KR101147963B1 - Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean - Google Patents
Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean Download PDFInfo
- Publication number
- KR101147963B1 KR101147963B1 KR1020070119028A KR20070119028A KR101147963B1 KR 101147963 B1 KR101147963 B1 KR 101147963B1 KR 1020070119028 A KR1020070119028 A KR 1020070119028A KR 20070119028 A KR20070119028 A KR 20070119028A KR 101147963 B1 KR101147963 B1 KR 101147963B1
- Authority
- KR
- South Korea
- Prior art keywords
- soybean
- gene
- zeaxanthin
- zeaxanthin epoxidase
- epoxidase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0077—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/15—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Enzymes And Modification Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자 및 이의 상동성 서열을 제공하며, 또한 본 발명은 대두의 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질전환된 숙주 세포를 제공한다.The present invention provides a novel zeaxanthin epoxidase gene and homologous sequence thereof isolated from soybean, and the present invention also provides a recombinant vector comprising a soybean xanthanthin epoxidase gene and a host cell transformed with the recombinant vector. .
대두, 제아산틴, 제아산틴 에폭시다제 Soybean, Zeaxanthin, Zeaxanthin Epoxidase
Description
본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자에 관한 것이다.The present invention relates to a novel zeaxanthin epoxidase gene isolated from soybeans.
제아산틴(zeaxanthine)은 카로티노이드에 산소를 포함하는 관능기가 부가된 형태의 화합물군인 산토필(xanthopyll)에 속하는 화합물로서, 싱글렛 산소, 활성산소종, 자유라디칼 등을 소거하는 항산화활성을 가져 항암, 항노화, 면역 증강 등의 용도로 사용될 수 있는 것으로 밝혀지고 있다.Zeaxanthine is a compound belonging to xanthopyll, a group of compounds in which oxygen-containing functional groups are added to carotenoids. Zeaxanthine has anti-cancer and anti-cancer properties by scavenging singlet oxygen, reactive oxygen species, and free radicals. It has been found that it can be used for aging, immune enhancement, and the like.
이러한 제아산틴은 식물에서 산토필 사이클의 일부로서, 제아산틴 에폭시다제(zeaxanthine epoxidase)에 의해 안테라산틴(antheraxanthine)으로, 그리고 안테라산틴은 다시 제아산틴 에폭시다제에 의해 비올라산틴(violaxanthine)으로 전환되며, 비올라산틴은 비올라산틴 디에폭시다제(violaxanthine deepoxidase)에 의해 안테라산틴으로 그리고 안테라산틴은 다시 비올라산틴 디에폭시다제에 의해 제아산틴으로 전환된다. 이러한 산토필 사이클은 식물에 빛이 과다하게 공급될 경우 식물이 받게 되는 광스트레스를 제거하는 반응을 촉매하는 것으로 밝혀졌으 며(Biocimica et Biophysica Acta., Hieber et al., 1482(2000) 84 - 91), 산토필 사이클에 의해 축적된 제아산틴은 광산화 스트레스로부터 식물을 방어하는 것으로 밝혀졌다(Plant Cell, Baroli et al., 15(2003) 982-1008).This zeaxanthin is converted to antheraxanthine by zeaxanthine epoxidase, and antheranthanthin to violaxanthine by zeaxanthin epoxidase as part of the santophyll cycle in plants. Xanthine is converted to anteranthanthin by violaxanthine deepoxidase and anteranthanthin is converted back to zeaxanthin by violaxanthine diepoxidase. This santophyll cycle has been shown to catalyze the reaction to remove the photo-stresses that plants receive when too much light is applied to them (Biocimica et Biophysica Acta., Hieber et al., 1482 (2000) 84-91). Zeaxanthin accumulated by the santophyll cycle has been shown to protect plants from photooxidative stress (Plant Cell, Baroli et al., 15 (2003) 982-1008).
한편, 대두를 비롯한 콩과 식물은 뿌리혹박테리아에 의해 뿌리에서 뿌리혹이 형성되며 이에 의해 공생 질소 고정이 이루어진다. 질소 고정을 위한 콩과 식물과 뿌리혹박테리아의 공생 초기에는 식물에게 위협이 되는 활성 산소종 (reactive oxygen species, ROS)이 발생하게 되므로, 식물의 뿌리혹은 이러한 위험 물질로부터 보호하기 위하여 항산화제 방어 기전을 갖는다. On the other hand, soybeans and other legumes are root nodules are formed in the roots by the root-homobacteria, thereby fixing the symbiotic nitrogen. In the early stages of symbiosis between legumes and root-homobacteria for nitrogen fixation, reactive oxygen species (ROS), which pose a threat to plants, are generated. Have
이에 본 발명자들은 항산화 활성을 갖는 것으로 알려진 제아산틴이 대두의 뿌리혹에서의 항산화제 방어 기전에서도 중요한 역할을 할 것으로 추정하고, 대두의 뿌리혹에서 항산화제 방어 기전과 관련하여 제아산틴의 함량을 조절할 것으로 예상되는 제아산틴 에폭시다제에 대한 연구를 진행한 결과, 대두의 제아산틴 에폭시다제를 코딩하는 유전자를 클로닝하고 염기 서열을 확인하였다.The present inventors believe that zeaxanthin, which is known to have antioxidant activity, also plays an important role in antioxidant defense mechanisms in soybean root nodules, and is expected to regulate the content of zeaxanthin in relation to antioxidant defense mechanisms in soybean root nodules. As a result of research on the epoxidase, the gene encoding the zeaxanthin epoxidase of soybean was cloned and the nucleotide sequence was confirmed.
본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자를 제공하는 것을 목적으로 한다.The present invention aims to provide a novel zeaxanthin epoxidase gene isolated from soybeans.
또한, 본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a recombinant vector comprising a novel zeaxanthin epoxidase gene isolated from soybeans.
또한, 본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터로 형질전환된 형질전환체를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a transformant transformed with a recombinant vector comprising a novel zeaxanthin epoxidase gene isolated from soybeans.
본 발명은 대두에서 분리한 신규한 제아산틴 에폭시다제 유전자를 제공한다. The present invention provides a novel zeaxanthin epoxidase gene isolated from soybeans.
본 발명자들은 대두에 제아산틴 에폭시다제를 코딩하는 유전자가 존재하는지를 확인하기 위해 대두 잎으로부터 추출한 RNA와 여러 식물 종들의 제아산틴 에폭시다제 유전자의 염기 서열을 기초한 프라이머 세트를 이용하여 PCR 실험을 한 결과, 대두의 제아산틴 에폭시다제 유전자의 전길이(full length) cDNA를 분리하고 서열을 확인하였다.The present inventors conducted PCR experiments using primers based on RNA extracted from soybean leaves and the base sequence of the zeaxanthin epoxidase gene of various plant species to determine whether a gene encoding zeaxanthin epoxidase exists in soybean. Full length cDNA of the zeaxanthin epoxidase gene was isolated and sequenced.
그 결과, 2010 bp 길이의 대두 제아산틴 에폭시다제 유전자를 확인하였으며, 그 염기 서열은 첨부된 서열 목록의 서열 번호 1의 서열과 같다.As a result, a 2010 bp long soy zeaxanthin epoxidase gene was identified and its nucleotide sequence is the same as that of SEQ ID NO: 1 in the attached sequence list.
따라서, 본 발명은 서열 번호 1의 염기 서열을 갖는 대두 제아산틴 에폭시다제 유전자를 제공한다. Accordingly, the present invention provides a soybean zeaxanthin epoxidase gene having the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 서열 번호 1의 염기 서열과 90% 이상의 서열 상동성을 가지며 대두 제아산틴 에폭시다제를 암호하는 유전자를 제공한다.The present invention also provides a gene encoding soy zeaxanthin epoxidase and having at least 90% sequence homology with the nucleotide sequence of SEQ ID NO: 1.
본 발명에서 "상동성"이란 기준 서열과 임의의 다른 서열이 동일한 정도를 나타내는 것으로서, 90% 이상의 서열 상동성을 갖는다는 것은 임의의 서열을 기준 서열과 최대한 대응되도록 배열하고 ClustalX와 같은 프로그램을 이용하여 서열을 분석할 경우 두 서열이 90% 이상 동일함을 나타낸다.In the present invention, "homology" means that the reference sequence and any other sequence have the same degree, and having 90% or more sequence homology means arranging any sequence to correspond with the reference sequence as much as possible and using a program such as ClustalX. Analysis of the sequence indicates that the two sequences are at least 90% identical.
한편, 본 발명자들은 대두의 여러 조직에 따른 제아산틴 에폭시다제 유전자의 발현 정도를 조사하기 위하여 대두의 잎, 줄기, 꽃, 뿌리 및 뿌리혹으로부터 조직을 얻어 이로부터 RNA를 추출하였다.On the other hand, the inventors obtained RNA from the leaves, stems, flowers, roots and root nodules of soybean in order to investigate the expression level of the zeaxanthin epoxidase gene according to the various tissues of soybean.
또한, 대두의 뿌리혹의 발생 단계에서 여러 시기에 따른 제아산틴 에폭시다제 유전자의 발현 정도를 조사하기 위하여 뿌리혹의 발생 시기 별로 뿌리혹 조직을 얻어 이들로부터 RNA를 추출하였다.In addition, in order to investigate the expression level of the zeaxanthin epoxidase gene according to various times in the development stage of the root nodules of soybeans, RNA was extracted from the root nodule tissues by the generation periods of the root nodules.
상기 RNA와 본 발명에서 확인된 대두 제아산틴 에폭시다제 유전자의 염기 서열에 기초하여 고안된 프라이머 세트를 이용하여 얻어진 cDNA를 이용하여 실시간(Real-Time) PCR 분석을 실시하여, 대두의 각 조직과 뿌리혹의 여러 시기별 조직에서 제아산틴 에폭시다제 유전자의 발현 정도를 확인하였다.Real-time PCR analysis was carried out using cDNA obtained using the primer set designed based on the RNA and the nucleotide sequence of the soybean zeaxanthin epoxidase gene identified in the present invention. The expression level of the zeaxanthin epoxidase gene was confirmed in the tissues according to time.
그 결과, 도 3에서 나타난 바와 같이, 대두의 여러 조직 중 줄기에서 제아산틴 에폭시다제 유전자의 발현이 가장 높게 나타났으며, 뿌리에서는 발현이 극히 낮았다.As a result, as shown in Figure 3, the expression of the zeaxanthin epoxidase gene in the stem of the various tissues of the soybean appeared the highest, the expression was extremely low in the root.
또한, 도 4에서 나타난 바와 같이, 대두의 뿌리혹의 여러 발생 시기에 따른 발현량은 뿌리 상태에서 가장 높으며, 뿌리혹이 점점 발달함에 따라 제아산틴 에폭시다제 유전자의 발현이 점점 감소하여 27일째에는 제아산틴 에폭시다제 유전자가 발현되지 않는 것으로 확인되었다.In addition, as shown in Figure 4, the expression level of the soybean root nodules at various times of occurrence is the highest in the root state, the expression of the zeaxanthin epoxidase gene gradually decreases as the root nodules develop gradually, the zeaxanthin epoxidase gene at day 27 Was found not to be expressed.
본 발명의 다른 양태로서, 본 발명은 상기 대두 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터를 제공한다.In another aspect of the invention, the invention provides a recombinant vector comprising the soy zeaxanthin epoxidase gene.
본 발명에서 "재조합 벡터"란 본 발명의 대두 제아산틴 에폭시다제 유전자 및 이와 작동가능하게 연결된 조절 요소를 포함하는 벡터로서, 클로닝을 위한 벡터이거나 적절한 숙주 세포에서 제아산틴 에폭시다제 유전자가 암호하는 단백질이 발현되도록 하는 발현 벡터일 수 있다. In the present invention, a "recombinant vector" is a vector comprising the soybean zeaxanthin epoxidase gene of the present invention and a regulatory element operably linked thereto, so that the protein encoding the zeaxanthin epoxidase gene or the protein encoding it in an appropriate host cell is expressed. May be an expression vector.
본 발명에서 "작동가능하게 연결된"이란 핵산 발현조절 서열과 대상 유전자 삽입체가 기능적으로 연결되어 있는 것을 말하며, 예를 들어, 프로모터와 유전자 삽입체가 작동가능하게 연결되어 유전자의 발현에 영향을 미칠 수 있다. In the present invention, "operably linked" means that the nucleic acid expression control sequence and the target gene insert are functionally linked. For example, the promoter and the gene insert may be operably linked to affect the expression of the gene. .
본 발명의 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터의 제조에 이용하기에 적합한 벡터는 당업계에서 일반적으로 이용되는 플라스미드(예, pBR322, pUC8/9, pGEX 시리즈, pUC19 등), 파지(예, λ-Charon 및 M13 등), 또는 바이러스(예, SV40 등)이 이용될 수 있으며, 숙주 세포가 원핵 세포인지 진핵 세포인지에 따라 적절한 프로모터, 개시 코돈, 종결 코돈, 폴리아데닐화 시그널 및 인핸서와 같은 발현 조절 요소 등을 포함한다. Suitable vectors for use in the preparation of recombinant vectors comprising the zeaxanthin epoxidase gene of the invention include plasmids commonly used in the art (eg, pBR322, pUC8 / 9, pGEX series, pUC19, etc.), phage (eg, λ). -Charon and M13, etc.), or viruses (e.g., SV40, etc.) can be used, and expression such as appropriate promoters, initiation codons, termination codons, polyadenylation signals and enhancers depending on whether the host cell is a prokaryotic or eukaryotic cell. Control elements and the like.
본 발명의 벡터는 대두 제아산틴 에폭시다제의 정제를 용이하게 하기 위하여, 글루타치온 S-트랜스퍼라제, 말토스 결합 단백질, FLAG 또는 헥사히스티딘의 서열을 추가로 포함할 수 있다. The vector of the present invention may further comprise a sequence of glutathione S-transferase, maltose binding protein, FLAG or hexahistidine to facilitate purification of soy zeaxanthin epoxidase.
본 발명의 대두 제아산틴 에폭시다제 유전자를 식물 세포에서 발현시키고자 할 경우, 본 발명의 재조합 벡터는 본 발명의 대두 제아산틴 에폭시다제 유전자 및 이와 작동적으로 연결된, 식물 세포에서 작용하는 프로모터와 식물 세포에서 RNA 분자의 3'-말단의 폴리아데닐화를 야기하는 3'-비해독화 부위를 포함하는 것이 바람직하다.When the soy zeaxanthin epoxidase gene of the present invention is to be expressed in plant cells, the recombinant vector of the present invention may be RNA in the soy zeaxanthin epoxidase gene of the present invention and in promoters and plant cells which are operatively linked thereto. It is preferred to include a 3'-detoxification site that causes polyadenylation of the 3'-end of the molecule.
본 발명의 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터의 제조는 당해 기술분야에서 통상적으로 이용되고 잘 알려진 유전자 재조합 기술을 이용하여 이루어질 수 있으며, 예를 들어, 본 명세서에 참조로 삽입되는 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(201) 등에 개시되어 있다.The preparation of recombinant vectors comprising the zeaxanthin epoxidase gene of the present invention can be accomplished using genetic recombination techniques commonly used in the art and well known, for example, as described in Sambrook et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press 201, and the like.
본 발명의 다른 양태에 따라, 본 발명은 대두 제아산틴 에폭시다제 유전자를 포함하는 재조합 벡터로 형질전환된 숙주 세포를 제공한다. According to another aspect of the invention, the invention provides a host cell transformed with a recombinant vector comprising a soy zeaxanthin epoxidase gene.
숙주 세포를 재조합 벡터로 형질전환시키기 위해서는 당업계에서 공지되고 널리 이용되고 있는 임의의 방법을 이용할 수 있으며, 숙주 세포에 따라 적합한 방법을 선택할 수 있다. 예를 들어, 일렉트로포레이션(electroporation), 원형질융합, 인산칼슘 침전, 염화칼슘 침전, 아그로박테리아 매개 형질전환, 리포좀-매개 형질전환 등이 이용될 수 있다.In order to transform the host cell into a recombinant vector, any method known and widely used in the art may be used, and a suitable method may be selected according to the host cell. For example, electroporation, protoplast fusion, calcium phosphate precipitation, calcium chloride precipitation, Agrobacterial mediated transformation, liposome-mediated transformation, and the like can be used.
형질전환에 이용될 수 있는 숙주 세포는 당업계에서 형질전환에 이용되고 있는 임의의 원핵 세포와 진핵 세포가 이용될 수 있으며, 예를 들어, 이.콜리 JM109, 이.콜리 BL21, 바실러스 서브틸리스, 아그로박테리움, 이스트, BHK, COS-7, 및 식물 세포 등이 이용될 수 있다. Host cells that can be used for transformation can be any prokaryotic and eukaryotic cells used for transformation in the art, for example, E. coli JM109, E. coli BL21, Bacillus subtilis , Agrobacterium, yeast, BHK, COS-7, plant cells and the like can be used.
상기와 같은 본 발명의 제아산틴 에폭시다제 유전자를 포함하는 벡터로 형질전환된 형질전환체는 대두 제아산틴 에폭시다제의 대량 생산 등에 이용될 수 있다.The transformant transformed with the vector containing the zeaxanthin epoxidase gene of the present invention can be used for mass production of soy zeaxanthin epoxidase.
본 발명의 대두 제아산틴 에폭시다제 유전자는 대두의 뿌리혹의 항산화제 방어 기전에서 제아산틴 에폭시다제 및 제아산틴의 역할을 밝히는데 유용하게 이용될 수 있으며, 또한 제아산틴 에폭시다제 및 제아산틴의 대량 생산에 이용될 수 있을 것이다. The soy zeaxanthin epoxidase gene of the present invention can be usefully used to elucidate the role of zeaxanthin epoxidase and zeaxanthin in the antioxidant defense mechanism of soybean root nodule, and can also be used for mass production of zeaxanthin epoxidase and zeaxanthin.
실험예Experimental Example 1. One.
대두 Big head 제아산틴Zeaxanthin 에폭시다제를Epoxidase 코딩하는 Coded 전길이Length cDNAcDNA 의 분리Separation of
1) 대두의 RNA 추출 및 cDNA 합성1) Soybean RNA Extraction and cDNA Synthesis
대두에서 제아산틴 에폭시다제를 암호화하고 있는 유전자(GmZEP)가 존재하는 지를 확인하기 위하여, 대두 잎에서 RNA를 추출하였다.RNA was extracted from soybean leaves to confirm the presence of a gene ( GmZEP ) encoding zeaxanthin epoxidase in soybeans.
RNA 추출은 대두 잎 샘플을 액체 질소로 얼린 상태에서 갈은 다음, RNeasy 플랜트 미니 키트(Plant mini kit)를 이용하여 실시하였다. RNeasy 플랜트 미니 키트는 용해 버퍼(lysis buffer)인 RLT와 전체 RNA가 결합할 수 있는 RNeasy 미니 컬럼, 세척 버퍼 들이 포함되어 있다. 갈은 잎 샘플에 RLT 버퍼를 첨가한 후, 잘 섞어 용해시킨 후, QIAshredderTM 호모게나이저(homogenizer) 컬럼을 이용하여 불용성 물질과 점도를 감소시킨다. QIAshredderTM 호모게나이저 컬럼을 통과한 샘플에 에탄올을 첨가한 후, RNeasy 미니 컬럼에 첨가하여, 흘려 보내면, 전체 RNA가 컬럼의 막(membrane)에 결합하게 된다. 세척 버퍼를 이용하여, 여러 번 세척한 후, RNase가 없는 물을 이용하여 용출시킴으로써 RNA를 얻었다. RNA extraction was carried out using a RNeasy Plant mini kit after grinding soybean leaf samples frozen in liquid nitrogen. The RNeasy Plant Mini Kit includes an RNeasy mini column and wash buffers to which RLT and total RNA can bind. RLT buffer is added to the ground leaf samples, mixed well to dissolve, and the insoluble material and viscosity are reduced using a QIAshredder ™ homogenizer column. Ethanol was added to the sample passed through the QIAshredder ™ homogenizer column, then added to the RNeasy mini column and allowed to flow, causing the total RNA to bind to the membrane of the column. After washing several times using a wash buffer, RNA was obtained by eluting with RNase-free water.
이렇게 얻어진 RNA와 M-MLV 역전사효소(Reverse Transcriptase)(Promega, USA)를 이용하여 cDNA를 합성하였다. cDNA 합성을 위해, 추출된 RNA(3 ~ 5 ㎍)에 5X RTase 버퍼, RQ1 DNase, 및 RNase가 없는 물을 첨가하여, 37 ℃에서 15분, 65 ℃에서 10분 동안 반응시킨 후, 10 mM dNTPs, 0.5 ㎍/㎖ 올리고-dT, 리보뉴클레아제(ribonuclease) 억제제, M-MLV 역전사효소를 섞어 37 ℃에서 1시간 동안 반응시켜 cDNA를 합성하였다. CDNA was synthesized using RNA and M-MLV reverse transcriptase (Promega, USA). For cDNA synthesis, 5X RTase buffer, RQ1 DNase, and RNase-free water were added to the extracted RNA (3-5 μg), and reacted at 37 ° C. for 15 minutes and at 65 ° C. for 10 minutes, followed by 10 mM dNTPs. , 0.5 μg / ml oligo-dT, ribonuclease inhibitor, M-MLV reverse transcriptase were mixed and reacted at 37 ° C. for 1 hour to synthesize cDNA.
2) 대두 제아산틴 에폭시다제 유전자의 전길이 cDNA의 분리2) Isolation of full-length cDNA of soybean zeaxanthin epoxidase gene
대두 제아산틴 에폭시다제 유전자의 증폭을 위하여, 여러 식물 종들의 제아 산틴 에폭시다제 유전자들을 분석하여 상동성이 가장 높은 부분을 찾아 그 부분을 증폭하기 위한 프라이머를 제작하였다. 제작한 프라이머 세트는 다음과 같다. In order to amplify the soy zeaxanthin epoxidase gene, the zeaxanthin epoxidase genes of several plant species were analyzed to find the highest homology and to prepare a primer for amplifying the part. The prepared primer set is as follows.
GmZEP-F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3' (서열 번호 2) GmZEP -F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3 '(SEQ ID NO: 2)
GmZEP-R: 5'-GAAACAAAGTACTGTTTGTGTCCCAAG-3'. (서열 번호 3) GmZEP- R: 5'-GAAACAAAGTACTGTTTGTGTCCCAAG-3 '. (SEQ ID NO 3)
상기에서 대두의 잎에서 추출한 RNA로부터 만들어진 cDNA을 주형으로 하여, 상기 프라이머 세트를 이용하여 PCR 반응을 진행한 결과, 300bp 정도의 PCR 생성물을 얻을 수 있었다. 이 PCR 생성물을 TA 클로닝에 의해 pGEM-T 이지 벡터(easy vector)에 삽입한 후, 염기 서열을 분석한 결과, 다른 식물들의 제아산틴 에폭시다제 유전자와 높은 상동성을 보임을 확인할 수 있었다. As a template, cDNA made from RNA extracted from the leaves of soybean was used as a template, and PCR reaction was carried out using the primer set. As a result, a PCR product of about 300bp was obtained. The PCR product was inserted into the pGEM-T easy vector by TA cloning, and then analyzed by nucleotide sequence, and showed high homology with the genes of zeaxanthin epoxidase of other plants.
이렇게 확인된 일부의 제아산틴 에폭시다제 유전자의 전길이 cDNA를 확인하기 위하여, CapFishingTM 전길이 cDNA 프리믹스(premix) 키트 (SeeGene, Korea)을 이용하였다. 전체 RNA는 대두의 잎 조직으로부터 추출하였으며, 첫번째 가닥 (first-strand) 전길이 cDNA의 합성을 위해, SuperScriptTMⅡ RNase H-역전사효소 (Invitrogene, USA), 3 ㎕ 전체 RNA, 4 ㎕ dNTP(10 mM), 2 ㎕ dT-어댑터(adaptor) (10 μM)와 1.5 ㎕ DEPC-처리된 물을 이용하여 역전사를 수행하였다. 이 혼합물을 3분 동안 75 ℃에서 항온처리시킨 다음, 2분 동안 얼음에 보관한 뒤, 4 ㎕ 5X RT 버퍼, 1 ㎕ CapFishingTM 용액, 0.5 ㎕ RNase 억제제(40u/㎕), 1 ㎕ DTT(0.1 M), 2 ㎕ BSA(1 mg/ml), 1 ㎕ 역전사효소를 첨가하여, 1시간 동안 42 ℃에서 항온처리시 켰다. 3 ㎕ 예비가열된 CapFishingTM 어댑터를 첨가한 후, 0.3 ㎕의 역전사효소를 더 첨가하여, 30분 동안 42 ℃에서 다시 항온처리시킨 뒤, 70 ℃에서 15분, 94 ℃에서 5분 동안 두어, 역전사효소를 불활성 시켰다. 이렇게 합성된 첫번째 가닥 cDNA에 180 ㎕의 증류수를 첨가하여, 희석하였다. 대두 제아산틴 에폭시다제 유전자의 5' 부분의 서열을 얻기 위해 우선, 5' RACE PCR를 수행하였다. 첫번째 가닥 cDNA는 5' RACE 프라이머와 제아산틴 에폭시다제 유전자 특이적 리버스 프라이머(reverse primer) (GmZEP-R)을 이용하여 증폭시킨 뒤, 두번째 PCR을 위한 주형으로 이용하였다. 두번째 PCR 반응은 5' RACE 프라이머와 제아산틴 에폭시다제 유전자 특이적 네스티드 리버스 프라이머(nested reverse primer)(GmZEP nested-R)를 이용하였다. 프라이머의 서열은 다음과 같다.In order to identify the full-length cDNA of some of the zeaxanthin epoxidase genes thus identified, CapFishing ™ full-length cDNA premix kit (SeeGene, Korea) was used. Total RNA was extracted from the leaf tissue of soybean, and for the synthesis of first-strand full-length cDNA, SuperScript ™ II RNase H-reverse transcriptase (Invitrogene, USA), 3 μl total RNA, 4 μl dNTP (10 mM), 2 μl dT-adaptor (10 μM) and 1.5 μl DEPC-treated water were used for reverse transcription. The mixture was incubated at 75 ° C. for 3 minutes and then stored on ice for 2 minutes, then 4 μl 5X RT buffer, 1 μl CapFishing ™ solution, 0.5 μl RNase inhibitor (40 u / μl), 1 μl DTT (0.1 M), 2 μl BSA (1 mg / ml), 1 μl reverse transcriptase were added and incubated at 42 ° C. for 1 hour. 3 ㎕ pre-heated CapFishing TM After adding the adapter, 0.3 μl of additional reverse transcriptase was further incubated at 42 ° C. for 30 minutes, and then placed at 70 ° C. for 15 minutes and 94 ° C. for 5 minutes to inactivate reverse transcriptase. 180 μl of distilled water was added to the first strand cDNA thus synthesized and diluted. To obtain the sequence of the 5 'portion of the soy zeaxanthin epoxidase gene, 5' RACE PCR was first performed. The first strand cDNA was amplified using a 5 'RACE primer and a zeaxanthin epoxidase gene specific reverse primer ( GmZEP- R) and used as a template for the second PCR. The second PCR reaction was performed using a 5 'RACE primer and zeaxanthin epoxidase gene specific nested reverse primer ( GmZEP nested-R). The sequence of the primer is as follows.
5' RACE 프라이머: 5'-GTCTACCAGGCATTCGCTTCAT-3' (서열 번호 4) 5 'RACE primer: 5'-GTCTACCAGGCATTCGCTTCAT-3' (SEQ ID NO: 4)
GmZEP-R: 5'-GAAACAAAGTACTGTTTGTGTCCCAAG-3' (서열 번호 3) GmZEP -R: 5'-GAAACAAAGTACTGTTTGTGTCCCAAG-3 '(SEQ ID NO: 3)
GmZEP nested-R: 5'-CTAATAACTCTTGTGACAGGAAGCCCA-3' (서열 번호 5) GmZEP nested-R: 5'-CTAATAACTCTTGTGACAGGAAGCCCA-3 '(SEQ ID NO: 5)
제아산틴 에폭시다제 유전자의 3' 부분의 서열을 확인하기 위한 방법도 5' RACE와 마찬가지로, 3' RACE 프라이머와 제아산틴 에폭시다제 유전자 특이적 포워드 프라이머(forward primer) (GmZEP-F)을 이용하여 얻은 PCR 생성물을 주형으로 하여, 3' RACE 프라이머와 제아산틴 에폭시다제 유전자 특이적 네스티드 포워드 프라이머 (GmZEP nested-F)을 이용하여 두번째 PCR을 수행하였다. 이용된 프라이머는 다음과 같다.The method for identifying the sequence of the 3 'portion of the zeaxanthin epoxidase gene is similar to the 5' RACE. PCR products obtained using the 3 'RACE primer and the zeaxanthin epoxidase gene specific forward primer ( GmZEP- F) As a template, a second PCR was performed using a 3 'RACE primer and a zeaxanthin epoxidase gene specific nested forward primer ( GmZEP nested-F). The primers used are as follows.
3' RACE 프라이머: 5'-CTGTGAATGCTGCGACTACGAT-3' (서열 번호 6)3 'RACE primer: 5'-CTGTGAATGCTGCGACTACGAT-3' (SEQ ID NO: 6)
GmZEP-F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3' (서열 번호 2) GmZEP -F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3 '(SEQ ID NO: 2)
GmZEP nested-F: 5'-TGCCTGCTGACATTGAAACTGTTGGATA-3' (서열 번호 7) GmZEP nested-F: 5'-TGCCTGCTGACATTGAAACTGTTGGATA-3 '(SEQ ID NO: 7)
이들 프라이머와 함께, PCR 반응은 5 ㎕ 첫번째 가닥 cDNA, 25 ㎕ SeeAmpTM Taq 플러스 마스터 믹스(Plus Master Mix), 18 ㎕ 증류수가 첨가되었다. 열적 사이클링(Thermal cycling) 조건은 25 사이클 95 ℃ 15분-[94 ℃ 40초- 58 ℃ 40초- 72 ℃ 2분]- 72 ℃ 5분- 4 ℃이다. 이후, RACE 기법을 이용하여, 얻어진 제아산틴 에폭시다제 유전자의 전체 cDNA를 클로닝하기 위하여, 새로운 프라이머를 제작하였으며, 다음과 같다. With these primers, the PCR reaction was added 5 μl first strand cDNA, 25 μl SeeAmp ™ Taq Plus Master Mix, 18 μl distilled water. Thermal cycling conditions are 25 cycles 95 ° C. 15 min- [94 ° C. 40 sec-58 ° C. 40 sec-72 ° C. 2 min] -72 ° C. 5 min-4 ° C. Then, using the RACE technique, to clone the entire cDNA of the obtained zeaxanthin epoxidase gene, a new primer was prepared as follows.
GmZEPOX-F: 5'-CAAACTTCTAGAATGGCTACTACCTTATG-3' (서열 번호 8)GmZEPOX-F: 5'-CAAACTTCTAGAATGGCTACTACCTTATG-3 '(SEQ ID NO: 8)
GmZEPOX-R: 5'-GAACGGATCCTGTCACCTTAACACGGAA-3' (서열 번호 9)GmZEPOX-R: 5'-GAACGGATCCTGTCACCTTAACACGGAA-3 '(SEQ ID NO: 9)
PCR 에러를 줄이기 위하여, 제아산틴 에폭시다제 유전자를 Top-pfu 폴리머라제(CoreBioSystem, Korea)에 의해 증폭시켰다. PCR 반응은 5 ㎕ cDNA(잎에서 추출된 RNA를 이용하여 합성), 10X 버퍼, GmZEPOX-F와 GmZEPOX-R 프라이머, 2.5 mM dNTP 혼합물, Top-pfu 폴리머라제가 첨가되었다. 열적 사이클링 조건은 38 사이클 95 ℃ 15분-[94 ℃ 30초-55 ℃ 30초-68 ℃ 2분]-68 ℃ 10분-4 ℃이다. 염기 서열의 에러를 확인하기 위하여, 증폭된 2 kb 정도의 제아산틴 에폭시다제 유전자를 pGEM-T 이지 벡터에 삽입하여 염기 서열을 확인한 후, RACE를 통해 얻어진 염기서열과 비교하여, 제아산틴 에폭시다제 유전자의 전체 cDNA를 클로닝하였다.To reduce PCR errors, the zeaxanthin epoxidase gene was amplified by Top-pfu polymerase (CoreBioSystem, Korea). The PCR reaction was added 5 μl cDNA (synthesized using RNA extracted from the leaves), 10X buffer, GmZEPOX-F and GmZEPOX-R primers, 2.5 mM dNTP mixture, Top-pfu polymerase. Thermal cycling conditions are 38 cycles 95 ° C. 15 min— [94 ° C. 30 sec-55 ° C. 30 sec-68 ° C. 2 min] -68 ° C. 10 min-4 ° C. In order to confirm the error of the nucleotide sequence, the amplified 2 kb zeaxanthin epoxidase gene was inserted into the pGEM-T easy vector to confirm the nucleotide sequence, and then compared with the nucleotide sequence obtained through RACE. cDNA was cloned.
본 발명에 의한 대두의 제아산틴 에폭시다제 유전자의 염기 서열은 서열 목록의 서열 번호 1에 기재된 바와 같으며, 상기 염기 서열을 기초로 하여 예상된 대두의 제아산틴 에폭시다제의 아미노산 서열과 애기 장대의 제아산틴 에폭시다제의 아미노산 서열의 비교 결과가 도 2에 나타난다. The base sequence of the soybean zeaxanthin epoxidase gene according to the present invention is as described in SEQ ID NO: 1 in the sequence listing, and based on the base sequence, the amino acid sequence of the expected soybean zeaxanthin epoxidase and the long-term zeaxanthin epoxidase The comparison result of the amino acid sequence of is shown in FIG.
실험예Experimental Example 2. 2.
대두에서 In soybeans 제아산틴Zeaxanthin 에폭시다제Epoxidase 유전자의 발현 패턴 확인 Confirmation of gene expression pattern
대두의 여러 조직과 뿌리혹의 발생에 있어서 여러 시기 별로 제아산틴 에폭시다제 유전자의 발현 패턴을 확인하기 위한 실험을 진행하였다.Experiments were conducted to confirm the expression pattern of the zeaxanthin epoxidase gene at various times in the development of soybean tissues and root nodules.
먼저, 대두의 여러 조직과 뿌리혹의 여러 시기별로 얻은 조직의 RNA를 RNeasy 플랜트 미니 키트(QIAGEN, Germany)을 이용하여 추출하였다. 여러 조직 별로 제아산틴 에폭시다제 유전자의 발현을 보기 위해서, 발아 후, 32일째에 잎과 줄기를 얻고, 뿌리는 발아 후, 2~3일째 되는 시기의 샘플을 이용하였으며, 뿌리혹은 뿌리혹박테리아를 접종시킨 뒤, 27일째 되는 시기에 얻어서 RNA를 뽑기 위해 이용하였다. 뿌리혹의 여러 시기별로 샘플을 얻기 위해서는 뿌리혹박테리아를 접종 시킨 뒤, 2일, 7일, 및 27일째 되는 시기의 뿌리혹을 얻었으며, 대조구로 뿌리혹박테리아를 접종시키지 않은 2-3일 된 뿌리를 이용하였다. First, RNA of various tissues of soybean and tissues obtained at various times of root nodules was extracted using RNeasy Plant Mini Kit (QIAGEN, Germany). To see the expression of the zeaxanthin epoxidase gene in various tissues, after germination, leaves and stems were obtained on the 32nd day, and roots were sampled at the 2nd to 3rd day after germination. It was obtained at the time of day 27 and used to extract RNA. To obtain samples at various times of root nodules, root nodules were inoculated at 2, 7, and 27 days, and 2-3 days old roots without root nodules were used as controls. .
얻어진 식물 샘플을 액체 질소로 얼린 상태에서 갈은 다음, RNeasy 플랜트 미니 키트를 이용하여 RNA를 추출하였다. RNeasy 플랜트 미니 키트를 이용하여 식물 샘플로부터 RNA를 추출하는 방법은 상기의 실험예 1의 1)에서 개시한 바와 같 다. The obtained plant sample was ground in liquid nitrogen, and then RNA was extracted using the RNeasy Plant Mini Kit. Extracting RNA from plant samples using the RNeasy plant mini kit is as described in
각 조직 샘플과 시기별 뿌리혹에서 추출한 RNA들은 M-MLV 역전사효소 (Promega, USA)을 이용하여 cDNA로 합성하였다. 추출된 RNA(3~5 ㎍)에 5X RTase 버퍼, RQ1 DNase, 및 RNase가 없는 물을 첨가하여, 37 ℃에서 15분, 65 ℃에서 10분 동안 반응시킨 후, 10 mM dNTPs, 0.5 ㎍/㎖ 올리고-dT, 리보뉴클레아제(ribonuclease) 억제제, M-MLV 역전사효소를 섞어 37 ℃에서 1시간 동안 반응시켜 cDNA를 합성하였다. RNAs extracted from each tissue sample and root gall were synthesized as cDNA using M-MLV reverse transcriptase (Promega, USA). 5X RTase buffer, RQ1 DNase, and RNase-free water were added to the extracted RNA (3-5 ㎍) and reacted for 15 minutes at 37 ° C for 10 minutes at 65 ° C, followed by 10 mM dNTPs, 0.5 µg / ml. Oligo-dT, ribonuclease inhibitor, M-MLV reverse transcriptase was mixed and reacted for 1 hour at 37 ℃ to synthesize cDNA.
이어서, 실시간(Real-time) PCR 반응은 Rotor-Gene 3000 (Corbett Research, Sydney, Australia)을 사용하여 수행하였다. PCR 반응은 SYBR Premix Ex Taq. (QIAGEN, Germany) (10 ㎕ SYBR Premix Ex Taq. 및 2.0 ㎕ cDNA 용액)을 이용하여 20 ㎕ 반응에서 이루어졌다. PCR 반응의 열적 사이클링 조건은 95 ℃ 15분-[94℃ 15초-58 ℃ 10초-72 ℃ 20초 40 사이클)-72 ℃ 10분-4 ℃이다. 데이터 수집은 각각의 연장 단계 동안 이루어졌으며, 유전자 발현의 측정은 두 벌로 수행하였다. Rotor-Gene 3000 용융 곡선 분석은 단일 생성물-특이적 용융 곡선(single product-specific melting curves)을 야기시키는 프라이머들을 이용하여 수행하였으며, 대조구로서 대두 유비퀴틴(ubiquitin ) 프라이머를 이용하였다. Real-time PCR reactions were then performed using Rotor-Gene 3000 (Corbett Research, Sydney, Australia). PCR reactions were performed using SYBR Premix Ex Taq. (QIAGEN, Germany) (10 μl SYBR Premix Ex Taq. And 2.0 μl cDNA solution) in a 20 μl reaction. Thermal cycling conditions of the PCR reaction are 95 ° C. 15 min— [94 ° C. 15 sec-58 ° C. 10 sec-72 ° C. 20 sec 40 cycles) -72 ° C. 10 min-4 ° C. Data collection was made during each extension phase and measurement of gene expression was performed in duplicates. Rotor-Gene 3000 has a single melting curve analysis The product was carried out using primers that result in a specific melting curve (single product-specific melting curves) , was used for soybean ubiquitin (ubiquitin) primer as a control.
대두 유비퀴틴 프라이머의 서열은 다음과 같다.The sequence of soybean ubiquitin primer is as follows.
Ubiquitin-F: 5'-GGGTTTTAAGCTCGTTGT-3' (서열 번호 10) Ubiquitin -F: 5'-GGGTTTTAAGCTCGTTGT-3 '(SEQ ID NO: 10)
Ubiquitin-R: 5'-GGACACATTGAGTTCAAC-3' (서열 번호 11) Ubiquitin -R: 5'-GGACACATTGAGTTCAAC-3 '(SEQ ID NO: 11)
대두 제아산틴 에폭시다제 유전자를 증폭하기 위한 프라이머는 다음과 같다.Primers for amplifying soy zeaxanthin epoxidase gene are as follows.
GmZEP-F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3' (서열 번호 2) GmZEP -F: 5'-GTAAAGTTTGATACTTTCACTCCTGCG-3 '(SEQ ID NO: 2)
GmZEP-R: 5'-GAAA CAAAGTACTGTTTGTGTCCCAAG-3' (서열 번호 3) GmZEP -R: 5'-GAAA CAAAGTACTGTTTGTGTCCCAAG-3 '(SEQ ID NO: 3)
상기와 같은 실험을 통하여 대두의 여러 조직과 뿌리혹의 발생 시기별로 제아산틴 에폭시다제 유전자의 발현 정도를 조사한 결과, 도 3에서 확인할 수 있는 바와 같이 대두의 여러 조직 중 줄기에서 발현 정도가 가장 높고 뿌리에서는 매우 낮았으며, 뿌리혹의 발생 시기별로는 뿌리혹이 점점 발생해감에 따라 제아산틴 에폭시다제 유전자의 발현량이 감소하는 것을 확인할 수 있었다.As a result of investigating the expression level of the zeaxanthin epoxidase gene according to the time of occurrence of various tissues and root nodules through the above experiment, as shown in FIG. It was low, and it was confirmed that the expression level of the zeaxanthin epoxidase gene decreased as the root nodules were gradually developed.
도 1은 대두의 제아산틴 에폭시다제 유전자의 염기 서열을 보여준다.Figure 1 shows the nucleotide sequence of the zeaxanthin epoxidase gene of soybeans.
도 2는 대두의 예상되는 제아산틴 에폭시다제 아미노산 서열과 애기장대의 제아산틴 에폭시다제의 아미노산 서열 비교를 보여준다.FIG. 2 shows a comparison of the expected zeaxanthin epoxidase amino acid sequence of soybean and the amino acid sequence of Zeaxanthin epoxidase of Arabidopsis.
도 3은 대두의 여러 조직에서 제아산틴 에폭시다제 유전자의 발현 정도를 확인하기 위한 실시간 PCR의 결과를 보여준다.Figure 3 shows the results of real-time PCR to confirm the expression level of the zeaxanthin epoxidase gene in various tissues of soybean.
도 4는 대두의 뿌리혹 발생 과정에 따른 제아산틴 에폭시다제 유전자의 발현 정도를 확인하기 위한 실시간 PCR의 결과를 보여준다.Figure 4 shows the results of real-time PCR to confirm the expression level of the zeaxanthin epoxidase gene according to the soybean root development process.
<110> Industry-Academy Cooperation Foundation, Sookmyung Women's University <120> Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 2010 <212> DNA <213> Glycine max <220> <221> gene <222> (1)..(2010) <400> 1 atggctacta ccttatgtta caattctctt aacccttcaa caaccgtttt ctcaagaacc 60 catttctcag ttcccttgaa tacagagctt ccactggatg cttcaccttt tgttgttggc 120 tataactgtg gtgtaggatg cagaacaagg aagcaaagga agaaagtgat gcatgtgaag 180 tgtgcagtgg tggaggctcc accaggtgtt tcaccctcag caaaagatgg gaatggaacc 240 accccttcga agaagcagct tcgtatactt gtggctggtg gagggattgg agggttggtt 300 tttgctttgg ctgcaaagag aaaggggttt gaggtgatgg tgtttgagaa ggacttgagt 360 gctataagag gggagggaca gtataggggt ccaattcaga ttcagagcaa tgctttggct 420 gctttggaag ctattgattc agaggttgct gatgaagtta tgagagttgg ttgcatcact 480 ggtgatagaa tcaatggact tgtagatggg gtttctggtt cttggtacgt caagtttgat 540 agattcactc ctgcagtgga acgtgggctt cctgtcacaa gagttattag tcgaatggtt 600 ttacaagaga tccttgctcg cgcagttggg gaagatatca ttatgaatgc cagtaatgtt 660 gttaattttg tggatgatgg aaacaaggta acagtagagc tagagaatgg tcagaaatat 720 gaaggagatg tcttggttag agcggatgga atatggtcca aggtgaggaa gcagttattt 780 gggctcacag aagctgttta ctctggttat acttgttata ctggcattgc agattttgtg 840 cctgctgaca ttgaaactgt tggataccga gtattcttgg gacacaaaca atactttgta 900 tcttcagatg ttggtgcggg aaagatgcaa tggtatgcat ttcacaaaga acctcctggt 960 ggtgttgacg agcccaacgg aaaaaaggaa aggctgctta ggatatttga gggctggtgt 1020 gataatgctg tagatctgat acttgccaca gaagaagaag caattctaag acgagacata 1080 tatgacagga taccaacatt gacatgggga aagggtcgcg tgactttgct cggtgattcc 1140 gtccatgcca tgcagccaaa tatgggccaa ggagggtgca tggctattga ggacagttat 1200 caacttgcat gggagttgga gaatgcatgg gaacaaagta ttaaatcagg gagtccaatt 1260 gacattgatt cttccctaag gagctacgag agagaaagaa gactacgagt tgccattatt 1320 catggaatgg ctagaatggc ggctctcatg gcttccactt acaaggcata tctgggtgtt 1380 ggtcttggcc ctttagagtt tttgactaag tttcgtatac cacatcctgg aagagttgga 1440 ggaaggtttt ttgttgacat catgatgcct tctatgttga gctgggtctt aggtggcaat 1500 agcgacaaac ttgagggcag accactaagt tgcaggctca cagacaaagc aaatgatcag 1560 ttacgtagat ggtttgaaga tgatgaagca ctcgagcgtg ctattaatgg agaatggatt 1620 ttattaccgc atggagatgg aacaggtctt tcaaagccta tatctttaag tcgaaatgag 1680 atgaaaccct tcataatcgg gagtgcacca atgcaagata attcaggcag ttcagttaca 1740 atttcttcac cacaggtttc tccaacgcat gctcgaatta actataagga tggtgccttc 1800 ttcttgattg atttacggag tgagcatggc acctggatca ttgacaacga aggaaagcag 1860 taccgggtac ctcctaatta tcctgctcgc atccgtccat ctgatgttat tcagtttggt 1920 tctgagaagg tttcgttccg tgttaaggtg acaagctctg ttccaagagt ctcagaaaat 1980 gaaagcacac tagctttgca gggagtatga 2010 <210> 2 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gtaaagtttg atactttcac tcctgcg 27 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 gaaacaaagt actgtttgtg tcccaag 27 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtctaccagg cattcgcttc at 22 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctaataactc ttgtgacagg aagccca 27 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ctgtgaatgc tgcgactacg at 22 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tgcctgctga cattgaaact gttggata 28 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 caaacttcta gaatggctac taccttatg 29 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gaacggatcc tgtcacctta acacggaa 28 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gggttttaag ctcgttgt 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ggacacattg agttcaac 18 <110> Industry-Academy Cooperation Foundation, Sookmyung Women's University <120> Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean <160> 11 <170> Kopatentin 1.71 <210> 1 <211> 2010 <212> DNA <213> Glycine max <220> <221> gene (222) (1) .. (2010) <400> 1 atggctacta ccttatgtta caattctctt aacccttcaa caaccgtttt ctcaagaacc 60 catttctcag ttcccttgaa tacagagctt ccactggatg cttcaccttt tgttgttggc 120 tataactgtg gtgtaggatg cagaacaagg aagcaaagga agaaagtgat gcatgtgaag 180 tgtgcagtgg tggaggctcc accaggtgtt tcaccctcag caaaagatgg gaatggaacc 240 accccttcga agaagcagct tcgtatactt gtggctggtg gagggattgg agggttggtt 300 tttgctttgg ctgcaaagag aaaggggttt gaggtgatgg tgtttgagaa ggacttgagt 360 gctataagag gggagggaca gtataggggt ccaattcaga ttcagagcaa tgctttggct 420 gctttggaag ctattgattc agaggttgct gatgaagtta tgagagttgg ttgcatcact 480 ggtgatagaa tcaatggact tgtagatggg gtttctggtt cttggtacgt caagtttgat 540 agattcactc ctgcagtgga acgtgggctt cctgtcacaa gagttattag tcgaatggtt 600 ttacaagaga tccttgctcg cgcagttggg gaagatatca ttatgaatgc cagtaatgtt 660 gttaattttg tggatgatgg aaacaaggta acagtagagc tagagaatgg tcagaaatat 720 gaaggagatg tcttggttag agcggatgga atatggtcca aggtgaggaa gcagttattt 780 gggctcacag aagctgttta ctctggttat acttgttata ctggcattgc agattttgtg 840 cctgctgaca ttgaaactgt tggataccga gtattcttgg gacacaaaca atactttgta 900 tcttcagatg ttggtgcggg aaagatgcaa tggtatgcat ttcacaaaga acctcctggt 960 ggtgttgacg agcccaacgg aaaaaaggaa aggctgctta ggatatttga gggctggtgt 1020 gataatgctg tagatctgat acttgccaca gaagaagaag caattctaag acgagacata 1080 tatgacagga taccaacatt gacatgggga aagggtcgcg tgactttgct cggtgattcc 1140 gtccatgcca tgcagccaaa tatgggccaa ggagggtgca tggctattga ggacagttat 1200 caacttgcat gggagttgga gaatgcatgg gaacaaagta ttaaatcagg gagtccaatt 1260 gacattgatt cttccctaag gagctacgag agagaaagaa gactacgagt tgccattatt 1320 catggaatgg ctagaatggc ggctctcatg gcttccactt acaaggcata tctgggtgtt 1380 ggtcttggcc ctttagagtt tttgactaag tttcgtatac cacatcctgg aagagttgga 1440 ggaaggtttt ttgttgacat catgatgcct tctatgttga gctgggtctt aggtggcaat 1500 agcgacaaac ttgagggcag accactaagt tgcaggctca cagacaaagc aaatgatcag 1560 ttacgtagat ggtttgaaga tgatgaagca ctcgagcgtg ctattaatgg agaatggatt 1620 ttattaccgc atggagatgg aacaggtctt tcaaagccta tatctttaag tcgaaatgag 1680 atgaaaccct tcataatcgg gagtgcacca atgcaagata attcaggcag ttcagttaca 1740 atttcttcac cacaggtttc tccaacgcat gctcgaatta actataagga tggtgccttc 1800 ttcttgattg atttacggag tgagcatggc acctggatca ttgacaacga aggaaagcag 1860 taccgggtac ctcctaatta tcctgctcgc atccgtccat ctgatgttat tcagtttggt 1920 tctgagaagg tttcgttccg tgttaaggtg acaagctctg ttccaagagt ctcagaaaat 1980 gaaagcacac tagctttgca gggagtatga 2010 <210> 2 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gtaaagtttg atactttcac tcctgcg 27 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 gaaacaaagt actgtttgtg tcccaag 27 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtctaccagg cattcgcttc at 22 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctaataactc ttgtgacagg aagccca 27 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ctgtgaatgc tgcgactacg at 22 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tgcctgctga cattgaaact gttggata 28 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 caaacttcta gaatggctac taccttatg 29 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gaacggatcc tgtcacctta acacggaa 28 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gggttttaag ctcgttgt 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ggacacattg agttcaac 18
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070119028A KR101147963B1 (en) | 2007-11-21 | 2007-11-21 | Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070119028A KR101147963B1 (en) | 2007-11-21 | 2007-11-21 | Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090052502A KR20090052502A (en) | 2009-05-26 |
KR101147963B1 true KR101147963B1 (en) | 2012-05-29 |
Family
ID=40860227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070119028A Active KR101147963B1 (en) | 2007-11-21 | 2007-11-21 | Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101147963B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007028115A2 (en) | 2005-09-02 | 2007-03-08 | Cornell University | Polynucleotides encoding carotenoid and apocarotenoid biosynthetic pathway |
-
2007
- 2007-11-21 KR KR1020070119028A patent/KR101147963B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007028115A2 (en) | 2005-09-02 | 2007-03-08 | Cornell University | Polynucleotides encoding carotenoid and apocarotenoid biosynthetic pathway |
Non-Patent Citations (2)
Title |
---|
Dev Mani Pandey 등. Plant Scinece. 2005, Vol. 168, No. 1, 페이지 161-166. * |
GenBank Accession Number AF159948(2000.02.04.) * |
Also Published As
Publication number | Publication date |
---|---|
KR20090052502A (en) | 2009-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111518818B (en) | Hydroxylase gene participating in myricetin biosynthesis and application thereof | |
Priya et al. | Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis): A gene involved in rubber biosynthesis | |
Dong et al. | Isolation of a novel xyloglucan endotransglucosylase (OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses | |
CN114634939A (en) | PgJMT1 gene for regulating synthesis of methyl jasmonate in ginseng and application thereof | |
Meena et al. | Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis | |
CN113265408A (en) | Pseudo-ginseng DOF transcription factor genePnDof1And uses thereof | |
CN107190016B (en) | A kind of Dracaena hainan chalcone isomerase DcCHIL1 and its coding gene and application | |
CN109423493B (en) | Rice cold tolerance gene OSRYH1 and its application | |
US20110078821A1 (en) | Heat resistant plants and plant tissues and methods and materials for making and using same | |
CN104830817B (en) | A kind of flavonoids prenyltransferase AhFDT1 and its encoding gene and application | |
KR101147963B1 (en) | Gene encoding zeaxanthine epoxidase essential to the xanthopyll cycle in soybean | |
CN110295175B (en) | Application of a soybean NAC transcription factor family gene Glyma08g41995 | |
Pulla et al. | Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses | |
CN104894080B (en) | A kind of flavonoids prenyltransferase AhFDT3 and its encoding gene and application | |
Abu-Romman | Molecular cloning and expression of 12-oxophytodienoic acid reductase gene from barley | |
CN106566836B (en) | A kind of IbC4H gene of coding sweet potato cinnamic acid hydroxylase and its application | |
WO2004035791A1 (en) | Plant alpha farnesene synthase and polynucleotides encoding same | |
CN106222171B (en) | A method for improving soybean yield using RNAi technology | |
CN104830816B (en) | A kind of flavonoids prenyltransferase AhFDT2 and its encoding gene and application | |
CN106755383B (en) | Primer for amplifying paphiopedilum B MADS-box gene | |
ZHANG et al. | Cloning, Localization and Expression Analysis of ZmHsf-like Gene in Zea mays | |
CN113005127A (en) | Plant glandular hair specific expression gene HD-9, its expression vector and application | |
Zhou et al. | Cloning and expression of floral organ identity genes in Paeonia ostii ‘Fengdan’ | |
SUHARSONO et al. | Isolation and cloning of cDNA of gene encoding for metallothionein type 2 from Melastoma affine | |
Yan et al. | Cloning, E. coli expression and molecular analysis of a novel sesquiterpene synthase gene from Artemisia annua |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071121 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20100305 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20071121 Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111005 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120514 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120515 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120515 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20150414 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160229 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170529 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170529 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180509 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20180509 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee |