[go: up one dir, main page]

KR101182729B1 - Medical image processing methods for blood vessel - Google Patents

Medical image processing methods for blood vessel Download PDF

Info

Publication number
KR101182729B1
KR101182729B1 KR1020110021306A KR20110021306A KR101182729B1 KR 101182729 B1 KR101182729 B1 KR 101182729B1 KR 1020110021306 A KR1020110021306 A KR 1020110021306A KR 20110021306 A KR20110021306 A KR 20110021306A KR 101182729 B1 KR101182729 B1 KR 101182729B1
Authority
KR
South Korea
Prior art keywords
blood vessel
image
vessels
region
processing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020110021306A
Other languages
Korean (ko)
Inventor
김성민
조소라
박영호
남기표
신광용
이현창
이의철
박강령
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Priority to KR1020110021306A priority Critical patent/KR101182729B1/en
Priority to PCT/KR2012/000768 priority patent/WO2012121488A2/en
Application granted granted Critical
Publication of KR101182729B1 publication Critical patent/KR101182729B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/20Contour coding, e.g. using detection of edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

본 발명은 i) 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하여 이진화하는 적응적 지역 이진화 처리단계; ii) 상기 적응적 지역 이진화 처리단계가 종료된 영상에 포함된 잡음을 보정하기 위해 모폴로지 연산하는 모폴로지 연산 처리단계; iii) 상기 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관라인을 추출하는 세선화 처리단계; iv) 상기 세선화 처리단계가 종료된 영상에서 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 두께를 측정하는 혈관의 방향 및 두께 측정단계; 및 v) 상기 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터를 선택적으로 적용하는 적응적 가버 필터링 처리단계를 포함하는 혈관영상 처리방법에 관한 것이다.I) Adaptive partitioning of blood vessels and non-vessels based on the thresholds after setting regional thresholds based on the average or standard deviation of image pixels in each region Local binarization processing step; ii) a morphology calculation processing step of performing a morphology calculation to correct noise included in the image in which the adaptive local binarization processing step is completed; iii) a thinning processing step of extracting a blood vessel line by thinning the image in which the morphology calculation processing step is completed; iv) determining the direction of the blood vessel line extracted in each region in the image where the thinning process is completed, and then analyzing the gray profile of the blood vessel orthogonal to the blood vessel direction to measure the thickness of the blood vessel; And v) an adaptive Gabor filtering process for selectively applying a Gabor filter most suitable for each region in consideration of the direction and thickness of the blood vessel measured in step iv).

Description

의료용 혈관영상 처리방법{Medical Image Processing Methods for Blood Vessel}Medical Image Processing Methods for Blood Vessel

본 발명은 의료용 혈관영상 처리방법에 관한 것으로서, 보다 상세하게는 촬영된 혈관영상을 이진화 처리, 모폴로지 연산처리 및 세선화 처리한 후 처리된 혈관영상의 방향과 두께를 고려하여 가버 필터를 적용함으로써, 혈관영상에 포함된 혈관을 보다 정교하고 선명하게 관찰할 수 있도록 한 의료용 혈관영상 처리방법에 관한 것이다.
The present invention relates to a medical vascular image processing method, and more specifically, by applying a Gabor filter in consideration of the direction and thickness of the processed vascular image after the binarization process, morphology calculation process and thinning process, The present invention relates to a medical blood vessel image processing method for observing a blood vessel included in a blood vessel image more precisely and clearly.

적외선 조명 및 적외선 카메라 등을 이용하여 촬영한 혈관영상에서 혈관 부분은 어둡게 표시되고, 비혈관 부분은 밝게 표시된다.In the blood vessel image photographed by using an infrared light or an infrared camera, the blood vessel part is darkly displayed, and the non-vascular part is brightly displayed.

이러한 현상은 혈관영상 취득 시 사용하는 근적외선 파장 조명이 혈관 속 혈액 내에 포함된 헤모글로빈(hemoglobin)에 흡수되는 성질로 인해 발생된다. This phenomenon is caused by the absorption of the near-infrared wavelength illumination used in the blood vessel imaging to hemoglobin contained in the blood in the blood vessels.

특히, 상기 방법으로 촬영한 혈관영상을 의료 영상 분야에서 사용하기 위해서는 혈관과 비혈관을 정확히 분리해내는 것이 중요하며, 가시적으로 관찰할 수 없는 세밀한 혈관의 영역을 표시할 수 있도록 선명한 영상 품질을 제공하여야 한다.In particular, in order to use the blood vessel image photographed by the above method in the medical imaging field, it is important to accurately separate blood vessels and non-vessels, and provide a clear image quality to display a region of fine vessels that cannot be visually observed. shall.

더욱이, 손가락 절단으로 인한 접합 수술 시 접합 부위 혈관이 올바르게 접합되었는지 판단하거나 혈관 막힘 여부를 판단 할 경우, 손가락 또는 손의 혈관 영상이 선명하여야 보다 용이하게 진료를 수행할 수 있다.In addition, when judging whether the blood vessels of the junction region is correctly bonded or when the blood vessels are blocked, during the splicing operation due to the cutting of the finger, the blood vessel image of the finger or the hand should be clear to perform the treatment more easily.

한편, 인물영상, 풍경영상 등의 영상 품질을 개선하기 위한 방법으로 히스토그램 평활화, 히스토그램 스트레칭, 미디언 필터링 등의 방법이 사용되고 있으나, 이를 의료 영상 분야, 특정적으로 혈관영상을 처리하기 위한 분야에 적용할 경우 혈관의 구조적 형태에 의해 혈관의 세밀한 부분을 나타내지 못하여, 굵은 혈관 정도만 표시할 수 있다.On the other hand, methods such as histogram smoothing, histogram stretching, and median filtering are used as methods for improving image quality such as portrait and landscape images. In this case, the detailed shape of the blood vessel may not be displayed due to the structural shape of the blood vessel, and only a thick blood vessel degree may be displayed.

또한, 혈관영상을 처리하는 일례로서, Shi(Z. Shi., W. Yiding, and W. Yunhong, "Extracting Hand Vein Patterns from Low-quality Images: A New Biometric Technique Using Low-cost Devices," In Proc. of the Fourth International Conf. on Image and Graphics, 2007)는 혈관과 비혈관의 정확한 분리를 방해하는 영상 촬영장치의 잡음을 고려하여, 영상 잡음을 최대한 제거하기 위한 정합필터(matched filter), 위너필터(wiener filter), 평균화필터(average filter)를 전처리 단계로 사용하고, 이를 통해 혈관과 비혈관의 분리를 시도하였다.In addition, as an example of processing blood vessel images, Shi (Z. Shi., W. Yiding, and W. Yunhong, "Extracting Hand Vein Patterns from Low-quality Images: A New Biometric Technique Using Low-cost Devices," In Proc of the Fourth International Conf. on Image and Graphics, 2007), a matched filter and a Wiener filter to remove image noise as much as possible, taking into account the noise of an imaging device that prevents accurate separation of blood vessels and non-vessels. (wiener filter) and average filter (average filter) were used as a pretreatment step, through which separation of blood vessels and non-vessels was attempted.

하지만, 상기 방법은 전처리 단계에서 다수의 필터를 사용하여 필터링함으로써 처리된 영상이 흐릿해지고, 이로 인해 혈관과 비혈관을 분리하는 단계에서 혈관과 비혈관의 분리가 부정확해지는 문제점이 발생할 수 있다.However, the method may blur the processed image by filtering by using a plurality of filters in the pre-processing step, which may cause an incorrect separation of blood vessels and non-vessels in the separation of blood vessels and non-vessels.

이러한 문제점을 극복하기 위하여 Lingyu(W. Lingyu and L. Graham. “Gray-scale Skeletonization of Thermal Vein Patterns Using the Watershed Algorithm in Vein Pattern Biometrics,” in Proc. of Int. Conf. on Computational Intelligence and Security, 2006.)는 영상의 혈관과 비혈관 분리 단계를 워터쉐드(watershed) 알고리즘으로 대체하여 영상의 골격을 추출하는 방법을 제시하였다.To overcome these problems, Lingyu (W. Lingyu and L. Graham. “Gray-scale Skeletonization of Thermal Vein Patterns Using the Watershed Algorithm in Vein Pattern Biometrics,” in Proc. Of Int. Conf. On Computational Intelligence and Security, 2006 .) Proposed a method of extracting the skeleton of the image by replacing the vascular and non-vascular separation stages of the image with a watershed algorithm.

하지만, 이러한 방법은 두개의 혈관이 서로 근접하게 위치할 경우, 이를 구분하기 곤란하다는 문제점이 있다.However, this method has a problem in that when two blood vessels are located close to each other, it is difficult to distinguish them.

이에, Miura(N. Miura, N. Akio, and M. Takafumi, “Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles,” IEICE Transactions on Information and Systems, vol. E90-D, no. 8, pp. 1185-1194, 2007.)는 상술한 문제점을 고려하여, 혈관 영상의 특징을 효과적으로 추출하고 실시간 검색에 응용하기 위한 전처리 방법이 개시되어 있다.Thus, Miura (N. Miura, N. Akio, and M. Takafumi, “Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles,” IEICE Transactions on Information and Systems, vol. E90-D, no. 8, 1185-1194, 2007.) discloses a preprocessing method for effectively extracting features of blood vessel images and applying them to real-time retrieval in view of the above problems.

하지만, 전처리 과정에서 제거되지 않은 영상 잡음이 혈관과 비혈관 분리에 매우 큰 영향을 미치게 되기 때문에, 상기 Miura의 영상처리 방법은 영상 세선화 후에 상당히 부정확한 영상처리 결과를 나타내는 문제점이 있다.However, since the image noise that is not removed in the preprocessing process has a great influence on the separation of blood vessels and non-vessels, the Miura image processing method has a problem of showing an inaccurate image processing result after image thinning.

또한, 상기 방법은 영상의 히스토그램 곡률을 이용하여 혈관과 비혈관 분리를 시도하기 때문에 근접해 있는 혈관들을 효과적으로 구분할 수 없는 문제점이 있다.
In addition, since the method attempts to separate blood vessels and non-vessels using the histogram curvature of the image, there is a problem in that the adjacent vessels cannot be effectively distinguished.

본 발명은 혈관영상의 잡음 신호는 제거하고 혈관 부분의 신호를 증폭시킴으로써 혈관과 비혈관의 구분을 명확히 하여, 굵은 혈관뿐만 아니라 비가시적인 얇은 혈관까지 명확히 표시할 수 있도록 하는 의료용 혈관영상 처리방법을 제공한다.
The present invention provides a medical vascular image processing method for clarifying the distinction between blood vessels and non-vessels by removing noise signals of blood vessel images and amplifying signals of blood vessel portions, so that not only thick blood vessels but also invisible thin blood vessels can be clearly displayed. do.

본 발명은The present invention

i) 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하여 이진화하는 적응적 지역 이진화 처리단계; i) An adaptive regional binarization process that divides blood vessel images into regions and sets regional thresholds based on the average or standard deviation values of the image pixels in each region, and then classifies and binarizes the vessels and non-vessels based on the thresholds. step;

ii) 상기 적응적 지역 이진화 처리단계가 종료된 영상에 포함된 잡음을 보정하기 위해 모폴로지 연산하는 모폴로지 연산 처리단계;ii) a morphology calculation processing step of performing a morphology calculation to correct noise included in the image in which the adaptive local binarization processing step is completed;

iii) 상기 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관라인을 추출하는 세선화 처리단계; iii) a thinning processing step of extracting a blood vessel line by thinning the image in which the morphology calculation processing step is completed;

iv) 상기 세선화 처리단계가 종료된 영상에서 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 두께를 측정하는 혈관의 방향 및 두께 측정단계; 및 iv) determining the direction of the blood vessel line extracted in each region in the image where the thinning process is completed, and then analyzing the gray profile of the blood vessel orthogonal to the blood vessel direction to measure the thickness of the blood vessel; And

v) 상기 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터를 선택적으로 적용하는 적응적 가버 필터링 처리단계를 포함하는 혈관영상 처리방법에 관한 것이다.
and v) an adaptive Gabor filtering process for selectively applying a Gabor filter most suitable for each region in consideration of the direction and thickness of the blood vessel measured in step iv).

본 발명에 따른 의료용 혈관영상 처리방법은 고해상도의 품질 좋은 혈관영상을 취득함으로써 혈관관련 질병의 의료 진단 및 치료에 사용할 수 있다.Medical vascular image processing method according to the present invention can be used for the medical diagnosis and treatment of vascular diseases by obtaining a high-resolution quality vascular image.

또한, 본 발명은 혈관과 비혈관의 구분을 명확히 하여, 굵은 혈관뿐만 아니라 비가시적인 얇은 혈관까지 명확히 표시할 수 있는 혈관영상을 제공할 수 있다.
In addition, the present invention can clarify the distinction between blood vessels and non-vascular vessels, and can provide a blood vessel image capable of clearly displaying not only thick blood vessels but also invisible thin vessels.

도 1은 본 발명에 따른 의료용 혈관영상 처리방법을 나타내는 흐름도,
도 2는 본 발명의 의료용 혈관영상 처리방법에 따른 처리되는 영상을 나타내는 도,
도 3은 본 발명에 따른 가버 필터의 공간 영역 형태를 나타내는 도,
도 4는 본 발명에 따른 가버 필터의 주파수 영역 형태를 나타내는 도이다.
1 is a flow chart showing a medical blood vessel image processing method according to the present invention,
2 is a view showing an image processed according to the medical blood vessel image processing method of the present invention,
3 is a view showing a spatial region form of a Gabor filter according to the present invention;
4 is a view showing the frequency domain form of the Gabor filter according to the present invention.

본 발명은 i) 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하여 이진화하는 적응적 지역 이진화 처리단계; ii) 상기 적응적 지역 이진화 처리단계가 종료된 영상에 포함된 잡음을 보정하기 위해 모폴로지 연산하는 모폴로지 연산 처리단계; iii) 상기 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관라인을 추출하는 세선화 처리단계; iv) 상기 세선화 처리단계가 종료된 영상에서 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 두께를 측정하는 혈관의 방향 및 두께 측정단계; 및 v) 상기 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터를 선택적으로 적용하는 적응적 가버 필터링 처리단계를 제공한다.I) Adaptive partitioning of blood vessels and non-vessels based on the thresholds after setting regional thresholds based on the average or standard deviation of image pixels in each region Local binarization processing step; ii) a morphology calculation processing step of performing a morphology calculation to correct noise included in the image in which the adaptive local binarization processing step is completed; iii) a thinning processing step of extracting a blood vessel line by thinning the image in which the morphology calculation processing step is completed; iv) determining the direction of the blood vessel line extracted in each region in the image where the thinning process is completed, and then analyzing the gray profile of the blood vessel orthogonal to the blood vessel direction to measure the thickness of the blood vessel; And v) an adaptive Gabor filtering process for selectively applying a Gabor filter most suitable for each region in consideration of the direction and thickness of the blood vessel measured in step iv).

본 발명에 따른 혈관영상 처리방법, 바람직하게는 의료용 혈관영상 처리방법은 의사가 환자를 진료하거나 치료할 목적으로 신체, 예를 들면 손, 손가락, 손등, 손가락, 발가락 또는 이들 모두의 혈관을 촬영할 경우, 촬영된 혈관영상을 처리하여 영상에 포함된 혈관을 보다 정교하고, 선명하게 관찰할 수 있도록 한다.The blood vessel image processing method, preferably medical blood vessel image processing method according to the present invention when the doctor photographs the blood vessels of the body, such as hands, fingers, back of the hand, fingers, toes or both for the purpose of treating or treating a patient, By processing the photographed blood vessel image to be able to observe the blood vessel contained in the image more precisely and clearly.

이때, 상기 신체는 손, 손가락, 손등, 손가락, 발가락 또는 이들 모두로 한정되는 것이 아니라, 사용자의 선택에 따라 다른 부분을 포함할 수 있다.In this case, the body is not limited to a hand, a finger, a back of a hand, a finger, a toe, or both, but may include other parts according to a user's selection.

또한, 상기 혈관영상은 적외선 조명 및 적외선 카메라로 촬영된 혈관영상뿐만 아니라, 조영제를 이용하여 촬영한 MRI(Magnetic Resonance Imaging), CT(Computed Tomography) 등의 혈관영상을 지칭한다.
In addition, the blood vessel image refers to blood vessel images such as magnetic resonance imaging (MRI) and computed tomography (CT) photographed using contrast media, as well as blood vessel images photographed by infrared illumination and infrared cameras.

이하, 첨부된 도면을 참조하여 본 발명에 대하여 상세히 설명하면 다음과 같다. 그러나 하기의 설명은 오로지 본 발명을 구체적으로 설명하기 위한 것으로 하기 설명에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the following description is only for the purpose of specifically describing the present invention, and the scope of the present invention is not limited by the following description.

도 1은 본 발명에 따른 의료용 혈관영상 처리방법을 나타내는 흐름도, 도 2는 본 발명의 의료용 혈관영상 처리방법에 따른 처리되는 영상을 나타내는 도, 도 3은 본 발명에 따른 가버 필터의 공간 영역 형태를 나타내는 도, 도 4는 본 발명에 따른 가버 필터의 주파수 영역 형태를 나타내는 도로서 함께 설명한다.
1 is a flow chart showing a medical blood vessel image processing method according to the present invention, Figure 2 is a view showing an image processed according to the medical blood vessel image processing method of the present invention, Figure 3 is a spatial region of the Gabor filter according to the present invention Fig. 4 is a diagram showing a frequency domain form of the Gabor filter according to the present invention.

도 1 내지 도 4에 도시된 바와 같이, 본 발명에 따른 의료용 혈관영상 처리방법은 i) 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하여 이진화하는 적응적 지역 이진화 처리단계; ii) 상기 적응적 지역 이진화 처리단계가 종료된 영상에 포함된 잡음을 보정하기 위해 모폴로지 연산하는 모폴로지 연산 처리단계; iii) 상기 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관라인을 추출하는 세선화 처리단계; iv) 상기 세선화 처리단계가 종료된 영상에서 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 두께를 측정하는 혈관의 방향 및 두께 측정단계; 및 v) 상기 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터를 선택적으로 적용하는 적응적 가버 필터링 처리단계를 포함한다.As shown in Figures 1 to 4, the medical vascular image processing method according to the present invention i) partitioning the vascular image to the region and then set the regional threshold based on the average or standard deviation value of the image pixel in each region An adaptive local binarization process of classifying and binarizing blood vessels and non-vessels based on the threshold value; ii) a morphology calculation processing step of performing a morphology calculation to correct noise included in the image in which the adaptive local binarization processing step is completed; iii) a thinning processing step of extracting a blood vessel line by thinning the image in which the morphology calculation processing step is completed; iv) determining the direction of the blood vessel line extracted in each region in the image where the thinning process is completed, and then analyzing the gray profile of the blood vessel orthogonal to the blood vessel direction to measure the thickness of the blood vessel; And v) an adaptive Gabor filtering process for selectively applying a Gabor filter most suitable for each region in consideration of the direction and thickness of the blood vessel measured in step iv).

본 발명에 따른 이진화(binarization), 바람직하게는 적응적 지역 이진화 처리단계는 혈관영상, 바람직하게는 촬영된 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하는 것으로서, 이러한 목적을 위한 통상적인 이진화 처리단계라면 특별히 한정되지 않는다.The binarization, preferably adaptive local binarization processing step according to the present invention divides a blood vessel image, preferably a photographed blood vessel image into regions, and then thresholds the region based on an average or standard deviation value of image pixels in each region. After the value is set, blood vessels and non-vessels are classified based on the threshold value, and are not particularly limited as long as it is a normal binarization step for this purpose.

상기 혈관영상은 적외선 조명 및 적외선 카메라로 촬영된 혈관영상뿐만 아니라, 조영제를 이용하여 촬영한 MRI(Magnetic Resonance Imaging), CT(Computed Tomography) 등의 혈관영상을 지칭하는 것이다.The blood vessel image refers to blood vessel images such as magnetic resonance imaging (MRI) and computed tomography (CT) photographed using contrast agents, as well as blood vessel images photographed by infrared illumination and infrared cameras.

또한, 본 발명에 따른 혈관영상은 영상을 처리하여 선명화하고자 하는 대상 영상으로서, 원본 혈관영상으로 지칭할 수도 있다.In addition, the blood vessel image according to the present invention is a target image to be processed by sharpening the image, may be referred to as the original blood vessel image.

여기서, 상기 원본 혈관영상은 도 2의 ①에 도시된 바와 같이, 어두운 부분과 밝게 표현되는 부분을 포함하는바, 상기 어두운 부분은 혈관을 나타내고 밝은 부분은 비혈관 부분을 나타낸다.Here, the original blood vessel image includes a dark portion and a brightly expressed portion, as shown in ① of FIG. 2, wherein the dark portion represents blood vessels and the bright portion represents non-vascular portions.

특히, 본 발명에 따른 적응적 지역 이진화 처리단계는 원본 혈관영상의 혈관 부분과 비혈과 부분을 보다 효과적으로 분류하기 위한 것으로서, 촬영된 전체 영상, 즉 전체 원본 영상을 일정한 크기의 지역으로 구획하고; 상기 구획된 각각의 지역별로 임계값을 설정한 뒤 설정된 각각의 지역별 임계값을 기준으로 혈관과 비혈관을 구분하게 된다.In particular, the adaptive local binarization processing step according to the present invention is to more effectively classify blood vessels, blood vessels and portions of the original blood vessel image, and divides the entire photographed image, that is, the entire original image into regions of a constant size; After setting a threshold value for each of the divided regions, blood vessels and non-vessels are distinguished based on the threshold values for each region.

여기서, 상기 전체 영상을 지역별로 구획한 뒤 각 지역별로 임계값을 설정하여 이진화하는 경우, 전체 영상을 기준으로 임계값을 설정하여 이진화하는 것보다 명확하고 용이하게 이진화 처리된 영상을 얻을 수 있다.Here, when binning the entire image by region and setting a threshold value for each region, the binarized image can be clearly and easily obtained than binarization by setting a threshold value based on the entire image.

한편, 상기 구획된 지역은 사용자의 선택에 따라 지역의 위치 및 크기를 선택할 수 있으며, 지역별 임계값은 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 설정한다.Meanwhile, the partitioned area may select a location and size of the area according to a user's selection, and the threshold for each area is set based on an average value or standard deviation value of image pixels in each area.

본 발명에 따른 모폴로지 연산(morphology operation) 처리단계는 상기 단계 i) 이진화 처리단계가 종료된 영상에 포함된 잡음을 보정하기 위한 것이다.The morphology operation processing step according to the present invention is to correct the noise included in the image in which the step i) the binarization processing step is completed.

상기 보정은 팽창 연산 수행 후 침식 연산을 수행하는 열림(opening)연산, 또는 침식 연산 수행 후 팽창 연산을 수행하는 닫힘(closing) 연산을 적용하여 이진화 처리된 영상에 포함된 잡음으로 인해 혈관이 잘못 끊어진 것을 연결해주고, 비혈관이 혈관으로 잘못 표시된 것을 제거한다.The correction is performed by applying an opening operation that performs an erosion operation after performing an expansion operation, or a closing operation that performs an expansion operation after performing an erosion operation, and a blood vessel is incorrectly broken due to noise included in the binarized image. And remove what the non-vessels are incorrectly marked as blood vessels.

이때, 상기 보정을 통해 이진화 처리된 영상에서 혈관이 아닌 부분은 제거되고 혈관이 끊어지는 부분을 최소화할 수 있다.In this case, the non-vessel portion is removed from the binarized image through the correction, and the portion where the vessel is broken can be minimized.

본 발명에 따른 세선화(thinning) 처리단계는 상기 단계 ii)의 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관 라인을 추출하는 것으로서, 이러한 목적을 위한 당업계의 통상적인 세선화 처리방법이라면 어떠한 것을 사용하여도 무방하다.The thinning processing step according to the present invention is to extract blood vessel lines by thinning the image of which the morphology calculation processing step of step ii) is completed, and if the conventional thinning processing method of the art for this purpose is used. Anything may be used.

본 발명에 따른 혈관의 방향 및 두께 측정단계는 상기 세선화 처리단계가 종료된 영상의 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 단계두께를 측정하는 것으로서, 이러한 목적을 위한 통상적인 혈관의 방향 및 두께 측정방법이라면 특별히 한정되지 않는다.In the step of measuring the direction and thickness of blood vessels according to the present invention, after determining the direction of the extracted blood vessel line in each region of the image in which the thinning process is completed, the step thickness of blood vessels is analyzed by analyzing the gray profile of the blood vessels orthogonal to the blood vessel direction. As to measure, if it is a conventional method for measuring the direction and thickness of blood vessels for this purpose is not particularly limited.

특히, 도 2에 도시된 바와 같이, 본 발명에 따른 혈관의 방향 및 두께 측정단계는 단계 v)의 적응적 가버 필터링 처리단계를 수행하기 위한 전단계로서, 상기 세선화 처리단계가 종료된 영상내의 특정 지역(도 2의 ④에 표시된 사각형) 내에서 추출된 혈관라인(도 2, ⑤ 혈관방향)에 직교하는 방향을 파악한다.In particular, as shown in Figure 2, the step of measuring the direction and thickness of the blood vessel according to the present invention is a previous step for performing the adaptive Gabor filtering processing step of step v), the thinning process is a specific step in the image is finished The direction orthogonal to the blood vessel line (FIG. 2, ⑤ blood vessel direction) extracted in the area | region (square shown by (4) of FIG. 2) is grasped | ascertained.

이를 위해 상기 혈관의 방향 및 두께 측정단계는 상기 세선화 처리단계가 종료된 영상내의 지역(도 2의 ④에 표시된 사각형)과 동일한 위치의 원본 혈관영상의 지역(도 2의 ①에 표시된 사각형) 내에서 기 추출된 직교하는 방향으로 혈관의 그레이 프로파일을 분석하며, 이를 통해 혈관의 두께를 측정한다.To this end, the direction and thickness measurement of the blood vessel may be performed in the region of the original blood vessel image (the square shown in ① of FIG. 2) at the same position as the region (the square shown in ④ of FIG. 2) in the image where the thinning process is completed. Analyze the gray profile of the vessel in the orthogonal direction extracted from the through to measure the thickness of the vessel.

또한, 도 2의 ⑤에 도시된 바와 같이, 상기 혈관의 방향 및 두께 측정단계는 전체 세선화 영상에 대해 지역별로 옮겨가면서 해당 위치에서 혈관영상, 즉 원본 혈관영상의 혈관 두께 및 방향을 예측할 수 있고, 이에 따라 예측된 혈관 두께 및/또는 방향에 대응되는 크기와 방향을 갖는 최적의 가버 필터를 적용 가능하도록 한다.In addition, as shown in ⑤ of FIG. 2, the step of measuring the direction and thickness of the blood vessel may predict the vessel thickness and the direction of the blood vessel image, that is, the original vessel image, while moving from region to region for the entire thinning image. Accordingly, an optimal Gabor filter having a size and a direction corresponding to the predicted blood vessel thickness and / or direction can be applied.

본 발명에 따른 적응적 가버(Gabor) 필터링 단계는 상기 단계 iv)의 혈관의 방향 및 두께 측정단계가 종료된 영상을 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터(Garbor filter)를 선택적으로 적용하여 다음 수학식 1의 가버 필터 수식 및 수학식 2의 주파수 영역에서의 표현식을 따라 영상을 처리한다.
In the adaptive Gabor filtering step according to the present invention, a Gabor filter is most suitable for each region in consideration of the direction and thickness of the blood vessel in which the measurement of the direction and thickness of the blood vessel of step iv) is completed. Is selectively applied to process an image according to the Gabor filter equation of Equation 1 and the expression in the frequency domain of Equation 2.

Figure 112011017379698-pat00001
Figure 112011017379698-pat00001

Figure 112011017379698-pat00002
Figure 112011017379698-pat00002

여기서, 상기 수학식 1의 (x, y)는 필터에서의 (x, y) 픽셀 위치를 나타내며, g(x, y)는 상기 (x, y)위치에서의 가버 필터 계수 값을 나타낸다.Here, (x, y) of Equation 1 represents the (x, y) pixel position in the filter, g (x, y) represents the Gabor filter coefficient value at the (x, y) position.

또한, 상기 수학식 1의

Figure 112011017379698-pat00003
는 가버 필터의 주파수를 나타내고, 상기
Figure 112011017379698-pat00004
,
Figure 112011017379698-pat00005
는 가버필터 형태의 표준편차를 나타내는 파라미터이다.In addition, the equation 1
Figure 112011017379698-pat00003
Represents the frequency of the Gabor filter,
Figure 112011017379698-pat00004
,
Figure 112011017379698-pat00005
Is a parameter representing the standard deviation of the Gabor filter type.

또한, 상기 수학식 1에서 상기

Figure 112011017379698-pat00006
,
Figure 112011017379698-pat00007
,
Figure 112011017379698-pat00008
,
Figure 112011017379698-pat00009
에 의해 가버 필터의 형태가 결정된다. In addition, in Equation 1
Figure 112011017379698-pat00006
,
Figure 112011017379698-pat00007
,
Figure 112011017379698-pat00008
,
Figure 112011017379698-pat00009
The shape of the Gabor filter is determined by.

이때, 상기

Figure 112011017379698-pat00010
는 가버 필터의 방향을 나타내는 것으로 도 2의 ④ 에 따른 세선화 영상에서의 혈관 방향 값을 사용하게 되며, 상기 가버 필터의 주기(period)는 검출된 혈관 두께의 2배인 수치로 설정한다. At this time,
Figure 112011017379698-pat00010
Represents the direction of the Gabor filter, and uses the blood vessel direction value in the thinning image according to ④ of FIG. 2, and sets the period of the Gabor filter to a value that is twice the thickness of the detected blood vessel.

또한, 상기

Figure 112011017379698-pat00011
(가버 필터의 주파수)는 "1/주기"의 수식에 의해 산출될 수 있으므로, 결과적으로 "1/(혈관두께의 2배)"로 정해진다.In addition,
Figure 112011017379698-pat00011
(Frequency of Gabor filter) can be calculated by the formula of " 1 / cycle ", and as a result, is determined to be " 1 / (double the vessel thickness) ".

또한, 일반적으로 표준편차(

Figure 112011017379698-pat00012
,
Figure 112011017379698-pat00013
)는 가버 필터의 형태를 결정하는 것으로,
Figure 112011017379698-pat00014
Figure 112011017379698-pat00015
과 동일한 값으로 사용하며, 가버 필터의 크기는
Figure 112011017379698-pat00016
(
Figure 112011017379698-pat00017
)의 2배 정도 크기 값으로 사용한다.Also, in general, the standard deviation (
Figure 112011017379698-pat00012
,
Figure 112011017379698-pat00013
) Determines the shape of the Gabor filter,
Figure 112011017379698-pat00014
The
Figure 112011017379698-pat00015
Use the same value as, and the size of Gabor filter
Figure 112011017379698-pat00016
(
Figure 112011017379698-pat00017
Use twice the size as).

그러므로 도 2의 ④ 및 ⑤와 같이, 세선화 처리단계와 혈관의 방향 및 두께 측정단계를 통해 혈관의 방향과 두께가 산출되면, 이로부터

Figure 112011017379698-pat00018
Figure 112011017379698-pat00019
가 자동적으로 결정되며, 나머지 파라미터인
Figure 112011017379698-pat00020
(
Figure 112011017379698-pat00021
)만 결정되면 가버 필터의 크기[
Figure 112011017379698-pat00022
(
Figure 112011017379698-pat00023
)의 2배] 역시 설정되어, 최종적인 가버 필터가 결정된다.Therefore, as shown in ④ and ⑤ of FIG. 2, when the direction and thickness of the blood vessel are calculated through the thinning processing step and the direction and thickness measurement of the blood vessel,
Figure 112011017379698-pat00018
Wow
Figure 112011017379698-pat00019
Is automatically determined and the rest of the parameters
Figure 112011017379698-pat00020
(
Figure 112011017379698-pat00021
) Is determined, the size of the Gabor filter
Figure 112011017379698-pat00022
(
Figure 112011017379698-pat00023
2 times]) is also set to determine the final Gabor filter.

특정적으로, 본 발명에 따른 파라미터

Figure 112011017379698-pat00024
(
Figure 112011017379698-pat00025
)를 산출하기 위하여, 미리 사용자가 학습영상을 이용하여 눈으로 관찰하는 실험을 통해, 원본 혈관영상에서 구한 혈관 두께와 최적의 가버 필터 파라미터
Figure 112011017379698-pat00026
(
Figure 112011017379698-pat00027
)와의 상관관계를 실험적으로 구하여 테이블에 미리 저장하고, 이후 실제 동작과정에서 입력 영상의 혈관 두께가 도 2에 도시된 이진화, 모폴로지 연산, 세선화 처리단계, 혈관의 방향 및 두께 측정단계를 통해 검출되면, 테이블에 저장된 수치를 검색하여 최적의
Figure 112011017379698-pat00028
(
Figure 112011017379698-pat00029
)를 선택할 수 있다.Specifically, the parameters according to the invention
Figure 112011017379698-pat00024
(
Figure 112011017379698-pat00025
In order to calculate), the blood vessel thickness and the optimal Gabor filter parameters obtained from the original blood vessel image by experimenting with the eyes by using the learning image in advance.
Figure 112011017379698-pat00026
(
Figure 112011017379698-pat00027
Experimentally obtain the correlation with), and store it in a table in advance, and then detect the blood vessel thickness of the input image through the binarization, morphology calculation, thinning processing step, blood vessel direction and thickness measurement step shown in FIG. When the value is stored in the table,
Figure 112011017379698-pat00028
(
Figure 112011017379698-pat00029
) Can be selected.

여기서, 상기 파라미터

Figure 112011017379698-pat00030
(
Figure 112011017379698-pat00031
)는 일반적으로 혈관 두께가 클수록 큰
Figure 112011017379698-pat00032
(
Figure 112011017379698-pat00033
)값을 사용하고, 혈관두께가 작을수록 작은
Figure 112011017379698-pat00034
(
Figure 112011017379698-pat00035
)값을 사용한다.Where the parameter
Figure 112011017379698-pat00030
(
Figure 112011017379698-pat00031
) Is generally larger
Figure 112011017379698-pat00032
(
Figure 112011017379698-pat00033
), The smaller the vessel thickness, the smaller
Figure 112011017379698-pat00034
(
Figure 112011017379698-pat00035
Value.

한편, 상기 수학식 2는 수학식 1의 주파수 영역에서의 표현식을 나타낸다.Meanwhile, Equation 2 represents an expression in the frequency domain of Equation 1.

이때, 상기 수학식 2의 W는 필터의 주파수를 나타내고,

Figure 112011017379698-pat00036
, 와
Figure 112011017379698-pat00037
는 필터 형태의 표준편차로써 각각
Figure 112011017379698-pat00038
,
Figure 112011017379698-pat00039
를 나타낸다.In this case, W in Equation 2 represents the frequency of the filter,
Figure 112011017379698-pat00036
, Wow
Figure 112011017379698-pat00037
Is the standard deviation of the filter type,
Figure 112011017379698-pat00038
,
Figure 112011017379698-pat00039
Indicates.

한편, 도 3 및 도 4는 상기 가버 필터의 공간영역(spatial domain)과 주파수영역(frequency domain)에서의 형태를 각각 나타낸 것이다.3 and 4 illustrate the shapes of the Gabor filter in a spatial domain and a frequency domain, respectively.

도 3의 밑면의 두 축은 수학식 1의 x, y 좌표를 의미하고, 도 3의 세로축은 수학식 1의 g(x,y)를 의미한다. Two axes on the bottom of FIG. 3 mean x and y coordinates of Equation 1, and a vertical axis of FIG. 3 means g (x, y) of Equation 1.

또한, 도 4에서 밑면의 두 축은 수학식 2의 u, v 좌표를 의미하고, 세로축은 수학식 2의 G(u, v)를 의미한다.In addition, in FIG. 4, the two axes on the bottom surface represent u and v coordinates of Equation 2, and the vertical axis represents G (u, v) of Equation 2.

특히, 상기 단계 v)의 적응적 가버 필터링 처리단계는 상기 수학식 1 및 수학식 2를 따라 얻어진 가버 필터 계수를 테이블에 저장한 후 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 최적의 가버 필터 계수를 선택적으로 적용한다.In particular, in the adaptive Gabor filtering step of step v), the Gabor filter coefficients obtained according to Equations 1 and 2 are stored in a table, and each region is considered in consideration of the direction and thickness of the blood vessel measured in step iv). Optionally apply the optimal Gabor filter coefficients.

이때, 상기 지역은 사용자의 선택에 따라 구획된 영상의 선택 영역을 지칭한다.In this case, the area refers to a selection area of an image partitioned according to a user's selection.

이와 같은 구성을 갖는 본 발명에 따른 의료용 혈관영상 처리방법은 손가락, 발가락, 손, 발 등의 신체 절단 및 접합 수술 후 접합 부위의 혈관이 올바르게 연결되었는지 확인하기 용이할 뿐만 아니라, 정상상태의 신체조건에서 취득한 혈관영상을 기록한 뒤 이후에 촬영된 영상정보와 서로 비교하여 혈관의 막힘 여부를 정기적으로 측정하여 관찰 가능하도록 할 수 있으며, 이를 통하여 버거씨 병(Buerger’s disease), 레이노 증후군(Raynaud’s phenomenon) 등과 같은 질병을 조기 진단 할 수 있을 뿐만 아니라, 결체조직의 조기 발견을 통해 류마티스 질환을 조기 진단할 수 있고, 당뇨 등으로 인해 발가락 혈관이 막혔는지의 여부를 신속히 판단할 수 있다.
Medical vascular image processing method according to the present invention having such a configuration is not only easy to check whether the blood vessels of the junction site is correctly connected after the body cutting and splicing operation of the fingers, toes, hands, feet, etc., the normal physical condition After recording the blood vessel image acquired in the and compared with the image information afterwards can be measured periodically to determine whether the blockage of blood vessels through this, such as Burger's disease (Buerger's disease, Raynaud's phenomenon) Not only can the disease be diagnosed early, but early detection of connective tissue can lead to early diagnosis of rheumatic disease, and to quickly determine whether the toe vessels are blocked due to diabetes.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예는 모두 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구 범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모두 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Therefore, the embodiments described above are all illustrative and should not be considered as limiting. The scope of the present invention should be construed as being included in the scope of the present invention all changes or modifications derived from the meaning and scope of the appended claims rather than the detailed description and equivalent concepts thereof.

Claims (3)

i) 혈관영상을 지역으로 구획한 뒤 각 지역내의 영상 픽셀 평균값 또는 표준편차값을 기반으로 지역별 임계값을 설정한 후 그 임계값을 기준으로 혈관과 비혈관을 분류하여 이진화하는 적응적 지역 이진화 처리단계;
ii) 상기 적응적 지역 이진화 처리단계가 종료된 영상에 포함된 잡음으로 인해 혈관이 끊기거나 비혈관이 혈관으로 분류된 것을 보정하기 위해 모폴로지 연산하는 모폴로지 연산 처리단계;
iii) 상기 모폴로지 연산 처리단계가 종료된 영상을 세선화하여 혈관라인을 추출하는 세선화 처리단계;
iv) 상기 세선화 처리단계가 종료된 영상에서 각 지역 내 추출된 혈관라인의 방향을 파악한 뒤 혈관 방향에 직교하는 혈관의 그레이 프로파일을 분석하여 혈관의 두께를 측정하는 혈관의 방향 및 두께 측정단계; 및
v) 상기 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 가장 적합한 가버 필터를 선택적으로 적용하는 적응적 가버 필터링 처리단계를 포함하는 혈관영상 처리방법.
i) An adaptive regional binarization process that divides blood vessel images into regions and sets regional thresholds based on the average or standard deviation values of the image pixels in each region, and then classifies and binarizes the vessels and non-vessels based on the thresholds. step;
ii) a morphology calculation processing step of morphological calculation to correct vascular breakage or non-vascular classification as blood vessels due to noise included in the image of which the adaptive local binarization processing step is completed;
iii) a thinning processing step of extracting a blood vessel line by thinning the image in which the morphology calculation processing step is completed;
iv) determining the direction of the blood vessel line extracted in each region in the image where the thinning process is completed, and then analyzing the gray profile of the blood vessel orthogonal to the blood vessel direction to measure the thickness of the blood vessel; And
and v) an adaptive Gabor filtering process for selectively applying a Gabor filter most suitable for each region in consideration of the direction and thickness of the blood vessel measured in step iv).
삭제delete 제1항에 있어서,
상기 단계 v)의 적응적 가버 필터링 처리단계는 다음 수학식 1 및 수학식 2를 따라 얻어진 가버 필터 계수를 테이블에 저장한 후 단계 iv)에서 측정된 혈관의 방향 및 두께를 고려하여 지역마다 최적의 가버 필터 계수를 선택적으로 적용하는 것을 포함하는 혈관영상 처리방법.

<수학식 1>
Figure 112012034540687-pat00040

여기서,
상기 (x, y)는 필터에서의 (x, y) 픽셀위치를 나타내며,
상기 g(x, y)는 상기 (x, y) 위치에서의 가버 필터 계수 값을 나타내고,
상기
Figure 112012034540687-pat00041
는 가버 필터의 주파수를 나타내고,
상기 θ는 가버필터의 방향을 나타내고,
상기
Figure 112012034540687-pat00042
,
Figure 112012034540687-pat00043
는 가버필터 형태의 표준편차를 나타내는 파라미터이며;

<수학식 2>
Figure 112012034540687-pat00044

여기서,
상기 수학식 2는 수학식 1의 주파수 영역에서의 표현식을 나타내며,
상기 W는 필터의 주파수를 나타내고,
상기
Figure 112012034540687-pat00045
Figure 112012034540687-pat00046
는 필터 형태의 표준편차로써 각각
Figure 112012034540687-pat00047
,
Figure 112012034540687-pat00048
를 나타낸다.
The method of claim 1,
In the adaptive Gabor filtering step of step v), the Gabor filter coefficients obtained according to Equation 1 and Equation 2 are stored in a table, and the optimum Gabor filtering coefficients are optimized for each region in consideration of the direction and thickness of blood vessels measured in step iv). A blood vessel image processing method comprising selectively applying Gabor filter coefficients.

&Quot; (1) &quot;
Figure 112012034540687-pat00040

here,
The (x, y) represents the (x, y) pixel position in the filter,
G (x, y) represents a Gabor filter coefficient value at the (x, y) position,
remind
Figure 112012034540687-pat00041
Represents the frequency of the Gabor filter,
Θ represents the direction of the Gabor filter,
remind
Figure 112012034540687-pat00042
,
Figure 112012034540687-pat00043
Is a parameter representing the standard deviation of the Gabor filter type;

&Quot; (2) &quot;
Figure 112012034540687-pat00044

here,
Equation 2 represents an expression in the frequency domain of Equation 1,
W represents the frequency of the filter,
remind
Figure 112012034540687-pat00045
Wow
Figure 112012034540687-pat00046
Is the standard deviation of the filter type,
Figure 112012034540687-pat00047
,
Figure 112012034540687-pat00048
Indicates.
KR1020110021306A 2011-03-10 2011-03-10 Medical image processing methods for blood vessel Active KR101182729B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110021306A KR101182729B1 (en) 2011-03-10 2011-03-10 Medical image processing methods for blood vessel
PCT/KR2012/000768 WO2012121488A2 (en) 2011-03-10 2012-01-31 Method for processing medical blood vessel image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110021306A KR101182729B1 (en) 2011-03-10 2011-03-10 Medical image processing methods for blood vessel

Publications (1)

Publication Number Publication Date
KR101182729B1 true KR101182729B1 (en) 2012-09-13

Family

ID=46798617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110021306A Active KR101182729B1 (en) 2011-03-10 2011-03-10 Medical image processing methods for blood vessel

Country Status (2)

Country Link
KR (1) KR101182729B1 (en)
WO (1) WO2012121488A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328729B1 (en) 2012-09-14 2013-11-11 이화여자대학교 산학협력단 Method and apparatus for segmentating vessel in images
KR101540010B1 (en) * 2012-06-07 2015-07-28 주식회사 비엠텍월드와이드 Method and apparatus for correcting edge line for x-ray bone density image
KR101629138B1 (en) * 2015-02-11 2016-06-10 한국과학기술원 Color Laser Printer Identification Method Using Photographed Halftone Images and Apparatus therefor
KR20200079071A (en) * 2018-12-24 2020-07-02 인하대학교 산학협력단 Diagnosis Method and System for conjunctival diseases using blood vessel imaging
KR20210027035A (en) * 2019-08-30 2021-03-10 연세대학교 원주산학협력단 Algorithm for diagnosing cardiac stenosis on coronary angiography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070593A1 (en) * 2021-10-29 2023-05-04 京东方科技集团股份有限公司 Line width measurement method and apparatus, computing processing device, computer program, and computer readable medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010977A (en) * 2001-07-28 2003-02-06 김준현 Method for recognizing Organism and Apparatus therefor
KR20040048114A (en) * 2002-12-02 2004-06-07 주식회사 시큐아이티 Authentication method and device using multi biological identification in portable radiotelephone
JP4409166B2 (en) * 2002-12-05 2010-02-03 オリンパス株式会社 Image processing device
KR101050687B1 (en) * 2008-06-04 2011-07-20 주식회사 만도 Pedestrian recognition device and method using posterior probability and pedestrian protection device using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540010B1 (en) * 2012-06-07 2015-07-28 주식회사 비엠텍월드와이드 Method and apparatus for correcting edge line for x-ray bone density image
KR101328729B1 (en) 2012-09-14 2013-11-11 이화여자대학교 산학협력단 Method and apparatus for segmentating vessel in images
KR101629138B1 (en) * 2015-02-11 2016-06-10 한국과학기술원 Color Laser Printer Identification Method Using Photographed Halftone Images and Apparatus therefor
KR20200079071A (en) * 2018-12-24 2020-07-02 인하대학교 산학협력단 Diagnosis Method and System for conjunctival diseases using blood vessel imaging
KR102162282B1 (en) 2018-12-24 2020-10-06 인하대학교 산학협력단 Diagnosis System for conjunctival diseases using blood vessel imaging and Diagnosis Methods There of
KR20210027035A (en) * 2019-08-30 2021-03-10 연세대학교 원주산학협력단 Algorithm for diagnosing cardiac stenosis on coronary angiography
KR102361354B1 (en) * 2019-08-30 2022-02-10 연세대학교 원주산학협력단 Method of providing disease information for cardiac stenosis on coronary angiography

Also Published As

Publication number Publication date
WO2012121488A3 (en) 2012-12-13
WO2012121488A2 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
KR101141312B1 (en) Medical image processing method for blood vessel based on image fusion method
Gandhi et al. Diagnosis of diabetic retinopathy using morphological process and SVM classifier
Yin et al. Vessel extraction from non-fluorescein fundus images using orientation-aware detector
Christodoulidis et al. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images
JP7197708B2 (en) Preprocessing method and storage device for fundus image quantitative analysis
KR101182729B1 (en) Medical image processing methods for blood vessel
CN103544686B (en) Eye fundus image microaneurysm detection method based on phase equalization
CN110223280B (en) Venous thrombosis detection method and venous thrombosis detection device
Jaafar et al. Automated detection of red lesions from digital colour fundus photographs
Al-Fahdawi et al. A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images
CN107292835B (en) Method and device for automatically vectorizing retinal blood vessels of fundus image
Oloumi et al. Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants
WO2010131944A2 (en) Apparatus for monitoring and grading diabetic retinopathy
Mithun et al. Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique
KR20130090740A (en) Apparatus and method processing image
Welikala et al. The automated detection of proliferative diabetic retinopathy using dual ensemble classification
Jung et al. Automatic retinal vasculature structure tracing and vascular landmark extraction from human eye image
Fraz et al. Retinal vasculature segmentation by morphological curvature, reconstruction and adapted hysteresis thresholding
Agarwal et al. Automatic imaging method for optic disc segmentation using morphological techniques and active contour fitting
Gou et al. A novel retinal vessel extraction method based on dynamic scales allocation
CN110930346A (en) Automatic detection method and storage device for fundus image microangioma
Reddy et al. Diabetic retinopathy through retinal image analysis: A review
WO2017220868A1 (en) Visual cardiomyocyte analysis
Ahamed et al. Automated system for retinal vessel segmentation
Moghimirad et al. Multi-scale approach for retinal vessel segmentation using medialness function

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110310

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20111102

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20110310

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120131

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120710

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20120131

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20120710

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20120430

Comment text: Amendment to Specification, etc.

PX0701 Decision of registration after re-examination

Patent event date: 20120905

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

Patent event date: 20120807

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20120710

Comment text: Decision to Refuse Application

Patent event code: PX07011S01I

Patent event date: 20120430

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120907

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120910

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150828

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160902

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170907

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170907

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180904

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20190903

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20190903

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20200907

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20210902

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20220831

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20240828

Start annual number: 13

End annual number: 13