[go: up one dir, main page]

KR101183703B1 - Catalysts for hydrofined biodiesel and method for preparing the same - Google Patents

Catalysts for hydrofined biodiesel and method for preparing the same Download PDF

Info

Publication number
KR101183703B1
KR101183703B1 KR1020100012711A KR20100012711A KR101183703B1 KR 101183703 B1 KR101183703 B1 KR 101183703B1 KR 1020100012711 A KR1020100012711 A KR 1020100012711A KR 20100012711 A KR20100012711 A KR 20100012711A KR 101183703 B1 KR101183703 B1 KR 101183703B1
Authority
KR
South Korea
Prior art keywords
catalyst
biodiesel
producing
active ingredient
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020100012711A
Other languages
Korean (ko)
Other versions
KR20100092388A (en
Inventor
이상일
김도완
전희중
주상준
유재욱
김경록
오승훈
Original Assignee
에스케이에너지 주식회사
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사, 에스케이이노베이션 주식회사 filed Critical 에스케이에너지 주식회사
Priority to MYPI2010000670A priority Critical patent/MY146784A/en
Publication of KR20100092388A publication Critical patent/KR20100092388A/en
Priority to EP10845856.3A priority patent/EP2533895B1/en
Priority to US13/578,225 priority patent/US20120323056A1/en
Priority to DK10845856.3T priority patent/DK2533895T3/en
Priority to PCT/KR2010/007184 priority patent/WO2011099686A1/en
Priority to FIEP10845856.3T priority patent/FI2533895T3/en
Priority to CN2010800653489A priority patent/CN103097022A/en
Application granted granted Critical
Publication of KR101183703B1 publication Critical patent/KR101183703B1/en
Priority to US15/198,350 priority patent/US10385277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 바이오 디젤 제조용 촉매 및 이를 이용한 바이오 디젤 제조방법에 관한 것으로, 더욱 상세하게는 내수성이 강한 담체에 활성성분으로 수소화 반응 또는 카르복시 이탈 반응에 사용되는 촉매가 담지되어 있는 바이오 디젤 제조용 촉매에 관한 것이다.
본 발명에 따른 바이오 디젤 제조용 촉매는 내수성이 강한 담체를 사용함으로써, HBD 공정 중 생성되는 부산물인 물에 의한 촉매의 비활성화를 막아 촉매의 내구성을 획기적으로 높일 수 있다.
The present invention relates to a catalyst for producing a biodiesel and a method for producing a biodiesel using the same, and more particularly, to a catalyst for producing a biodiesel, in which a catalyst used in a hydrogenation reaction or a carboxylation reaction is supported as an active ingredient in a strong water-resistant carrier. will be.
The catalyst for producing biodiesel according to the present invention can increase the durability of the catalyst by preventing the deactivation of the catalyst by water, which is a by-product generated during the HBD process, by using a carrier having a strong water resistance.

Description

바이오 디젤 제조용 촉매 및 이를 이용한 바이오 디젤 제조방법 {Catalysts for hydrofined biodiesel and method for preparing the same}Catalyst for biodiesel production and biodiesel production method using the same {Catalysts for hydrofined biodiesel and method for preparing the same}

본 발명은 바이오 디젤 제조용 촉매 및 이를 이용한 바이오 디젤 제조방법에 관한 것으로, 더욱 상세하게는 바이오 디젤 제조에 사용되는 촉매로써 내수성이 강한 촉매에 관한 것이다. The present invention relates to a catalyst for producing a biodiesel and a biodiesel manufacturing method using the same, and more particularly, to a catalyst having a high water resistance as a catalyst used for producing a biodiesel.

고유가가 지속되면서 세계적으로 대체 에너지 자원의 개발 및 온실가스의 저감에 대한 필요성이 대두되면서, 바이오 에너지 자원의 개발이 활발하게 진행되고 있다. 더 나아가 전세계적으로 세제 및 법제화에 따른 국,내외 바이오 디젤의 공급이 확대되면서 바이오 에너지 관련 시장은 연간 8-12%의 높은 성장세를 유지하고 있다. As high oil prices continue, the development of alternative energy resources and the need for reduction of greenhouse gases has emerged globally, leading to the development of bioenergy resources. Furthermore, as the supply of biodiesel in Korea and abroad increases due to tax and legislation worldwide, the bioenergy market is growing at an annual rate of 8-12%.

바이오매스에서 diesel 유분을 제조하는 기술로서 대표적인 것은 FAME(Fatty Acid Methyl Ester)를 제조하는 기술이다. FAME는 바이오매스에서 얻어지는 대체에너지라는 장점 외에, 물성 측면에서도 기존의 광유에서 얻어지는 diesel 유분에 비해서 세탄가가 높은 장점이 있지만, 산화안정성이 낮고, 제조 단가가 높은 단점이 있었다. Representative technology for producing diesel oil from biomass is a technique for manufacturing Fatty Acid Methyl Ester (FAME). In addition to the advantages of alternative energy obtained from biomass, FAME has the advantage of higher cetane number compared to diesel oil obtained from conventional mineral oils in terms of physical properties, but has a disadvantage of low oxidation stability and high manufacturing cost.

차세대 기술로서 제시된 것이 수소화 반응을 통해 triglyceride를 직접 수소화시켜 제조하는HBD(Hydrofined Bio-Diesel)이다. HBD는 기존의 광유에서 얻어지는 diesel에 비해서는 생산 단가가 높지만, 기존의 FAME와 비교할 때, 생산단가가 낮으며, 수소화공정을 거치기 때문에 산화안정성이 상대적으로 높다. Presented as the next generation technology is Hydrofined Bio-Diesel (HBD), which is prepared by directly hydrogenating triglyceride through hydrogenation reaction. The production cost of HBD is higher than that of diesel obtained from mineral oil, but the production cost is low compared to the conventional FAME, and the oxidation stability is relatively high because of the hydrogenation process.

그리고 세탄가가 100에 가까운 고급 디젤유를 생산할 수 있는 장점이 있다. 또한 에너지 효율이나 온실가스 저감 측면에서 광유나 FAME에 비해서 HBD 연료가 가장 우수한 장점이 있다. And cetane number has the advantage of producing high-quality diesel oil close to 100. In addition, in terms of energy efficiency and greenhouse gas reduction, HBD fuel has the most advantages over mineral oil and FAME.

하지만, HBD 공정의 가장 큰 문제점은 촉매의 장기적 활성을 유지시키기 어렵다는 점이다. 현재의 HBD 공정에는 기존의 수소화 공정용 촉매를 사용하고 있는데, 기존의 수소화 촉매로는 HBD 촉매 반응에서 부산물로 생기는 물에 의해서 담체가 씻겨나가게 되어 촉매 활성도가 점차 감소하는 단점이 있었다. 이를 해결하기 위해서 현재는 feed를 100 % triglyceride를 사용하지 않고 광유에 소량 첨가하는 등 공정의 운전 조건을 변화시켜 촉매 비활성화를 최소화하는 방법을 적용해 왔다. However, the biggest problem with the HBD process is that it is difficult to maintain the long term activity of the catalyst. Current HBD process uses a conventional catalyst for the hydrogenation process, the conventional hydrogenation catalyst has the disadvantage that the catalyst activity gradually decreases because the carrier is washed off by the water generated as a by-product in the HBD catalyst reaction. In order to solve this problem, a method of minimizing catalyst deactivation by changing the operating conditions of the process such as adding a small amount of feed to mineral oil without using 100% triglyceride has been applied.

HBD를 제조하는 공정은 크게 두가지로 나뉜다. 하나는 수소화 공정(Hydrotreating process)만으로 이루어진 공정이고, 다른 하나는 수소화 공정 후단에 이성화 공정(Isomerization process)을 붙인 공정이다. There are two main processes of manufacturing HBD. One is a process consisting of only a hydrotreating process, and the other is a process in which an isomerization process is attached to a rear end of the hydrogenation process.

HBD에서 Hydro-treating은 수소화 반응을 통해 지방 또는 지방산을 가수소화 하는 의미로 사용하며, 유사 용어로써, hydrogenation, deoxygenation(탈산화), hydrodeoxygenation, decarboxylation, decarbonylation을 혼용해서 쓴다. decarboxylation 및 decarbonylation은 피드의 지방 또는 지방산 중의 탄소하나가 빠져나가면서 수소화가 일어나기 때문에 HBD 제조에 있어서는 수소화 반응과 유사 용어로써 혼용해서 사용한다.Hydro-treating in HBD is used to hydrogenate fat or fatty acid through hydrogenation reaction, and similar terms are used by mixing hydrogenation, deoxygenation (deoxidation), hydrodeoxygenation, decarboxylation and decarbonylation. Decarboxylation and decarbonylation are used interchangeably with the terminology of hydrogenation in the production of HBD because hydrogenation occurs as one carbon in the fat or fatty acid in the feed escapes.

일반적으로 Bio-diesel을 제조하는 feed로 사용되는 식물유는 triglyceride로 구성되어 있다. 이러한 에스터 형태의 triglyceride를 수소화 처리를 하게 되면 C15-C18 paraffin 물질을 얻게 되는데 이러한 물질의 끓는점이 디젤 영역에 해당하여 바이오 디젤로 사용할 수 있다. 하지만, paraffin 계의 디젤은 유동점이 높기 때문에 낮은 온도에서도 액체로 유지하기 위해서 이성화 반응을 통해 HBD의 저온 안정성을 높이는 처리를 하기도 한다. 현재로서는 바이오 디젤의 사용량이 기존 석유 디젤 대비 수%에 불과하므로 필요에 따라서 선택적으로 이성화 처리를 해주는 실정이다. In general, vegetable oil used as feed for bio-diesel is composed of triglycerides. Hydrogenation of these ester-type triglycerides yields a C15-C18 paraffin material, which can be used as biodiesel as the boiling point of this material falls within the diesel range. However, because paraffin diesel has a high pour point, it may be treated with isomerization to improve the low temperature stability of HBD in order to maintain liquid at low temperatures. Currently, biodiesel is used only a few percent compared to conventional petroleum diesel, and thus isomerized selectively as needed.

Hydrotreating 을 이용한 HBD 제조 기술을 개시하고 있는 문헌들이 있는 바, US 4,992,605 에서는 crude 팜 오일을 피드로 하여, 기존 상용 수소화 촉매(hydrotreating)로 CoMo, NiMo, 또는 전이 금속을 사용하여, 바이오 디젤을 제조하는 공정을 개시하고 있다. There are literatures that disclose HBD manufacturing techniques using hydrotreating, and US 4,992,605 uses crude palm oil as a feed to produce biodiesel using CoMo, NiMo, or transition metals with existing commercial hydrotreating catalysts. The process is starting.

US 2007/0175795에서는 트리글리세리드의 수소화를 위한 촉매의 성분으로서 Ni, Co, Fe, Mn, W, Ag, Au, Cu, Pt, Zn, Sn, Ru, Mo, Sb, V, Ir, Cr, Pd가 사용될 수 있다고 개시하고 있다. In US 2007/0175795, Ni, Co, Fe, Mn, W, Ag, Au, Cu, Pt, Zn, Sn, Ru, Mo, Sb, V, Ir, Cr, Pd as a component of a catalyst for hydrogenation of triglycerides It is disclosed that it can be used.

US 7232935에서는 식물유를 피드로 하여, 수소화 공정 후단에 이성화 공정을 순차적으로 거쳐서 HBD를 만드는 촉매 공정을 개시하고 있다. US Pat. No. 7,232,935 discloses a catalytic process for producing HBD using a vegetable oil as a feed followed by an isomerization step after the hydrogenation step.

US 7279018에서는 수소화 처리 후 이성화 처리된 HBD에 0-20% 내외의 함산화물을 섞어 생성물을 만드는 특허를 개시하고 있다.US 7279018 discloses a patent for producing a product by mixing about 0-20% of an oxide with hydrogenated isomerized HBD.

또한 US 2007/0010682에서는 hydrotreating 공정 및 isomerization 공정으로 이루어지고, 공급원료가 5 중량% 이상의 free fatty acids와 희석제를 포함하며, 희석제: 공급원료 비율이 5~30:1인 것으로 한정되어 있다. US 2007/0010682 also includes a hydrotreating process and an isomerization process, wherein the feedstock contains at least 5% by weight of free fatty acids and diluent, and the diluent: feedstock ratio is limited to 5-30: 1.

US 20060207166에서는 산도를 가진 담체에 금속을 담지한 촉매를 이용하여, 수소화 공정과 이성화 공정을 한 스텝에서 진행되는 공정을 개시하고 있다. US 20060207166 discloses a process in which a hydrogenation process and an isomerization process are performed in one step using a catalyst having a metal supported on a carrier having acidity.

전술한 바와 같이 HBD를 생산하기 위해서 현재로서는 특화된 수소화 촉매 없이 기존 상용 수소화 촉매를 사용하거나 이를 개량하여 HBD 제조 반응에 적용하는 실정이다. 기존의 상용 수소화 촉매는, 알루미나 담체나 실리카 알루미나 등의 물질을 담체로서 적용한 것이 일반적이었다. As described above, in order to produce HBD, at present, an existing commercial hydrogenation catalyst can be used without a specialized hydrogenation catalyst or an improvement can be applied to the production of HBD. Conventional commercial hydrogenation catalysts have generally been applied with a substance such as an alumina carrier or silica alumina as a carrier.

하지만, 기존의 알루미나 혹은 실리카 알루미나 담체를 사용한 상용 수소화 촉매를 HBD 제조 공정용 촉매로서 사용하게 될 경우, 초기 활성 및 선택도는 높아서 적용에 문제가 없는 것처럼 보이지만, 촉매의 활성이 지속적으로 감소하여 장기 안정성이 낮은 문제가 존재하였다. However, when a commercial hydrogenation catalyst using an existing alumina or silica alumina carrier is used as a catalyst for the production process of HBD, the initial activity and selectivity are high, and there seems to be no problem in application. There was a problem of low stability.

이러한 문제를 해결하고자 한 선행기술들은 미반응된 HBD 유분을 재순환 시키는 등 공정 운전 제어 등을 통해 촉매 반응의 내구성을 조금이라도 높이려는 시도를 진행하고 있지만, 문제의 근본적인 해결방법을 찾지 못하고, 제한적인 수준에서 촉매의 내구성을 높이고 있는 실정이다.Prior arts attempting to solve these problems are attempting to increase the durability of the catalytic reaction even a little by controlling the operation of the process such as recycling unreacted HBD fraction, but have not found a fundamental solution to the problem. The situation is increasing the durability of the catalyst at the level.

상기한 문제점을 극복하기 위해 본 발명은 촉매 내구성이 높으면서도 활성이 높은 바이오 디젤 제조용 촉매를 제공하는 것을 목적으로 한다. In order to overcome the above problems, an object of the present invention is to provide a catalyst for producing biodiesel with high catalyst durability and high activity.

또한 본 발명의 목적은 상기 촉매를 사용하여, 바이오 디젤을 제조하는 방법을 제공하는 것이다. It is also an object of the present invention to provide a method for producing biodiesel using the catalyst.

또한, 본 발명의 다른 목적은 상기 제조방법에 의해 제조된 바이오 디젤을 제공하는 것이다. In addition, another object of the present invention is to provide a biodiesel produced by the above production method.

상기 목적을 달성하기 위한 본 발명의 일 구현예는 본 발명의 일 구현예는 내수성이 강한 담체에 활성성분으로 수소화 반응 또는 카르복시 이탈 반응에 사용되는 촉매가 담지되어 있는 바이오 디젤 제조용 촉매를 제공한다. One embodiment of the present invention for achieving the above object is an embodiment of the present invention provides a catalyst for producing a bio-diesel is supported on the catalyst used in the hydrogenation reaction or carboxylation reaction as an active ingredient in a strong water-resistant carrier.

본 발명의 일 구현예는 내수성이 강한 담체에 활성성분으로 VIB족 금속을 포함하는 바이오 디젤 제조용 촉매를 제공한다. One embodiment of the present invention provides a catalyst for producing a biodiesel containing a Group VIB metal as an active ingredient in a carrier having a strong water resistance.

본 발명의 다른 일 구현예는 내수성이 강한 담체에 활성성분으로 VIB족 금속에 VIB족 또는 VIIB 금속을 더 포함하는 촉매를 제공한다. Another embodiment of the present invention provides a catalyst further comprising a group VIB or VIIB metal to group VIB metal as an active ingredient in a strong water-resistant carrier.

본 발명의 다른 일 구현예는 상기 내수성 촉매 담체는 지르코니아, 타이타니아, 알루미늄 포스페이트, 니오비아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드, 카본 또는 이들의 혼합물인 바이오 디젤 제조용 촉매를 제공한다. Another embodiment of the present invention provides a catalyst for producing biodiesel, wherein the water-resistant catalyst carrier is zirconia, titania, aluminum phosphate, niobia, zirconium phosphate, titanium phosphate, silicon carbide, carbon, or a mixture thereof.

본 발명의 다른 일 구현예는 상기 금속 VIB족은 Mo 또는 W이고, 활성 성분 중 0.1~70 중량%로 포함하는 바이오 디젤 제조용 촉매를 제공한다. Another embodiment of the present invention provides a catalyst for producing biodiesel, wherein the metal group VIB is Mo or W and comprises 0.1 to 70% by weight of the active ingredient.

본 발명의 다른 일 구현예는, 상기 금속 VIII족은 Ni, Pd, 또는 Pt이고, 활성 성분 중 0~60 중량%로 포함되는 것을 특징으로 하는 바이오 디젤 제조용 촉매을 제공한다.Another embodiment of the present invention, the metal group VIII is Ni, Pd, or Pt, and provides a catalyst for producing biodiesel, characterized in that contained in 0 to 60% by weight of the active ingredient.

본 발명의 다른 일 구현예는, 상기 금속 VIIB 족은 Co, Ru, Fe, Mn, 또는 Ir 이고, 활성 성분 중 0~60 중량%로 포함되는 것을 특징으로 하는 바이오 디젤 제조용 촉매을 제공한다. In another embodiment of the present invention, the metal VIIB group is Co, Ru, Fe, Mn, or Ir, and provides a catalyst for producing biodiesel, characterized in that it comprises 0 to 60% by weight of the active ingredient.

본 발명의 다른 일 구현예는, 상기 VIB 족 금속은 담체에 대하여 1~40 중량% 함유하는 것을 특징으로 하는 바이오 디젤 제조용 촉매을 제공한다. Another embodiment of the present invention, the Group VIB metal provides a catalyst for producing biodiesel, characterized in that containing 1 to 40% by weight relative to the carrier.

본 발명의 다른 일 구현예는, 상기 VIII 족 또는 VIIB족 금속은 담체에 대하여 1~20중량% 함유하는 것을 특징으로 하는 바이오 디젤 제조용 촉매.Another embodiment of the present invention, the Group VIII or VIIB metal catalyst for producing biodiesel, characterized in that containing 1 to 20% by weight relative to the carrier.

본 발명의 다른 일 구현예는, 상기 바이오 디젤 제조용 촉매 존재 하에서, 수소화 반응 또는 카르복시 이탈 반응을 통해 바이오 디젤을 제조하는 방법을 제공한다. Another embodiment of the present invention, in the presence of the catalyst for producing biodiesel, provides a method for producing biodiesel through a hydrogenation reaction or a decarboxylation reaction.

본 발명의 다른 일 구현예는, 바이오 디젤 제조는 식물유, 식물성 지방, 동물성 지방, 어유, 재생지방, 식물성 지방산, 동물성 지방산 또는 이들의 혼합물의 바이오매스를 피드로 하는 것임을 특징으로 하는 바이오 디젤을 제조하는 방법을 제공한다. Another embodiment of the present invention, the biodiesel production is a biodiesel, characterized in that the feed to the biomass of vegetable oil, vegetable fat, animal fat, fish oil, renewable fat, vegetable fatty acid, animal fatty acid or a mixture thereof Provide a way to.

본 발명의 다른 일 구현예는, 상기 지방의 경우 트리글리세라이드의 각 체인을 구성하는 탄소의 개수가 1 내지 28개인 지방이고, 상기 지방산의 경우, 탄소의 개수가 1 내지 28개인 지방산인 것을 특징으로 하는 바이오 디젤을 제조하는 방법을 제공한다. Another embodiment of the present invention, in the case of the fat, the number of carbons constituting each chain of triglyceride is 1 to 28 fat, the fatty acid, characterized in that the number of carbon 1 to 28 fatty acids It provides a method for producing a biodiesel.

본 발명의 다른 일 구현예는, 바이오 디젤 제조는 피드로 바이오매스 이외에 하나 이상의 탄화수소(hydrocarbon) 혼합물(0~99%)을 추가로 혼합하여 사용하는 것을 특징으로 하는 바이오 디젤을 제조하는 방법을 제공한다.In another embodiment of the present invention, the biodiesel production provides a method for producing biodiesel, characterized in that additionally mixed with one or more hydrocarbon mixtures (0 to 99%) in addition to the biomass as a feed. do.

본 발명의 다른 일 구현예는, 피드를 수소화 처리를 통해 전처리하는 공정, 수첨 탈산화 반응 후의 미반응 수소를 분리하는 공정, 생성된 탄화수소(hydrocarbon)를 냉각, 분리하는 공정, 이성화 기능을 부가하는 공정(isomerization process) 등이 포함된 공정을 통해 바이오 디젤을 제조하는 방법을 제공한다. Another embodiment of the present invention, the process of pre-processing the feed through the hydrogenation process, the process of separating the unreacted hydrogen after the hydrogenation deoxidation reaction, the process of cooling, separating the generated hydrocarbon (hydrocarbon), adding the isomerization function It provides a method for producing biodiesel through a process including an isomerization process.

본 발명의 다른 일 구현예는, 상기 바이오 디젤 제조 방법에 의해 제조된 바이오 디젤을 제공한다. Another embodiment of the present invention provides a biodiesel produced by the biodiesel manufacturing method.

본 발명에 따른 바이오 디젤 제조용 촉매는 HBD 제조시 장기활성이 높으면서도, 촉매 leaching 문제를 해결하여 촉매의 내구성을 높일 수 있다.The biodiesel production catalyst according to the present invention can increase the durability of the catalyst by solving the catalyst leaching problem, while having a high long-term activity during HBD production.

도 1은 피드로써 100% 식물유를 사용하는 경우의 HBD 공정 흐름도이다.
도 2는 피드로써 식물유에 탄화수소를 혼합하여 사용하는 경우에 사용되는 공정 흐름도이다.
1 is a flowchart of an HBD process when 100% vegetable oil is used as a feed.
2 is a process flowchart used when a hydrocarbon is mixed with vegetable oil as a feed.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

HBD 제조 공정에서 상용 수소화 촉매를 사용하는 경우, 장기 안정성이 문제 되었는 바, 전술한 바와 같이 종래 기술은 공정 운전 제어를 통해 문제를 극복하고자 하였으나 미흡한 실정이었다. In the case of using a commercial hydrogenation catalyst in the HBD manufacturing process, long-term stability was a problem, as described above, the prior art tried to overcome the problem through the process operation control, but it was insufficient.

본원 발명의 발명자는 공정 운전 제어방법이 아니라, 촉매의 내구성이 저하되는 근본원인을 확인하였는 바, 이는 종래 상용 수소화 촉매를 HBD 제조 과정에 직접 적용하였을 때, 부반응에 의해 물이 발생하며, 생성된 물에 의해서 수소화 촉매 성분이 녹아나오면서 촉매 활성점이 붕괴되어 비활성화가 진행된 것을 알아내었다.The inventors of the present invention confirmed the root cause of the durability of the catalyst, not the process operation control method, which is that when the conventional commercial hydrogenation catalyst is applied directly to the HBD manufacturing process, water is generated by side reactions, As the hydrogenation catalyst component melted by water, it was found that the catalytically active point collapsed and the deactivation proceeded.

이를 토대로 본원 발명의 발명자는 수괴에 강한 담체에 수소화 기능을 가진 활성점을 고분산시켜 도입함으로써 생성물로 생기는 물에 의한 촉매의 비활성화를 최소화 하였으며, 본 연구의 기술을 활용해 제조한 촉매는 HBD 공정에 있어서 기존의 상용 수소화 촉매를 사용한 경우보다 2배 이상의 장기적인 촉매 활성도를 유지하는 것을 확인하였다.Based on this, the inventor of the present invention minimized the deactivation of the catalyst by the water generated by the product by introducing a high dispersion of the active point having a hydrogenation function to the carrier which is resistant to water masses. In the case of using a conventional commercial hydrogenation catalyst was confirmed to maintain the long-term catalyst activity more than two times.

식물유는 주로 트리글리세라이드(Triglyceride)로 구성되는데, 아래 그림에서와 같이 일반적인 수소화 공정 조건에서, 수소에 의해서 트리글레세라이드가 C14-C18에 해당하는 노르말 파라핀과 부산물로서 프로판, H2O, CO, CO2 등이 생성된다.Vegetable oil is mainly composed of triglycerides. As shown in the figure below, normal paraffins and hydrogen by-products are equivalent to C 14 -C 18 triglycerides by hydrogen and propane, H 2 O, CO , CO 2 Etc. are generated.

Figure 112010009251091-pat00001
Figure 112010009251091-pat00001

이때 생성된 파라핀은 C14 ~C18이며, 디젤 유분에 해당하므로 HBD로 통칭한다. 상기 반응으로 생성된 H2O는 필연적으로 촉매 성분을 녹이는 반응을 수반하게 된다. 상용화된 수소화 촉매인 Group III + Group IV 금속/담체 촉매를 사용하였을 때, HBD 반응에서 H2O가 생성되는 비율은 10 wt% 정도나 된다. 반응 초기에는 촉매 성분이 녹아 나오는 현상이 적지만, 일정 기간 이후 촉매의 씻김현상(Leaching effect)이 급속히 진행되는 현상이 발생하고, 그 결과 급속한 촉매 비활성화를 야기하는 것이다. At this time, the generated paraffins are C 14 ~ C 18 and are referred to as HBD because they correspond to diesel oil. The H 2 O produced by the reaction necessarily involves a reaction of dissolving the catalyst component. Using a commercially available hydrogenation catalyst, Group III + Group IV metal / carrier catalyst, the rate of H 2 O generation in the HBD reaction is about 10 wt%. In the early stage of the reaction, the catalyst component dissolves little, but after a certain period, the phenomenon of rapid washing occurs (Leaching effect) occurs, resulting in rapid catalyst deactivation.

본 발명에서는 이러한 문제를 해결하기 위하여, 내수성이 강한 담체에 수소화 반응 또는 카르복시 이탈 반응에 사용되는 촉매 물질을 담지시켜, 촉매의 내구성 및 높은 촉매 활성을 가지는 촉매를 제공한다. In the present invention, in order to solve this problem, the catalyst material used in the hydrogenation reaction or the carboxylization reaction is supported on a strong water-resistant carrier to provide a catalyst having high durability and high catalytic activity of the catalyst.

본 발명에 사용되는 내수성이 강한 담체는 지르코니아, 타이타니아, 알루미늄 포스페이트, 니오비아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드, 카본 또는 이들의 혼합물이다. Strongly water-resistant carriers used in the present invention are zirconia, titania, aluminum phosphate, niobia, zirconium phosphate, titanium phosphate, silicon carbide, carbon or mixtures thereof.

본 발명은 바이오매스로부터 수소화 또는 카르복시 이탈 반응을 통해 디젤 유분을 제조하는 공정(HBD, Hydrofined Bio-디젤)용 특화 촉매로써, 지르코니아, 타이타니아, 알루미늄 포스페이트, 니오비아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드, 카본 또는 이들의 혼합물과 같이 내수성이 강한 담체에 수소화 기능 또는 카르복시 이탈 기능을 가진 활성 물질을 부가한 촉매이다. 본 발명은 내수성이 강한 담체를 사용함으로써, HBD 공정 중 생성되는 부산물인 물에 의한 촉매의 비활성화를 막아 촉매의 내구성을 획기적으로 높인 촉매이다.The present invention is a specialized catalyst for producing diesel oil through hydrogenation or decarboxylation reaction from biomass (HBD, Hydrofined Bio-diesel), zirconia, titania, aluminum phosphate, niobia, zirconium phosphate, titanium phosphate, silicon carbide It is a catalyst in which an active substance having a hydrogenation function or a carboxyl leaving function is added to a carrier having a high water resistance such as, carbon or a mixture thereof. The present invention prevents the deactivation of the catalyst by water, which is a by-product generated during the HBD process, by using a carrier having a high water resistance, thereby dramatically increasing the durability of the catalyst.

본 발명에 사용되는 내수성이 강한 촉매는 HBD 공정 뿐만 아니라 물이 발생되어 담체의 내구성이 저하되는 alumina를 사용하는 수소화 반응이나 카르복시 이탈반응에 모두 적용가능하다. The strong water-resistant catalyst used in the present invention is applicable not only to the HBD process but also to the hydrogenation reaction or the carboxyl leaving reaction using alumina, in which water is generated and the durability of the carrier is reduced.

본 발명의 촉매가 HBD 반응에 사용되는 경우, 수소화 반응 또는 카르복시 이탈 반응에 사용되는 촉매는 제한 없이 적용가능하나 활성성분으로 VIB족 금속이 담지되어 있는 바이오 디젤 제조용 촉매를 사용할 수 있다. When the catalyst of the present invention is used in the HBD reaction, the catalyst used for the hydrogenation reaction or carboxylization reaction can be used without limitation, but a catalyst for producing biodiesel in which a group VIB metal is supported as an active ingredient can be used.

또한 본 발명은 내수성이 강한 담체에 활성성분으로 VIB족 금속에 VIB족 또는 VIIB 금속을 더 포함하는 촉매를 사용할 수 있다. In addition, the present invention may use a catalyst further comprising a group VIB or VIIB metal to the group VIB metal as an active ingredient in a strong water-resistant carrier.

본 발명에 사용되는 활성 성분으로써 VIB족 금속은 Mo 또는 W이 보다 바람직하며, VIII족 금속으로는 Ni, Pd 또는 Pt, VIIB 족으로는 Co, Ru, Fe, Mn, 또는 Ir이 보다 바람직하지만 이에 한정되지는 않는다. As the active ingredient used in the present invention, Group VIB metal is more preferably Mo or W, Group VIII metal is Ni, Pd or Pt, Group VIIB Group Co, Ru, Fe, Mn, or Ir, but more preferably It is not limited.

본 발명의 활성 성분 중 VIB족 금속은 0.1~70중량%로 포함되는 데, 0.1 중량% 이하로 담지될 경우 촉매의 활성이 매우 낮아 촉매로서 작용을 하지 못하고, VIB 족이 담지되었을 때, 산화상태로 촉매에 담지되게 되는데 산화물 기준으로 70 중량% 이상으로 담지하기 어렵다. 바람직하게는 VIB족 금속은 1 중량%~40 중량% 사용한다. Group VIB metal of the active ingredient of the present invention is contained in 0.1 to 70% by weight, the catalyst activity is very low when it is supported at 0.1% by weight or less, it does not act as a catalyst, when the VIB group is supported, the oxidation state As it is supported on the catalyst, it is difficult to support more than 70% by weight based on oxide. Preferably, Group VIB metal is used in an amount of 1 wt% to 40 wt%.

본 발명의 활성 성분 중 VIII족 금속 또는 VIIB족 금속은 0~60중량%로 포함되는 데, 60 중량%를 초과하여 담지하기 어렵기 때문이다. VIII족 금속 또는 VIIB족 금속은 바람직하게는 0~20 중량%로 사용한다. Group VIII metal or Group VIIB metal of the active ingredient of the present invention is included in 0 to 60% by weight, because it is difficult to support more than 60% by weight. Group VIII metal or Group VIIB metal is preferably used at 0 to 20% by weight.

본 발명의 바이오 디젤 제조는 바이오 디젤 제조는 식물유, 식물성 지방, 동물성 지방, 어유, 재생지방(영문기재), 식물성 지방산, 동물성 지방산 또는 이들의 혼합물의 바이오매스를 피드로 사용할 수 있다. Biodiesel production of the present invention biodiesel production may use the biomass of vegetable oil, vegetable fats, animal fats, fish oil, renewable fats (in English), vegetable fatty acids, animal fatty acids or mixtures thereof as a feed.

상기 지방의 경우 트리글리세라이드의 각 체인을 구성하는 탄소의 개수가 1 내지 28개인 지방이고, 상기 지방산의 경우, 탄소의 개수가 1 내지 28개인 지방산을 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다. In the case of the fat, the number of carbons constituting each chain of the triglyceride is 1 to 28 fats, and in the case of the fatty acid, it is preferable to use fatty acids having 1 to 28 carbons, but is not limited thereto.

바이오 디젤 제조는 피드로 바이오매스 이외에 하나 이상의 탄화수소(hydrocarbon) 혼합물(0~99%)을 추가로 혼합하여 사용할 수 있으며, kerosene, diesel, LGO, recycled HBD를 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다. Biodiesel manufacturing can be used by mixing one or more hydrocarbon mixtures (0 to 99%) in addition to biomass as feed, preferably kerosene, diesel, LGO, recycled HBD, but is not limited thereto. .

HBD 제조 공정은 피드를 수소화 처리를 통해 전처리하는 공정, 수첨 탈산화 반응 후의 미반응 수소를 분리하는 공정, 생성된 탄화수소(hydrocarbon)를 냉각, 분리하는 공정, 이성화 기능을 부가하는 공정(isomerization process)을 포함할 수 있지만,임의의 목적에 따라 한 두단계의 공정을 가감할 수 있음은 물론이다. The HBD manufacturing process includes pretreatment of the feed through hydrogenation, separation of unreacted hydrogen after hydrodeoxidation, cooling and separation of generated hydrocarbons, and addition of isomerization processes. It may include, but can be added or subtracted one or two steps according to the purpose of course.

피드로써 100% 식물유를 처리하는 공정을 도 1에 예시적으로 기재하였지만, 본 발명이 이에 한정되는 것은 아니다. Although a process of treating 100% vegetable oil as a feed is exemplarily described in FIG. 1, the present invention is not limited thereto.

도 2에서는 피드로서 식물유에 탄화수소를 혼합하여 사용하는 경우에 사용되는 공정 흐름도이다. 100% 식물유를 사용하는 경우에 비해서 탄화수소를 분리하기 위한 fractionator가 포함되어 있는 차이점이 있다. 2 is a process flow chart used when a hydrocarbon is mixed with vegetable oil as a feed. The difference is that a fractionator for separating hydrocarbons is included when using 100% vegetable oil.

식물유에 1%의 DMDS 가 혼합된 물질이 피드로 사용되고, 이 피드와 수소가 HBD 반응기에 동시에 도입되어 수소화 처리된다. 반응물은 stripper에서 증류되어 끓는점 별로 분류되어 HBD를 선별하여 추출하고 나머지는 recycling시키는 시스템이다. A blend of 1% DMDS in vegetable oil is used as the feed, which is simultaneously introduced into the HBD reactor and hydrogenated. The reactants are distilled from the stripper and sorted by boiling point to extract HBD, and the rest is recycled.

이하, 본 발명의 기술을 이용하여 제조한 HBD 특화 촉매 및 이를 이용하여, 바이오매스로부터 수소화 공정을 거쳐 바이오 디젤을 제조하는 방법을 다음과 같이 구체적으로 설명하고자 한다.
Hereinafter, an HBD-specific catalyst prepared using the technology of the present invention and a method of producing biodiesel through a hydrogenation process from biomass using the same will be described in detail as follows.

실시예Example 1:  One: MoMo /Of ZrOZrO ₂ 촉매의 제조 Preparation of ₂ Catalyst

지름 1mm 크기의 ZrO₂를 담체로 사용하여 몰리브데늄이 약 10 중량%인 촉매를 제조하였다.A catalyst having about 10 wt% molybdenum was prepared using ZrO 2 having a diameter of 1 mm as a carrier.

제조에 사용된 Mo전구체로는 Ammonium heptamolybdate tetrahydrate (이후 "AHM")를 사용하였으며, AHM을 증류수에 녹여 제조한 수용액을 ZrO₂ 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/ZrO₂를 제조하였다(AHM 이외 다양한 형태의 몰리브데늄 전구체를 사용할 수 있으며, 몰리브데늄 금속 전구체를 AHM로 한정하는 것은 아니다.) Mo precursor used in the preparation was Ammonium heptamolybdate tetrahydrate (hereinafter referred to as "AHM"), and an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO₂ carrier, and then dried at 150 ° C. for 2 hours and then at 500 ° C. for 2 hours. Mo / ZrO₂ was produced by continuous firing for a while (Molybdenum precursors in various forms other than AHM may be used, and the molybdenum metal precursor is not limited to AHM.)

상기 절차에 따라 제조한 촉매 6 cc를 원통형 반응기에 충진 한 다음, 상온 조건에서 반응압력 45 bar, H₂ flow를 16 cc/min의 속도로 흘리면서 400 ℃까지 승온하고 400 ℃ 에서 도달하면 3시간 동안 전처리 하였다. 6 cc of catalyst prepared according to the above procedure was charged into a cylindrical reactor, and then heated to 400 ° C. while flowing a reaction pressure of 45 bar and H 2 flow at a rate of 16 cc / min at room temperature, and pretreated for 3 hours when reaching 400 ° C. It was.

상기 방법으로 전처리한 Mo/ZrO₂ 촉매를 반응온도 350 ℃, 반응 압력 30 bar, 수소 100 cc/min의 도입 조건에서, feed인 1% DMDS(di-Methyl Disulfide)가 포함된 대두유(soybean oil)를 0.1 cc/min (LHSV = 1)의 속도로 반응시켰다. 8시간마다 시료 채취(sampling) 하였고, 얻어진 생성물(product)의 반응 성상은 simdist로, 촉매의 leaching 여부는 ICP 분석을 통해 확인하였으며, 그 결과는 표 1과 표 2에 도시하였다.
The soybean oil containing 1% DMDS (di-Methyl Disulfide) as feed was prepared using the pre-treated Mo / ZrO₂ catalyst at a reaction temperature of 350 ° C., a reaction pressure of 30 bar, and 100 cc / min of hydrogen. The reaction was carried out at a rate of 0.1 cc / min (LHSV = 1). Samples were sampled every 8 hours, and the reaction properties of the obtained product were simdist. The leaching of the catalyst was confirmed by ICP analysis. The results are shown in Tables 1 and 2.

실시예Example 2:  2: NiMoNimo /Of ZrOZrO ₂ 촉매의 제조Preparation of ₂ Catalyst

지름 1mm 크기의 ZrO₂를 담체로 사용하여 몰리브데늄이 약 10 중량%, Ni이 약 3중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 AHM을 사용하였으며, Ni 전구체로는 Nickel nitrate hexahydrate (이후 "NNH")를 사용하였으나 Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. A catalyst was prepared using ZrO 2 having a diameter of 1 mm as a carrier so that molybdenum was about 10 wt% and Ni was about 3 wt%. AHM was used as the Mo precursor used in the preparation, and Nickel nitrate hexahydrate (hereinafter, "NNH") was used as the Ni precursor, but various precursors may be used in the case of Mo and Ni metals, but are not limited thereto.

NiMo/ZrO₂ 촉매는 다음과 같은 순서로 제조되었다.NiMo / ZrO₂ catalysts were prepared in the following order.

먼저 AHM을 증류수에 녹여 제조한 수용액을 ZrO₂담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/ZrO₂를 제조하였다.First, an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO₂ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / ZrO₂.

NNH을 증류수에 녹인 다음, 상기 Mo/ZrO₂촉매를 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 NiMo/ZrO₂촉매를 제조하였다.After NNH was dissolved in distilled water, the Mo / ZrO₂ catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / ZrO₂ catalyst.

전처리 온도를 320도로 변경하는 것을 제외하고, 실시예 1과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표 2에 도시하였다.
Except for changing the pretreatment temperature to 320 degrees, the pretreatment and reaction was carried out in the same manner as in Example 1, the results are shown in Table 1 and Table 2.

실시예Example 3:  3: CoMoCoMo /Of TiOTiO ₂ 촉매의 제조 Preparation of ₂ Catalyst

지름 1mm 크기의 TiO₂를 담체로 사용하여 Mo가 약 10 중량%, Co가 약 3중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 AHM을 사용하였으며, Co 전구체로는 cobalt nitrate hexahydrate를 사용하였다(Mo, Co 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다.) A catalyst was prepared using TiO 2 having a diameter of 1 mm as a carrier so that Mo was about 10 wt% and Co was about 3 wt%. AHM was used as the Mo precursor used in the preparation, and cobalt nitrate hexahydrate was used as the Co precursor (Mo, Co metal can be used in various precursors, but not limited to the precursor).

먼저 AHM을 증류수에 녹이고, TiO₂ 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/TiO₂를 제조하였다. First, AHM was dissolved in distilled water, impregnated in a TiO₂ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / TiO₂.

cobalt nitrate hexahydrate를 증류수에 녹이고, 제조된 Mo/TiO₂ 촉매에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 CoMo/TiO₂ 촉매를 제조하였다. 실시예 2과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표2에 도시하였다.
Cobalt nitrate hexahydrate was dissolved in distilled water, impregnated into the prepared Mo / TiO₂ catalyst, dried at 150 ° C. for 2 hours, and then calcined continuously at 500 ° C. for 2 hours to prepare a CoMo / TiO₂ catalyst. Pretreatment and reaction were carried out in the same manner as in Example 2, and the results are shown in Tables 1 and 2.

실시예Example 4:  4: NiWNiW /Of TiOTiO ₂ 촉매의 제조 Preparation of ₂ Catalyst

지름 1mm 크기의 TiO₂를 담체로 사용하여 텅스텐이 약 10 중량%, Ni이 약 3중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 W 전구체로는 AHM을 사용하였으며, Ni 전구체로는 NNH를 사용하였다. W, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. Using a TiO 2 having a diameter of 1 mm as a carrier, a catalyst was prepared such that tungsten was about 10 wt% and Ni was about 3 wt%. AHM was used as the W precursor used in the preparation, and NNH was used as the Ni precursor. In the case of W and Ni metals, various precursors may be used, and the present invention is not limited thereto.

NiW/TiO₂ 촉매는 다음과 같은 순서로 제조되었다.NiW / TiO₂ catalysts were prepared in the following order.

AMT을 증류수에 녹여 제조한 수용액을 TiO₂ 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 W/TiO₂촉매를 제조하였다. An aqueous solution prepared by dissolving AMT in distilled water was impregnated in a TiO₂ carrier, dried at 150 ° C. for 2 hours, and then calcined continuously at 500 ° C. for 2 hours to prepare a W / TiO₂ catalyst.

NNH을 증류수에 녹인 다음, 상기 W/TiO₂ 촉매를 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 NiW/TiO₂ 촉매를 제조하였다.After NNH was dissolved in distilled water, the W / TiO₂ catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiW / TiO₂ catalyst.

실시예 1과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표 2에 도시하였다.
Pretreatment and reaction were carried out in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

실시예Example 5:  5: NiMoNimo /C 촉매의 제조 Preparation of A / C Catalyst

지름 1mm 크기의 카본(carbon)를 담체로 사용하여 몰리브데늄이 약 15 중량%, Ni이 약 5중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 AHM을 사용하였으며, Ni 전구체로는 NNH를 사용하였다(Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다.) The catalyst was prepared using carbon having a diameter of 1 mm as a carrier so that molybdenum is about 15 wt% and Ni is about 5 wt%. AHM was used as the Mo precursor used in the preparation, and NNH was used as the Ni precursor (Mo, Ni metal may use various precursors, and the present invention is not limited thereto.)

NiMo/carbon 촉매는 다음과 같은 순서로 제조되었다.NiMo / carbon catalysts were prepared in the following order.

먼저 AHM와 NNH를 증류수에 녹여 제조한 수용액을 Carbon에 담체에 함침 시킨 다음, 300 ℃ 2시간 동안 건조하여 NiMo/C 촉매를 제조하였다.First, an aqueous solution prepared by dissolving AHM and NNH in distilled water was impregnated in a carrier to carbon, and then dried at 300 ° C. for 2 hours to prepare a NiMo / C catalyst.

실시예 2과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표2에 도시하였다.
Pretreatment and reaction were carried out in the same manner as in Example 2, and the results are shown in Tables 1 and 2.

실시예Example 6:  6: NiMoNimo /Of AlPO4AlPO4 촉매의 제조  Preparation of the catalyst

알루미늄 포스페이트(AlPO4)를 담체로 사용하여 몰리브데늄이 약 15 중량%, Ni이 약 5중량 %가 되도록 촉매를 제조하였다. Ni과 Mo의 전구체는 실시예 2에서와 동일하다. The catalyst was prepared using aluminum phosphate (AlPO 4) as a carrier such that molybdenum is about 15% by weight and Ni is about 5% by weight. The precursors of Ni and Mo are the same as in Example 2.

NiMo/AlPO4 촉매는 다음과 같은 순서로 제조되었다.NiMo / AlPO 4 catalyst was prepared in the following order.

먼저 AHM와 NNH를 증류수에 녹여 제조한 수용액을 알루미늄 포스페이트 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 실시예 2과 동일하게 전처리하고 반응을 실시하였고, 결과를 표 1과 표2에 도시하였다.
First, the aqueous solution prepared by dissolving AHM and NNH in distilled water was impregnated in an aluminum phosphate carrier, and then dried for 2 hours at 150 ° C., followed by pretreatment and reaction as in Example 2, and the results are shown in Table 1 and Table 2. It was.

실시예Example 7:  7: NiMoNimo /Of Nb2O5Nb2O5 촉매의 제조  Preparation of the catalyst

니오븀 옥사이드를 담체로 사용하여 몰리브데늄이 약 7 중량%, Ni이 약 2중량 %가 되도록 촉매를 제조하였다. Ni과 Mo의 전구체는 실시예 2에서와 동일하다. Using niobium oxide as a carrier, a catalyst was prepared such that molybdenum was about 7% by weight and Ni was about 2% by weight. The precursors of Ni and Mo are the same as in Example 2.

NiMo/Nb2O5 촉매는 상기 실시예 6과 동일한 조건으로 함침하였고, 실시예 2와 동일한 조건으로 전처리, 반응을 진행하였다. 결과를 표 1과 표2에 도시하였다.
The NiMo / Nb 2 O 5 catalyst was impregnated under the same conditions as in Example 6, and pretreated and reacted under the same conditions as in Example 2. The results are shown in Table 1 and Table 2.

비교예Comparative example 1:  One: NiMoNimo /Of AlAl ₂O₃ 촉매의 제조 Preparation of ₂O₃ Catalyst

지름 1mm 크기의 Al₂O₃를 담체로 사용하여 몰리브데늄이 약 10 중량%, Ni이 약 3중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 AHM을 사용하였으며, Ni 전구체로는 NNH를 사용하였으나 Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. A catalyst was prepared using Al 2 O 3 having a diameter of 1 mm as a carrier so that molybdenum was about 10 wt% and Ni was about 3 wt%. AHM was used as the Mo precursor used in the preparation, and NNH was used as the Ni precursor, but various precursors may be used in the case of Mo and Ni metals, and the present invention is not limited thereto.

NiMo/Al₂O₃ 촉매는 다음과 같은 순서로 제조되었다.NiMo / Al₂O₃ catalysts were prepared in the following order.

먼저 AHM을 증류수에 녹여 제조한 수용액을 Al₂O₃ 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 First, an aqueous solution prepared by dissolving AHM in distilled water was impregnated into an Al₂O₃ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours.

Mo/Al₂O₃를 제조하였다.Mo / Al2O₃ was prepared.

NNH 3.06 g을 증류수에 녹인 다음, 상기 Mo/Al₂O₃촉매를 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 NiMo/Al₂O₃ 촉매를 제조하였다.After dissolving 3.06 g of NNH in distilled water, the Mo / Al₂O₃ catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / Al₂O₃ catalyst.

실시예 2과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표2에 도시하였다.
Pretreatment and reaction were carried out in the same manner as in Example 2, and the results are shown in Tables 1 and 2.

비교예Comparative example 2:  2: CoMoCoMo /Of AlAl ₂O₃ 촉매의 제조 Preparation of ₂O₃ Catalyst

지름 1mm 크기의 Al₂O₃를 담체로 사용하여 Mo가 약 10 중량%, Co가 약 3중량 %가 되도록 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 AHM을 사용하였으며, Co 전구체로는 cobalt nitrate hexahydrate를 사용하였으나, Mo, Co 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. A catalyst was prepared using Al 2 O 3 having a diameter of 1 mm as a carrier so that Mo was about 10 wt% and Co was about 3 wt%. AHM was used as the Mo precursor used in the preparation, and cobalt nitrate hexahydrate was used as the Co precursor. However, in the case of Mo and Co metal, various precursors may be used, and the present invention is not limited thereto.

먼저 AHM을 증류수에 녹이고, Al₂O₃ 담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/Al₂O₃를 제조하였다. First, AHM was dissolved in distilled water, impregnated in an Al₂O₃ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / Al₂O₃.

cobalt nitrate hexahydrate를 증류수에 녹이고, 제조된 Mo/Al₂O₃촉매에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 CoMo/Al₂O₃ 촉매를 제조하였다.Cobalt nitrate hexahydrate was dissolved in distilled water, impregnated into the prepared Mo / Al₂O₃ catalyst, dried at 150 ° C. for 2 hours, and then calcined continuously at 500 ° C. for 2 hours to prepare a CoMo / Al₂O₃ catalyst.

실시예 2과 동일하게 전처리하고 반응을 실시하였으며, 결과는 표 1과 표 2에 도시하였다.Pretreatment and reaction were carried out in the same manner as in Example 2, and the results are shown in Tables 1 and 2.

표 1에 나타난 결과를 보면 Al₂O₃를 담체로 사용한 촉매의 경우 초기 반응성능은 양호하나, 반응시간이 경과에 따라 수율이 급격히 감소하는 것으로 볼 수 있다. 반면, 지르코니아, 티타니아, 카본, 알루미늄 포스페이트 또는 니오비아를 담체로 사용한 촉매의 경우 표 1에서 보는 바와 같이 초기 반응 성능 뿐만 아니라, 장기 반응 성능이 알루미나 담지 촉매 보다 우수한 것을 알 수 있다. 특히, 표에서 보는 바와 같이 지르코니아, 티타니아, 카본, 알루미늄 포스페이트 또는 니오비아를 담체로 사용한 촉매는 내수성이 우수하며, 촉매 용해 현상이 거의 없으나, 알루미나를 담체로 사용한 촉매의 경우엔 촉매 및 담체 성분이 녹아 나오며 반응시간이 경과함에 따라 촉매 및 담체 성분의 용해 정도가 급격히 증가 하는 현상이 발생한다.In the results shown in Table 1, the initial reactivity was good for the catalyst using Al₂O₃ as the carrier, but the yield decreased rapidly as the reaction time elapsed. On the other hand, in the case of a catalyst using a zirconia, titania, carbon, aluminum phosphate or niobia as a carrier, it can be seen that not only the initial reaction performance but also the long-term reaction performance is superior to the alumina supported catalyst. In particular, as shown in the table, the catalyst using zirconia, titania, carbon, aluminum phosphate, or niobia as a carrier has excellent water resistance and shows little catalyst dissolution. However, in the case of a catalyst using alumina as a carrier, the catalyst and carrier component As the reaction time elapses, the degree of dissolution of the catalyst and carrier components rapidly increases.

Figure 112010009251091-pat00002
Figure 112010009251091-pat00002

Figure 112010009251091-pat00003
Figure 112010009251091-pat00003

Claims (16)

내수성이 강한 담체에 활성성분으로 수소화 반응 또는 카르복시 이탈 반응에 사용되는 촉매가 담지되어 있는 바이오 디젤 제조용 촉매로써,
상기 내수성이 강한 담체는 지르코니아, 타이타니아, 알루미늄 포스페이트, 니오비아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드, 카본 또는 이들의 혼합물이며, 상기 활성성분은 Mo, W, Ni, Co, Ru, Fe 또는 이들의 혼합물인 것을 특징으로 하는 바이오 디젤 제조용 촉매.
It is a catalyst for producing biodiesel, in which a catalyst used for hydrogenation or carboxylization reaction is supported as an active ingredient on a strong water-resistant carrier,
The water resistant carrier is zirconia, titania, aluminum phosphate, niobia, zirconium phosphate, titanium phosphate, silicon carbide, carbon or mixtures thereof, and the active ingredient is Mo, W, Ni, Co, Ru, Fe or their Catalyst for producing biodiesel, characterized in that the mixture.
삭제delete 삭제delete 삭제delete 청구항 1에 있어서, 상기 Mo 또는 W는 활성 성분 중 0.1- 70중량%로 포함되는 것을 특징으로 하는 바이오 디젤 제조용 촉매.The catalyst for producing biodiesel according to claim 1, wherein Mo or W is contained in an amount of 0.1-70% by weight of the active ingredient. 청구항 1에 있어서, 상기 Ni는 활성 성분 중 최대 60 중량%로 포함되는 것을 특징으로 하는 바이오 디젤 제조용 촉매.The catalyst for producing biodiesel according to claim 1, wherein the Ni is included in up to 60% by weight of the active ingredient. 청구항 1에 있어서, 상기 Co, Ru, 또는 Fe는 활성 성분 중 최대 60 중량%로 포함되는 것을 특징으로 하는 바이오 디젤 제조용 촉매.The catalyst for producing biodiesel according to claim 1, wherein the Co, Ru, or Fe is included in up to 60% by weight of the active ingredient. 삭제delete 삭제delete 청구항 1항에 따른 촉매 존재 하에서, 수소화 반응 또는 카르복시 이탈 반응을 통해 바이오 디젤을 제조하는 방법.A process for producing biodiesel via hydrogenation or decarboxylation in the presence of a catalyst according to claim 1. 청구항 10에 있어서, 바이오 디젤 제조는 식물유, 식물성 지방, 동물성 지방, 어유, 재생지방(recylced fat), 식물성 지방산, 동물성 지방산 또는 이들의 혼합물의 바이오매스를 피드(feed)로 하는 것임을 특징으로 하는 바이오 디젤을 제조하는 방법.The biodiesel according to claim 10, wherein the biodiesel production is a biomass of a vegetable oil, vegetable fat, animal fat, fish oil, recycled fat, vegetable fatty acid, animal fatty acid, or a mixture thereof. How to manufacture diesel. 청구항 11에 있어서, 상기 지방의 경우 트리글리세라이드의 각 체인을 구성하는 탄소의 개수가 1 내지 28개인 지방이고, 상기 지방산의 경우, 탄소의 개수가 1 내지 28개인 지방산인 것을 특징으로 하는 바이오 디젤을 제조하는 방법.12. The biodiesel according to claim 11, wherein the fat is a fat having 1 to 28 carbons constituting each chain of triglycerides, and the fatty acid is a fatty acid having 1 to 28 carbons. How to manufacture. 청구항 10에 있어서, 바이오 디젤 제조는 피드로 바이오매스 이외에 하나 이상의 석유 유분을 최대 99 중량%로 추가로 혼합하여 사용하는 것을 특징으로 하는 바이오 디젤을 제조하는 방법.The method of claim 10, wherein the biodiesel production is a method for producing a biodiesel, characterized in that further mixing up to 99% by weight of one or more petroleum oil in addition to the biomass feed. 청구항 13에 있어서, 상기의 석유 유분은 케로센(kerosene), 디젤, LGO(light gas oil), 또는 recycled HBD(hydrofined bio-diesel)를 포함하는 것을 특징으로 하는 바이오 디젤을 제조하는 방법.The method of claim 13, wherein the petroleum fraction comprises kerosene, diesel, light gas oil (LGO), or recycled hydrofined bio-diesel (HBD). 삭제delete 청구항 10에 의해 따라 제조된 바이오 디젤.Biodiesel prepared according to claim 10.
KR1020100012711A 2009-02-12 2010-02-11 Catalysts for hydrofined biodiesel and method for preparing the same Active KR101183703B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MYPI2010000670A MY146784A (en) 2009-02-12 2010-02-12 Catalyst for producing hydrogenated biodiesel and method of producing the same
PCT/KR2010/007184 WO2011099686A1 (en) 2010-02-11 2010-10-20 Catalyst for producing hydrogenated biodiesel and method of producing the same
US13/578,225 US20120323056A1 (en) 2010-02-11 2010-10-20 Catalyst for producing hydrogenated biodiesel and method of producing the same
DK10845856.3T DK2533895T3 (en) 2010-02-11 2010-10-20 Process for the production of hydrogenated biodiesel
EP10845856.3A EP2533895B1 (en) 2010-02-11 2010-10-20 Method for producing hydrogenated biodiesel
FIEP10845856.3T FI2533895T3 (en) 2010-02-11 2010-10-20 Method for producing hydrogenated biodiesel
CN2010800653489A CN103097022A (en) 2010-02-11 2010-10-20 Catalyst for producing hydrogenated biodiesel and method of producing the same
US15/198,350 US10385277B2 (en) 2010-02-11 2016-06-30 Catalyst for producing hydrogenated biodiesel and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090011478 2009-02-12
KR1020090011478 2009-02-12

Publications (2)

Publication Number Publication Date
KR20100092388A KR20100092388A (en) 2010-08-20
KR101183703B1 true KR101183703B1 (en) 2012-09-17

Family

ID=42757265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100012711A Active KR101183703B1 (en) 2009-02-12 2010-02-11 Catalysts for hydrofined biodiesel and method for preparing the same

Country Status (2)

Country Link
KR (1) KR101183703B1 (en)
MY (1) MY146784A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472764C1 (en) * 2011-11-28 2013-01-20 Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") Method to produce fuel hydrocarbons from renewable feedstocks
CN112495392B (en) * 2020-11-16 2022-05-24 华南理工大学 Method for preparing hydrocarbon compound by catalyzing grease with spinel catalyst loaded with Pd
CN113385204A (en) * 2021-06-21 2021-09-14 复旦大学 Nickel-based metal phosphate catalyst and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001450A1 (en) 1996-08-23 2001-05-24 Gerald E. Markley Multi-stage countercurrent hydrotreating process
US20070006523A1 (en) 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydro-carbons
US20080173570A1 (en) * 2006-12-22 2008-07-24 Karin Marchand Methods of hydrotreating a mixture made up of oils of animal or vegetable origin and of petroleum cuts with quench injection of the oils on the last catalyst bed
KR100961215B1 (en) 2008-06-13 2010-06-03 한국에너지기술연구원 Method for producing biodiesel from raw oil containing free fatty acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001450A1 (en) 1996-08-23 2001-05-24 Gerald E. Markley Multi-stage countercurrent hydrotreating process
US20070006523A1 (en) 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydro-carbons
US20080173570A1 (en) * 2006-12-22 2008-07-24 Karin Marchand Methods of hydrotreating a mixture made up of oils of animal or vegetable origin and of petroleum cuts with quench injection of the oils on the last catalyst bed
KR100961215B1 (en) 2008-06-13 2010-06-03 한국에너지기술연구원 Method for producing biodiesel from raw oil containing free fatty acids

Also Published As

Publication number Publication date
KR20100092388A (en) 2010-08-20
MY146784A (en) 2012-09-28

Similar Documents

Publication Publication Date Title
US10385277B2 (en) Catalyst for producing hydrogenated biodiesel and method of producing the same
KR101192930B1 (en) Catalysts of metal phosphide for hydrofined biodiesel and method for preparing the same
Kaewmeesri et al. Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content
Wang et al. Hydrocarbon fuels production from hydrocracking of soybean oil using transition metal carbides and nitrides supported on ZSM-5
RU2495082C2 (en) Hydrotreatment method and catalyst
Kumar et al. Role of NiMo alloy and Ni species in the performance of NiMo/alumina catalysts for hydrodeoxygenation of stearic acid: a kinetic study
Xin et al. Ni–Fe catalysts supported on γ-Al2O3/HZSM-5 for transformation of palmitic acid into hydrocarbon fuel
Yuan et al. Multifunctional WO3–ZrO2-supported platinum catalyst for remarkably efficient hydrogenolysis of esters to alkanes
Crawford et al. Decarboxylation of diunsaturated linoleic acid to heptadecane over zeolite supported Pt/ZIF-67 catalysts
KR101183703B1 (en) Catalysts for hydrofined biodiesel and method for preparing the same
US20140275670A1 (en) Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes
EP2628781B1 (en) Method for producing biodiesel
WO2012047435A1 (en) Co-production of renewable diesel and renewable gasoline
WO2023116169A1 (en) Method for preparing liquid fuel by means of selective catalytic deoxidation of grease, and liquid fuel
CN103102920B (en) The two-stage method method of hydrotreating of production high-quality solvent oil
KR102255297B1 (en) Multimetallic Bifunctional Hydrocracking Catalyst and Method of Preparing Biojet Fuel from Triglyceride-Containing Biomass Using the Same
KR20110012041A (en) Production method of biodiesel
RU2602278C1 (en) Catalyst and process of hydrodeoxygenation of vegetal raw materials and its application
CN116333823B (en) A method for preparing liquid fuel by selective catalytic deoxygenation of oil and fat
US20250153150A1 (en) Heterogeneous catalyst based on molybdenum oxide and its use in biomass transformation processes
CN116024004B (en) Hydrogenation method for preparing diesel fraction from grease raw material
CN103102911B (en) Bio-oil produces the method for hydrotreating of low aromatic solvent naphtha
EP2918660A1 (en) Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes
CN103102918B (en) Two-stage hydrogenation method for producing solvent oil
Khemthong et al. Hydrodeoxygenation of cyclohexanol and cyclohexanone

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100211

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20100212

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20100211

Comment text: Patent Application

PG1501 Laying open of application
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20110131

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20111212

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20120828

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120911

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120911

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150625

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150625

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160630

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170703

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180625

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20190620

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20190620

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20200629

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20210623

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20220621

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20230612

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20240618

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20250617

Start annual number: 14

End annual number: 14