[go: up one dir, main page]

KR101196883B1 - Radiating reflector structure - Google Patents

Radiating reflector structure Download PDF

Info

Publication number
KR101196883B1
KR101196883B1 KR1020100037141A KR20100037141A KR101196883B1 KR 101196883 B1 KR101196883 B1 KR 101196883B1 KR 1020100037141 A KR1020100037141 A KR 1020100037141A KR 20100037141 A KR20100037141 A KR 20100037141A KR 101196883 B1 KR101196883 B1 KR 101196883B1
Authority
KR
South Korea
Prior art keywords
coating layer
heat dissipation
reflector
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020100037141A
Other languages
Korean (ko)
Other versions
KR20110117751A (en
Inventor
김영훈
Original Assignee
주식회사 유알테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유알테크놀로지 filed Critical 주식회사 유알테크놀로지
Priority to KR1020100037141A priority Critical patent/KR101196883B1/en
Publication of KR20110117751A publication Critical patent/KR20110117751A/en
Application granted granted Critical
Publication of KR101196883B1 publication Critical patent/KR101196883B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

본 발명은 방열 반사체 구조에 관한 것으로, 본 발명에 의한 방열 반사체 구조는, 기판 또는 금속판으로 형성되는 모재; 상기 모재의 표면에 형성되는 반사체 코팅층; 및 상기 반사체 코팅층의 표면에 형성되는 방열 코팅층;을 포함한다.
본 발명에 따르면, 세라믹 코팅에 의해 열전도가 우수한 방열 코팅층을 반사체 전면에 형성시킴으로써 광의 반사 시 반사율에 지장을 주지 않고 방열효과가 우수한 효과가 있으며, 공기 중에 노출되어도 부식이 발생하지 않고, 해수 및 물속에서도 사용이 가능한 효과가 있다.
그리고 방열 코팅층을 에어로졸 성막법에 의해 형성시킴으로써 균열이나 기공이 거의 없고 표면 조도가 양호하여 양질의 막을 얻을 수 있으며 두께의 제어가 용이한 효과가 있다.
The present invention relates to a heat radiation reflector structure, the heat radiation reflector structure according to the present invention, a base material formed of a substrate or a metal plate; A reflector coating layer formed on the surface of the base material; And a heat dissipation coating layer formed on a surface of the reflector coating layer.
According to the present invention, by forming a heat-dissipating coating layer having excellent thermal conductivity on the entire surface of the reflector by the ceramic coating, it has an excellent heat dissipation effect without affecting the reflectance when reflecting light, and does not cause corrosion even when exposed to air, seawater and water Can also be used in the effect.
By forming the heat dissipation coating layer by the aerosol film formation method, there are almost no cracks or pores, and the surface roughness is good, so that a good quality film can be obtained and the thickness can be easily controlled.

Description

방열 반사체 구조{Radiating reflector structure}Radiating reflector structure

본 발명은 방열 반사체 구조에 관한 것으로, 더욱 상세하게는 조명 또는 액정표시장치 등의 광원에 적용 가능하여 광을 반사하는 반사체의 기능과 함께 방열 효과 등을 얻을 수 있는 방열 반사체 구조에 관한 것이다.
The present invention relates to a heat dissipation reflector structure, and more particularly, to a heat dissipation reflector structure that can be applied to a light source such as an illumination or a liquid crystal display device to obtain a heat dissipation effect together with the function of a reflector for reflecting light.

일반적으로 광원의 방향성을 바꾸기 위해서는 반사체가 필요하며, 반사체는 액정 디스플레이의 백라이트 광원용 반사체, LED 조명용 반사체 등 다양한 분야에서 사용되고 있다.In general, a reflector is required to change the direction of the light source, and the reflector is used in various fields such as a reflector for a backlight light source of a liquid crystal display and a reflector for an LED light.

최근 상기 액정표시장치 또는 조명 장치가 소형화, 박형화 고휘도화 되어 가면서 방열에 관한 문제가 대두 되고 있다. 특히 소형화에 의한 열의 체류용적이 작아지고 고휘도화를 지향하면서 발열량이 증가함에 따라 장치 내에 온도가 높아지고 IC 등의 정밀기기, 발광부품의 성능저하를 유발하고 있다.In recent years, as the liquid crystal display device or the lighting device has been miniaturized and thinned, high brightness has become a problem regarding heat dissipation. In particular, as the retention volume of heat is reduced due to miniaturization and the heat generation amount is increased while aiming at high brightness, the temperature is increased in the apparatus, and the performance of precision devices such as IC and light emitting parts is deteriorated.

종래 이와 같은 방열 문제를 해결하기 위하여 반사면의 배면에 열전도성이 우수한 금속시트를 겹쳐 바르거나, 흑연입자를 코팅하여 열전달에 의한 방열 효고를 높이는 기술이 이용되고 있으나 상술한 방법은 반사판의 배면에 방열판이 구비되어 있어 방열효율이 떨어지며, 금속 방열층은 공기 중에 장시간 노출되는 경우 부식이 발생하는 문제가 있다.
Conventionally, in order to solve the heat dissipation problem, a technique of increasing heat dissipation efficiency by heat transfer by superposing a metal sheet having excellent thermal conductivity on the rear surface of the reflective surface or by coating graphite particles has been used. Since the heat dissipation plate is provided, the heat dissipation efficiency is decreased, and the metal heat dissipation layer has a problem of corrosion when exposed to air for a long time.

본 발명은 상기 종래의 문제점을 해결하기 위하여 안출된 것으로서, 광의 반사 시 반사율에 지장을 주지 않고 방열효과가 우수한 방열 반사체를 구조를 제공함에 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a structure of a heat dissipation reflector having excellent heat dissipation effect without affecting the reflectance when reflecting light.

또한, 본 발명의 다른 목적은, 방열 코팅층을 에어로졸 성막법에 의해 형성시킴으로써 균열이나 기공이 거의 없고 표면 조도가 양호하여 양질의 막을 얻을 수 있으며, 두께의 제어가 용이한 방열 반사체 구조를 제공함에 있다.
Another object of the present invention is to provide a heat dissipation reflector structure in which a heat dissipation coating layer is formed by an aerosol film formation method, which has almost no cracks or pores, has good surface roughness, and thus obtains a high quality film, and enables easy control of thickness. .

상술한 목적을 달성하기 위하여 본 발명은, 기판 또는 금속판으로 형성되는 모재; 상기 모재의 표면에 형성되는 반사체 코팅층; 및 상기 반사체 코팅층의 표면에 형성되는 방열 코팅층;을 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention, a base material formed of a substrate or a metal plate; A reflector coating layer formed on the surface of the base material; And a heat dissipation coating layer formed on a surface of the reflector coating layer.

또한, 상기 방열 코팅층은 투명 세라믹으로 코팅되는 것을 특징으로 한다.In addition, the heat dissipation coating layer is characterized in that the coating with a transparent ceramic.

또한, 상기 방열 코팅층은 에어로졸 성막법(Aerosol Deosition Method; ADM)에 의해 투명 세라믹으로 코팅될 수 있다.In addition, the heat dissipation coating layer may be coated with a transparent ceramic by the Aerosol Deosition Method (ADM).

또한, 상기 모재가 기판인 경우 상기 모재의 표면에 금속 방열체 코팅층을 형성시킨 후 상기 반사체 코팅층이 형성될 수 있다.In addition, when the base material is a substrate, the reflector coating layer may be formed after forming a metal radiator coating layer on the surface of the base material.

또한, 상기 금속 방열체 코팅층은 구리로 전착될 수 있다.In addition, the metal radiator coating layer may be electrodeposited with copper.

또한, 상기 모재가 금속판인 경우 재질은 스테인리스, 알루미늄, 황동 및 구리 중 어느 하나인 것을 특징으로 한다.In addition, when the base material is a metal plate, the material is characterized in that any one of stainless steel, aluminum, brass and copper.

또한, 상기 반사체 코팅층은 건식 방식 중 스퍼터(Sputter)에 의해 니켈+은 또는 크롬+은을 이용하여 증착하는 것을 특징으로 한다.In addition, the reflector coating layer is characterized in that the deposition by using nickel + silver or chromium + silver by the sputter (sputter) of the dry method.

또한, 상기 반사체 코팅층은 습식 방식 중 전기도금에 의해 니켈+은 또는 크롬+은을 이용하여 전착하는 것을 특징으로 한다.In addition, the reflector coating layer is characterized in that the electrodeposited using nickel + silver or chromium + silver by electroplating in the wet method.

또한, 상기 방열 코팅층의 표면에 형성되는 보호막을 더 포함하는 것을 특징으로 한다.In addition, it characterized in that it further comprises a protective film formed on the surface of the heat dissipation coating layer.

또한, 상기 보호막은 규소 산화물막, 유리막 및 실리콘막 중 어느 하나로 형성되는 것을 특징으로 한다.
The protective film may be formed of any one of a silicon oxide film, a glass film, and a silicon film.

이와 같은 본 발명의 방열 반사체 구조는, 세라믹 코팅에 의해 열전도가 우수한 방열 코팅층을 반사체 전면에 형성시킴으로써 광의 반사 시 반사율에 지장을 주지 않고 방열효과가 우수한 효과가 있으며, 공기 중에 노출되어도 부식이 발생하지 않고, 해수 및 물속에서도 사용이 가능한 효과가 있다.Such a heat dissipation reflector structure of the present invention, by forming a heat dissipation coating layer having excellent thermal conductivity on the entire surface of the reflector by the ceramic coating has an effect of excellent heat dissipation effect without affecting the reflectance during reflection of light, and corrosion does not occur even when exposed to air In addition, there is an effect that can be used in sea water and water.

그리고 방열 코팅층을 에어로졸 성막법에 의해 형성시킴으로써 균열이나 기공이 거의 없고 표면 조도가 양호하여 양질의 막을 얻을 수 있으며 두께의 제어가 용이한 효과가 있다.
By forming the heat dissipation coating layer by the aerosol film formation method, there are almost no cracks or pores, and the surface roughness is good, so that a good quality film can be obtained and the thickness can be easily controlled.

도 1은 본 발명의 일 실시 예에 따른 방열 반사체 구조를 나타낸 개략도이다.1 is a schematic view showing a heat radiation reflector structure according to an embodiment of the present invention.

이하, 본 발명의 방열 반사체 구조를 첨부 도면을 참조하여 일 실시 예를 들어 설명하면 다음과 같다.
Hereinafter, an embodiment of the heat dissipation reflector of the present invention will be described with reference to the accompanying drawings.

본 발명의 바람직한 일 실시 예에 따른 방열 반사체(100)의 구조는 도 1에 도시된 바와 같이 모재(110), 금속 방열체 코팅층(120), 반사체 코팅층(130), 방열 코팅층(140) 및 보호막(150)을 포함한다.As shown in FIG. 1, the structure of the heat dissipation reflector 100 according to an exemplary embodiment of the present invention is a base material 110, a metal heat dissipation coating layer 120, a reflector coating layer 130, a heat dissipation coating layer 140, and a protective film. And 150.

상기 모재(110)는 기판 또는 금속판 중 어느 하나를 접목할 수 있으며, 금속판일 경우, 스테인리스, 알루미늄, 황동(신주) 및 구리(동) 등에서 어느 하나의 재질로 사용할 수 있다. 이때, 상기 모재(110)가 기판일 경우 상기 방열 코팅층(140) 형성시 상온에서 실시하여야 하지만 금속판은 상온이 아니여도 실시가 가능하다.The base material 110 may be grafted to any one of a substrate or a metal plate, and in the case of a metal plate, it may be used as any one material in stainless steel, aluminum, brass (since) and copper (copper). At this time, when the base material 110 is a substrate, it should be carried out at room temperature when the heat-dissipating coating layer 140 is formed, but the metal plate can be implemented even if the room temperature is not.

상기 금속 방열체 코팅층(120)은 금속 방열체를 상기 모재(110)의 표면에 코팅하여 형성되는 층으로, 전기도금의 습식 방식으로 금속 방열체인 구리(Cu) 등을 전착하여 형성한다. 금속 방열체 코팅층(120)은 상기 모재(110)가 기판일 경우 방열 효과를 높이고 반사체 코팅층(130)을 증착하기 용이하도록 하는 역할을 한다.The metal radiator coating layer 120 is a layer formed by coating a metal radiator on the surface of the base material 110, and is formed by electrodeposition of copper (Cu), which is a metal radiator, by a wet method of electroplating. The metal radiator coating layer 120 serves to increase the heat dissipation effect and to easily deposit the reflector coating layer 130 when the base material 110 is a substrate.

상기 반사체 코팅층(130)은 반사체를 상기 금속 방열 코팅층(120)의 표면에 코팅하여 형성되는 층으로, 건식 방식 중 스퍼터(Sputter)에 의해 니켈(Ni)+은(Ag) 또는 크롬(Cr)+은을 이용하여 증착하거나 습식 방식 중 전기도금에 의해 니켈+은 또는 크롬(Cr)+은을 이용하여 전착한다.The reflector coating layer 130 is a layer formed by coating a reflector on the surface of the metal heat dissipation coating layer 120, and nickel (Ni) + silver (Ag) or chromium (Cr) + by sputtering in a dry method. Deposition using silver or electrodeposition using nickel + silver or chromium (Cr) + silver by electroplating in a wet process.

상기 방열 코팅층(140)은 상기 반사체 코팅층(130)의 표면에 방열을 위해 코팅하여 형성되는 층으로, 건식 방식 중 미세한 세라믹스 분말을 운송 가스에 실어 모재(110)에 분사함으로써 모재(110) 표면에 세라믹스 코팅층을 형성하는 에어로졸 성막법(Aerosol Deosition Method; ADM)에 의해 투명 세라믹으로 코팅된다.The heat dissipation coating layer 140 is a layer formed by coating the surface of the reflector coating layer 130 for heat dissipation, and by spraying the fine ceramic powder in a dry gas on the base material 110 by spraying the base material 110 on the surface of the base material 110. It is coated with a transparent ceramic by the Aerosol Deosition Method (ADM) to form a ceramic coating layer.

즉, 에어로졸 성막법은 상기 반사체 코팅층(130)의 표면에 나노 세라믹스 박막을 형성하여 상기 방열 반사체 구조(100)가 조명장치 등에 적용될 경우 광원(도면에 미도시)에서 발생하는 열을 빠르게 방열할 수 있도록 한다. 특히, 상기 에어로졸 성막법은 분말인 세라믹스 미립자를 운송 가스와 혼합해 에어로졸화한 상태에서 200~400㎧로 상기 모재(110)에 고속 분사하여 상온에서 상기 나노 세라믹스 박막을 형성할 수 있는 것이다. That is, the aerosol deposition method forms a nano-ceramic thin film on the surface of the reflector coating layer 130 to quickly dissipate heat generated from a light source (not shown) when the heat dissipation reflector structure 100 is applied to a lighting device. Make sure In particular, the aerosol film formation method is to form the nano-ceramic thin film at room temperature by high-speed spraying to the base material 110 in 200 ~ 400 kPa in aerosolized state by mixing the ceramic fine particles as powder.

더욱 구체적으로 설명하면, 에어로졸 성막법은 상온 충격 고화현상을 이용한 것으로, 세라믹스 미립자를 고속으로 상기 모재(110)에 분사하여 막 구조를 형성하는 상온 성막 공정을 말하며, 이는 미립자의 분해를 거치지 않고 막을 형성하기 때문에 조성의 변화는 일어나지 않으므로 원자를 퇴적시키는 성막법과 비교해 성막 속도를 비약적으로 향상시킬 수 있는 효과를 나타낸다. More specifically, the aerosol film deposition method uses a room temperature impact solidification phenomenon, and refers to a room temperature film formation process of forming a film structure by spraying ceramic particles to the base material 110 at high speed, which is a film without undergoing decomposition of the particles. Since the formation does not occur, the composition does not change, and thus the film formation speed can be dramatically improved as compared with the deposition method in which atoms are deposited.

그리고 성막 속도나 막의 밀도는 사용하는 세라믹스 분말의 입경, 응집상태 또는 건조상태 등에 크게 의존한다. 미립자 세라믹스 분말을 에어로졸 성막법을 이용하여 모재(110)에 고속으로 충돌시키면 이론 밀도의 95% 이상에 이르는 고밀도로 나노(대략 수십~수백㎚) 세라믹스 박막을 상온에서 형성할 수 있고, 상기 나노 세라믹스 박막으로 인해 방열효율이 크게 향상된다.The deposition rate and the density of the film largely depend on the particle size, agglomerated state or dry state of the ceramic powder to be used. When the particulate ceramic powder is collided with the base material 110 at high speed by using the aerosol film formation method, a nano (approximately tens to hundreds of nm) ceramic thin films can be formed at room temperature at a high density of 95% or more of theoretical density. Due to the thin film, the heat radiation efficiency is greatly improved.

한편, 상기 방열 코팅층(140)은 에어로졸 성막법 이외에 일반적인 세라믹 코팅에 의해서도 대체 가능하다. 이렇게 상술한 방법에 의해 형성된 방열 코팅층(140)은 공기 중에 노출되어도 부식이 되지 않으며 공기와의 접촉에 의해 산화되는 은(Ag) 등과 같은 재질의 표면에 코팅할 경우 부식을 방지할 수 있다.Meanwhile, the heat dissipation coating layer 140 may be replaced by a general ceramic coating in addition to the aerosol film formation method. Thus, the heat-dissipating coating layer 140 formed by the above-described method does not corrode even when exposed to air and may prevent corrosion when coated on a surface of a material such as silver (Ag) that is oxidized by contact with air.

상기 보호막(150)은 상기 방열 코팅층(140)의 표면 보호를 위해 건식 방식 중 스퍼터 또는 열 증착 방식으로 규소 산화물막[Sio2(SiO)] 증착하여 형성하거나 디핑(Diping) 방식으로 유리막 또는 실리콘막[방수 및 방식(防蝕)막]을 형성시킨다.
The protective film 150 is formed by depositing a silicon oxide film [Sio 2 (SiO)] by a sputtering or thermal evaporation method in a dry method to protect the surface of the heat dissipation coating layer 140, or a glass film or silicon film by a dipping method. [Waterproof and anticorrosive film] is formed.

그러므로 본 발명에 의한 방열 반사체의 구조는 상기 방열 반사체(100)를 조명장치 등에 적용할 경우 열전도가 우수한 세라믹 코팅으로 형성된 상기 방열 코팅층(140)에 의해 반사체의 반사율에 지장을 주지 않고 방열효과를 얻을 수 있으며, 공기 중에 노출되어도 부식이 발생하지 않는 효과가 있다. 또한, 방열 코팅층(140)을 에어로졸 성막법에 의해 형성시킴으로써 균열이나 기공이 거의 없고 표면 조도가 양호하여 양질의 막을 얻을 수 있으며 두께의 제어가 용이한 이점이 있다.
Therefore, in the structure of the heat dissipation reflector according to the present invention, when the heat dissipation reflector 100 is applied to a lighting device or the like, the heat dissipation reflector can be obtained without affecting the reflectance of the reflector by the heat dissipation coating layer 140 formed of a ceramic coating having excellent thermal conductivity. And, even if exposed to the air there is an effect that does not occur corrosion. In addition, by forming the heat dissipation coating layer 140 by the aerosol film formation method, there is almost no cracks or pores, and the surface roughness is good, so that a good quality film can be obtained and the thickness can be easily controlled.

이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 본 발명의 보호범위는 상기 실시 예에 한정되는 것이 아니며, 해당 기술분야의 통상의 지식을 갖는 자라면 본 발명의 사상 및 기술영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

100: 방열 반사체 110: 모재
120: 금속 방열체 코팅층 130: 반사체 코팅층
140: 방열 코팅층 150: 보호막
100: heat dissipation reflector 110: base material
120: metal radiator coating layer 130: reflector coating layer
140: heat dissipation coating layer 150: protective film

Claims (10)

스테인레스 재질로 이루어진 모재와;
상기 모재의 표면에 형성되며, 건식 방식 중 스퍼터(Sputter)에 의해 크롬+은을 이용하여 증착하는 반사체 코팅층과;
상기 반사체 코팅층의 표면에 형성되며, 에어로졸 성막법(Aerosol Deosition Method; ADM)에 의해 투명 세라믹으로 코팅되는 방열 코팅층; 및
상기 방열 코팅층의 표면에 형성되며, 규소 산화물막 또는 유리막 또는 실리콘 막중 어느 하나로 형성되는 보호막을 포함하는 것을 특징으로 하는 방열 반사체 구조.
A base material made of stainless steel;
A reflector coating layer formed on the surface of the base material and deposited using chromium + silver by sputtering in a dry manner;
A heat dissipation coating layer formed on a surface of the reflector coating layer and coated with a transparent ceramic by an aerosol deposition method (ADM); And
And a protective film formed on a surface of the heat dissipation coating layer and formed of one of a silicon oxide film, a glass film, or a silicon film.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020100037141A 2010-04-22 2010-04-22 Radiating reflector structure Active KR101196883B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100037141A KR101196883B1 (en) 2010-04-22 2010-04-22 Radiating reflector structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100037141A KR101196883B1 (en) 2010-04-22 2010-04-22 Radiating reflector structure

Publications (2)

Publication Number Publication Date
KR20110117751A KR20110117751A (en) 2011-10-28
KR101196883B1 true KR101196883B1 (en) 2012-11-01

Family

ID=45031524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100037141A Active KR101196883B1 (en) 2010-04-22 2010-04-22 Radiating reflector structure

Country Status (1)

Country Link
KR (1) KR101196883B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525669A (en) * 2015-07-24 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー Reflective laminate having a thermal diffusion layer
KR102367391B1 (en) * 2021-11-02 2022-02-24 퓨어만 주식회사 Method for cooling semiconductor components and film dissipating heat for semiconductor components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099533A (en) 2007-09-25 2009-05-07 Hitachi Maxell Ltd Heat dissipating member, reflecting member and lighting unit
JP2009204682A (en) 2008-02-26 2009-09-10 Teijin Ltd Heat dissipation reflective sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099533A (en) 2007-09-25 2009-05-07 Hitachi Maxell Ltd Heat dissipating member, reflecting member and lighting unit
JP2009204682A (en) 2008-02-26 2009-09-10 Teijin Ltd Heat dissipation reflective sheet

Also Published As

Publication number Publication date
KR20110117751A (en) 2011-10-28

Similar Documents

Publication Publication Date Title
JP6490810B2 (en) Temperature and corrosion resistant surface reflectors
JP4571561B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
KR100949197B1 (en) Manufacturing method of heat dissipation board
CN101853822B (en) Novel heat sink and production method thereof
KR101466759B1 (en) Manufacturing for metal printed circuit board
CN101459209A (en) Light emitting diode device and manufacturing method thereof
CN107894689A (en) Fluorescent material wheel of self-reinforcing radiating and preparation method thereof
CN207689824U (en) Fluorescent powder wheel with graphene heat dissipating layer
KR101196883B1 (en) Radiating reflector structure
CN107217259A (en) The preparation method of infrared chalcogenide glass surface coating diamond-like film
Idris et al. Synthesis of MgO thin film on aluminum and copper substrates as thermal interface materials
CN102447052A (en) LED heat-dissipation substrate and a manufacturing method thereof
CN106653696B (en) A kind of method for making array substrate
CN208327828U (en) A kind of anti-dazzle cover board
TWI656231B (en) Method for preparing polycrystalline aluminum nitride high reflection mirror
JP2012151392A (en) Heat radiation material and manufacturing method of the same
JP4323072B2 (en) Reflective sheet and reflector using the same
CN101041889B (en) Coating method
CN111308848A (en) Projection screen manufacturing method
CN102345100B (en) Aluminum-cerium metal target and method for making aluminum-cerium film using the aluminum-cerium metal target
CN103117335A (en) Method for manufacturing composite metal ceramic substrate with circuit and structure thereof
CN101298673B (en) Preparation of insulated heat conducting metal substrate
JP5484834B2 (en) Heat dissipation member and method for manufacturing the same
CN110670034B (en) Inorganic super-hydrophobic material and preparation method and application thereof
JP2007121461A (en) Reflection member having heat resistance and illuminator provided therewith

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100422

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110715

Patent event code: PE09021S01D

PG1501 Laying open of application
E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20120313

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20120726

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20121026

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20121029

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160422

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160422

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20171026

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20171026

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20201026

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20211027

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20231227

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20241029

Start annual number: 13

End annual number: 13