KR101170502B1 - Fluoran dye for detecting Fe2+ ion and its preparation method - Google Patents
Fluoran dye for detecting Fe2+ ion and its preparation method Download PDFInfo
- Publication number
- KR101170502B1 KR101170502B1 KR1020100034567A KR20100034567A KR101170502B1 KR 101170502 B1 KR101170502 B1 KR 101170502B1 KR 1020100034567 A KR1020100034567 A KR 1020100034567A KR 20100034567 A KR20100034567 A KR 20100034567A KR 101170502 B1 KR101170502 B1 KR 101170502B1
- Authority
- KR
- South Korea
- Prior art keywords
- dye
- fluorane
- methyl
- detecting
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 Fe2+ ion Chemical class 0.000 title claims abstract description 17
- FWQHNLCNFPYBCA-UHFFFAOYSA-N fluoran Chemical compound C12=CC=CC=C2OC2=CC=CC=C2C11OC(=O)C2=CC=CC=C21 FWQHNLCNFPYBCA-UHFFFAOYSA-N 0.000 title description 12
- 238000002360 preparation method Methods 0.000 title 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 47
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 239000004480 active ingredient Substances 0.000 claims abstract description 4
- 239000000975 dye Substances 0.000 claims description 69
- 238000010521 absorption reaction Methods 0.000 claims description 14
- QPNFUBAIQZJEPO-UHFFFAOYSA-N 2-[4-(dibutylamino)-2-hydroxybenzoyl]benzoic acid Chemical compound OC1=CC(N(CCCC)CCCC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O QPNFUBAIQZJEPO-UHFFFAOYSA-N 0.000 claims description 6
- NTCCNERMXRIPTR-UHFFFAOYSA-N 2-hydroxy-1-naphthaldehyde Chemical compound C1=CC=CC2=C(C=O)C(O)=CC=C21 NTCCNERMXRIPTR-UHFFFAOYSA-N 0.000 claims description 4
- CYMPUOGZUXAIMY-UHFFFAOYSA-N 4-methoxy-2-methyl-n-phenylaniline Chemical compound CC1=CC(OC)=CC=C1NC1=CC=CC=C1 CYMPUOGZUXAIMY-UHFFFAOYSA-N 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 150000001408 amides Chemical group 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000007142 ring opening reaction Methods 0.000 claims description 2
- UKCBKQLNTLMFAA-UHFFFAOYSA-N F.[F] Chemical compound F.[F] UKCBKQLNTLMFAA-UHFFFAOYSA-N 0.000 claims 1
- 239000001046 green dye Substances 0.000 claims 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- 238000002835 absorbance Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 0 *N(*)c1ccc(C(c(cccc2)c2C(O)=O)=O)c(O)c1 Chemical compound *N(*)c1ccc(C(c(cccc2)c2C(O)=O)=O)c(O)c1 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 3
- 229910020366 ClO 4 Inorganic materials 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 1
- LORPDGZOLAPNHP-UHFFFAOYSA-N 4-hydroxynaphthalene-1-carbaldehyde Chemical compound C1=CC=C2C(O)=CC=C(C=O)C2=C1 LORPDGZOLAPNHP-UHFFFAOYSA-N 0.000 description 1
- BFAUDJHQXKMZFR-UHFFFAOYSA-N 4-hydroxynaphthalene-2-carbaldehyde Chemical compound C1=CC=C2C(O)=CC(C=O)=CC2=C1 BFAUDJHQXKMZFR-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MQUPWTBHHPUUMC-UHFFFAOYSA-N isoindole Chemical compound C1=CC=C[C]2C=NC=C21 MQUPWTBHHPUUMC-UHFFFAOYSA-N 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000000954 titration curve Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/10—Amino derivatives of triarylmethanes
- C09B11/24—Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/28—Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/04—Isoindoline dyes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
본 발명은 2-아닐리노-3-메틸-6-디부틸아미노-N-((2-(2-에틸이미노) 메틸)나프탈렌-2-올) 이소-인돌린-1-온-플루오란의 화학명을 지닌 +2가 철 이온 검출용 신규한 염료 화합물에 관한 것이다. 더욱 상세하게는 본 발명은 상기 염료 화합물의 제조 방법과 상기 플루오란 염료를 활성 성분으로 포함하는 +2가 철 이온 검출용 센서에 관한 것이다. The invention relates to 2-anilino-3-methyl-6-dibutylamino-N-((2- (2-ethylimino) methyl) naphthalen-2-ol) iso-indolin-1-one-fluorane The chemical name of +2 relates to a novel dye compound for the detection of iron ions. More particularly, the present invention relates to a method for producing the dye compound and a sensor for detecting +2 valent iron ion containing the fluorane dye as an active ingredient.
Description
본 발명은 2-아닐리노-3-메틸-6-디부틸아미노-N-((2-(2-에틸이미노) 메틸)나프탈렌-2-올) 이소-인돌린-1-온-플루오란의 화학명을 지닌 +2가 철 이온 검출용 신규한 염료 화합물에 관한 것이다. 더욱 상세하게는 본 발명은 상기 염료 화합물의 제조 방법과 상기 플루오란 염료를 활성 성분으로 포함하는 +2가 철 이온 검출용 센서에 관한 것이다.
The present invention relates to 2-anilino-3-methyl-6-dibutylamino-N-((2- (2-ethylimino) methyl) naphthalen-2-ol) iso-indolin-1-one-fluorane The chemical name of +2 relates to a novel dye compound for the detection of iron ions. More particularly, the present invention relates to a method for producing the dye compound and a sensor for detecting +2 valent iron ion containing the fluorane dye as an active ingredient.
최근 민감성 발색 프로브의 개발은 임상분야, 생화학 분야 및 환경에서의 가능한 응용으로 인해 주목받고 있다. 높은 선택성, 감도 및 단순성으로 인해 이미 많은 발색 화학센서가 여러 물질의 선택적 인식을 위해 개발되었다.
Recently, the development of sensitive color probes has attracted attention due to possible applications in the clinical field, biochemistry field and environment. Due to the high selectivity, sensitivity and simplicity, many color chemical sensors have already been developed for the selective recognition of various substances.
철은 대사 과정에서 가장 중요한 중금속 중 하나이고 식물과 동물에서 필수적이고, 따라서 환경 및 생물체 내에 광범하게 분포되어 있다. 철 농도가 정상 수치를 초과하는 경우 잠재적인 건강 위험요소가 된다. 따라서 철의 선택적 검출을 위한 신규한 발색 화학센서를 개발하는 것이 중요하다. 지난 몇 년간 발색, 형광 화학 센서, 전기화학 장치를 포함한 철 검출을 위한 일부 예가 보고된 바 있다. 현재 비색 센서는 어떠한 고가의 기구의 도움 없이 육안으로 분석물을 검출할 수 있는 능력으로 인해 보편적이다. 따라서 철의 선택적 검출을 위한 사용하기 간편한 육안 진단 도구를 개발하는 것이 최신의 관심 주제이다.
Iron is one of the most important heavy metals in metabolic processes and is essential for plants and animals and is therefore widely distributed in the environment and organisms. If iron concentrations exceed normal levels, they are potential health risks. Therefore, it is important to develop a new color chemical sensor for the selective detection of iron. In the last few years, some examples have been reported for iron detection, including colorimetric, fluorescent chemical sensors and electrochemical devices. Current colorimetric sensors are universal due to their ability to detect analytes visually without the aid of any expensive instrument. Therefore, the development of an easy-to-use visual diagnostic tool for the selective detection of iron is a hot topic of interest.
플루오란(fluoran) 염료는 그의 치환기에 따라 광범한 다양한 색상을 제공하는 뚜렷한 특징을 지닌다. 특히 플루오란 형태 염료는 산성 화합물 첨가시 단독으로 흑색을 생성하는 능력이 매우 중요하다. 색상 형성제로서의 플루오란 염료는 감열 기록 용지에 사용하기 위해서만 응용되고 있다. 감열지에 사용되는 색상 형성제는 본래 산과 접촉하게 되면 강렬한 색상을 발하는 무색의 유기 화합물이다. 흑색은 감열 인쇄에 가장 중요한 색상이고, 흑색을 생성하기 위해 가장 광범하게 사용되는 색상 형성제는 플루오란 유도체이다.
Fluoran dyes have distinct characteristics that provide a wide variety of colors depending on their substituents. Fluoran form dyes in particular are of great importance for their ability to produce black alone upon addition of acidic compounds. Fluorane dyes as color formers are only applied for use in thermal recording paper. The color formers used in thermal paper are colorless organic compounds which inherently give off intense color upon contact with acid. Black is the most important color for thermal printing, and the color forming agent most widely used to produce black is fluorane derivatives.
금속 인식 발색단으로서의 플루오란은 현재까지 크게 관심을 나타내지 않았다. 플루오란 염료의 구조는 로다민 염료와 매우 유사하다. 로다민은 긴 흡광 및 가시광선 영역으로 연장된 발광 파장, 높은 흡광 계수 및 높은 형광 양자 수득량과 같은 그의 우수한 광물리적 특성으로 인해 화학센서 시약으로 널리 사용되는 염료이다. 중금속에 대한 다양한 로다민 형광 프로브가 개발되었다. Fe3+에 대한 여러 유기 염료-기반 화학센서가 최근 보고되었다. 그러나 Fe2+를 감지를 위한 절박한 요구에도 불구하고 Fe2+ 선택적 센서에 대해 단지 제한된 연구만이 존재한다.
Fluorane as a metal recognition chromophore has not shown much interest to date. The structure of the fluorane dye is very similar to the rhodamine dye. Rhodamine is a dye that is widely used as a chemical sensor reagent due to its excellent photophysical properties such as long absorption and extended light wavelength region, high absorption coefficient and high fluorescence quantum yield. Various rhodamine fluorescent probes have been developed for heavy metals. Several organic dye-based chemical sensors for Fe 3+ have recently been reported. However, despite the urgent need for sensing Fe 2+ , only limited research exists on Fe 2+ selective sensors.
이에 대해 본 발명자들은 하기 스킴 1에 나타난 바와 같이 Fe2+에 대한 플루오란 염료를 기반으로 한 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성을 지닌 화학센서를 개발하던 중 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성으로 암녹색 색상을 나타내는 플루오란 염료 계통의 발색 화학센서를 개발함으로써 본 발명을 완성하게 된 것이다.In contrast to the Fe 2+ metal cation of the inventors it was to develop chemical sensor with high selectivity and sensitivity to a metal cation Fe 2+ based on the fluoran dye to the Fe 2+ as shown in
스킴 1. 제안된 결합 방식 및 Fe2+로 플루오란 염료 A의 색상 변화
본 발명의 해결하려는 과제는 Fe2+에 대한 플루오란 염료를 기반으로 한 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성을 지닌 화학센서를 개발코자 한 것이다. 즉 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성으로 암녹색 색상을 나타내는 플루오란 염료 계통의 발색 화학센서를 개발코자 한 것이다.
To solve The problem addressed by this invention is one wishes to develop a chemical sensor with high selectivity and sensitivity to the metal cations Fe 2+ based on the fluoran dye to Fe 2+. That is, to develop a fluorine dye-based color chemical sensor showing a dark green color with high selectivity and sensitivity to Fe 2+ metal cations.
본 발명의 목적은 하기 화학식 A로 표시되는 2-아닐리노-3-메틸-6-디부틸아미노-N-((2-(2-에틸이미노) 메틸)나프탈렌-2-올) 이소-인돌린-1-온-플루오란(A) +2가 철 이온 검출용 염료 화합물을 제공하는 것이다. An object of the present invention is 2-anilino-3-methyl-6-dibutylamino-N-((2- (2-ethylimino) methyl) naphthalen-2-ol) iso-indole represented by the following formula (A) Lin-1-one-fluorane (A) +2 provides a dye compound for iron ion detection.
또한 본 발명의 또다른 목적은 2-(4-(디부틸아미노)-2-하이드록시벤조일) 벤조산 1 및 4-메톡시-2-메틸-N-페닐벤젠아민 2를 반응시켜 중간물질 플루오란 염료 3를 합성한 후, 플루오란 염료 3을 축합 반응을 통해 플루오란 염료 4를 합성하고, 플루오란 염료 4를 2-하이드록시-1-나프트알데하이드와 반응시켜 Schiff 기반 축합에 의해 제 1항의 플루오란 염료 (A)를 제조하는 방법을 제공하는 것이다. Still another object of the present invention is to react 2- (4- (dibutylamino) -2-hydroxybenzoyl)
이때 상기 화학식 A로 표시되는 화합물은 +2가 철 이온 존재 시 스파이로락탐 형태에서 고리-개방 아마이드 형태로 전환되어 658 nm 파장을 최대 흡광하여 무색에서 암녹색으로 색상이 전환됨을 특징으로 한다.
In this case, the compound represented by Formula A is characterized in that +2 is converted to a ring-opening amide form in the form of spirolactam in the presence of iron ions, the maximum absorption at 658 nm wavelength is characterized in that the color is converted from colorless to dark green.
또한 상기 화학식 A로 표시되는 화합물은 +3가 철 이온 존재시 또는 Cd2+, Mg2+, Pd2+, Hg2+, Ni2+, Cu2+, Zn2+, Al3+, 알칼리 금속 및 알칼리성 토류 금속 양이온 등의 존재시 658 nm 파장에서 특별한 흡광 피크를 나타내지 않음을 특징으로 한다.
In addition, the compound represented by the formula (A) is in the presence of + trivalent iron ions or Cd 2+ , Mg 2+ , Pd 2+ , Hg 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Al 3+ , alkali In the presence of metals and alkaline earth metal cations, etc., it is characterized by no particular absorption peak at 658 nm wavelength.
한편 본 발명의 또다른 목적은 플루오란 염료 (A)를 활성 성분으로 포함하는 +2가 철 이온 검출용 센서를 제공하는 것이다.
On the other hand, another object of the present invention is to provide a sensor for detecting a +2 trivalent iron ion containing a fluorane dye (A) as an active ingredient.
본 발명의 효과는 Fe2+에 대한 플루오란 염료를 기반으로 한 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성을 지닌 화학센서를 제공하는 것이다. 즉 Fe2+ 금속 양이온에 대해 높은 선택성 및 민감성으로 암녹색 색상을 나타내는 플루오란 염료 계통의 발색 화학센서를 제공하는 것이다.
The effect of the invention is to provide a chemical sensor with high selectivity and sensitivity to the metal cations Fe 2+ based on the fluoran dye to Fe 2+. That is, to provide a fluorine dye-based color chemical sensor exhibiting a dark green color with high selectivity and sensitivity to Fe 2+ metal cations.
도 1은 CH3CN 용액 내 X = Cd2+, Mg2+, Pd2+, Hg2+, Ni2+, Cu2+, Fe2+, Fe3+, Zn2+ 및 Al3+(10 equiv.)의 ClO4 - 염 첨가시 본 발명의 플루오란 염료 A(1.0 x 10-5 molL-1)의 자외선-가시광선 스펙트럼을 나타낸 것이다.
도 2는 CH3CN 용액 내 1.0 μM의 다양한 양이온에 대한 본 발명의 플루오란 염료 A의 흡광 반응을 나타낸 것이다. 막대는 블랭크 염료 A 용액의 흡광 강도에 대한 658 nm에서의 흡광 강도(A 658 nm)를 나타낸다. 좌측에서 우측으로 (1) 염료 A, (2) Mg2+, (3) Fe2+, (4) Fe3+, (5) Cu2+, (6) Hg2+, (7) Ag+, (8) Zn2+, (9) Al3+, (10) Pb2+, (11) Ni2+, (12) Ca2+, (13) K+ 및 (14) Co2+.
도 3은 CH3CN 용액 내 Fe2+ 존재시 본 발명의 플루오란 염료 A(cal. 10-5 molL-1)의 흡광 스펙트럼을 나타낸 것이다. 1 is a CH 3 CN solution in X = Cd 2+, Mg 2+,
FIG. 2 shows the absorbance of fluorane dye A of the present invention against various cations of 1.0 μM in CH 3 CN solution. Bars indicate absorbance intensity ( A 658 nm ) at 658 nm for the absorbance intensity of the blank dye A solution. From left to right: (1) Dye A, (2) Mg 2+ , (3) Fe 2+ , (4) Fe 3+ , (5) Cu 2+ , (6) Hg 2+ , (7) Ag + , (8) Zn 2+ , (9) Al 3+ , (10) Pb 2+ , (11) Ni 2+ , (12) Ca 2+ , (13) K + and (14) Co 2+ .
Figure 3 shows the absorption spectrum of the fluorane dye A (cal. 10 -5 molL -1 ) of the present invention in the presence of Fe 2+ in CH 3 CN solution.
Fe2+에 대해 플루오란 염료를 기반으로 한 매우 선택적인 화학센서인 본 발명의 염료 2-아닐리노-3-메틸-6-디부틸아미노-N-((2-(2-에틸이미노) 메틸)나프탈렌-2-올) 이소-인돌린-1-온-플루오란(A)을 합성 발명하였다.
Dye 2-anilino-3-methyl-6-dibutylamino-N-((2- (2-ethylimino)) is a highly selective chemical sensor based on fluorane dyes for Fe 2+ Methyl) naphthalen-2-ol) iso-indolin-1-one-fluorane (A) was synthesized.
1H NMR, 13C NMR, MS 및 원소 분석에 의해 모든 중간체와 플루오란 염료 A의 화학 구조의 특성이 확인되었다. Fe2+ 첨가시 플루오란 염료 A는 그의 흡광 스펙트럼 내에서 658 nm 주변에 새로운 흡광 피크를 생성하였고, 용액 색상이 무색에서 암녹색으로 변화되었다. 반면에 Mg2+, Pb2+, Ni2+, Hg2+, Cd2+, Fe3+, Cu2+, Zn2+ 및 Al3+을 포함한 다른 이온은 흡광 스펙트럼 변화를 유도하지 않았고, 이는 "육안"에 의한 Fe2+ 높은 감도 및 선택적 비색 화학센서를 발명한 것이다.
1 H NMR, 13 C NMR, MS and elemental analysis confirmed the properties of all intermediates and the chemical structure of fluorane dye A. Fluorine dye A upon addition of Fe 2+ produced a new absorption peak around 658 nm in its absorption spectrum and the solution color changed from colorless to dark green. On the other hand, other ions including Mg 2+ , Pb 2+ , Ni 2+ , Hg 2+ , Cd 2+ , Fe 3+ , Cu 2+ , Zn 2+ and Al 3+ did not induce absorption spectral changes, This invents the Fe 2+ high sensitivity and selective colorimetric chemical sensor by the "visual".
이하 본 발명을 더욱 상세히 설명한다.
Hereinafter, the present invention will be described in more detail.
플루오란 염료 A는 하기 스킴 2에 따라 합성되었다.Fluorane dye A was synthesized according to
스킴 2. 플루오란 염료 A의 합성 경로
먼저 중간물질 플루오란 염료 3은 촉매로서 H2SO4를 이용하여 출발 물질로서 2-(4-(디부틸아미노)-2-하이드록시벤조일) 벤조산 1 및 4-메톡시-2-메틸-N-페닐벤젠아민 2로부터 합성되었다. 이후 플루오란 염료 3은 축합 반응을 통해 플루오란 염료 4로 전이되었다. 최종적으로 플루오란 염료 A는 Schiff 기반 축합에 의해 플루오란 염료 4와 2-하이드록시-1-나프트알데하이드로부터 제조되었다. 모든 중간물질 및 염료 A의 구조는 1H NMR, 13C NMR, MS 및 원소 분석에 의해 특성 부여되었다.
First, the
플루오란 염료 A와 다른 금속 양이온 사이의 인식은 CH3CN 용액 내 UV-vis 분광법에 의해 조사되었다. 플루오란 염료 A 용액은 1.0 x 10-5 mol/L의 농도이다. CH3CN 용액 내 플루오란 염료 A의 흡광 스펙트럼으로부터 흡광 밴드가 가시 영역 내에 나타남이 발견되지 않았고, 플루오란 염료 A는 무색이다.
Recognition between fluorane dye A and other metal cations was examined by UV-vis spectroscopy in CH 3 CN solution. Fluorane dye A solution is at a concentration of 1.0 × 10 −5 mol / L. No absorption bands were found in the visible region from the absorption spectrum of the fluorane dye A in the CH 3 CN solution, and the fluorane dye A was colorless.
Cd2+, Mg2+, Pd2+, Hg2+, Ni2+, Cu2+, Fe2+, Fe3+, Zn2+, Al3+, 알칼리 금속 및 알칼리성 토류 금속 양이온을 포함한 다른 금속 양이온 첨가시 플루오란 염료 A의 흡광 스펙트럼 변화가 도 1 및 2에 나타나 있다. 도 1은 CH3CN 용액 내 X = Mg2+, Cu2+, Hg2+, Ag+, Zn2+, Fe3, Fe2+, Pb2+, Al3+, Ni2+(10 equiv.)의 ClO4 - 염 첨가시 플루오란 염료 A(1.0 x 10-5 molL-1)의 UV-vis 스펙트럼을 나타낸다. 최대 흡광은 금속 이온 Cd2+, Mg2+, Pd2+, Hg2+, Ni2+, Fe3+, Ca2+ 및 Co2+ 첨가시 명백한 변화를 나타내지 않는다.
Others including Cd 2+ , Mg 2+ , Pd 2+ , Hg 2+ , Ni 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Zn 2+ , Al 3+ , alkali metals and alkaline earth metal cations Changes in absorbance spectra of fluorane dye A upon addition of metal cations are shown in FIGS. 1 and 2. 1 shows X = Mg 2+ , Cu 2+ , Hg 2+ , Ag + , Zn 2+ , Fe 3 , Fe 2+ , Pb 2+ , Al 3+ , Ni 2+ (10 equiv) in CH 3 CN solution UV-vis spectrum of fluorane dye A (1.0 × 10 −5 molL −1 ) upon addition of ClO 4 − salt of. Maximum absorption showed no obvious change upon addition of metal ions Cd 2+ , Mg 2+ , Pd 2+ , Hg 2+ , Ni 2+ , Fe 3+ , Ca 2+ and Co 2+ .
반면에 Fe2+ 첨가시 본 발명자들은 658 nm 근방에서 흡광을 나타내는 피크 파장의 새로운 흡광 밴드가 나타남을 발견하였다. 색상은 무색에서 암녹색으로 변화되었다. 반면에 Fe3+ 첨가시 본 발명자들은 피크된 파장에서의 흡광을 포함한 새로운 흡광 밴드가 나타남을 발견하지 못했다. 도 2는 블랭크 플루오란 염료 A 용액의 흡광 강도에 대한 658 nm에서의 흡광 강도(A 658 nm)를 나타낸다. Fe2+ 첨가시 658 nm 근방의 플루오란 염료 A의 흡광 강도가 증가되었다. 다른 금속 이온 첨가시 658 nm 근방의 염료 A의 흡광 강도는 거의 변화되지 않았다.
On the other hand, when Fe 2+ was added, the inventors found that a new absorption band with a peak wavelength showing absorbance near 658 nm appeared. The color changed from colorless to dark green. On the other hand, when Fe 3+ was added, the inventors did not find a new absorption band including absorption at the peaked wavelength. 2 shows the absorbance intensity ( A 658 nm ) at 658 nm versus the absorbance intensity of the blank fluorane dye A solution. The addition of Fe 2+ increased the absorbance of the fluorane dye A near 658 nm. When other metal ions were added, the absorption intensity of dye A near 658 nm was hardly changed.
이들 결과는 플루오란 염료 A가 Fe2+에 대해 높은-감수성 및 선택성을 지님을 나타낸다. Fe2+ 농도에 대한 CH3CN 용액 내 염료 A의 흡광 분광법의 의존도는 흡광 분광법 적정 방법에 의해 조사되었다. Fe2+ 첨가시 658 nm 근방에서 파장 증가와 함께 290 nm는 감소되었다. 적정 곡선 내 등흡광점은 Fe2+의 첨가와 함께 나타나는 새로운 종을 나타내고, 이는 도 3에 나타난 바와 같이 염료 A의 Fe2+ 복합체의 형성으로 의한 것일 수 있다.
These results show that fluorane dye A has high-sensitivity and selectivity to Fe 2+ . The dependence of the absorption spectroscopy of the dye A in the CH 3 CN solution on the Fe 2+ concentration was investigated by the absorption spectrometry titration method. Fe 2+ addition decreased 290 nm with increasing wavelength near 658 nm. The iso absorbance point in the titration curve represents a new species that appears with the addition of Fe 2+ , which may be due to the formation of the Fe 2+ complex of dye A as shown in FIG. 3.
도 3은 블랭크 플루오란 염료 A 용액의 흡광 강도에 대한 658 nm에서의 흡광 강도(A 658 nm) 변화를 나타낸다. 658 nm 근방에서 Fe2+ 첨가시 플루오란 염료 A의 흡광 강도는 모두 증가되었다. 따라서 용액의 색상은 점점 무색에서 암녹색으로 되었다. 실질적으로 무색에서 암녹색으로의 명백한 색상 변화는 육안으로 관찰되었다.
FIG. 3 shows the change in absorbance intensity ( A 658 nm ) at 658 nm for the absorbance intensity of the blank fluorane dye A solution. The absorption intensity of fluorane dye A was all increased when Fe 2+ was added near 658 nm. Thus, the color of the solution gradually became colorless to dark green. Substantial color change from colorless to dark green was observed with the naked eye.
Materials Studio 4.2 패키지 내 DMol3 프로그램을 기반으로 한 분자 모델링 계산이 수행된다. Fe2+와의 에너지-최소화 플루오란 염료 A 구조의 CPK 모델은 도 4에 나타나 있고, 이는 안정한 복합체를 형성하기 위한 Fe2+와 플루오란 염료 A의 인식을 나타낸다.
Molecular modeling calculations are performed based on the DMol 3 program in the Materials Studio 4.2 package. The CPK model of the energy-minimizing fluorane dye A structure with Fe 2+ is shown in FIG. 4, which shows the recognition of Fe 2+ and fluorane dye A to form a stable complex.
결론적으로 플루오란 유도체를 기반으로 한 새로운 발색 화학센서가 개발되었다. 이는 Fe2+와에 대한 우수한 선택성 및 감도를 나타낸다. 무색에서 암녹색으로의 명백한 색상 변화가 육안으로 관찰되었고, 즉 신호는 어떠한 분광계 기구 없이 육안으로 용이하게 판독될 수 있다. 이는 Fe2+을 검출하는 매우 간단하고 효과적인 방법이다.
In conclusion, a new color chemical sensor based on fluorane derivatives has been developed. This shows good selectivity and sensitivity for Fe 2+ . Obvious color change from colorless to dark green was observed with the naked eye, ie the signal can be easily read with the naked eye without any spectrometer instrument. This is a very simple and effective way of detecting Fe 2+ .
이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나 이러한 실시예들로 본 발명의 범위를 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, these embodiments are not intended to limit the scope of the present invention.
재료material
대부분의 화학물질은 Aldrich Chemical Co. 및 TCI에서 구입하였다. 용매는 표준 절차에 의해 정제되었고 수분 부재 대기 하에서 사용되었다. 다른 재료는 통상의 제품이고 추가 정제 없이 사용되었다.
Most of the chemicals are from Aldrich Chemical Co. And TCI. The solvent was purified by standard procedures and used under a moisture free atmosphere. The other material is a conventional product and was used without further purification.
(실시예 1) 기기 및 스펙트럼 측정
Example 1 Instrument and Spectrum Measurement
녹는점은 Electrothermal IA900 장치를 이용하여 측정되었고 보정되지 않았다. 원소 분석은 Carlo Elba Model 1106 분석기 상에 기록되었다. UV-vis 흡광 스펙트럼은 Agilent 8453 분광광도계 상에서 측정되었다. 질량 스펙트럼은 70 eV의 전자 에너지 및 직접 프로브 EI 방법을 이용하여 Shimadzu QP-1000 분광계 상에서 기록되었다. 1H-NMR, 13C NMR 스펙트럼은 내부 기준으로 TMS를 이용한 Varian Inova 400 MHz FT-NMR을 이용하여 기록되었다.
Melting points were measured using an Electrothermal IA900 instrument and were not calibrated. Elemental analysis was recorded on a Carlo Elba Model 1106 analyzer. UV-vis absorption spectra were measured on an Agilent 8453 spectrophotometer. Mass spectra were recorded on a Shimadzu QP-1000 spectrometer using an electron energy of 70 eV and the direct probe EI method. 1 H-NMR, 13 C NMR spectra were recorded using
(실시예 2) 플루오란 염료 3의 합성
Example 2 Synthesis of
플루오란 염료 3은 M. Yanagita et al., Dyes Pigments 6 (1998) 15-26의 방법에 따라 합성되었다.
1H NMR 수율: 58%, m.p. 187℃; mass (m/z) 532(M+); 1H NMR(400 MHz, DMSO-d6): δ (ppm) 7.93 (d, J = 7.56, 1H), 7.76 (t, J = 7.56, 1H), 7.66 (t, J = 7.36, 1H), 7.41 (s, 1H), 7.26 (t, J = 7.84, 1H), 7.22 (s, 1H), 6.99 (t, J = 7.84, 2H), 6.62 (t, J = 7.04, 1H), 6.55 (d, J = 7.6, 2H), 6.49 (d, J = 8.08, 2H), 6.43 (s, 1H), 6.41 (d, J = 9.08, 1H), 3.25 (t, J = 7.6, 4H), 2.21 (s, 3H), 2.07 (s, 1H), 1.48 (m, 4H), 1.29 (m, 4H), 0.87 (t, 6H).
1 H NMR yield: 58%, mp 187 ° C .; mass ( m / z ) 532 (M + ); 1 H NMR (400 MHz, DMSO-d6): δ (ppm) 7.93 (d, J = 7.56, 1H), 7.76 (t, J = 7.56, 1H), 7.66 (t, J = 7.36, 1H), 7.41 (s, 1H), 7.26 (t, J = 7.84, 1H), 7.22 (s, 1H), 6.99 (t, J = 7.84, 2H), 6.62 (t, J = 7.04, 1H), 6.55 (d, J = 7.6, 2H), 6.49 (d, J = 8.08, 2H), 6.43 (s, 1H), 6.41 (d, J = 9.08, 1H), 3.25 (t, J = 7.6, 4H), 2.21 (s , 3H), 2.07 (s, 1H), 1.48 (m, 4H), 1.29 (m, 4H), 0.87 (t, 6H).
13C NMR (400 MHz, DMSO-d6): δ (ppm), 13.78, 17.84, 19.63, 28.86, 30.59, 49.89, 83.55, 96.98, 104.1, 108.5, 114.63, 116.99, 118.32, 118.53, 119.49, 123.92, 124.45, 126.24, 128.59, 128.77, 129.94, 134.92, 135.40, 136.85, 145.25, 146.58, 149.63, 152.43, 152.49 및 168.66.
13 C NMR (400 MHz, DMSO-d6): δ (ppm), 13.78, 17.84, 19.63, 28.86, 30.59, 49.89, 83.55, 96.98, 104.1, 108.5, 114.63, 116.99, 118.32, 118.53, 119.49, 123.92, 124.45 , 126.24, 128.59, 128.77, 129.94, 134.92, 135.40, 136.85, 145.25, 146.58, 149.63, 152.43, 152.49 and 168.66.
(실시예 3) 플루오란 염료 4의 합성
Example 3 Synthesis of
플루오란 염료 3(1.0 g, 1.9 mmol)은 100 mL의 에탄올 용액 내에 용해된 후 에틸렌디아민(2.0 mL, 24.7 mmol)이 첨가되었다. 반응 혼합물은 12시간 동안 역류되었다. 실온에서 냉각 후 용매는 진공 내에서 증발되었다. CH2Cl2 및 물(200 mL)이 첨가되고 유기층이 분리되고, 물로 2회 세척되고 무수 황산나트륨 상에서 건조되었다. 황산나트륨 여과 후 용매는 감소 압력 하에서 제거되었다. 이후 1 M HCl(50 ml)이 플라스크 내 고체에 첨가되어 선명한 적색 용액이 생성되었다. 이후 용액의 pH가 7~8에 도달할 때까지 2 M NaOH가 서서히 첨가되었다. 수득된 분홍색 고체는 여과되고 1.1 g의 플루오란 염료 4가 수득되었다.
Fluoran dye 3 (1.0 g, 1.9 mmol) was dissolved in 100 mL of ethanol solution and then ethylenediamine (2.0 mL, 24.7 mmol) was added. The reaction mixture was refluxed for 12 hours. After cooling at room temperature the solvent was evaporated in vacuo. CH 2 Cl 2 and water (200 mL) were added and the organic layer was separated, washed twice with water and dried over anhydrous sodium sulfate. After sodium sulfate filtration the solvent was removed under reduced pressure. 1 M HCl (50 ml) was then added to the solid in the flask, resulting in a vivid red solution. Then 2 M NaOH was added slowly until the pH of the solution reached 7-8. The pink solid obtained was filtered and 1.1 g of
수율: 91%, m.p. 223~225℃; mass (m/z) 574(M+); 1H NMR (400 MHz, DMSO-d6): δ (ppm) 7.72 (d, J = 7.08, 1H), 7.54 (t, J = 6.8, 1H), 7.48 (t, J = 7.32, 1H), 7.16 (s, 1H), 7.04 (d, J = 7.32, 1H), 6.99 (d, J = 7.84, 2H), 6.61 (t, J = 7.32, 1H), 6.49 (d, J = 7.84, 2H), 6.38 (s, 1H), 6.33 (d, J = 7.56, 4H), 3.42 (m, 2H), 3.22 (t, J = 6.8, 4H), 3.0 (m, 2H), 2.17 (s, 3H), 2.08 (s, 1H), 1.48 (m, 4H), 1.30 (m, 4H), 0.9 (t, 6H).
Yield: 91%, mp 223-225 ° C .; mass (m / z) 574 (M + ); 1 H NMR (400 MHz, DMSO-d6): δ (ppm) 7.72 (d, J = 7.08, 1H), 7.54 (t, J = 6.8, 1H), 7.48 (t, J = 7.32, 1H), 7.16 (s, 1H), 7.04 (d, J = 7.32, 1H), 6.99 (d, J = 7.84, 2H), 6.61 (t, J = 7.32, 1H), 6.49 (d, J = 7.84, 2H), 6.38 (s, 1H), 6.33 (d, J = 7.56, 4H), 3.42 (m, 2H), 3.22 (t, J = 6.8, 4H), 3.0 (m, 2H), 2.17 (s, 3H), 2.08 (s, 1 H), 1.48 (m, 4 H), 1.30 (m, 4 H), 0.9 (t, 6 H).
13C NMR (400 MHz, DMSO-d6): δ (ppm), 13.89, 17.76,18.59, 19.69, 25.24, 28.95, 32.14, 43.58, 49.88, 63.89, 97.11, 103.91, 108.41, 114.48, 117.35, 118.32, 118.18, 118.60, 119.70, 122.38, 123.57, 128.38, 128.86, 130.14, 132.81, 133.81, 136.58, 145.43, 146.32, 146.86, 152.39, 153.35 및 167.10.
13 C NMR (400 MHz, DMSO-d6): δ (ppm), 13.89, 17.76,18.59, 19.69, 25.24, 28.95, 32.14, 43.58, 49.88, 63.89, 97.11, 103.91, 108.41, 114.48, 117.35, 118.32, 118.18 , 118.60, 119.70, 122.38, 123.57, 128.38, 128.86, 130.14, 132.81, 133.81, 136.58, 145.43, 146.32, 146.86, 152.39, 153.35 and 167.10.
(실시예 4) 플루오란 염료 A의 합성
Example 4 Synthesis of Fluoran Dye A
플루오란 염료 4(0.2 g, 0.35 mmol)는 15 mL 무수 에탄올 내에 용해되었다. 이후 과량의 2-하이드록시-1-나프트알데하이드(0.171 g, 1.4 mmol)가 혼합물 내에 첨가되고 6시간 동안 역류되었다. 이후 용액은 냉각되고(10 ml로 농축됨) 밤새 실온에서 정치되었다. 침전물은 여과되고 10 mL 냉각 에탄올로 3회 세척되어 원료 생성물이 수득되었다. 이후 원료 생성물은 실리카 겔(CHCl3/EtOH: 8/1 (v/v)) 상의 컬럼 크로마토그래피에 의해 정제되어 0.14 g의 백색 분말 플루오란 염료 A가 제공되었다.
Fluoran dye 4 (0.2 g, 0.35 mmol) was dissolved in 15 mL anhydrous ethanol. Excess 2-hydroxy-1-naphthaldehyde (0.171 g, 1.4 mmol) was then added into the mixture and refluxed for 6 hours. The solution was then cooled (concentrated to 10 ml) and left at room temperature overnight. The precipitate was filtered off and washed three times with 10 mL cold ethanol to afford the crude product. The crude product was then purified by column chromatography on silica gel (CHCl 3 / EtOH: 8/1 (v / v)) to give 0.14 g of white powdered fluorane dye A.
수율: 59%, m.p. 193~195℃; mass (m/z) 728 (M+); 11H NMR (400 MHz, CDCl3) δ: 0.95 (t, J = 7.32 Hz, 6H), 1.33 (sextet, J = 7.32 Hz, 4H), 1.56 (quintet, J = 7.32 Hz, 4H), 2.10 (s, 3H) 3.22 (t, J = 7.8 Hz, 4H), 3.42 (m, 4H), 5.23 (s, 1H), 6.25 (d, J = 9.08 Hz, 1H), 6.38 (m, 4H), 6.45 (s, 1H), 6.66 (t, J = 7.32 Hz, 1H), 6.86(d, J = 7.32 Hz, 1H), 6.99(d, 2H), 7.09 (m, 2H), 7.23 (t, J = 7.08 Hz, 1H), 7.44 (m, 3H), 7.59(d, J = 7.84, 1H), 7.66 (d, J = 9.32 Hz, 1H), 7.80 (d, J = 8.60 Hz, 1H), 7.87 (m, 1H), 8.52 (d, J = 7.08 Hz, 1H), 13.98 (s, 1H, -OH).
Yield: 59%, mp 193-195 ° C .; mass (m / z) 728 (M + ); 11 H NMR (400 MHz, CDCl 3 ) δ: 0.95 (t, J = 7.32 Hz, 6H), 1.33 (sextet, J = 7.32 Hz, 4H), 1.56 (quintet, J = 7.32 Hz, 4H), 2.10 ( s, 3H) 3.22 (t, J = 7.8 Hz, 4H), 3.42 (m, 4H), 5.23 (s, 1H), 6.25 (d, J = 9.08 Hz, 1H), 6.38 (m, 4H), 6.45 (s, 1H), 6.66 (t, J = 7.32 Hz, 1H), 6.86 (d, J = 7.32 Hz, 1H), 6.99 (d, 2H), 7.09 (m, 2H), 7.23 (t, J = 7.08 Hz, 1H), 7.44 (m, 3H), 7.59 (d, J = 7.84, 1H), 7.66 (d, J = 9.32 Hz, 1H), 7.80 (d, J = 8.60 Hz, 1H), 7.87 ( m, 1H), 8.52 (d, J = 7.08 Hz, 1H), 13.98 (s, 1H, -OH).
13C NMR (400 MHz, CDCl3) δ: 14.18, 18.13, 20.50, 29.53, 32.36, 38.26, 41.28, 50.86, 50.94, 65.10, 97.91, 103.92, 107.08, 108.69, 114.77, 117.67, 118.29, 119.14, 121.99, 122.93, 123.33, 123.90, 125.00, 126.40, 128.16, 128.59, 128.72, 129.23, 129.32, 130.77, 132.98, 133.92, 135.18, 136.29, 137.28, 145.18, 148.41, 149.61, 153.35, 153.47, 158.71, 168.79, 172.00 및 176.02.
13 C NMR (400 MHz, CDCl 3 ) δ: 14.18, 18.13, 20.50, 29.53, 32.36, 38.26, 41.28, 50.86, 50.94, 65.10, 97.91, 103.92, 107.08, 108.69, 114.77, 117.67, 118.29, 119.14, 121.99, 122.93, 123.33, 123.90, 125.00, 126.40, 128.16, 128.59, 128.72, 129.23, 129.32, 130.77, 132.98, 133.92, 135.18, 136.29, 137.28, 145.18, 148.41, 149.61, 153.35, 153.158, 153.
C48H48N4O3의 분석 계산치: C 79.09, H 6.64, N 7.68; 실측치: C 78.61, H 6.80, N 7.68.
Analytical calcd. For C 48 H 48 N 4 O 3 : C 79.09, H 6.64, N 7.68; Found: C 78.61, H 6.80, N 7.68.
Claims (5)
2-anilino-3-methyl-6-dibutylamino-N-((2- (2-ethylimino) methyl) naphthalen-2-ol) iso-indolin-1-one represented by formula (A) -Fluorane (A) + Dye compound for detecting divalent iron ions
2- (4- (dibutylamino) -2-hydroxybenzoyl) benzoic acid 1 and 4-methoxy-2-methyl-N-phenylbenzeneamine 2 were reacted to synthesize an intermediate fluorane dye 3 , followed by fluorine Fluorane dye 4 was synthesized through condensation reaction of lan dye 3 , and fluorane dye (A) of claim 1 was prepared by Schiff based condensation by reacting fluorane dye 4 with 2-hydroxy-1-naphthaldehyde. How to
According to claim 1, wherein the compound represented by the formula (A) is converted to the ring-opening amide form of the spirolactam form +2 in the presence of iron ions, the maximum absorption at 658 nm wavelength is characterized by the color conversion from colorless to dark green Dye compound for +2 valent iron ion detection
Sensor for detecting +2 valent iron ions comprising the fluorane dye (A) of claim 1 as an active ingredient
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034567A KR101170502B1 (en) | 2010-04-15 | 2010-04-15 | Fluoran dye for detecting Fe2+ ion and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034567A KR101170502B1 (en) | 2010-04-15 | 2010-04-15 | Fluoran dye for detecting Fe2+ ion and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110115211A KR20110115211A (en) | 2011-10-21 |
KR101170502B1 true KR101170502B1 (en) | 2012-08-07 |
Family
ID=45029902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100034567A Active KR101170502B1 (en) | 2010-04-15 | 2010-04-15 | Fluoran dye for detecting Fe2+ ion and its preparation method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101170502B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101354761B1 (en) | 2012-12-17 | 2014-01-23 | 경북대학교 산학협력단 | A composition for detecting fe(iii) ion comprising the complex of 2-chloro-3,5-dinitrobenzotrifluoride and ethylamine |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104496997B (en) * | 2015-01-12 | 2016-04-13 | 济南大学 | A kind of ferric ion fluorescent probe compounds and preparation and application thereof |
CN109336898B (en) * | 2018-12-06 | 2020-07-03 | 黄山学院 | Iron ion probe and application thereof |
CN109438458B (en) * | 2018-12-06 | 2020-07-03 | 黄山学院 | A kind of rhodamine 6G fluorescent probe and preparation method thereof |
CN109776552B (en) * | 2019-03-29 | 2022-04-08 | 南京林业大学 | 1-naphthoyl chloride-based rhodamine B Fe3+Preparation and application of fluorescent sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100891171B1 (en) | 2007-07-07 | 2009-04-01 | 경상대학교산학협력단 | Optical sensor with selective coloration and luminescence for metal cations |
KR100938340B1 (en) | 2008-02-15 | 2010-01-22 | 고려대학교 산학협력단 | Rhodamine derivative capable of turning off and on fluorescence resonance energy transfer and a method of manufacturing the same |
-
2010
- 2010-04-15 KR KR1020100034567A patent/KR101170502B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100891171B1 (en) | 2007-07-07 | 2009-04-01 | 경상대학교산학협력단 | Optical sensor with selective coloration and luminescence for metal cations |
KR100938340B1 (en) | 2008-02-15 | 2010-01-22 | 고려대학교 산학협력단 | Rhodamine derivative capable of turning off and on fluorescence resonance energy transfer and a method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101354761B1 (en) | 2012-12-17 | 2014-01-23 | 경북대학교 산학협력단 | A composition for detecting fe(iii) ion comprising the complex of 2-chloro-3,5-dinitrobenzotrifluoride and ethylamine |
Also Published As
Publication number | Publication date |
---|---|
KR20110115211A (en) | 2011-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tsui et al. | Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion | |
Huo et al. | A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium | |
Wang et al. | A novel fluorescent and colorimetric dual-channel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity | |
Sheng et al. | A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative | |
US8664406B2 (en) | Fluorescent probe compounds, preparation method and use thereof | |
CN101883775B (en) | Reagent for detecting hypochlorous acid | |
EP0887353B1 (en) | Luminescence indicator | |
Tian et al. | A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells | |
Huang et al. | Fluorescence regulation of 4-aminobenzofluoran and its applications for Cu2+-selective fluorescent probe and bioimaging | |
CN103468247B (en) | Molecule clamp phenanthroline-benzazoles fluorescent reagent and its preparation method and application | |
Huang et al. | Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye | |
KR101170502B1 (en) | Fluoran dye for detecting Fe2+ ion and its preparation method | |
Huang et al. | A rhodamine-based “turn-on” fluorescent chemodosimeter for Cu2+ and its application in living cell imaging | |
Huang et al. | Design and synthesis of a squaraine based near-infrared fluorescent probe for the ratiometric detection of Zn2+ ions | |
Mondal et al. | I 2 catalyzed access of spiro [indoline-3, 4′-pyridine] appended amine dyad: new ON–OFF chemosensors for Cu 2+ and imaging in living cells | |
Wang et al. | A novel chemosensor based on rhodamine derivative for colorimetric and fluorometric detection of Cu2+ in aqueous solution | |
Tan et al. | A novel coumarin-based fluorescence enhancement and colorimetric probe for Cu2+ via selective hydrolysis reaction | |
Yang et al. | Development of a near-infrared fluorescent sensor with a large Stokes shift for sensing pyrophosphate in living cells and animals | |
Gonçalves et al. | A selective emissive chromogenic and fluorogenic seleno-coumarin probe for Cu2+ detection in aprotic media | |
Chemate et al. | Highly sensitive and selective chemosensors for Cu 2+ and Al 3+ based on photoinduced electron transfer (PET) mechanism | |
Wang et al. | A highly selective and sensitive colorimetric chemosensor for Fe2+ based on fluoran dye | |
Ding et al. | New fluoro-and chromogenic chemosensors for the dual-channel detection of Hg2+ and F− | |
Zhao et al. | A sensitive colorimetric and ratiometric chemosensor for trivalent metal cations | |
Yan et al. | A new perylene diimide-based colorimetric and fluorescent sensor for selective detection of Cu2+ cation | |
CN104122222A (en) | Absorption spectrum analytical method for detecting ultraviolet ratio of micro-amount Zn<2+>or F<-> |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20100415 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111014 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120430 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120726 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120726 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20150624 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20150624 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160617 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20160617 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170621 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170621 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180626 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20180626 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190627 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20190627 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20200720 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20210616 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20220711 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20230801 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20240729 Start annual number: 13 End annual number: 13 |