[go: up one dir, main page]

KR101127601B1 - Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof - Google Patents

Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof Download PDF

Info

Publication number
KR101127601B1
KR101127601B1 KR1020110044130A KR20110044130A KR101127601B1 KR 101127601 B1 KR101127601 B1 KR 101127601B1 KR 1020110044130 A KR1020110044130 A KR 1020110044130A KR 20110044130 A KR20110044130 A KR 20110044130A KR 101127601 B1 KR101127601 B1 KR 101127601B1
Authority
KR
South Korea
Prior art keywords
polyethylene resin
carbon fiber
weight
resin composition
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020110044130A
Other languages
Korean (ko)
Inventor
김추자
Original Assignee
대림개발(주)
김추자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대림개발(주), 김추자 filed Critical 대림개발(주)
Priority to KR1020110044130A priority Critical patent/KR101127601B1/en
Application granted granted Critical
Publication of KR101127601B1 publication Critical patent/KR101127601B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE: A polyethylene resin composition and a manufacturing method of polyethylene resin water supply and drainage pipe using thereof are provided to improve mechanical property of the polyethylene resin by mix proper quantity of carbon fiber with high density polyethylene resin. CONSTITUTION: A polyethylene resin composition is manufactured by mixing maleic anhydride grafted polyethylene which includes 5-20 parts by weight of maleic based on 100.0 parts by weight of polyethylene resin. The polyethylene resin includes 70-99 weight% of high density polyethylene resin which has average density of 0.941-0.965 g/ml, 1-30 weight% of either non-sizing carbon fiber sizing agent.

Description

폴리에틸렌수지 조성물 및 이를 이용한 폴리에틸렌수지제 상하수도관 제조방법{Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof}Polyethylene resin composition and method for manufacturing a polyethylene resin water and sewage pipe using the same

본 발명은 폴리에틸렌수지 조성물에 관한 것으로서, 보다 상세하게는 탄소섬유를 함유한 상수도관용 폴리에틸렌 수지 조성물에 관한 것이다.
The present invention relates to a polyethylene resin composition, and more particularly to a polyethylene resin composition for water pipes containing carbon fibers.

종래 주철관으로 상하수도 공사를 한곳은 전국에서 장마철을 전후로 산화로 인한 막힘과 균열로 제 기능을 못하고 있다. 관의 산화철은 사람들의 건강을 위협할 뿐 아니라, 산화철은 파손이 되어 교체가 되지 않는 한 그것의 제거가 힘들다. 산화철을 제거 한다고 하여도 수년 내에 다시 녹물이 나오는 부작용이 초래된다. Conventionally, the places where water and sewage work were made with cast iron pipes are not functioning due to the blockage and cracking caused by oxidation before and after the rainy season in the country. Iron oxide in the pipe not only threatens people's health, but iron oxide is difficult to remove unless it is broken and replaced. Removing iron oxide also has the side effect of rust coming back within a few years.

현재 사용하고 있는 상수도관 중 폴리에틸렌(PE)관의 특징으로 PE는 산, 알칼리 등에 침식되지 않고 내화학성이 뛰어나 약품 이송 배관, 공업폐수 처리배관, 쓰레기 매립장 침출수 이송 배관 등에 많이 사용되고 있고, 염분에 부식되지 않아 임해공단의 각종 용수 배관, 축 양장 및 해상 가두리 양식장 시설 등에 적용되고 있다. 또 다른 특징으로는 완전한 전기의 부도체로서 전기 부식도 없어 전력선 보호관 등으로도 사용되고, PE관은 재질에서 인체에 어떠한 유해물질도 나오지 않을 뿐만 아니라 박테리아 등의 세균류도 쉽게 번식할 수 없어 스케일도 생기지 않아 장시간 동안에도 내용물의 순도가 유지되기 때문에 급수관 용도로 가장 적합한 배관제로 인정받고 있다. 내면이 다른 재질의 배관재보다 마찰계수가 작고 스케일이 끼지 않아 유체들의 손실수두를 최소화시켜 주기 때문에 통순력이 커서 장기적으로는 경제성도 우수하다. Polyethylene (PE) pipe is one of the water pipes currently used, and PE is excellent in chemical resistance without being eroded from acid and alkali.It is widely used in chemical transport pipes, industrial wastewater treatment pipes, landfill leachate transport pipes, and corrosion to salt. As a result, it is applied to various types of water pipes, shaft farms and offshore cage farms. In addition, as a non-conductor of complete electricity, it is used as a power line protection tube because there is no electrical corrosion, and PE pipe does not produce any harmful substances to the human body from materials, and also does not produce scales because bacteria and other bacteria cannot be easily reproduced. Since the purity of the contents is maintained even for a long time, it is recognized as the most suitable piping agent for water supply pipe applications. The internal friction on the inside is smaller than the pipe material of other materials, and the scale is not pinched to minimize the head loss of fluids.

또한, 유연성이 뛰어나 각이 적은 굴곡지역에서는 곡관을 사용하지 않고도 시공이 용이하며부등침하에 강하기 때문에 내지진성도 탁월하다. 일본 고베 지진이나 여름철 홍수 피해로 각종 땅속의 배관들이 터지는 사고가 생겼어도 PE관은 거의 원래 상태를 유지하고 있어 그 유연성을 입증하고 있으며 다른 재질들의 배관재보다 내마모성이 우수하여 준설 배관화력 발전소 ASH 처리 배관 등으로 사용되고 있다. 중량이 가벼워 다루기도 쉽고 접합 속도도 빨라 다른 재질 보다 상대적으로 용이할 뿐만 아니라 융착접합 시스템도 완벽하여 누수의 염려도 없다. 그리고 -80까지는 PE원재료의 물성 변화가 없으므로 절대 동파가 되지 않는 점, 재질 특성상 외부의 충격에 의하여 깨지는 성질이 없다. In addition, it is excellent in flexibility and easy to install in curved areas with small angles without using curved pipes. Even though the Kobe earthquake or summer flood damage caused the pipes in various grounds to burst, the PE pipe remains almost intact, proving its flexibility and superior in abrasion resistance than other materials. It is used for such. It is light in weight and easy to handle and fast in bonding. It is relatively easy than other materials, and the fusion splicing system is perfect, so there is no fear of leakage. In addition, there is no change in the physical properties of the raw material PE up to -80, so it does not become a freezing wave, and due to the material properties, it is not broken by external impact.

하지만 이러한 우수한 물성치에도 불구하고관변형의 문제로 PE관은 소형 관에만 적용되고 있다. 따라서, PE의 기계적 물성을 증진시켜 상하수도관과 같은 대형관으로의 적용가능한 PE수지의 개발이 필요하다.
However, despite these excellent properties, PE pipes are only applied to small pipes because of pipe deformation problems. Therefore, there is a need to develop a PE resin applicable to large pipes such as water and sewage pipes by improving the mechanical properties of PE.

본 발명은 우수한 물성치에도 불구하고, 관변형의 문제로 소형관에만 적용되고 있는 PE수지 특히, 고밀도 폴리에틸렌수지(HDPE)에 탄소섬유를 적량 혼합하여 PE수지의 기계적 물성을 증진시켜 대형 관인 PE상수도관으로의 적용이 가능한 폴리에틸렌수지 조성물을 제공하는 것을 그 해결과제로 한다. The present invention, despite the excellent physical properties, PE resin that is applied only to small pipes due to problems of pipe deformation, in particular, high density polyethylene resin (HDPE) by mixing a suitable amount of carbon fiber to improve the mechanical properties of PE resin PE water conduit It is a problem to provide a polyethylene resin composition that can be applied to.

또한, 본 발명은 기계적 물성을 증대시킨 폴리에틸렌 수지 조성물을 이용하여 대형관으로서 상하수도관으로 사용될 수 있는 폴리에틸렌수지재로 되는 PE관의 제조방법을 제공하는 것을 다른 해결과제로 한다.
In addition, another object of the present invention is to provide a method for producing a PE tube made of a polyethylene resin material that can be used as a water and sewage pipe as a large pipe using a polyethylene resin composition having increased mechanical properties.

상기한 과제를 해결한 본 발명의 폴리에틸렌수지 조성물은 상하수도관 제조용 폴리에틸렌수지 조성물에 있어서,
평균밀도 0.941 ~ 0.965g/ml인 고밀도 폴리에틸렌 수지 70 ~ 99중량%와, 논사이징(Non-sizing) 탄소섬유 또는 사이징에이전트(Sizing agent)로 사이징된 탄소섬유중 어느 하나의 탄소섬유 1 ~ 30중량%를 포함하는 폴리에틸렌수지 100중량부에 대하여 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene) 5 ~ 20중량부를 혼합하여 이루어진다.
Polyethylene resin composition of the present invention solved the above problems in the polyethylene resin composition for water and sewage pipe production,
70 to 99% by weight of a high density polyethylene resin having an average density of 0.941 to 0.965 g / ml, and 1 to 30% of any one of non-sizing carbon fiber or carbon fiber sized with a sizing agent It is made by mixing 5 to 20 parts by weight of maleic anhydride grafted polyethylene with maleic anhydride added to 100 parts by weight of polyethylene resin containing%.

삭제delete

여기서, 상기 탄소섬유는 논사이징(Non-sizing) 탄소섬유 또는 사이징에이전트(Sizing agent)로 사이징된 탄소섬유를 사용하는 것을 특징으로 한다. Here, the carbon fiber is characterized by using a non-sizing carbon fiber or a carbon fiber sized with a sizing agent.

여기서, 상기 사이징에이전트는 우렌탄수지, 에폭시수지, 나일론수지로 이루어진 군에서 선택된 1종인 것을 특징으로 한다. Here, the sizing agent is characterized in that the one selected from the group consisting of uretan resin, epoxy resin, nylon resin.

여기서, 상기 탄소섬유는 에폭시수지로 사이징된 에폭시사이징 탄소섬유인 것을 특징으로 한다. Here, the carbon fiber is characterized in that the epoxy sizing carbon fiber sized with an epoxy resin.

삭제delete

여기서, 상기 탄소섬유는 촙타입(chopped type) 또는 밀드타입(milled type)을 사용하는 것을 특징으로 한다. Here, the carbon fiber is characterized in using a chopped type or a milled type.

여기서, 상기 폴리에틸렌수지조성물 100중량부에 대하여 메틸메타크릴레이트-부타디엔-스티렌계 보강제, 아크릴계 보강제, 염소화폴리에틸렌계(CPE) 보강제로 이루어진 군에서 선택되는 보강제 1 ~ 10중량부를 더 첨가하여 되는 것을 특징으로 한다. Here, 1 to 10 parts by weight of a reinforcing agent selected from the group consisting of methyl methacrylate-butadiene-styrene reinforcing agent, acrylic reinforcing agent, chlorinated polyethylene reinforcing agent (CPE) reinforcing agent is further added to 100 parts by weight of the polyethylene resin composition. It is done.

또한, 본 발명에서는 평균밀도 0.941 ~ 0.965g/ml인 고밀도 폴리에틸렌 수지 70 ~ 99중량%와, 논사이징(Non-sizing) 탄소섬유 또는 사이징에이전트(Sizing agent)로 사이징된 탄소섬유중 어느 하나의 탄소섬유 1 ~ 30중량%를 포함하도록 혼합하고, 상기 혼합물 100중량부에 대하여 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene) 5 ~ 20중량부를 혼합기에 넣고 배합하여 혼련된 폴리에틸렌 수지 조성물을 준비하는 단계;In the present invention, the carbon of any one of 70 to 99% by weight of the high-density polyethylene resin having an average density of 0.941 ~ 0.965g / ml, and carbon fiber sized with a non-sizing carbon fiber or a sizing agent 5 to 20 parts by weight of maleic anhydride grafted polyethylene added with maleic anhydride to 100 parts by weight of the mixture, and mixed with 1 to 30% by weight of fibers. Preparing a kneaded polyethylene resin composition by mixing into a mixer;

상기 혼련된 폴리에틸렌 수지 조성물을 20~30시간 건조 후 트윈스크류 익스트루더를 사용하여 210 ~ 250℃에서 압출한 뒤, 분쇄하여 펠렛(pellet)으로 가공하는 단계;
상기 가공된 펠렛을 동일한 조건을 반복하여 반복압출하여 펠렛으로 가공하는 2차 펠렛 가공단계;
Drying the kneaded polyethylene resin composition for 20 to 30 hours and extruding it at 210 to 250 ° C. using a twin screw extruder, followed by grinding and processing into pellets;
A secondary pellet processing step of repeatedly extruding the processed pellets in the same condition to process the pellets;

상기 가공된 펠렛을 180 ~ 195℃로 용융시키고, 상기 용융된 용융물을 250 ~ 340㎏/h의 속도로 공압출하여 관의 형태로 성형하는 단계; 및Melting the processed pellets at 180 to 195 ° C., and co-extruding the melted melt at a rate of 250 to 340 kg / h to form a tube; And

상기 성형된 관을 14 ~ 18℃로 냉각하는 단계로 이루어지는 것을 특징으로 하는 폴리에틸렌수지제 상하수도관 제조방법을 제공한다.
It provides a polyethylene resin water and sewage pipe manufacturing method comprising the step of cooling the molded tube to 14 ~ 18 ℃.

삭제delete

본 발명의 폴리에틸렌 수지 조성물은 고밀도 폴리에틸렌수지에 촙타입(chopped type) 또는 밀드타입(milled type) 에폭시 사이징된 탄소섬유 또는 논사이징 탄소섬유를 혼합하고, 상기 혼합물에 상기 탄소섬유의 분산성을 높여주는 계면활성첨가제를 첨가함으로써 폴리에틸렌 수지의 기계적물성을 향상시켜주어 상하수도관과 같은 대형관으로 제작가능한 효과가 있다.
The polyethylene resin composition of the present invention mixes a chopped type or milled type epoxy sized carbon sized or nonsized carbon fiber with a high density polyethylene resin and improves the dispersibility of the carbon fiber in the mixture. By adding a surfactant additive, the mechanical properties of the polyethylene resin can be improved, thereby producing a large pipe such as a water and sewage pipe.

이하, 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

하기 설명되는 PE는 폴리에틸렌(Polyethylene)을 지칭하는 것이다. The PE described below refers to polyethylene.

PE관 제조시 PE의 기계적 물성을 증진시키기 위하여 카본블랙, 유리섬유 등을 보강재로 사용한 관을 만들고 있으나 환경 문제 및 충분치 않은 물성을 나타내고 있고, 탄소 섬유를 이용한 PE관은 현재 개발되어 있지 않다. In order to improve the mechanical properties of PE, PE pipes are made of carbon black and glass fiber as reinforcing materials, but they show environmental problems and insufficient physical properties. PE pipes using carbon fiber have not been developed.

현재 국내에서는 PE관 제조시 PE의 내후성을 증진시키기 위하여 2-3%의 카본블랙을 사용하여 PE관을 제조하고 있으나 강도 등에서 충분히 증대시킬 수 없다. 또한, 유리섬유를 이용한 FRP관도 제조되고 있으나 유리섬유로 인한 환경문제 및 관의 접합 시 문제가 발생하고 있기 때문에 본 발명자들은 탄소섬유(이하. 라 한다)를 이용하여 PE관을 개발하고자 본 발명을 완성하였다. At present, PE pipe is manufactured using 2-3% carbon black to improve the weather resistance of PE when manufacturing PE pipe, but it cannot be sufficiently increased in strength. In addition, the FRP tube using glass fiber is also produced, but because of the environmental problems caused by the glass fiber and the problem of joining the tube, the present inventors have developed the present invention to develop a PE tube using carbon fiber (hereinafter referred to as) Completed.

상수도관으로서 물성치가 가장 우수한 폴리에틸렌(PE)관을 적용시 변형 문제가 발생하고 있으므로 PE관을 고 강성 탄소섬유로 보강함으로써 관 변형문제 등을 해결하고, 개발함으로서 어떠한 압력에도 누수 되지 않는 상수도관 개발을 목적으로 본 발명을 완성하고자 한다. Deformation problem occurs when applying the polyethylene (PE) pipe with the best physical properties as a water supply pipe. Therefore, by reinforcing the PE pipe with high rigid carbon fiber, the pipe deformation problem is solved and developed. It is intended to complete the present invention for the purpose.

탄소섬유는 일반적으로 제조시 섬유의 재료가 되는 유기섬유를 넣고 열을 가해 가는 실린더 형 노즐에 주입하여 미세한 실 형태로 뽑아내게 되는데, 이때 그 미세한 실 형태를 섬유형태로 잡아주기 위해 사이징 에이전트(Sizing agent)를 처리하게 된다. 이때 상기 사이징 에이전트로는 우레탄, 에폭시, 나일론 등이 있다. In general, carbon fiber is injected into a cylindrical nozzle that heats an organic fiber, which is a material of the fiber, and extracts it into a fine thread shape. agent). At this time, the sizing agent is urethane, epoxy, nylon and the like.

여기서, 상기 사이징 에이전트로 처리하는 방법은 통상의 사이징공정을 적용한다. Here, the method of processing with the sizing agent applies a conventional sizing process.

본 발명에서는 사용되는 탄소섬유로 상기 사이징에이전트로 사이징된 탄소섬유와 논사이징(Non-sizing) 탄소섬유를 사용하고, PE수지로 고밀도 폴리에틸렌수지(Hight Density Polyethylene; HDPE)를 사용하여 발명을 완성하였다. In the present invention, the carbon fiber used is a carbon fiber sized with the sizing agent and a non-sizing carbon fiber, and high density polyethylene resin (HDPE) is used as the PE resin. .

동시에 CF와 HDPE수지 계면간에 접착성의 중요성을 인식하여, 이에 섬유와 수지의 계면 접착성을 더욱 향상시키기 위한 일환으로 첨가제로 계면활성첨가제를 첨가하여 섬유와 수지간의 높은 계면 접착성을 유도하고 이를 통해 탄소 섬유의 우수한 기계적 물성이 PE관 제작시 관의 우수한 성능으로 구현해 내기 위한 목적으로 개발을 실시하였다. At the same time, recognizing the importance of adhesion between CF and HDPE resin interface, in order to further improve interfacial adhesion between fiber and resin, surfactant additives are added as additives to induce high interfacial adhesion between fiber and resin. Development was carried out for the purpose of realizing the excellent mechanical properties of the carbon fiber with the excellent performance of the pipe when manufacturing the PE pipe.

본 발명에 따르는 폴리에틸렌수지 조성물은 고밀도 폴리에틸렌 수지 70 ~ 99중량%와 탄소섬유 1 ~ 30중량%를 포함하는 폴리에틸렌수지 100중량부에 대하여 계면활성첨가제 5 ~ 20중량부를 혼합하여 이루어진다.The polyethylene resin composition according to the present invention is made by mixing 5 to 20 parts by weight of the surfactant additive with respect to 100 parts by weight of the polyethylene resin including 70 to 99% by weight of the high density polyethylene resin and 1 to 30% by weight of the carbon fiber.

상기 고밀도 폴리에틸렌 수지의 평균밀도 0.941 ~ 0.965인 수지를 사용하는 것이 바람직하다. 위의 밀도보다 낮은 밀도를 가지는 저밀도 폴리에틸렌수지 또는 중밀도 폴리에틸렌수지를 사용하여 상수도관으로 성형하는 것도 가능하나 상수도관으로서 보다 적합한 강도를 가지기 위해서는 위의 밀도를 가지는 고밀도 폴리에틸렌수지를 사용하여 성형하는 것이 더욱 적당하고 바람직하다.It is preferable to use a resin having an average density of 0.941 to 0.965 of the high density polyethylene resin. It is also possible to form a water pipe using a low density polyethylene resin or a medium density polyethylene resin having a density lower than the above density, but in order to have a more suitable strength as a water pipe, it is necessary to use a high density polyethylene resin having the above density. More suitable and preferred.

상기 탄소섬유는 논사이징(Non-sizing) 탄소섬유 또는 사이징에이전트(Sizing agent)로 사이징된 탄소섬유를 사용하는 것이 바람직하다. 또한, 상기 탄소섬유는 수지와의 접착성과 분산성을 확보하기 위하여 그 길이가 2 ~ 8㎜로 되는 것을 사용하는 것이 더욱 좋다. 보다 좋게는 3 ~ 6㎜의 탄소섬유를 사용하는 것이 더욱 바람직하다The carbon fiber is preferably a non-sizing carbon fiber or a carbon fiber sized with a sizing agent. In addition, the carbon fiber is more preferably used to have a length of 2 ~ 8mm in order to secure the adhesion and dispersibility with the resin. More preferably, it is more preferable to use 3 to 6 mm carbon fiber.

상기 사이징에이전트로는 우렌탄수지, 에폭시수지, 나일론수지로 이루어진 군에서 선택된 1종을 사용할 수 있으며, 보다 바람직하게는 우레탄수지를 사용하는 것이 좋으며, 따라서, 더욱 바람직하게는 상기 에폭시수지로 에폭시사이징(Epoxy sizing)된 탄소섬유를 사용하는 것이 좋다. As the sizing agent, one selected from the group consisting of uretan resin, epoxy resin and nylon resin may be used, and more preferably, urethane resin may be used, and therefore, more preferably, epoxy sizing with the epoxy resin. (Epoxy sizing) carbon fiber is recommended.

상기 계면활성제는 본 발명에서 목적하는 PE수지의 물성변화에 저해 되지 않는 한, 수지와 섬유간의 계면 접착성을 높여주기 위한 목적으로 통상 사용되는 계면활성첨가제를 사용하여도 무방하나, 보다 바람직하게는 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene)을 사용하는 것이 더욱 좋다. The surfactant may be a surfactant additive which is usually used for the purpose of enhancing the interfacial adhesion between the resin and the fiber, so long as it is not impaired in the physical property change of the PE resin desired in the present invention, more preferably It is better to use maleic anhydride grafted polyethylene with the addition of maleic anhydride.

본 발명에 따르면, 상기 탄소섬유는 촙타입(chopped type) 또는 밀드타입(milled type)으로 가공하여 사용할 수 있다.According to the present invention, the carbon fiber can be used by processing into a chopped type or a milled type.

본 발명에 따르면, 이상에서 개시된 본 발명의 폴리에틸렌 수지 조성물 100중량부에 대하여 메틸메타크릴레이트-부타디엔-스티렌계 보강제, 아클릴계 보강제, 염소화폴리에틸렌계(CPE) 보강제로 이루어진 군에서 선택되는 보강제 1 ~ 10중량부를 더 첨가할 수 있다. According to the present invention, the reinforcing agent selected from the group consisting of methyl methacrylate-butadiene-styrene reinforcing agent, acryl-based reinforcing agent, and chlorinated polyethylene-based (CPE) reinforcing agent based on 100 parts by weight of the polyethylene resin composition of the present invention disclosed above. 10 parts by weight may be further added.

본 발명에 따르면, 상기 개시된 폴리에틸렌 수지 조성물을 이용하여 되는 폴리에틸렌 수지재로 되는 상하수도관의 제조방법을 제공한다. According to the present invention, there is provided a method for producing a water and sewage pipe made of a polyethylene resin material using the polyethylene resin composition disclosed above.

상기 제조방법은 고밀도 폴리에틸렌 수지 70 ~ 99중량%와 탄소섬유 1 ~ 30중량%를 포함하도록 혼합하고, 상기 혼합물 100중량부에 대하여 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene) 5 ~ 20중량부를 혼합기에 넣고 배합하여 혼련된 폴리에틸렌 수지 조성물을 준비하는 단계;와 상기 혼련된 폴리에틸렌 수지 조성물을 20~30시간 건조 후 트윈스크류 익스트루더를 사용하여 210 ~ 250℃에서 압출한 뒤, 분쇄하여 펠렛(pellet)으로 가공하는 단계;와 상기 가공된 펠렛을 180 ~ 195℃로 용융시키고, 상기 용융된 용융물을 250 ~ 340㎏/h의 속도로 공압출하여 관의 형태로 성형하는 단계; 및 상기 성형된 관을 14 ~ 18℃로 냉각하는 단계로 이루어진다.The manufacturing method is mixed to include 70 to 99% by weight of the high-density polyethylene resin and 1 to 30% by weight of carbon fiber, maleic anhydride (maleic anhydride) added to 100 parts by weight of the mixture Preparing a kneaded polyethylene resin composition by mixing 5 to 20 parts by weight of a maleic anhydride grafted polyethylene in a mixer; and drying the kneaded polyethylene resin composition for 20 to 30 hours using a twin screw extruder. Extruded at 210 to 250 ° C., and then pulverized and processed into pellets; and the processed pellets are melted at 180 to 195 ° C., and the molten melt is cooled at a rate of 250 to 340 kg / h. Extruding to form a tube; And cooling the molded tube to 14 to 18 ° C.

본 발명에 따르면, 상기 펠렛으로 가공하는 단계에서 가공된 펠렛을 동일한 조건을 반복하여 반복압출하여 펠렛으로 가공하는 단계 2회 이상 반복하여 실시하는 것이 보다 바람직하다. According to the present invention, it is more preferable that the pellets processed in the step of processing the pellets are repeatedly carried out two or more times in the step of repeatedly extruding the same conditions to process the pellets.

이상에서 개시되는 본 발명의 폴리에틸렌 수지 조성물에 대한 물성을 실험을 통해 그 물성을 측정하였으며, 그 측정방법은 하기 개시된 바와 같다.The physical properties of the polyethylene resin composition of the present invention disclosed above were measured through experiments, and the measuring method is as described below.

이하에 개시된 실시예들은 본 발명에 의해 제공되는 폴리에틸렌 수지 조성물에 대한 예시이며, 하기 실시예로 본 발명을 한정하기 위한 것은 아니며, 필요에 따라 그 조성비 등은 변경가능한 것이다. The embodiments disclosed below are examples of the polyethylene resin composition provided by the present invention, and are not intended to limit the present invention to the following examples, and the composition ratios thereof may be changed as necessary.

[실시예][Example]

<재료의 준비><Preparation of materials>

폴리에틸렌수지로 평균밀도 0.941 ~ 0.951g/ml인 고밀도 폴리에틸렌 수지(HDPE)를 사용하였고, 탄소섬유는 에폭시수지로 사이징(sizing)된 것과 Non-sizing 탄소섬유를 사용하였다. As polyethylene resin, high density polyethylene resin (HDPE) having an average density of 0.941 ~ 0.951g / ml was used, and carbon fiber was used as sizing with epoxy resin and non-sizing carbon fiber.

첨가제로는 수지와 섬유간의 계면결합력을 높이기 위하여 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene(PE-g-MA)를 사용하였다. Maleic anhydride grafted polyethylene (PE-g-MA) was used to increase the interfacial bond between resin and fiber.

<시편제조방법><Testing Method>

1. HDPE, 탄소섬유 및 첨가제를 24시간 건조 후 트윈 스크류 익스트루더(Twin screw extruder)를 사용하여 230에서 압출한 뒤, 분쇄하여 펠렛으로 만들었다. 상기 펠렛을 몰더(molder)를 사용하여 230에서 몰딩시킨 다음 냉각시켜 덤벨 타입(dumbbell type)과 렉텡글러 타입(rectangular type)의 시편을 제조하였다. 1. HDPE, carbon fiber and additives were dried for 24 hours, extruded at 230 using a twin screw extruder, and then ground to pellets. The pellet was molded at 230 using a molder and then cooled to prepare specimens of a dumbbell type and a Rectangular type.

2. 상기 시편제조시 몰더로 몰딩전 제조된 펠렛을 24시간 건조 후 트윈 스크류 익스트루더(Twin screw extruder)를 사용하여 230℃에서 압출한 뒤, 분쇄하여 펠렛으로 만드는 과정을 2회 반복하여 동일한 방법으로 시편을 제조하였다.2. When the specimen is manufactured, the pellets prepared before molding with a molder are dried for 24 hours, extruded at 230 ° C. using a twin screw extruder, and then pulverized to make pellets. The specimen was prepared by the method.

<물성분석방법><Method analysis method>

1. 인장강도 및 인장탄성률1. Tensile Strength and Tensile Modulus

UTM(Universal testing machine)에서 덤벨 타입 시편을 사용하였으며, 시험속도 50㎜/min으로 측정하였다. Dumbbell-type specimens were used in a universal testing machine (UTM), and the test speed was measured at 50 mm / min.

2. 굴곡강도 및 굴곡탄성률2. Flexural Strength and Flexural Modulus

UTM에서 렉텡글러 타입 시편을 사용하였으며, 시험속도 10㎜/min으로 측정하였다.
In the UTM, a Reeggler type specimen was used and measured at a test speed of 10 mm / min.

<실험결과><Experimental Results>

1. chopped type과 milled type의 Epoxy-sizing 탄소섬유를 사용한 결과1. Result of using chopped type and milled type epoxy-sizing carbon fiber

chopped type과 milled type의 두 가지 Epoxy-sizing 탄소섬유를 각각 첨가한 시편을 제작하여 그 기계적 물성을 측정하였다. Two mechanically added specimens of chopped type and milled type of epoxy-sizing carbon fibers were prepared and their mechanical properties were measured.

1) HDPE/CF(milled type)의 물성측정 결과1) Measurement result of physical properties of HDPE / CF (milled type)

Milled type 탄소섬유를 1, 3, 5 및 10중량% 첨가시 물성의 변화는 하기 표 1에서 볼 수 있듯이 탄소섬유의 양이 증가함에 따라 굴곡강도와 굴곡탄성률의 증가하는데 인장강도와 인장탄성률의 변화는 크지 않은 것을 확인하였다. When 1, 3, 5, and 10% by weight of milled type carbon fiber is added, the change in physical properties is increased with increasing amount of carbon fiber, as shown in Table 1 below. Confirmed that it is not large.

Figure 112011034795914-pat00001
Figure 112011034795914-pat00001

2) HDPE/CF(chopped type)의 물성측정 결과2) Measurement result of HDPE / CF (chopped type)

하기 표 2에서 chopped type의 탄소섬유가 첨가된 경우 첨가량이 증가할수록 물성이 증가하는 것을 확인할 수 있었다. In the following Table 2, when the chopped type carbon fiber is added, physical properties increase as the amount added increases.

탄소섬유 첨가시 인장강도와 굴곡강도 모두 증가하는 것을 보여주었으며, 굴곡강도와 굴곡탄성률의 경우 10% 첨가 시에 큰 증가가 이루어짐을 확인하였다. Tensile strength and flexural strength were increased when carbon fiber was added, and it was confirmed that a great increase was made in 10% of flexural strength and flexural modulus.

Figure 112011034795914-pat00002
Figure 112011034795914-pat00002

위 표 1 및 2의 결과, 탄소섬유는 chopped type이 milled type에 비해 그 기계적 물성이 더 우수한 것을 확인하였으며, 따라서, 이후 실험에서는 탄소섬유를 chopped type으로된 탄소섬유를 사용하여 시편을 제조하여 기계적 물성을 측정하였다. As a result of Tables 1 and 2, it was confirmed that the chopped type of the carbon fiber has better mechanical properties than the milled type. Therefore, in the subsequent experiment, the specimen was manufactured by using the carbon fiber of the chopped type as the carbon fiber. Physical properties were measured.

2. Epoxy-sizing 탄소섬유와 Non-sizing 탄소섬유 첨가 시 물성변화 측정2. Measurement of physical property change when adding epoxy-sizing carbon fiber and non-sizing carbon fiber

탄소섬유가 Epoxy로 sizing된 것과 sizing이 되지 않은(Non-sizing) 것을 첨가하였을 때 기계적 물성변화를 측정하였다. The change of mechanical properties was measured when carbon fiber was added with sizing with epoxy and non-sizing.

1) HDPE/CF(chopped type and epoxy-sizing)의 물성측정 결과1) Measurement results of HDPE / CF (chopped type and epoxy-sizing)

하기 표 3에 나타난 바와 같이 chopped type 이면서 epoxy-sizing된 탄소섬유를 1, 3, 5% 첨가시의 인장 및 굴곡강도는 서서히 증가하다가 10% 이상 첨가시 급격히 증가하는 것을 알 수 있었고, 특히 굴곡탄성률은 20%에서 크게 증가하는 것을 확인하였다. As shown in Table 3, the tensile and flexural strengths of the chopped type and epoxy-sized carbon fiber when 1, 3, and 5% were added gradually increased, but increased rapidly when added more than 10%, especially the flexural modulus. Has increased significantly at 20%.

Figure 112011034795914-pat00003
Figure 112011034795914-pat00003

2) HDPE/CF(chopped type and epoxy-sizing, 2 pass)의 물성측정 결과2) Measurement results of physical properties of HDPE / CF (chopped type and epoxy-sizing, 2 pass)

고분자 매트릭스 안에서 CF의 분산을 보다 더 효과적으로 하여 기계적 물성의 증진시키기 위하여, 탄소섬유를 첨가한 후 다시 한번 압출을 더 하는 두 번의 반복압출공정(2 pass) 실험을 진행하였다. 그 결과 두 번 압출공정으로 제작된 시편의 물성인 하기 표 4의 결과는 한번만 압출한 시편의 결과인 표 3과 차이가 거의 없음을 확인하였다. In order to more effectively disperse CF in the polymer matrix and improve mechanical properties, two repeated two-extrusion experiments were performed, in which carbon fiber was added and extrusion was performed again. As a result, it was confirmed that the results of Table 4, which are the physical properties of the specimens produced by the extrusion process twice, are almost the same as those of Table 3, the results of the specimens extruded only once.

Figure 112011034795914-pat00004
Figure 112011034795914-pat00004

3) HDPE/CF(chopped type and non-sizing)의 물성측정 결과3) Measurement results of HDPE / CF (chopped type and non-sizing)

Non-sizing된 CF를 첨가할 경우의 물성을 보기 위한 실험을 수행하였다. Non-sizing CF는 수분을 함유하고 있었으므로 실험 전 건조공정을 거쳤는데 수분이 증발하면서 탄소섬유가 풀어져서 압출시 투입에 어려움이 있었다. 따라서, 건조를 하지 않고 압출하였는데 압출시 일부 수분은 열에 의해 증발한 것을 판단되었다. 결과는 하기 표 5에 나타낸 바와 같이 인장강도는 에폭시 사이징이 된 CF보다 증가하였지만, 인장탄성률의 경우는 감소하다가 20%이상 첨가시부터 급격히 증가하는 것을 확인하였고, 굴곡탄성률은 에폭시사이징 CF 대비 감소된 것을 알 수 있었다. Experiments were conducted to see the properties of non-sized CF. Since non-sizing CF contained moisture, it went through the drying process before the experiment, and it was difficult to input during extrusion because the carbon fiber was released as the moisture evaporated. Therefore, it extruded without drying, but it was judged that some moisture evaporated by heat at the time of extrusion. As shown in Table 5 below, the tensile strength was increased compared to the epoxy sized CF, but the tensile modulus decreased, but it increased rapidly from 20% or more, and the flexural modulus decreased compared to the epoxy sizing CF. I could see that.

인장탄성률의 변화로 볼 때, CF가 함유하고 있는 수분의 영향이 있는 것으로 판단된다. In view of the change in tensile modulus of elasticity, it is considered that there is an influence of moisture contained in CF.

Figure 112011034795914-pat00005
Figure 112011034795914-pat00005

4) HDPE/CF(chopped type and non-sizing, 2 pass)의 물성측정 결과4) Measurement results of physical properties of HDPE / CF (chopped type and non-sizing, 2 pass)

앞선 실험에서 한 번의 가공공정으로 완벽한 수분의 건조의 효과를 보지 못한 것으로 판단되어 동일한 조건으로 반복압출공정을 시도하여 완전한 수분의 건조를 시도하였다. In the previous experiment, it was judged that there was no effect of drying the perfect moisture in one processing process, and repeated drying extrusion process under the same conditions was attempted to dry the complete moisture.

그 결과, 하기 표 6에 나타낸 바와 같이 각각의 기계적 물성이 한번 압출한 경우보다 월등히 증가하는 것을 알 수 있었다. 이는 탄소섬유가 함유하고 있는 수분의 증발이 완전히 이루어진 결과로 판단된다.
As a result, as shown in Table 6, it can be seen that the mechanical properties of each were significantly increased compared with the case of one extrusion. This is believed to be the result of complete evaporation of the water contained in the carbon fiber.

Figure 112011034795914-pat00006
Figure 112011034795914-pat00006

3. 첨가제를 첨가한 후의 물성평가3. Property evaluation after adding additive

첨가제를 투입하여 탄소섬유와 폴리에틸렌수지의 계면을 강화시킴으로써 물성의 증가가 가능할 것으로 생각되어 첨가제를 압출시 동시에 투입하는 실험을 수행하였다. 첨가제로는 말레익 안하이드라이드(maleic anhydride)가 부가된 변성 폴리에틸렌(PE-g-MA)가 최적으로 판단되어 이를 이용하였다. The addition of additives to strengthen the interface between the carbon fiber and polyethylene resin is thought to be possible to increase the physical properties was carried out experiments to simultaneously add the additives during extrusion. As an additive, modified polyethylene (PE-g-MA) added with maleic anhydride was determined to be optimal.

1) HDPE/CF(chopped type and non-sizing)/PE-g-MA의 물성측정 결과1) Measurement results of HDPE / CF (chopped type and non-sizing) / PE-g-MA

HDPE와 CF간의 계면 접착성을 더욱 향상시키기 위하여 HDPE/CF 혼합물 100중량부에 대하여 변성폴리에틸렌(Maleic anhydride grafted polyethylene: PE-g-MA)을 5중량부(표 7), 10중량부(표 8) 첨가하여 실험을 수행하였다. To further improve the interfacial adhesion between HDPE and CF, 5 parts by weight (Table 7) and 10 parts by weight (Table 8) of maleic anhydride grafted polyethylene (PE-g-MA) per 100 parts by weight of HDPE / CF mixture Experiments were performed.

Non-sizing CF 이용시에는 하기 표 7과 8에 나타난 바와 같이 첨가제를 사용하지 않았을 경우보다 기계적 물성이 탄소섬유를 사용하지 않았을 경우에 비해 월등히 증가함을 알 수 있었다. When using non-sizing CF as shown in Tables 7 and 8 it can be seen that the mechanical properties are significantly increased compared to the case without using the carbon fiber than when the additive is not used.

Figure 112011034795914-pat00007
Figure 112011034795914-pat00007

Figure 112011034795914-pat00008
Figure 112011034795914-pat00008

2) HDPE/CF(chopped type and epoxy-sizing)/PE-g-MA의 물성측정 결과2) Measurement results of physical properties of HDPE / CF (chopped type and epoxy-sizing) / PE-g-MA

Epoxy-sizing CF는 첨가제(PE-g-MA)와 함께 동시 압출시 탄소섬유와 HDPE수지 사이의 계면간의 접착성이 증진되어 표 9(첨가제 5중량부 첨가), 10(첨가제 10중량부 첨가), 11(첨가제 15중량부 첨가), 12(첨가제 20중량부 첨가)에서 나타난 바와 같이 물성이 증가하는 것을 알 수 있었다. Epoxy-sizing CF enhances the adhesion between the interface between carbon fiber and HDPE resin when co-extrusion with additive (PE-g-MA). Table 9 (add 5 parts by weight of additive), 10 (add 10 parts by weight of additive) It can be seen that the physical properties increase as shown in (11, 15 parts by weight of the additive), 12 (20 parts by weight of the additive).

그 결과, 첨가제를 5중량부만 첨가하여도 충분한 물성 증가를 보여주고 있고, 이후 첨가제의 양을 증가시켜도 물성의 증가 정도는 큰 변화가 없음을 알 수 있었다. 특히, 20중량부를 첨가하였을 경우에는 물성증가가 이루어지나, 20중량부 미만이 첨가된 경우에 비해 그 물성증가의 정도가 낮음을 알 수 있었다. As a result, the addition of only 5 parts by weight of the additive shows a sufficient increase in physical properties, and even after increasing the amount of the additive was found that the degree of increase in physical properties does not change significantly. Particularly, when 20 parts by weight was added, the physical properties increased, but less than 20 parts by weight was added.

결과적으로 첨가제는 5중량부를 첨가하는 것이 물성 측면이나 경제성 면에서도 최적인 것으로 판단된다. As a result, it is judged that addition of 5 parts by weight of additives is optimal in terms of physical properties and economics.

특히, 이때의 물성은 앞서 진행된 다른 실험의 시편에 대한 결과보다 우수하여 에폭시 사이징된 탄소섬유와 첨가제로 PE-g-MA를 이용하는 것이 가장 좋은 것으로 판단되었다. In particular, the physical properties at this time is superior to the results for the other experiments conducted earlier, it was determined that it is best to use PE-g-MA as the epoxy sized carbon fiber and additives.

Figure 112011034795914-pat00009
Figure 112011034795914-pat00009

Figure 112011034795914-pat00010
Figure 112011034795914-pat00010

Figure 112011034795914-pat00011
Figure 112011034795914-pat00011

Figure 112011034795914-pat00012
Figure 112011034795914-pat00012

이상에서 보여지는 실험의 결과, 탄소섬유의 형태에 따른 물성의 차이를 비교하기 위하여 milled type과 chopped type의 두 가지의 물성을 실험을 통하여 확인하였다. milled type의 경우 실험하는 과정에서 본 발명에서 목적하는 바는 이룰 수 있었으나, 하나의 단점은 혼합 등의 공정상의 어려움이 있음을 알 수 있었고, 고분자 매트릭스 안에서의 탄소섬유의 고른 분산의 어려움이 있음을 알 수 있었다. 반면에 chopped type의 탄소섬유는 milled type의 탄소섬유보다 분산성이 우수하여 그에 따른 기계적 물성도 milled type에 비해 우수함을 알 수 있었다. 따라서, 탄소섬유를 혼합시 기계적 물성의 증가가 이루어짐이 확인되었고, 보다 바람직하게는 상기 탄소섬유가 miiiled type보다 chopped type의 탄소섬유를 사용하는 것이 더욱 좋음을 알 수 있었다. As a result of the experiment shown above, two physical properties of milled type and chopped type were confirmed through the experiment to compare the difference of physical properties according to the shape of carbon fiber. In the case of milled type, the purpose of the present invention could be achieved in the process of experimenting, but one disadvantage was that there were difficulties in process such as mixing, and it was difficult to evenly disperse the carbon fibers in the polymer matrix. Could know. On the other hand, the chopped type carbon fiber had better dispersibility than the milled type carbon fiber, and thus the mechanical properties were superior to the milled type. Therefore, it was confirmed that the mechanical properties are increased when mixing the carbon fiber, more preferably, it is better to use the chopped type carbon fiber than the carbon fiber miiiled type.

탄소섬유의 제조에 있어 에폭시로 사이징된 제품과 사이징되지 않고 수분으로만 처리된 제품으로 폴리에틸렌 수지와 혼합하였을 경우의 물성을 비교 확인하는 과정에서 Non-sizing 탄소섬유의 경우 수분의 제거가 우선적으로 요구되어 건조 후 공정에 적용 하였으나 수분이 제거 된 탄소섬유는 압출기에 투입 될 시 고르게 투입이 되지 아니하여 압출이 용이하지 못하였다. In the manufacture of carbon fiber, the removal of water is required in the case of non-sizing carbon fiber in the process of comparing and checking the physical properties when it is mixed with polyethylene resin with epoxy sized product and not sized water treatment. After drying, it was applied to the process, but the water-removed carbon fiber was not evenly fed when it was put into the extruder, so extrusion was not easy.

이 원인을 토대로 건조 과정을 생략하고 직접 압출기에 투입하여 가공열에 의한 수분의 건조를 유도하고 기존 에폭시 사이징이 된 탄소섬유의 기계적 물성을 비교하였다. 그 결과 기계적 물성이 탄소섬유를 적용하지 않았을 경우에 비해 월드히 우수함을 알 수 있었으며, 에폭시 사이징된 샘플의 결과보다는 약간 못미치는 수준을 확인하였다. On the basis of this reason, the drying process was omitted and directly added to the extruder to induce the drying of moisture by the heat of processing and to compare the mechanical properties of the carbon fiber with conventional epoxy sizing. As a result, it can be seen that the mechanical properties are superior to the world without the carbon fiber, and the level slightly less than the results of the epoxy sized samples.

이는 한 번의 압출공정으로는 완전한 수분의 건조가 이루어지지 않았기 때문으로 판단되어 Non-sizing된 탄소섬유를 2pass 공정으로 압출한 결과 기계적 물성의 증가를 확인할 수 있었다. This was judged to be because the complete moisture was not dried in one extrusion process. As a result of extruding the non-sized carbon fiber in the 2 pass process, the increase in mechanical properties was confirmed.

물성을 더욱 증진시키기 위하여 탄소섬유와 HDPE수지의 계면 간에 접착성을 더욱 향상시키기 위한 일환으로 첨가제로 PE-g-MA를 첨가제로 사용한 결과, PE-g-Ma의 첨가로 탄소섬유와 PE수지간의 계면 접착성이 우수하여 기계적물성이 크게 증가함을 알 수 있었다. 특히, 에폭시 사이징된 탄소섬유를 사용하였을 경우 그 기계적물성이 크게 증가하였고, Non-sizing 탄소섬유에서는 물성의 증가가 크게 향상되지는 않음을 알 수 있었다. In order to further improve the adhesion between the interface between the carbon fiber and the HDPE resin to further improve the physical properties, PE-g-MA as an additive was used as an additive. It was found that the mechanical properties were greatly increased due to the excellent interfacial adhesion. In particular, when the epoxy sized carbon fiber is used, the mechanical properties were greatly increased, and the increase in physical properties was not significantly improved in the non-sizing carbon fiber.

결과적으로, 첨가제의 첨가로 기계적 물성이 크게 증가되는 것을 알 수 있었고, 특히 에폭시 사이징 탄소섬유를 사용하고 PE-g-MA의 함량을 5중량부로 하였을 때 최적의 물성이 얻어지는 것으로 관찰되었다.
As a result, it was found that the mechanical properties were greatly increased by the addition of additives, and in particular, when the epoxy sizing carbon fiber was used and the content of PE-g-MA was 5 parts by weight, it was observed that optimum properties were obtained.

Claims (10)

상하수도관 제조용 폴리에틸렌수지 조성물에 있어서,
평균밀도 0.941 ~ 0.965g/ml인 고밀도 폴리에틸렌 수지 70 ~ 99중량%와, 논사이징(Non-sizing) 탄소섬유 또는 사이징에이전트(Sizing agent)로 사이징된 탄소섬유중 어느 하나의 탄소섬유 1 ~ 30중량%를 포함하는 폴리에틸렌수지 100중량부에 대하여 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene) 5 ~ 20중량부를 혼합하여 되는 것을 특징으로 하는 폴리에틸렌수지 조성물.
In the polyethylene resin composition for water and sewage pipe production,
70 to 99% by weight of a high density polyethylene resin having an average density of 0.941 to 0.965 g / ml, and 1 to 30% of any one of non-sizing carbon fiber or carbon fiber sized with a sizing agent Polyethylene resin, characterized in that 5 to 20 parts by weight of maleic anhydride grafted polyethylene (maleic anhydride) is added to 100 parts by weight of polyethylene resin containing% Resin composition.
삭제delete 삭제delete 제 1 항에 있어서,
상기 사이징에이전트는 우렌탄수지, 에폭시수지, 나일로수지로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 폴리에틸렌 수지 조성물.
The method of claim 1,
The sizing agent is a polyethylene resin composition, characterized in that one selected from the group consisting of uretan resin, epoxy resin, nilo resin.
제 1 항에 있어서,
상기 탄소섬유는 에폭시수지로 사이징된 에폭시사이징 탄소섬유인 것을 특징으로 하는 폴리에틸렌 수지 조성물.
The method of claim 1,
The carbon fiber is a polyethylene resin composition, characterized in that the epoxy sizing carbon fiber sized with an epoxy resin.
삭제delete 제 1 항에 있어서,
상기 탄소섬유는 촙타입(chopped type) 또는 밀드타입(milled type)을 사용하는 것을 특징으로 하는 폴리에틸렌 수지 조성물.
The method of claim 1,
The carbon fiber is a polyethylene resin composition, characterized in that using a chopped type (milled type).
제 1 항에 있어서,
상기 폴리에틸렌수지조성물 100중량부에 대하여 메틸메타크릴레이트-부타디엔-스티렌계 보강제, 아클릴계 보강제, 염소화폴리에틸렌계(CPE) 보강제로 이루어진 군에서 선택되는 보강제 1 ~ 10중량부를 더 첨가하여 되는 것을 특징으로 하는 폴리에틸렌 수지 조성물.
The method of claim 1,
1 to 10 parts by weight of a reinforcing agent selected from the group consisting of methyl methacrylate-butadiene-styrene reinforcing agent, acryl reinforcing agent and chlorinated polyethylene reinforcing agent (CPE) reinforcing agent is further added to 100 parts by weight of the polyethylene resin composition. Polyethylene resin composition.
폴리에틸렌수지제 상하수도관 제조방법에 있어서,
고밀도 폴리에틸렌 수지 70 ~ 99중량%와 탄소섬유 1 ~ 30중량%를 포함하도록 혼합하고, 상기 혼합물 100중량부에 대하여 말레익 안하이드라이드(Maleic anhydride)가 부가된 말레익 안하이드라이드 그라프트 폴리에틸렌(Maleic anhydride grafted polyethylene) 5 ~ 20중량부를 혼합기에 넣고 배합하여 혼련된 폴리에틸렌 수지 조성물을 준비하는 단계;
상기 혼련된 폴리에틸렌 수지 조성물을 20~30시간 건조 후 트윈스크류 익스트루더를 사용하여 210 ~ 250℃에서 압출한 뒤, 분쇄하여 펠렛(pellet)으로 가공하는 단계;
상기 가공된 펠렛을 동일한 조건을 반복하여 반복압출하여 펠렛으로 가공하는 2차 가공단계;
상기 가공된 펠렛을 180 ~ 195℃로 용융시키고, 상기 용융된 용융물을 250 ~ 340㎏/h의 속도로 공압출하여 관의 형태로 성형하는 단계; 및
상기 성형된 관을 14 ~ 18℃로 냉각하는 단계로 이루어지는 것을 특징으로 하는 폴리에틸렌수지제 상하수도관 제조방법.
In the polyethylene resin water and sewage pipe manufacturing method,
70 to 99% by weight of the high-density polyethylene resin and 1 to 30% by weight of carbon fiber, and mixed with maleic anhydride graft polyethylene (maleic anhydride) added to 100 parts by weight of the mixture ( Maleic anhydride grafted polyethylene) 5 to 20 parts by weight of a blender to prepare a kneaded polyethylene resin composition;
Drying the kneaded polyethylene resin composition for 20 to 30 hours and extruding it at 210 to 250 ° C. using a twin screw extruder, followed by grinding and processing into pellets;
A secondary processing step of repeatedly extruding the processed pellets under the same conditions to process the pellets;
Melting the processed pellets at 180 to 195 ° C., and co-extrusion the melted melt at a rate of 250 to 340 kg / h to form a tube; And
Polyethylene resin water and sewage pipe manufacturing method comprising the step of cooling the molded tube to 14 ~ 18 ℃.
삭제delete
KR1020110044130A 2011-05-11 2011-05-11 Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof Expired - Fee Related KR101127601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110044130A KR101127601B1 (en) 2011-05-11 2011-05-11 Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110044130A KR101127601B1 (en) 2011-05-11 2011-05-11 Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof

Publications (1)

Publication Number Publication Date
KR101127601B1 true KR101127601B1 (en) 2012-03-22

Family

ID=46142387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110044130A Expired - Fee Related KR101127601B1 (en) 2011-05-11 2011-05-11 Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof

Country Status (1)

Country Link
KR (1) KR101127601B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937123A (en) * 2014-04-09 2014-07-23 苏州市相城区明达复合材料厂 Carbon fiber pipeline composite material
CN104945710A (en) * 2015-06-18 2015-09-30 宁波高新区卓尔化工科技有限公司 Halogen-free polyethylene composition for pipe preparation
CN105237846A (en) * 2015-08-25 2016-01-13 广东联塑科技实业有限公司 High-density polyethylene (HDPE) pipe material used for deep-sea aquaculture net cage
CN113462059A (en) * 2021-07-22 2021-10-01 黑龙江贞财管道有限公司 High-density polyethylene pipeline for coiled high-toughness spray irrigation
CN115059806A (en) * 2022-06-27 2022-09-16 青岛优派普环保科技股份有限公司 PE pipe for fuel gas and preparation method thereof
KR102577286B1 (en) 2023-01-16 2023-09-11 주식회사 파이프랜드 Polyethylene synthetic resin pipe with improved rigidity and elasticity
KR102615592B1 (en) 2023-01-16 2023-12-20 주식회사 파이프랜드 Manufacturing method of polyethylene synthetic resin pipe with improved rigidity and elasticity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218711A (en) 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2004107626A (en) 2002-07-16 2004-04-08 Toray Ind Inc Carbon fiber reinforced thermoplastic resin composition, molding material and molded article
JP2005213479A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
KR101019261B1 (en) 2010-11-23 2011-03-04 제룡산업 주식회사 Corrugated pipe for electric wire using recycled polyethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218711A (en) 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2004107626A (en) 2002-07-16 2004-04-08 Toray Ind Inc Carbon fiber reinforced thermoplastic resin composition, molding material and molded article
JP2005213479A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
KR101019261B1 (en) 2010-11-23 2011-03-04 제룡산업 주식회사 Corrugated pipe for electric wire using recycled polyethylene

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937123A (en) * 2014-04-09 2014-07-23 苏州市相城区明达复合材料厂 Carbon fiber pipeline composite material
CN103937123B (en) * 2014-04-09 2016-05-11 苏州市相城区明达复合材料厂 Carbon fiber pipeline composite
CN104945710A (en) * 2015-06-18 2015-09-30 宁波高新区卓尔化工科技有限公司 Halogen-free polyethylene composition for pipe preparation
CN105237846A (en) * 2015-08-25 2016-01-13 广东联塑科技实业有限公司 High-density polyethylene (HDPE) pipe material used for deep-sea aquaculture net cage
CN113462059A (en) * 2021-07-22 2021-10-01 黑龙江贞财管道有限公司 High-density polyethylene pipeline for coiled high-toughness spray irrigation
CN115059806A (en) * 2022-06-27 2022-09-16 青岛优派普环保科技股份有限公司 PE pipe for fuel gas and preparation method thereof
CN115059806B (en) * 2022-06-27 2024-02-09 青岛优派普环保科技股份有限公司 PE pipe for fuel gas and preparation method thereof
KR102577286B1 (en) 2023-01-16 2023-09-11 주식회사 파이프랜드 Polyethylene synthetic resin pipe with improved rigidity and elasticity
KR102615592B1 (en) 2023-01-16 2023-12-20 주식회사 파이프랜드 Manufacturing method of polyethylene synthetic resin pipe with improved rigidity and elasticity
KR20240114255A (en) 2023-01-16 2024-07-23 주식회사 파이프랜드 Manufacturing method of polyethylene synthetic resin pipe with improved rigidity and elasticity

Similar Documents

Publication Publication Date Title
KR101127601B1 (en) Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof
CN109535670A (en) A kind of Wholly-degradable emulation material and preparation method thereof
CN104591633A (en) Manufacturing method of polyacrylonitrile fiber impermeable concrete
CN104405963A (en) Plastic pipe and preparation method thereof
CN104910521A (en) Super-cold-resistant impact-resistant high-toughness PP-R pipe material and preparation method thereof
CN104072901B (en) Underground modified PVC non-excavation special communication pipe and preparation method thereof
CN105153531A (en) High-temperature-resistant PE (polyethylene) corrugated pipe filling master batch and preparation method thereof
CN107778690A (en) Impact pvc pipe and its production method
CN107057305A (en) A kind of degradable poly lactic acid composite formula and preparation method thereof
CN103602051A (en) Glass fiber reinforced polycarbonate composite material
CN104311961A (en) Fiber enhanced nozzle
CN104693590A (en) Low temperature-resistance polypropylene plastic having good fluidity and preparation method thereof
CN104479193B (en) A kind of nano whisker modified PE tubing and preparation method thereof
CN106117746B (en) A kind of high density polyethylene (HDPE) plasticizing mother particle and preparation method thereof and its application in hdpe pipe
CN105017765A (en) Basic magnesium sulfate whisker/PA610T composite material and preparation method thereof
CN105860294A (en) Low-temperature resistant bendable PB pipeline material and preparation method thereof
CN106380692A (en) Carbon fiber/graphene synergic reinforced toughened plastic pipe and preparation method thereof
CN108359164A (en) It is a kind of to build special drainage pipe and preparation method thereof
Lu et al. Weld line morphology and strength of polystyrene/polyamide-6/poly (styrene-co-maleic anhydride) blends
Huang et al. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber
KR101901164B1 (en) ceramic-polyethylene plastic pipe and manufacturing method thereof
CN104650606B (en) Anaerobism outdoor scene material and preparation method thereof
CN102558666A (en) Ceramic fiber reinforced polypropylene complex and preparation method thereof
CN103694558B (en) A kind of Phenolic aldehyde sphere/polypropylenecomposite composite material and preparation method thereof
CN115703928A (en) Modified resin for portable seawater filter and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110511

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20110630

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20110511

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110810

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20111208

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120309

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120312

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150309

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160410

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160410

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170410

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170410

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180508

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20190513

Start annual number: 8

End annual number: 8

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20201220