 무거운 인덕터 대신에 정전류 회로(2)를 사용한다.In the present invention, as shown in Fig. 4, the AC power supply is rectified in the form of a pulse current by the
그러면, 이 정전류회로(2)에서는 항상 일정한 전류가 출력되므로, 이 정전류회로(2)가 없는 경우의 급격한 충방전 전류에 따른 입력 전류의 급격한 변화(도3의 2번째 그래프) 대신에, 도3의 4번째 그래프(본 발명의 제1실시예 그래프)처럼 콘덴서(C)에 전하가 서서히 충전하게 되어 거의 입력 전압의 위상과 일치하는 입력전류가 흐르게 되어서 역률이 0.9 이상으로 향상되게 된다.Then, since constant current is always output in this constant
즉, 이 정전류회로(2)는 콘덴서(C)의 전하 충전시간을 증가시킴으로써, 교류 입력단의 전류 및 전압의 위상을 매칭시켜서 무효전력분을 감소시켜서 역률을 개선하게 된다.That is, the constant
이때, 정전류회로(2)의 출력이 일정하므로, 이 일정한 전류치가 부하(LED)와 콘덴서(C)에 분할되어 흐르게 된다. At this time, since the output of the constant
특히, 정전류회로(2)와 같은 전류 제어 회로는 원칩으로 제작되므로 가격이 저렴하고 부피가 작아서, 아답터나 LED램프나 컴펙트 형광등와 같은 소형이고 저가의 전원장치에 적용되어 고역률이 달성되므로, 에너지 절감 효과가 크게 된다.
In particular, since the current control circuit such as the constant
다음으로, 도4보다 역률을 더 개선한 본 발명의 다른 실시예를 도5를 참고로 하여 설명하기로 한다.Next, another embodiment of the present invention, which further improves the power factor, is described with reference to FIG. 5.
도5가 도4와 상이한 점은 부하 직전에 다시 정전류회로(3)를 추가한 것이다. 5 differs from FIG. 4 by adding the constant
도4에서는 정전류회로(2)를 사용하여 전체 전류가 일정하여, 콘덴서(C)로 급격하게 전류가 흐르게 되는 것을 방지하는 것이어서, 완만하게 콘덴서(C)에 충전하게 되므로, 입력전류는 도3의 4번째 그래프처럼 된다.In Fig. 4, the constant
그러나, 도5에서는 콘덴서(C)에 급격한 전류가 흐르는 것을 방지하는 차원을 넘어서서, 이제는 일정한 전류가 흐르게 하여 콘덴서(C)의 충전 시간 뿐만 아니라 방전 시간까지도 더욱 더 늘려 주어서, 도3의 다섯 번째 그래프(본 발명의 제2실시예 그래프)처럼 입력전류가 흐르게 하여 거의 완벽하게 입력전압과 동일 위상이 되게 하여 역률을 0.9 이상으로 만드는 것이다.However, in Fig. 5, beyond the dimension of preventing a sudden current from flowing in the capacitor C, now a constant current flows to further increase not only the charging time but also the discharge time of the capacitor C. The fifth graph of Fig. 3 As shown in the graph of the second embodiment of the present invention, the input current flows to be almost completely in phase with the input voltage, thereby making the power factor more than 0.9.
즉, 정전류회로(2)와 정전류회로(3)의 출력전류가 일정하므로, 예를들어 정전류회로(2)의 출력 전류가 25mA 이고, 정전류회로(3)의 출력 전류가 20mA이면, 콘덴서(C)에는 항상 일정한 전류(25-20=5mA)가 흘러서, 아주 완만하게 충방전이 진행되어 도3의 다섯 번째 그래프처럼, 보다 완만하게 입력 전류가 흘러서 거의 입력전압과 입력전류가 동일 위상이 되게 되어 역률이 더욱 개선되게 된다.That is, since the output currents of the constant
한편, 이상에서는 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 상기의 실시예에 한정되는 것이 아니라, 본 발명의 정신을 벗어나지 않는 범위 내에서 다양한 변형이 가능하다는 점에 유의해야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.
예를들어, 이상에서는 정전류회로를 사용하는 것으로 기재하였으나, 본 발명의 원리가 콘덴서에 전하가 서서히 충전하게 하는 것이므로, 정전류회로가 아니라도 이러한 원리를 달성할 수 있는 다양한 전류 제어회로가 사용될 수 있다.
For example, in the above description, the use of a constant current circuit is described, but since the principle of the present invention causes the charge to be gradually charged in the capacitor, various current control circuits capable of achieving such a principle even without the constant current circuit may be used. .
Claims (4)
입력되는 교류 전압을 정류하는 정류회로;
엘이디 부하와 병렬로 직접 연결되는 콘덴서;
상기 정류회로의 출력측에 연결되어 상기 엘이디 부하와 콘덴서의 병렬회로에 일정 전류를 공급하며, 상기 콘덴서의 충전시간을 늘려주는 정전류 회로를 포함하는 것을 특징으로 하는 역률을 개선하는 엘이디 램프용 전원 공급 장치.In the power supply for the LED lamp to improve the power factor,
A rectifier circuit for rectifying the input AC voltage;
A capacitor directly connected in parallel with the LED load;
A power supply for improving the power factor of the LED lamp is characterized in that it is connected to the output side of the rectifier circuit and supplies a constant current to the parallel circuit of the LED load and the capacitor, and increases the charging time of the capacitor. .
상기 정류회로는 브리지 다이오드 회로인 것을 특징으로 하는 역률을 개선하는 엘이디 램프용 전원 공급 장치.
The method of claim 1,
The rectifier circuit is an LED lamp power supply for improving the power factor, characterized in that the bridge diode circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100101925A KR101196947B1 (en) | 2010-10-19 | 2010-10-19 | Power Supply Device Having Current Control Circuit for Power Factor Improvement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100101925A KR101196947B1 (en) | 2010-10-19 | 2010-10-19 | Power Supply Device Having Current Control Circuit for Power Factor Improvement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100037183A Division KR100996581B1 (en) | 2010-04-22 | 2010-04-22 | Power Supply Device Having Current Control Circuit for Power Factor Improvement |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100118971A KR20100118971A (en) | 2010-11-08 |
KR101196947B1 true KR101196947B1 (en) | 2012-11-05 |
Family
ID=43405125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100101925A KR101196947B1 (en) | 2010-10-19 | 2010-10-19 | Power Supply Device Having Current Control Circuit for Power Factor Improvement |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101196947B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131743A (en) * | 2006-11-21 | 2008-06-05 | Toichi Denki Shokai:Kk | Smoothing circuit |
-
2010
- 2010-10-19 KR KR1020100101925A patent/KR101196947B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131743A (en) * | 2006-11-21 | 2008-06-05 | Toichi Denki Shokai:Kk | Smoothing circuit |
Also Published As
Publication number | Publication date |
---|---|
KR20100118971A (en) | 2010-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8004861B2 (en) | Parameter configuration method for elements of power factor correction function converter | |
CA2646449A1 (en) | Improved single stage power factor corrected power converter with reduced ac inrush | |
KR100996581B1 (en) | Power Supply Device Having Current Control Circuit for Power Factor Improvement | |
TWI492502B (en) | Passive power factor correction circuit | |
EP1346612B1 (en) | Improved control circuit for power factor corrected electronic ballasts and power supplies | |
US20100201270A1 (en) | Light emitting diode light tube and ac switching power supply thereof | |
KR101276133B1 (en) | Power Factor Compensation-Type LED Lighting Apparatus | |
KR101196947B1 (en) | Power Supply Device Having Current Control Circuit for Power Factor Improvement | |
CN112689363B (en) | Power converter | |
EP2859778B1 (en) | Lighting device suitable for multiple voltage sources | |
Dos Santos et al. | A charge-pump led driver with PFC and low-frequency-flicker reduction | |
KR200465924Y1 (en) | LED Power Supply Device for Power Factor Improvement | |
KR101102781B1 (en) | Power factor correction LED lighting device | |
CN202799280U (en) | Driving power supply without electrolytic capacitor | |
Qu et al. | Current‐fed isolated PFC pre‐regulator for multiple LED lamps with extended lifetime | |
US20150296575A1 (en) | Driver for led lighting and method of driving led lighting | |
TWI448203B (en) | Full-bridge electronic ballast with continuous-current-mode charge pump pfc circuit having resonant tank | |
US20240421705A1 (en) | A resonant converter | |
US8198876B2 (en) | Power factor compensating method compensating power factors of electronic devices connected to a common power source | |
Chen et al. | A long lifetime passive LED driver with power factor correction | |
Andrew | High-Power Factor Flyback Converter for an LED Driver with Ultra-Wide Output Voltage | |
TWI444104B (en) | Full-bridge electronic ballast having continuous-current-mode charge pump pfc circuit | |
KR200463411Y1 (en) | LED Driving Circuit for LED Lighting | |
US9686827B2 (en) | Circuit arrangement for operating light sources | |
CN116937969A (en) | Power supply circuit and terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
PA0107 | Divisional application |
Comment text: Divisional Application of Patent Patent event date: 20101019 Patent event code: PA01071R01D Filing date: 20100422 Application number text: 1020100037183 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20101117 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20101222 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20110117 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120202 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120827 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20121026 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20121026 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20150930 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20150930 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161024 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20161024 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20171013 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181023 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20181023 Start annual number: 7 End annual number: 7 |