[go: up one dir, main page]

KR101110255B1 - Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof - Google Patents

Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof Download PDF

Info

Publication number
KR101110255B1
KR101110255B1 KR1020090068081A KR20090068081A KR101110255B1 KR 101110255 B1 KR101110255 B1 KR 101110255B1 KR 1020090068081 A KR1020090068081 A KR 1020090068081A KR 20090068081 A KR20090068081 A KR 20090068081A KR 101110255 B1 KR101110255 B1 KR 101110255B1
Authority
KR
South Korea
Prior art keywords
steel sheet
coating
weight
parts
electrical steel
Prior art date
Application number
KR1020090068081A
Other languages
Korean (ko)
Other versions
KR20110010483A (en
Inventor
권민석
한민수
김정우
박순복
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090068081A priority Critical patent/KR101110255B1/en
Publication of KR20110010483A publication Critical patent/KR20110010483A/en
Application granted granted Critical
Publication of KR101110255B1 publication Critical patent/KR101110255B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/34Magnesium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

본 발명은 방향성 전기강판의 절연피막 형성에 관한 것으로, 보다 상세하게는 크롬이나 크롬산화물을 함유하지 않고도 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물과 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 상기 피복조성물로 절연피막이 형성된 방향성 전기강판에 관한 것이다. The present invention relates to the formation of an insulating coating of a grain-oriented electrical steel sheet, and more particularly, to forming a coating composition for forming an insulating coating of electrical steel sheet having excellent coating tension and corrosion resistance without containing chromium or chromium oxide and forming an insulating coating of a grain-oriented electrical steel sheet using the same. The present invention relates to a grain-oriented electrical steel sheet having an insulating coating method and the coating composition.

이를 위한 본 발명의 절연피막 형성용 피복조성물은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 니켈 화합물중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부, 붕산을 0.1~10중량부 첨가하여 조성되며, 방향성 전기강판은 상기 피복조성물로 형성된 절연피막의 피막장력이 0.35~1.00kg/mm2이며, 방향성 전기강판의 절연피막 형성방법은 상기 피복조성물을 건조상태 피막 도포량이 0.5~6.0g/m2으로 되도록 강판 표면에 도포한후, 후반의 열처리 온도를 초기의 열처리 온도보다 높게 하여 수행되는 2단계 열처리에 의해 절연피막을 형성한다. The coating composition for forming an insulating film of the present invention for this purpose is 0.1 to 25 parts by weight based on nickel conversion of at least one selected from 25 to 300 parts by weight of silica, nickel or nickel compounds based on 100 parts by weight of phosphate , 0.1-10 parts by weight of boric acid is added, the grain-oriented electrical steel sheet has a coating tension of 0.35 ~ 1.00kg / mm 2 formed of the coating composition, the insulating film forming method of the grain-oriented electrical steel sheet is the coating composition After the coating on the surface of the steel sheet so that the dry coating amount is 0.5 ~ 6.0g / m 2 , the insulating film is formed by a two-step heat treatment performed by the second heat treatment temperature higher than the initial heat treatment temperature.

방향성 전기강판, 절연피막, 피복조성물, 수산화기, 실리카 Oriented electrical steel, insulation coating, coating composition, hydroxyl group, silica

Description

피막특성이 우수한 전기강판 절연피막 형성용 피복조성물과 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 피복조성물로 절연피막이 형성된 방향성 전기강판{Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof}Coated composition for forming insulation film, Method for manufacturing insulation film of grain-oriented with a coating composition for forming an insulating film with excellent coating properties, and a method for forming an insulating film of a grain-oriented electrical steel sheet using the same and a coating composition electric steel sheet using it And Grain-oriented electric steel sheet therof}

본 발명은 방향성 전기강판의 절연피막 형성에 관한 것으로, 보다 상세하게는 크롬을 포함하지 않고 내식성과 피막장력 및 소재와의 접착성을 향상시키는 피막특성이 우수한 전기강판 절연피막 형성용 피복조성물과 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 피복조성물로 절연피막이 형성된 방향성 전기강판에 관한 것이다. The present invention relates to the formation of an insulating coating of a grain-oriented electrical steel sheet, and more particularly, to a coating composition for forming an insulating coating of electrical steel, which does not contain chromium and has excellent coating properties to improve corrosion resistance, film tension, and adhesion to a material. The present invention relates to a method for forming an insulating coating of a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet having an insulating coating formed of a coating composition.

방향성 전기강판은 (110)[001] 방향으로 정열된 결정립 방위의 집합조직을 갖는 전기강판으로서, 압연방향으로 우수한 자기적 특성을 가지고 있어 변압기와 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용되고 있다. A grain-oriented electrical steel sheet is an electrical steel sheet having an aggregate structure of grain orientations arranged in the direction of (110) [001]. It has excellent magnetic properties in the rolling direction and is used as a core material for transformers, motors, generators, and other electronic devices. have.

이러한 방향성 전기강판의 전력 손실을 최소화하기 위한 목적으로 전기강판의 표면에는 절연피막이 형성되고 있으며, 절연피막은 기본적으로 전기 절연성이 높고 소재와의 접착성이 우수하며, 외관에 결함이 없는 균일한 색상을 가져야 한다. 이와 함께, 최근에는 고자속밀도 방향성 전기강판이 상용화되면서 절연피막의 고장력화를 추구하게 되었으며, 실제 고장력 절연피막이 최종제품의 자기적 특성 개선에 크게 기여함이 확인되었다.In order to minimize the power loss of the oriented electrical steel sheet, an insulating film is formed on the surface of the electrical steel sheet, and the insulating film is basically a high electric insulation, excellent adhesion to the material, uniform color without appearance defects Should have In addition, in recent years, high magnetic flux density oriented electrical steel sheet has been commercialized, and the high tensile strength of the insulating film has been pursued, and it has been confirmed that the high tensile insulating film contributes to the improvement of the magnetic properties of the final product.

고장력피막을 형성하기 위해 여러 가지 방법이 제안되었는데, 현재 상품화되어 있는 방향성 전기강판은 강판과 폴스테라이트계 바탕 피막 위에 형성된 절연피막의 열팽창계수 차이를 이용하는 것에 의해 강판에 인장응력을 부여함으로써 철손 감소 효과를 도모하고 있다. Various methods have been proposed to form a high tensile film. Currently commercialized oriented electrical steel sheet reduces iron loss by applying tensile stress to the steel sheet by using the difference in thermal expansion coefficient between the steel sheet and the insulating film formed on the base layer of the foliarite base. The effect is planned.

종래의 대표적인 절연피막 형성방법으로서, 일본특허 제2688147호와 일본특허 제3098691호는 알루미나 주체의 알루미나 졸(Alumina sol)과 붕산 혼합액을 이용하여 전기강판에 고장력의 산화물 피막을 형성하는 기술을 제안하고 있다. 그러나 이는 붕산으로 의한 피막 변질에 의해 녹이 발생하는 문제를 근본적으로 해결하고 있지는 못하고 있다. As a representative method of forming a conventional insulating film, Japanese Patent No. 2688147 and Japanese Patent No. 3098691 propose a technique of forming a high tensile oxide film on an electrical steel sheet using alumina sol and a mixture of boric acid. have. However, this does not fundamentally solve the problem of rust generated by the film deterioration by boric acid.

한편, 일본 특개평 11-71683호는 고온의 유리전이온도를 가진 콜로이드 실리카를 사용하여 피막장력을 향상시킨 방법을 제안하고 있으며, 한국특허 제0377566호에서는 폴스테라이트계 바탕 피막 위에 특정 금속원자를 함유한 인산수소염과 실리카로 구성된 제1층을 형성시킴으로써 폴스테라이트계 바탕 피막과 절연 피막과의 밀착성 향상을 유도하고, 그 위에 재차 붕산 알루미늄을 주성분으로 하는 제2층을 형성시킴으로써 더욱 강력한 피막장력 효과를 내는 기술을 제안하고 있다. 그러나 이러한 종래기술에 의한 코팅액 조성은 내식성 개선을 위해 크롬산화물 첨가가 불 가피한 것으로, 환경 오염 방지를 위하여 크롬 사용에 대한 규제가 강화되어가고 있는 현실에 비추어 그 용도가 제한되고 있는 실정이다.On the other hand, Japanese Patent Application Laid-Open No. 11-71683 proposes a method of improving the film tension by using colloidal silica having a high glass transition temperature, and in Korean Patent No. 0377566, a specific metal atom is formed on the base layer of the polesterite-based film. The formation of the first layer composed of hydrogen phosphate salt and silica induces an improvement in the adhesion between the foliarite base coating film and the insulating coating film, and a second layer containing aluminum borate as a main component is formed thereon. Proposes a technology that produces a tension effect. However, the coating liquid composition according to the prior art is inevitably added to the chromium oxide to improve the corrosion resistance, the situation is limited in view of the reality that the restrictions on the use of chromium in order to prevent environmental pollution.

이에, 최근의 환경 규제 강화에 대응하여 무크롬계 절연피막의 피막특성을 개선하기 위한 연구가 활발히 진행되고 있다. In response to the recent strengthening of environmental regulations, studies are being actively conducted to improve coating properties of chromium-free insulating films.

무방향성 전기강판의 경우 절연피막에 크롬을 배제하여 생기는 내식성과 밀착성 열화를 보강하기 위하여 인산염을 도입하거나 콜로이드 실리카를 도입하여 배리어 효과를 유도하는 방법이 활발히 제안되고 있다. 그러나 인산염 또는 콜로이드 실리카를 주축으로 하는 무방향성 전기강판의 무크롬계 코팅제 모두 인산염이 가지고 있는 젖음성(Sticky)이나 콜로이드 실리카가 가지고 있는 내식성 문제를 완전하게 해결하지는 못하는 것이다.In the case of non-oriented electrical steel sheet, a method of inducing a barrier effect by introducing phosphate or colloidal silica to reinforce corrosion resistance and adhesion deterioration caused by removing chromium from the insulating coating has been actively proposed. However, none of the chromium-free coatings of non-oriented electrical steel sheets mainly composed of phosphate or colloidal silica do not completely solve the problem of the corrosion resistance of the sticky or colloidal silica of phosphate.

방향성 전기강판용 무크롬계 장력코팅제로는 일본특허 제2007-23329호에서 공시된 바와 같이 Fe, Al, Ga, Ti 등이 개질된 콜로이드 실리카를 도입하는 방법이나, 한국공개특허 제2008-0025733호에서와 같이 Fe, Co, Cu 등의 산화물을 도입하여 내식성과 피막장력을 향상시키는 방법이 제안되고 있다. 그러나, 전자의 경우 콜로이드 실리카를 Fe, Al 등과 반응하여 개질시키는 과정이 상당히 복잡하여 제조비용 측면에서 불리하고 그 효과 또한 충분하지 않아 산업계에서 실시되기에는 어려우며, 후자의 경우 전자에 비해 간단하게 이용할 수는 있으나 도입된 산화물들이 단순히 코팅제 건조시 발생하는 자유인산을 방지하는 효과에 의해 부수적으로 피막 치밀성이나 피막장력을 향상시키는 것이어서, 최근의 고급 방향성 전기강판에 요구되는 높은 내식성과 피막장력 수준을 만족시키기에는 한계가 있다.As a chromium-free tension coating agent for oriented electrical steel sheets, a method of introducing colloidal silica modified with Fe, Al, Ga, Ti, etc., as disclosed in Japanese Patent No. 2007-23329, but in Korean Unexamined Patent Publication No. 2008-0025733 As described above, a method of improving the corrosion resistance and the film tension by introducing oxides such as Fe, Co, and Cu has been proposed. However, in the former case, the process of modifying colloidal silica by reacting with Fe, Al, etc. is quite complicated, which is disadvantageous in terms of manufacturing cost and its effect is not sufficient, so it is difficult to be implemented in the industry. However, the introduced oxides are to improve the film density and film tension incidentally by simply preventing the free phosphoric acid generated when the coating is dried, so as to satisfy the high corrosion resistance and film tension level required in recent high-quality oriented electrical steel sheets. There is a limit.

이와 같이 현재까지 고급 방향성 전기강판에 요구되는 높은 피막장력과 내식성, 접착성, 표면 광택 등의 우수한 피막특성을 모두 만족하는 무크롬계 코팅제의 상용화 기술은 제안되어 있지 않은 실정이다.As such, no technology for commercializing a chromium-free coating agent that satisfies all of the excellent coating properties such as high film tension, corrosion resistance, adhesion, and surface gloss required for high-quality grain-oriented electrical steel sheet has not been proposed.

본 발명은 상술한 바와 같은 종래 기술의 제반 문제점을 해소하기 위하여 안출된 것으로, 크롬을 함유하지 않아 친환경적이면서 우수한 내식성과 밀착성, 상용성 그리고 높은 피막장력을 갖는 전기강판 절연피막 형성용 피복조성물과 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 그 피복조성물로 절연피막이 형성된 방향성 전기강판을 제공하는 것을 그 목적으로 하는 것이다. The present invention has been made to solve all the problems of the prior art as described above, it does not contain chromium, it is environmentally friendly and has excellent corrosion resistance, adhesion, compatibility and high film tension coating composition for forming an electrical steel sheet and the same It is an object of the present invention to provide a method for forming an insulating coating of a grain-oriented electrical steel sheet and a coating-oriented electrical steel sheet having an insulating coating.

상기 과제를 해결하기 위한 본 발명의 전기강판 절연피막 형성용 피복조성물은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 니켈 화합물중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부, 붕산을 0.1~10중량부 첨가하여 조성되어, 특별히 크롬이나 크롬산화물을 첨가하지 않고도 피막장력과 내식성을 향상시키는 것을 특징으로 한다. In order to solve the above problems, the coating composition for forming an electrical steel sheet according to the present invention may include at least one selected from 25 to 300 parts by weight of silica, nickel or a nickel compound based on solids based on 100 parts by weight of phosphate, based on nickel conversion amount. 0.1 to 25 parts by weight and 0.1 to 10 parts by weight of boric acid is added to the composition, characterized in that it improves the film tension and corrosion resistance without adding chromium or chromium oxide.

상기 니켈 화합물은 수산화니켈로 이루어지는 것이 바람직하다. It is preferable that the said nickel compound consists of nickel hydroxide.

상기 과제를 해결하기 위한 본 발명의 피막장력과 내식성이 우수한 방향성 전기강판은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피복조성물로 절연피막이 형성되고, 상기 절연피막의 피막장력이 0.35~1.00kg/mm2인 것을 특징으로 한다. The oriented electrical steel sheet excellent in the film tension and corrosion resistance of the present invention for solving the above problems is 25 to 300 parts by weight of silica, nickel or nickel hydroxide in terms of solids based on 100 parts by weight of phosphate An insulation coating is formed of a coating composition added by adding 0.1 to 25 parts by weight as a standard, and the coating tension of the insulation coating is 0.35 to 1.00 kg / mm 2 .

상기 인산염은 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연의 단독 혹은 이들중에서 선택되는 적어도 둘 이상이 혼합된 형태로 이루어질 수 있다. The phosphate may be in the form of a mixture of at least two or more selected from monobasic aluminum phosphate, monobasic magnesium phosphate or zinc monophosphate.

상기 실리카는 표면에 수산화기를 가지는 평균 입경 1nm이상 100nm이하의 나노입자로 이루어지는 것이 바람직하다. The silica is preferably made of nanoparticles having an average particle diameter of 1 nm or more and 100 nm or less having a hydroxyl group on the surface.

상기 피복조성물은 인산염 100중량부에 대해 수산화코발트 0.1~40중량부를 더 첨가하여 조성됨이 보다 바람직하다. The coating composition is more preferably formed by adding 0.1 to 40 parts by weight of cobalt hydroxide relative to 100 parts by weight of phosphate.

상기 과제를 해결하기 위한 본 발명의 피막장력과 내식성이 우수한 방향성 전기강판의 절연피막 형성방법은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피복조성물을 건조상태 피막 도포량이 0.5~6.0g/m2 으로 되도록 강판 표면에 도포한후, 후반의 열처리 온도를 초기의 열처리 온도보다 높게 하여 수행되는 2단계 열처리에 의해 절연피막을 형성하는 것을 특징으로 한다. The method for forming an insulating film of a grain-oriented electrical steel sheet having excellent film tension and corrosion resistance of the present invention for solving the above problems is at least one selected from 25 to 300 parts by weight of silica, nickel or nickel hydroxide based on 100 parts by weight of phosphate solids The coating composition formed by adding 0.1-25 parts by weight based on the nickel conversion amount was applied to the surface of the steel sheet so that the dry coating amount was 0.5 to 6.0 g / m 2 , and the latter heat treatment temperature was lower than the initial heat treatment temperature. Characterized in that the insulating film is formed by a two-step heat treatment carried out at a high level.

상기 피복조성물은 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연중에서 선택되는 적어도 둘 이상을 혼합한 후, 표면에 수산화기를 가지며 평균 입경이 1nm이상 100nm이하로 이루어진 실리카 나노입자와 수산화니켈을 도입하는 배합순서에 의해 조성되는 것이 바람직하다. The coating composition is a mixture of at least two selected from monobasic aluminum phosphate, monobasic magnesium phosphate or zinc monophosphate, and has a hydroxyl group on the surface, and the silica nanoparticles and nickel hydroxide having an average particle diameter of 1 nm or more and 100 nm or less. It is preferable to be comprised by the compounding procedure to introduce.

상기 2단계 열처리는 800℃미만의 저온에서 10초~10분간 열처리한 후, 800℃ 이상의 고온에서 30초~10분간 열처리하여 수행되는 것이 특히 바람직하다. The two-step heat treatment is particularly preferably performed by heat treatment for 10 seconds to 10 minutes at a low temperature of less than 800 ℃, then heat treatment for 30 seconds to 10 minutes at a high temperature of 800 ℃ or more.

본 발명에 의하면 저온에서는 수산화니켈이 수산화기로 구성된 실리카 나노입자와 강한 수소결합을 형성하여 혼용성과 상용성이 우수하며, 고온에서는 실리카 나노입자들간의 반응을 통하여 공고하고 치밀하나 피막을 형성함은 물론 소재와 피막 간의 밀착성을 향상시킬 수 있다. According to the present invention, nickel hydroxide forms strong hydrogen bonds with silica nanoparticles composed of hydroxyl groups at low temperatures, and thus has excellent compatibility and compatibility, and at high temperatures, solid and dense ones are formed through reactions between silica nanoparticles. The adhesion between the material and the film can be improved.

또한 본 발명에 의하면 종래의 절연피막보다 높은 장력부여능을 얻을 수 있으며, 크롬을 함유하지 않는 친환경 기술에 의하여 우수한 내식성을 갖는 고급 방향성 전기강판을 생산할 수 있다. In addition, according to the present invention can obtain a higher tension imparting ability than the conventional insulating film, it is possible to produce high-quality oriented electrical steel sheet having excellent corrosion resistance by an environmentally friendly technology that does not contain chromium.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 피복조성물은 크롬을 함유하지 않고도 우수한 피막특성을 나타낼 수 있는 무크롬계 코팅재로서, 환경 규제로 인한 제약 없이 방향성 전기강판 등의 절연피막 형성용 코팅재로 사용되어질 수 있다. The coating composition of the present invention is a chromium-free coating material that can exhibit excellent coating properties without containing chromium, and can be used as a coating material for forming an insulating film such as a grain-oriented electrical steel sheet without restriction due to environmental regulations.

크롬계 코팅재의 경우 피막건조시 6가 크롬이온(Cr6+)이 코팅재 내에 존재하는 물과 반응하여 크롬산(H2CrO4)으로 변하며, 다시 크롬산(H2CrO4)은 강판에 존재하는 철(Fe)과 반응하여 산화철(FeO)을 생성함으로써 산화철(FeO)과 금속 인산염이 반응할 수 있는 상태로 만든다. 이러한 작용은 크롬산(H2CrO4)에 존재하는 두개의 수산화기(Hydroxy group, -OH) 때문에 가능한 것으로, 강판과 코팅재 간의 밀착성 을 향상시키는데 도움을 주어 결과적으로 피막장력을 향상시키게 되는 것이다. 또한 6가 크롬이온(Cr6+)은 생산된 산화철(FeO)과도 반응하여 3가 크롬이온(Cr3+)으로 환원되기도 하며 환원된 3가 크롬이온(Cr3+)의 축합반응에 의해 피막치밀성을 높이며, 이는 내식성 향상에 지대한 영향을 미친다. 또한 산화크롬은 피막 건조후 젖음성(Sticky) 불량을 일으키는 자유인산의 발생을 억제함으로써 표면 물성을 향상시킨다. 따라서 산화크롬이 코팅재로부터 배제되면 피막 밀착성, 피막장력, 내식성과 같은 피막특성을 확보하기 매우 어렵게 된다.In the case of the chromium-based coating material, hexavalent chromium ion (Cr 6+ ) reacts with water present in the coating material when the film is dried to convert it into chromic acid (H 2 CrO 4 ), and again, chromic acid (H 2 CrO 4 ) is present in the steel sheet. By reacting with (Fe) to produce iron oxide (FeO) it is made to react with iron oxide (FeO) and metal phosphate. This action is possible due to the two hydroxyl groups (Hydroxy group, -OH) present in the chromic acid (H 2 CrO 4 ), which helps to improve the adhesion between the steel sheet and the coating material and consequently improves the film tension. In addition, hexavalent chromium ion (Cr 6+) is a film reaction excessively produced iron oxide (FeO) to 3 are sometimes reduced to chromium ions (Cr 3+), and a reduced 3 by a condensation reaction of the chromium ions (Cr 3+) It increases the density, which greatly affects the corrosion resistance. In addition, chromium oxide improves surface properties by suppressing the generation of free phosphoric acid, which causes poor wetting after drying the film. Therefore, when chromium oxide is excluded from the coating material, it is very difficult to secure the coating properties such as film adhesion, film tension, and corrosion resistance.

한편, 실리카의 경우 피막장력이 우수하여 많이 사용되고 있으나, 이산화규소(SiO2)를 사용할 경우에는 코팅재의 용매로 사용되는 물에 분산이 잘 되지 않아 표면품질 편차가 발생하게 되고, 장력코팅재의 바인더로 사용되는 금속 인산염과 상용성이 좋지 않아 겔화를 일으키게 된다. 이러한 경우 산화크롬을 첨가하면 두 성분이 혼합될 때 겔화를 방지하며 코팅재가 안정한 액상을 지닐 수 있게 된다. 따라서 산화크롬이 코팅재에서 배제되는 경우 발생되는 실리카와 금속 인산염의 혼용성 저하는 코팅재 제조를 어렵게 하는 주된 요인이 된다. On the other hand, silica is widely used because of its excellent film tension. However, when silicon dioxide (SiO 2 ) is used, surface quality variation occurs due to poor dispersion in water used as a solvent of the coating material. It is not compatible with the metal phosphate used, causing gelation. In this case, the addition of chromium oxide prevents gelation when the two components are mixed, and allows the coating material to have a stable liquid phase. Therefore, the reduced compatibility of silica and metal phosphate, which is generated when chromium oxide is excluded from the coating material, is a major factor that makes the coating material difficult to manufacture.

이에 본 발명은 산화크롬이 배제된 무크롬계 코팅재를 사용하는 경우 발생하는 피막장력과 내식성 및 상용성 저하 등의 문제를 해결하고자 다음과 같은 기술을 제안한다.Therefore, the present invention proposes the following technique to solve problems such as film tension, corrosion resistance and compatibility degradation when using a chromium-free coating material chromium oxide is excluded.

첫째, 금속 인산염(Metal phosphate)을 포함한 코팅재에 발생하는 표면 광택과 내식성 저하 문제는 수산화니켈(Nickel hydroxide)을 도입하여 해결하며, 표면 흡성성 저하 문제는 수산화코발트(Cobalt hydroxide)를 도입하여 해결한다. First, the problem of reduction of surface gloss and corrosion resistance in coating materials including metal phosphate is solved by introducing nickel hydroxide, and the problem of degradation of surface absorption is solved by introducing cobalt hydroxide. .

둘째, 표면이 수산화기(Hydroxy group)로 구성된 실리카 나노입자(Silica nanoparticle)를 사용하여 금속 인산염과의 강한 수소결합(Hydrogen bonding)을 형성토록 하며, 그 결과 용액 성분간에 혼용성과 상용성을 향상함은 물론 금속 인산염의 접착성 향상에도 커다란 기여를 하여 궁극적으로 우수한 피막 장력을 얻도록 한다.Second, using silica nanoparticles composed of hydroxyl groups on the surface, strong hydrogen bonds with metal phosphates are formed, resulting in improved compatibility and compatibility between solution components. Of course, it also makes a great contribution to improving the adhesion of metal phosphates, which ultimately results in excellent film tension.

셋째, 코팅재 제조후 우수한 용액안정성을 확보하기 위해 성분간의 배합순서를 차별화한다. 산성인 제1인산 알루미늄(Al(H2PO4)3) 또는 제1인산 마그네슘(Mg(H2PO4)2) 또는 제1인산 아연(Zn(H2PO4)2)중에서 선택되는 적어도 둘 이상이 혼합된 형태에 표면이 수산화기로 구성된 실리카 나노입자를 도입하여 코팅제 성분간의 상호 혼합성, 즉 상용성을 확보하는 것이다. 따라서 본 발명에서는 금속 인산염, 실리카 나노입자, 수산화니켈(Ni(OH)2)의 배합순서를 특별히 하여 저장안정성을 향상시키도록 한다. Third, in order to secure excellent solution stability after the coating material is prepared, the order of the ingredients is differentiated. At least one selected from the acidic monobasic aluminum phosphate (Al (H 2 PO 4 ) 3 ) or monobasic magnesium phosphate (Mg (H 2 PO 4 ) 2 ) or zinc monophosphate (Zn (H 2 PO 4 ) 2 ) By introducing silica nanoparticles whose surface is composed of hydroxyl groups in a form in which two or more are mixed, it is to ensure mutual compatibility between the components of the coating agent, that is, compatibility. Therefore, in the present invention, the compounding order of the metal phosphate, silica nanoparticles, and nickel hydroxide (Ni (OH) 2 ) is specifically used to improve storage stability.

상기와 같이 제안된 기술에 대하여 구체적인 실시예와 함께 보다 상세히 설명한다. The proposed technique as described above will be described in more detail with specific examples.

최근 방향성 전기강판의 고급화 추세에 따라 절연피막의 고장력화에 의한 자성 개선이 중요한 요인으로 되고 있다. 방향성 전기강판은 최종공정으로 절연코팅과 평탄화 소둔의 최종공정을 거치는데, 절연코팅 후 소둔을 거치면서 열에 의해 팽창된 소재는 냉각시 다시 수축하려는 반면, 이미 세라믹화된 절연피막층은 소재 의 수축을 방해하게 된다. 따라서 이러한 모재와 코팅재간의 열팽창계수의 차를 크게 함으로써 피막장력을 향상시킬 수 있다. 그러나, 단순히 모재와 코팅재와의 열팽창률 차이에 의하여 고장력피막을 형성하는 것은 한계가 따르게 된다. Recently, the improvement of the magnetic properties by the high tension of the insulating film has become an important factor in accordance with the trend of high-quality oriented electrical steel sheet. In the final process, the oriented electrical steel sheet undergoes the final process of insulation coating and planarization annealing. The heat-expanded material undergoes annealing after insulation coating, and then shrinks again when cooled. Will interfere. Therefore, by increasing the difference in thermal expansion coefficient between the base material and the coating material it is possible to improve the film tension. However, there is a limit in forming a high tension coating film simply by the difference in thermal expansion coefficient between the base material and the coating material.

따라서, 본 발명은 용액 성분간 강한 수소결합을 형성할 수 있도록 하여 연쇄반응에 의해 치밀한 피막층을 형성시킴으로서 강력한 피막장력을 부여하도록 하는 것이다. 이러한 치밀한 피막층을 형성하기 위해서는 실리카와 금속 인산염과 반응하여 접착력을 향상시키는 물질을 필요로 하는데, 본 발명에서는 금속 인산염과의 상용성이 좋은 수산화니켈과, 표면에 수산화기를 갖는 실리카 나노입자를 사용함으로서 이를 해결하고자 한 것이다. Accordingly, the present invention is to provide a strong coating tension by forming a dense coating layer by a chain reaction by forming a strong hydrogen bond between the solution components. In order to form such a dense coating layer, a material that improves adhesion by reacting with silica and metal phosphate is required. In the present invention, by using nickel hydroxide having good compatibility with metal phosphate and silica nanoparticles having a hydroxyl group on the surface thereof, This is to solve this problem.

본 발명의 절연피막 형성용 피복조성물을 구성하는 실리카 나노입자는 표면이 수산화기로 구성되어 있어 금속 인산염과 수소결합을 형성하여 용액 안정성과 피막장력을 개선하는 효과를 가지고 있다. 또한, 실리카 나노입자는 단위질량의 표면적이 매우 크기 때문에, 800℃이상에서 열처리를 하는 경우 축합반응이 빠르게 진행되어 매우 공고하고 치밀한 피막이 형성되어 절연특성이 탁월한 장점이 있다.Silica nanoparticles constituting the coating composition for forming an insulating film of the present invention has a surface is composed of a hydroxyl group to form a hydrogen bond with the metal phosphate has the effect of improving the solution stability and the film tension. In addition, since the surface area of the silica nanoparticles is very large, when the heat treatment at 800 ℃ or more, the condensation reaction proceeds quickly to form a very solid and dense coating has the advantage of excellent insulation properties.

본 발명의 절연피막 형성용 피복조성물은 자성재료의 부식억제와 광택 부여를 위해 인산염 100중량부에 대해 니켈 또는 니켈화합물을 단독이나 혼합상태로 첨가된 것을 특징으로 하고 있다. The coating composition for forming an insulating film of the present invention is characterized in that nickel or a nickel compound is added alone or in a mixed state to 100 parts by weight of phosphate in order to suppress corrosion and impart gloss of a magnetic material.

이때, 니켈 금속을 단독으로 도입하는 경우에는 실리카 및 인산염과 건조시 저온에서 반응하기 어렵우므로, 니켈 금속을 단독으로 첨가하는 것보다 입자 외부가 수산화기로 치환된 수산화니켈을 사용하는 것이 상용성 측면에서 우수하다.In this case, when nickel metal is introduced alone, it is difficult to react with silica and phosphate at low temperature during drying. Therefore, nickel hydroxide in which the outside of the particle is substituted with a hydroxyl group is used rather than adding nickel metal alone. Excellent at

본 발명의 절연피막 형성용 피복조성물은 수산화코발트(Co(OH)2)를 첨가하여 크롬 배제시 발생되는 흡성성 문제를 개선하고 있다. 코발트는 흡성성 개선능을 갖고 있는 금속이나, 단순한 코발트 금속을 도입하는 경우에는 실리카 및 인산염과 건조시 저온에서 반응하기 어렵기 때문에 입자 외부가 수산화기로 치환된 수산화코발트를 첨가함이 바람직하다. The coating composition for forming an insulating coating of the present invention improves the absorption problem caused by chromium removal by adding cobalt hydroxide (Co (OH) 2 ). Cobalt is preferably a metal having an ability to improve absorptivity, but when a simple cobalt metal is introduced, cobalt hydroxide in which the outside of the particle is substituted with a hydroxyl group is difficult to react with silica and phosphate at low temperature during drying.

본 발명에 따른 전기강판 절연피막 형성용 피복조성물은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 니켈 화합물중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하는 조성을 갖는다. The coating composition for forming an electrical steel sheet insulation coating according to the present invention is based on a solid content based on 100 parts by weight of phosphate 25 to 300 parts by weight of silica, 0.1 to 25% by weight based on nickel conversion of at least one selected from nickel or nickel compounds It has a composition to add.

피복조성물에 사용된 인산염은 제1인산 마그네슘(Mg(H2PO4)2) 또는 제1인산 알루미늄(Al(H2PO4)3) 또는 제1인산 아연(Zn(H2PO4)2)의 단독 혹은 이들중에서 선택되는 적어도 둘 이상이 혼합된 형태일 수 있다. The phosphate used in the coating composition was magnesium phosphate (Mg (H 2 PO 4 ) 2 ) or aluminum monophosphate (Al (H 2 PO 4 ) 3 ) or zinc phosphate (Zn (H 2 PO 4 ) 2 ). ) Alone or at least two or more selected from them may be in a mixed form.

전체 코팅재 총중량이 100g인 경우, 피복조성물의 투입량은 30~60g이 적당하다. 30g 미만으로 투입되면 코팅재의 접착력이 저하되어 피막장력이 낮아지며, 60g을 초과하여 투입되면 자유인산에 의한 젖음성(Sticky)을 유발할 수 있기 때문이다. When the total weight of the coating material is 100 g, the dosage of the coating composition is suitably 30 to 60 g. If less than 30g, the adhesive strength of the coating material is lowered, the film tension is lowered, if more than 60g is introduced because wetting (Sticky) by free phosphoric acid can be induced.

실리카는 절연피막의 열처리시 열팽창 계수가 낮은 세라믹층을 형성하여 소재에 인장응력을 부여하는 작용을 하며, 그 첨가량은 고형분기준으로 인산염 100g에 대하여 25~300g으로 투입함이 바람직하다. 실리카의 투입량이 25g 미만인 경우 적절한 세라믹층을 형성치 못하여 소재에 충분한 인장응력을 부여하지 못하며, 300g 초과인 경우 코팅재에 고형분비가 높아져 강판의 표면품질이 저하되는 문제를 초래한다. 따라서 본 발명에서는 실리카 함유량을 인산염 100g 대비 25~300g의 범위로 제한하는 것이다. Silica acts to impart tensile stress to the material by forming a ceramic layer having a low coefficient of thermal expansion during heat treatment of the insulating coating, and the amount of the silica is preferably added in an amount of 25 to 300 g with respect to 100 g of phosphate based on solid content. When the amount of silica is less than 25g, it is unable to form an appropriate ceramic layer and thus does not impart sufficient tensile stress to the material. When the amount of silica is more than 300g, the solid content is increased in the coating material, resulting in a problem that the surface quality of the steel sheet is degraded. Therefore, the present invention is to limit the silica content in the range of 25 ~ 300g compared to 100g of phosphate.

이때, 상기 실리카는 평균 입경이 1~100nm인 나노입자로 이루어진 것이 바람직하다. 실리카 평균 입경이 100nm를 초과하게 되면, 단위질량당 표면적이 커져서 축합반응속도가 낮아지며, 반응속도를 높이기 위해서 열처리 온도를 높여야 하므로 비경제적이다. 실리카 평균 입경의 하한을 1nm로 정한 것은, 본 발명의 실시예로서 사용된 실리카 나노입자의 입경이 모두 1nm이상이었으며, 실리카 평균 입경을 1nm 이상으로 하는 것만으로도 충분한 축합반응속도를 얻을 수 있었기 때문이다. 한편, 우수한 피막특성을 갖는 절연피막을 얻기 위하여 평균 입경이 서로 다른 두 종류 이상의 실리카 나노입자를 혼합하여 사용하는 것도 가능하다.In this case, the silica is preferably made of nanoparticles having an average particle diameter of 1 ~ 100nm. When the average particle diameter of silica exceeds 100 nm, the surface area per unit mass increases, so that the condensation reaction rate is low, and it is uneconomical to increase the heat treatment temperature in order to increase the reaction rate. The lower limit of the average particle diameter of silica was set to 1 nm because the particle diameters of the silica nanoparticles used as the examples of the present invention were all 1 nm or more, and sufficient condensation reaction rate could be obtained by only making the silica average particle diameter of 1 nm or more. to be. On the other hand, in order to obtain an insulating film having excellent coating properties, it is also possible to use a mixture of two or more kinds of silica nanoparticles having different average particle diameters.

본 발명에서 첨가되는 니켈 또는 니켈 화합물은 인산염 100g에 대해서 0.1~25g(니켈 환산량 기준)으로 투입되는 것이 바람직하다. 니켈 환산량 기준 0.1g 미만으로 첨가되면, 건조 과정에서 적절한 수소결합을 형성하기가 어려워 광택 및 내식성 부여 효과가 불충분하며, 25g을 초과하여 첨가되면, 코팅재에서 니켈의 분율이 높아져 코팅표면의 색상변화를 유발한다. 상기 니켈 화합물로는 수산화니켈이 적합하며, 니켈 금속보다는 실리카 및 인산염과 건조시 반응성이 우수한 수산화니켈을 첨가함이 보다 바람직하다. 따라서 본 발명에 따른 절연피막 형성용 피복조성물은 니켈 환산량 기준으로 인산염 100g 대비 0.1~25g의 수산화니켈이 첨가되는 것 이 가장 바람직하다. Nickel or nickel compound added in the present invention is preferably added in 0.1 to 25g (nickel conversion amount) based on 100g of phosphate. If the amount is less than 0.1g based on nickel, it is difficult to form a proper hydrogen bond in the drying process, so that the effect of imparting gloss and corrosion resistance is insufficient, and when it is added more than 25g, the fraction of nickel in the coating material is increased to change the color of the coating surface. Cause. Nickel hydroxide is suitable as the nickel compound, and it is more preferable to add nickel hydroxide having excellent reactivity upon drying with silica and phosphate rather than nickel metal. Therefore, the coating composition for forming an insulating film according to the present invention is most preferably added to the nickel hydroxide of 0.1 ~ 25g compared to 100g of phosphate on the basis of nickel conversion.

금속 인산염 용액에는 인산염 고형분 100g 기준으로 0.1~10g의 붕산(H3BO3)을 첨가함이 바람직하다. 붕산이 10g 이하로 첨가되는 경우 인산염에 존재하는 마그네슘이나 알루미나 또는 아연과 적절한 축합반응을 형성하기 어렵고, 10g 이상으로 첨가되는 경우 과량 첨가로 인해 석출되는 현상이 발생하므로, 본 발명에서 붕산은 인산염 100g에 대하여 0.1~10g 첨가되는 것으로 정한다.It is preferable to add 0.1-10 g of boric acid (H 3 BO 3 ) to the metal phosphate solution based on 100 g of phosphate solids. When boric acid is added below 10g, it is difficult to form a proper condensation reaction with magnesium, alumina or zinc present in the phosphate, and when added above 10g, precipitation occurs due to excessive addition. 0.1-10g is determined to be added.

수산화코발트는 표면 흡성성을 개선하기 위해 첨가됨이 바람직하며, 인산염 용액 100g 대비 고체 중량비로 0.1~40g 첨가되는 경우 물성 향상에 기여할 수 있다.Cobalt hydroxide is preferably added in order to improve the surface absorption, and when 0.1 to 40g is added in a solid weight ratio to 100g of a phosphate solution, it may contribute to improvement of physical properties.

본 발명에 따른 방향성 전기강판은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피복조성물이 도포되어 절연피막이 형성된 것으로, 절연피막은 0.35~1.00kg/mm2의 높은 피막장력을 갖는 것을 특징으로 한다. 방향성 전기강판 표면에 형성된 절연피막의 피복조성물은 앞서 설명된 바와 동일하므로, 중복되는 기재는 생략하기로 한다. 상기 피막장력은 후술되는 실시예에서와 같이 피복조성물의 도포량을 4.0g/m2으로 하였을 때를 기준으로 한 값이며, 이를 도포량과 관련하여 환산하면 (피막장력/도포량)×100≥8.7×109 을 만족함이 바람직한 조건이다.The grain-oriented electrical steel sheet according to the present invention is formed by adding at least one selected from 25 to 300 parts by weight of silica, nickel or nickel hydroxide, based on solids, based on 100 parts by weight of phosphate, and adding 0.1 to 25 parts by weight based on the amount of nickel. The coating composition is applied to form an insulating coating, and the insulating coating is characterized by having a high coating tension of 0.35 ~ 1.00kg / mm 2 . Since the coating composition of the insulating film formed on the surface of the grain-oriented electrical steel sheet is the same as described above, overlapping descriptions will be omitted. The coating tension is a value based on the application amount of the coating composition to 4.0 g / m 2 as in the following examples, and when converted in relation to the coating amount (film tension / coating amount) × 100 ≧ 8.7 × 10 Satisfying 9 is a preferable condition.

본 발명에 따른 방향성 전기강판의 절연피막 형성방법은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피복조성물을 건조상태 피막 도포량이 0.5~6.0g/m2 으로 되도록 강판 표면에 도포한후, 후반의 열처리 온도를 초기의 열처리 온도보다 높게 하여 수행되는 2단계 열처리에 의해 절연피막을 형성한다. 상기 피복조성물은 인산염 100중량부에 대해 수산화코발트 0.1~40중량부와, 붕산 0.1~10중량부를 더 첨가하여 조성될 수 있으며, 첨가되는 조성과 그 첨가량에 대한 중복설명은 생략한다.Insulating film forming method of the grain-oriented electrical steel sheet according to the present invention is based on the solid content based on 100 parts by weight of phosphate 25 to 300 parts by weight of silica, at least one selected from nickel or nickel hydroxide 0.1 to 25% by weight After coating the coating composition, which is added by addition, to the surface of the steel sheet so that the dry coating amount is 0.5 to 6.0 g / m 2 , the insulation coating is carried out by a two-step heat treatment performed after the latter heat treatment temperature is higher than the initial heat treatment temperature. To form. The coating composition may be formed by adding 0.1 to 40 parts by weight of cobalt hydroxide and 0.1 to 10 parts by weight of boric acid with respect to 100 parts by weight of phosphate, and redundant description of the added composition and its amount is omitted.

본 발명에서는 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연중에서 선택되는 적어도 둘 이상을 혼합한 후, 표면에 수산화기를 가지며 평균 입경이 1nm이상 100nm이하로 이루어진 실리카 나노입자와 수산화니켈을 도입하는 배합순서에 의해 피복조성물을 조성하여 상용성을 확보하도록 한다. 이와 같은 배합순서에 의해 피복조성물을 조성함으로서 10시간 이상의 저장시에도 전혀 문제가 없도록 저장 안정성을 확보하게 된다.In the present invention, after mixing at least two or more selected from aluminum monophosphate, magnesium monophosphate or zinc monophosphate, and having a hydroxyl group on the surface and introducing a silica nanoparticle and nickel hydroxide having an average particle diameter of 1nm or more and 100nm or less. A coating composition is formed according to the mixing procedure to ensure compatibility. By forming the coating composition in such a mixing sequence, storage stability is ensured so that there is no problem even when stored for 10 hours or more.

상기 2단계 열처리는 800℃미만의 저온에서 10초~10분간 열처리한 후, 800℃이상의 고온에서 30초~10분간 열처리하여 수행함이 바람직하다. The two-step heat treatment is preferably performed by heat treatment for 10 seconds to 10 minutes at a low temperature of less than 800 ℃, heat treatment for 30 seconds to 10 minutes at a high temperature of 800 ℃ or more.

이하, 본 발명을 실시예에 의거하여 설명한다. 이는 본 발명을 예시하기 위한 것이며, 본 발명이 구체적인 실시예에 한정되는 것은 아니다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated based on an Example. This is for illustrating the present invention, and the present invention is not limited to the specific embodiments.

<실시예><Examples>

중량비로 Si: 3.1%를 함유하고, 판두께 0.23mm로 마무리 소둔된 1차 피막을 가진 방향성 전기강판(300x60mm)을 공시재로 하고, 850℃에서 30초간의 건조에 의해 코팅된 면은 코팅재에 의한 인장응력 부가로 한 쪽 방향으로 휘게 되며 이러한 휨의 정도를 측정하여 절연피막에 의한 피막장력을 평가하였다.As a test material, a grain-oriented electrical steel sheet (300x60mm) containing a Si: 3.1% by weight and a thickness of 0.23 mm finished annealing was used as a test material, and the surface coated by drying for 30 seconds at 850 ° C was coated on the coating material. Due to the addition of tensile stress, the bending strength of the insulation film was evaluated by measuring the degree of warpage.

SRA는 건조한 100% N2 가스분위기에 750℃에서 2시간동안 열처리하였으며, 절연성은 300PSI 압력하에서 전압 0.5V, 전류 1.0A를 통과하였을 때의 수납 전류 값으로 나타낸 것이고, 밀착성은 SRA 전, 후 시편을 10, 20, 30 ~ 100 mm 원호에 접하여 180°구부릴 때에 피막박리가 없는 최소원호직경으로 나타낸 것이며, 피막외관은 줄무늬, 광택 유무 등을 관찰하여 평가한 것이다. 내식성은 5%, 35℃, NaCl 용액에 8시간 동안 시편의 녹 발생 유무를 평가하는 것으로서 본 시험에서는 녹 발생 면적이 5% 이하일 경우 우수, 20% 이하일 경우 양호, 20 ~ 50% 약간 불량, 50% 이상에서는 불량으로 표시하였다.The SRA was heat-treated at 750 ° C for 2 hours in a dry 100% N 2 gas atmosphere. The insulation was expressed as the received current value when a voltage of 0.5 V and a current of 1.0 A were passed under a 300 PSI pressure. Is shown as the minimum arc diameter without film peeling when bent 180 ° in contact with a 10, 20, 30 to 100 mm arc, and the film appearance is evaluated by observing the presence of streaks, luster, and the like. Corrosion resistance is assessed for 5 hours at 35 ° C and NaCl solution for 8 hours. In this test, it is excellent when the rust area is less than 5%, good when less than 20%, 20 to 50% slightly poor, 50 Above%, it was marked as bad.

본 발명자는 코팅재가 비크롬화되는 때에 열위되는 물성을 하나씩 검토하였다. 우선, 산화크롬을 코팅재에서 배제하고, 중량비로 실리카 나노입자와 금속인산염을 1:2로 혼합하고, 이에 수산화니켈, 수산화코발트, 붕산을 함유하는 피복조성물을 혼합하였다. 비교를 위해 일부는 금속 인산염과 콜로이드 실리카, 붕산을 혼합하여 실험하였다.The present inventors examined the inferior physical properties one by one when the coating material was unchromated. First, chromium oxide was removed from the coating material, and the silica nanoparticles and the metal phosphate were mixed at a weight ratio of 1: 2, and a coating composition containing nickel hydroxide, cobalt hydroxide, and boric acid was mixed thereto. For comparison, some experiments were carried out by mixing metal phosphate with colloidal silica and boric acid.

금속 인산염과 실리카 나노입자, 수산화니켈, 수산화코발트, 붕산의 배합순서에 따라 구분하였으며, 상용성을 평가하기 위해 상온에서 8시간 동안 교반한 후 용액의 점도 변화를 측정하여 그 결과를 표 1에 나타내었다.The metal phosphate and silica nanoparticles, nickel hydroxide, cobalt hydroxide, boric acid were classified according to the mixing order, and after stirring for 8 hours at room temperature to evaluate compatibility, the viscosity change of the solution was measured and the results are shown in Table 1. It was.

[표 1][Table 1]

Figure 112009045536275-pat00001
Figure 112009045536275-pat00001

표 1에서 보는 바와 같이, 콜로이드 실리카와 금속 인산염을 사용하는 종래예의 경우 겔화 현상이 나타났다. 반면에 수산화니켈과 수산화코발트를 첨가한 경우 겔화 현상을 방지할 수 있었다. 이러한 현상은 실리카 나노입자의 표면에 존재하는 수산화기와 금속 인산염의 수산화기, 니켈 및 코발트의 수산화기가 서로 강한 수소결합을 형성하여 안정화된 것에 기인하는 것으로 생각된다. As shown in Table 1, the gelation phenomenon was observed in the conventional example using colloidal silica and metal phosphate. On the other hand, the addition of nickel hydroxide and cobalt hydroxide could prevent the gelation phenomenon. This phenomenon is thought to be due to the stabilization of the hydroxyl groups on the surface of the silica nanoparticles, the hydroxyl groups of the metal phosphate, and the hydroxyl groups of nickel and cobalt to form strong hydrogen bonds with each other.

또한 피복조성물의 배합 순서와 상용성은 매우 밀접한 관계가 있음을 확인하였다. 즉, 인산염에 수산화기를 갖는 실리카 나노입자와 수산화니켈을 도입하는 배합순서로 조성되는 실시예1~3에서는 상용성이 우수한 반면, 실리카에 니켈과 코발트, 인산염 그리고 붕산을 첨가하는 비교예2에서는 상용성이 떨어지는 것을 알 수 있다. In addition, it was confirmed that the mixing order and compatibility of the coating composition are closely related. That is, in Examples 1 to 3, which are composed of silica nanoparticles having a hydroxyl group in phosphate and nickel hydroxide, the compatibility is excellent, whereas in Comparative Example 2 in which nickel, cobalt, phosphate, and boric acid are added to silica, You can see that the castle is falling.

표 1의 결과로부터 비크롬계 장력코팅재의 기본 성분으로 인산염, 붕산, 수산화니켈, 수산화코발트, 실리카 나노입자를 채택하였다. 수산화니켈, 수산화코발트, 붕산이 용해된 금속 인산염과 표면이 수산화기로 구성된 실리카 나노입자의 성 분에 대한 피막특성을 평가하였으며, 도포량은 4.0g/m2으로 맞추었다. 이렇게 도포된 피복조성물을 1단계로 온도가 750℃로 설정된 건조로에서 10초 ~ 10분간 열처리한후 2단계로 온도가 900℃로 설정된 건조로에서 30초~10분간 열처리하는 2단계 열처리를 통해 건조하였다. From the results of Table 1, phosphate, boric acid, nickel hydroxide, cobalt hydroxide, and silica nanoparticles were adopted as basic components of the non-chromium-based tension coating material. The coating properties of the components of the silica nanoparticles composed of hydroxides of metal phosphate and nickel hydroxide, cobalt hydroxide and boric acid dissolved in the surface were evaluated, and the coating amount was adjusted to 4.0 g / m 2 . The coated composition was heat-treated in a drying furnace having a temperature of 750 ° C. in one step for 10 seconds to 10 minutes, and then dried in a two-step heat treatment of 30 seconds to 10 minutes in a drying furnace having a temperature set to 900 ° C. in two steps. .

금속 인산염, 수산화니켈, 수산화코발트, 붕산, 실리카 나노입자 성분에 따른 피막장력 특성과 내식성 및 광택을 측정하여 표 2에 나타내었다. The film tension characteristics, corrosion resistance, and gloss according to metal phosphate, nickel hydroxide, cobalt hydroxide, boric acid, and silica nanoparticle components were measured and shown in Table 2.

[표 2]TABLE 2

Figure 112009045536275-pat00002
Figure 112009045536275-pat00002

(우수: ◎, 양호: ○, 보통: △, 불량: X)(Excellent: ◎, good: ○, moderate: △, poor: X)

이러한 결과로부터 실리카 나노입자는 피막장력을 향상시키며, 수산화니켈은 표면광택과 내식성을 개선함을 확인할 수 있다. 본 발명의 범위인 인산염100중량부 대비 실리카 나노입자 첨가량이 25~300중량부에 속하는 실시예1~13에서 (피막장력/도포량)×100은 모두 8.7×109 이상(피막장력 0.35kg/mm2 이상)으로 우수하다. 실리카 나노입자 첨가량이 350중량부인 비교예5에서는 표면품질이 불량한 것으로 관찰되었다. 또한, 수산화니켈의 니켈환산량이 본 발명의 범위인 0.1~25중량부에 속하는 실시예1~13에서 내식성과 광택은 모두 양호하거나 보통 이상의 수준인 것으로 확인되었다. 보다 우수한 내식성과 광택을 얻기 위해서는 수산화니켈을 니켈환산량 기준으로 0.7중량부 이상첨가함이 바람직하다. 수산화니켈 첨가량이 30중량부인 비교예3에서 절연피막의 색상변화로 인해 표면품질이 불량인 것으로 관찰되었으며, 수산화니켈 첨가량이 25중량부인 실시예11에서는 표면품질이 보통인 것으로 확인되었다. 내식성과 광택 및 표면품질을 동시에 고려하면 수산화니켈 첨가량을 0.7~5.6중량부로 첨가함이 보다 바람직하다. 도 1과 도 2는 실시예1의 피복조성물로 절연피막을 형성한 경우의 표면분석결과와 내식성을 크롬계 절연피막과 비교하여 나타낸 것이다. 도 1과 도 2로부터, 본 발명에 따른 피복조성물로 방향성 전기강판의 절연피막을 형성한 경우 표면 품질과 내식성이 종래의 크롬계 절연피막에 비하여 우수함을 육안으로도 확인할 수 있다. From these results, it can be seen that silica nanoparticles improve the film tension, and nickel hydroxide improves surface gloss and corrosion resistance. In Examples 1 to 13, wherein the amount of silica nanoparticles added to 100 parts by weight of phosphate, which is the scope of the present invention, belongs to 25 to 300 parts by weight, (tension tension / coating amount) × 100 is 8.7 × 10 9 or more (film tension 0.35 kg / mm) 2 or more). In Comparative Example 5 in which the amount of silica nanoparticles added was 350 parts by weight, poor surface quality was observed. In addition, it was confirmed that the corrosion resistance and gloss of the nickel equivalent amount of nickel hydroxide in Examples 1 to 13 belonging to the range of 0.1 to 25 parts by weight of the present invention are good or above normal levels. In order to obtain more excellent corrosion resistance and gloss, it is preferable to add nickel hydroxide at least 0.7 parts by weight based on the nickel equivalent. In Comparative Example 3 having a nickel hydroxide amount of 30 parts by weight, the surface quality was observed to be poor due to the color change of the insulating coating, and in Example 11 having a nickel hydroxide amount of 25 parts by weight, the surface quality was found to be normal. In consideration of corrosion resistance, gloss and surface quality at the same time, it is more preferable to add nickel hydroxide in an amount of 0.7 to 5.6 parts by weight. 1 and 2 show the surface analysis results and corrosion resistance when the insulating film is formed from the coating composition of Example 1 compared with the chromium-based insulating film. 1 and 2, when the insulating film of the grain-oriented electrical steel sheet is formed of the coating composition according to the present invention, it can be seen visually that the surface quality and corrosion resistance are superior to the conventional chromium-based insulating film.

본 발명에 따른 절연피막 형성방법은 상술한 바와 같은 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피 복조성물을 방향성 전기강판 표면에 건조상태 피막 도포량이 편면당 0.5~6.0g/m2 범위가 되도록 도포한 후 800℃미만의 저온에서 10초~10분간 열처리한 후, 800℃이상의 고온에서 30초~10분간 열처리하여 이루어진다.The method for forming an insulating film according to the present invention is based on the solid content based on 100 parts by weight of the phosphate as described above from 25 to 300 parts by weight of silica, at least one selected from nickel or nickel hydroxide 0.1 to 25% by weight based on the amount of nickel After the addition of the composition to be added to the surface of the grain-oriented electrical steel sheet so that the dry coating amount is in the range of 0.5 ~ 6.0g / m 2 per side, and heat-treated for 10 seconds to 10 minutes at a low temperature of less than 800 ℃, 800 It is made by heat treatment for 30 seconds to 10 minutes at a high temperature of more than ℃.

피복조성물을 건조상태 피막 도포량이 편면당 0.5~6.0g/m2 범위가 되도록 도포하는 이유는 피복조성물의 건조상태 피막 도포량이 0.5g/m2 미만일 경우 절연성이 낮아 져 절연피막으로서의 기능을 수행하기 어려우며, 6.0g/m2 초과일 경우 과도포로 인한 피막 건조 문제 및 피막자중에 의한 균열로 견고한 피막을 형성하기 어렵기 때문이다. The reason why the coating composition is applied so that the dry coating amount is in the range of 0.5 to 6.0 g / m 2 per side is less than 0.5 g / m 2 in the dry coating state of the coating composition, so that the insulation is lowered to perform a function as an insulating coating. This is because it is difficult, and when it exceeds 6.0g / m 2 it is difficult to form a solid film due to the film drying problem due to over-coating and cracks due to the weight of the film.

본 발명자는 보다 우수한 피막장력을 얻을 수 있는 열처리 조건에 대하여 규명하기 위해 표 2의 실시예1의 피복조성물을 조성하여 도포하고, 이를 여러 가지 조건으로 건조하여 피막특성을 측정하였으며, 그 결과를 표 3에 나타내었다. The present inventors formulated and coated the coating composition of Example 1 of Table 2 in order to identify the heat treatment conditions to obtain a better film tension, and dried it under various conditions to measure the film properties, the results are shown in Table 3 is shown.

[표 3][Table 3]

Figure 112009045536275-pat00003
Figure 112009045536275-pat00003

표 3으로부터, 저온에서 1단계의 건조를 수행한후, 고온에서 2단계의 건조를 From Table 3, after performing one step of drying at low temperature, two steps of drying at high temperature are performed.

수행하는 2단계 열처리를 하는 것이 피막장력의 향상에 크게 기여함을 알 수 있다. 즉, 본 발명의 범위에서와 같이 800℃미만의 저온에서 10초~10분간 열처리하고, 800℃이상의 고온에서 30초~10분간 열처리하는 2단계 열처리에 의해 피막장력이 향상되는데, 이는 인산염과 수산화기로 구성된 니켈, 코발트, 실리카 나노입자 상호간의 수소결합 반응이 2단계 열처리 조건에 의해 영향을 받은 것에 기인한 것이라 생각된다.It can be seen that the two-step heat treatment performed greatly contributes to the improvement of the film tension. That is, as in the scope of the present invention, the film tension is improved by a two-step heat treatment for 10 seconds to 10 minutes at a low temperature of less than 800 ℃, heat treatment for 30 seconds to 10 minutes at a high temperature of more than 800 ℃, which is a phosphate and hydroxyl group It is thought that the hydrogen bonding reaction between nickel, cobalt and silica nanoparticles composed of is influenced by the two-stage heat treatment conditions.

저온에서의 1단계 건조를 10초 미만으로 유지하는 경우 피막형성이 미흡하며 흡습성이 남는 문제가 발생하므로 10초 이상으로 1단계 건조를 수행하며, 10분 을 초과하는 경우 피막산화로 표면 외관이 나빠지므로 10분 이하로 건조를 수행한다. 또한 고온에서의 2단계 건조를 30초 미만으로 수행하는 경우에도 피막형성이 미흡하는 문제가 발생하게 되므로 1단계 건조시간을 30초 이상으로 함이 바람직하며, 10분을 초과하여 2단계 건조를 수행하는 경우 피막산화로 표면 외관이 나빠지므로 10분 이하의 2단계 건조를 수행함이 바람직하다. If the one-stage drying at low temperature is kept less than 10 seconds, the film formation is insufficient and the hygroscopicity remains. Therefore, the one-stage drying is performed for more than 10 seconds, and if it exceeds 10 minutes, the surface appearance is bad due to the film oxidation. The drying is carried out in less than 10 minutes. In addition, even when the two-stage drying at a high temperature is less than 30 seconds, the problem of insufficient film formation occurs, so it is preferable to set the one-stage drying time to 30 seconds or more, and perform the two-stage drying in excess of 10 minutes. In this case, since the surface appearance deteriorates due to the film oxidation, it is preferable to perform two-stage drying of 10 minutes or less.

도 1은 종래의 크롬계 절연피막과 본 발명의 피복조성물로 형성된 절연피막의 전자현미경(SEM) 분석결과를 나타낸 사진이다. 1 is a photograph showing an electron microscope (SEM) analysis result of an insulating film formed of a conventional chromium-based insulating film and the coating composition of the present invention.

도 2는 종래의 크롬계 절연피막과 본 발명의 피복조성물로 형성된 절연피막의 내식성을 비교하여 나타낸 사진이다. 2 is a photograph showing the corrosion resistance of the conventional chromium-based insulating film and the insulating film formed of the coating composition of the present invention.

Claims (15)

인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 니켈 화합물중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부, 붕산을 0.1~10중량부 첨가하여 조성되는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물.It is formed by adding 0.1 to 25 parts by weight of silica and 0.1 to 10 parts by weight of boric acid on the basis of nickel amount of at least one selected from 25 to 300 parts by weight of silica, nickel or nickel compounds based on 100 parts by weight of phosphate Coating composition for electrical insulation film formation with excellent film tension and corrosion resistance. 청구항 1에 있어서,The method according to claim 1, 상기 니켈 화합물은 수산화니켈인 것을 특징으로 하는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물.The nickel compound is nickel hydroxide, the coating composition for forming an electrical steel sheet excellent coating film corrosion resistance and corrosion resistance. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 실리카는 표면에 수산화기를 갖는 것을 특징으로 하는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물.The silica is a coating composition for forming an electrical steel sheet excellent coating film and corrosion resistance, characterized in that having a hydroxyl group on the surface. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 실리카는 평균 입경이 1nm이상 100nm이하의 나노입자로 이루어진 것을 특징으로 하는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물.The silica is a coating composition for forming an insulating film of electrical steel with excellent film tension and corrosion resistance, characterized in that consisting of nanoparticles having an average particle diameter of more than 1nm 100nm. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 인산염은 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연의 단독 혹은 이들중에서 선택되는 적어도 둘 이상이 혼합된 형태인 것을 특징으로 하는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물. The phosphate is a coating composition for forming an electrical steel sheet having excellent film tension and corrosion resistance, characterized in that the form of a mono aluminum phosphate, a first magnesium phosphate or a zinc phosphate alone or a mixture of at least two or more selected from them. . 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2, 상기 피복조성물은 인산염 100중량부에 대해 수산화코발트 0.1~40중량부를 더 첨가하여 조성되는 것을 특징으로 하는 피막장력과 내식성이 우수한 전기강판 절연피막 형성용 피복조성물.The coating composition is a coating composition for forming an electrical steel sheet excellent coating film and excellent corrosion resistance, characterized in that the composition is added by adding 0.1 to 40 parts by weight of cobalt hydroxide with respect to 100 parts by weight of phosphate. 삭제delete 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부, 붕산을 0.1~10중량부 첨가하여 조성되는 피복조성물로 절연피막이 형성되고, 상기 절연피막의 피막장력이 0.35~1.00kg/mm2인 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판.It is formed by adding from 0.1 to 25 parts by weight of silica and from 0.1 to 10 parts by weight of boric acid based on nickel equivalent amount of at least one selected from 25 to 300 parts by weight, nickel or nickel hydroxide based on 100 parts by weight of phosphate Insulation coating is formed of a coating composition, the film is excellent tensile strength and corrosion-resistant electrical steel sheet, characterized in that the coating tension of 0.35 ~ 1.00kg / mm 2 . 청구항 8에 있어서,The method according to claim 8, 상기 실리카는 표면에 수산화기를 가지며, 평균 입경이 1nm이상 100nm이하의 나노입자로 이루어진 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판.The silica has a hydroxyl group on the surface, the grain-oriented electrical steel sheet having excellent film tension and corrosion resistance, characterized in that consisting of nanoparticles of 1nm or more and 100nm or less. 청구항 8 또는 청구항 9에 있어서,The method according to claim 8 or 9, 상기 피복조성물은 인산염 100중량부에 대해 수산화코발트 0.1~40중량부를 더 첨가하여 조성되는 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판. The coating composition is a grain-oriented electrical steel sheet excellent in coating tension and corrosion resistance, characterized in that the composition is further added by 0.1 to 40 parts by weight of cobalt hydroxide relative to 100 parts by weight of phosphate. 청구항 8 또는 청구항 9에 있어서,The method according to claim 8 or 9, 상기 인산염은 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연의 단독 혹은 이들중에서 선택되는 적어도 둘 이상이 혼합된 형태인 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판. The phosphate is a grain-oriented electrical steel sheet excellent in coating tension and corrosion resistance, characterized in that the form of a mixture of at least two or more selected from monobasic aluminum phosphate, monobasic magnesium phosphate or zinc monophosphate alone. 인산염 100중량부에 대해 고형분 기준으로 실리카를 25~300중량부, 니켈 또는 수산화니켈중에서 선택되는 적어도 하나 이상을 니켈 환산량 기준으로 0.1~25중량부 첨가하여 조성되는 피복조성물을 건조상태 피막 도포량이 0.5~6.0g/m2 으로 되 도록 강판 표면에 도포한후, 후반의 열처리 온도를 초기의 열처리 온도보다 높게 하여 수행되는 2단계 열처리에 의해 절연피막을 형성하는 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판의 절연피막 형성방법.The coating composition, which is formed by adding 25 to 300 parts by weight of silica, 0.1 to 25 parts by weight of nickel or nickel hydroxide, based on the amount of nickel, based on 100 parts by weight of phosphate, is dried. After the coating on the surface of the steel sheet to be 0.5 ~ 6.0g / m 2 , the film tension and corrosion resistance characterized in that the insulating film is formed by a two-step heat treatment performed by the second heat treatment temperature higher than the initial heat treatment temperature Method of forming insulating film of excellent grain-oriented electrical steel sheet. 청구항 12에 있어서, The method according to claim 12, 상기 피복조성물은 인산염 100중량부에 대해 수산화코발트 0.1~40중량부와, 붕산 0.1~10중량부를 더 첨가하여 조성되는 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판의 절연피막 형성방법.The coating composition is formed by adding 0.1 to 40 parts by weight of cobalt hydroxide and 0.1 to 10 parts by weight of boric acid with respect to 100 parts by weight of phosphate. 청구항 12에 있어서, 상기 피복조성물은The method according to claim 12, wherein the coating composition 제1인산 알루미늄 또는 제1인산 마그네슘 또는 제1인산 아연중에서 선택되는 적어도 둘 이상을 혼합한 후, 표면에 수산화기를 가지며 평균 입경이 1nm이상 100nm이하로 이루어진 실리카 나노입자와 수산화니켈을 도입하는 배합순서에 의해 조성되는 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판의 절연피막 형성방법.After mixing at least two or more selected from monobasic aluminum phosphate, monobasic magnesium phosphate or zinc monophosphate, and having a hydroxyl group on the surface thereof, silica nanoparticles having an average particle diameter of 1 nm or more and 100 nm or less are introduced. An insulating film forming method of a grain-oriented electrical steel sheet having excellent film tension and corrosion resistance, characterized by being formed by. 청구항 12 또는 청구항 13에 있어서, 상기 2단계 열처리는The method of claim 12 or 13, wherein the two-step heat treatment 800℃미만의 저온에서 10초~10분간 열처리한 후, 800℃이상의 고온에서 30초~10분간 열처리하여 수행되는 것을 특징으로 하는 피막장력과 내식성이 우수한 방향성 전기강판의 절연피막 형성방법.After the heat treatment for 10 seconds to 10 minutes at a low temperature of less than 800 ℃, 30 seconds to 10 minutes heat treatment at a high temperature of 800 ℃ or more characterized in that the insulating film forming method of the oriented electrical steel sheet having excellent tensile strength and corrosion resistance.
KR1020090068081A 2009-07-24 2009-07-24 Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof KR101110255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090068081A KR101110255B1 (en) 2009-07-24 2009-07-24 Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090068081A KR101110255B1 (en) 2009-07-24 2009-07-24 Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof

Publications (2)

Publication Number Publication Date
KR20110010483A KR20110010483A (en) 2011-02-01
KR101110255B1 true KR101110255B1 (en) 2012-02-16

Family

ID=43771021

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090068081A KR101110255B1 (en) 2009-07-24 2009-07-24 Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof

Country Status (1)

Country Link
KR (1) KR101110255B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507941B1 (en) * 2013-06-26 2015-04-07 주식회사 포스코 Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286248B1 (en) * 2011-07-18 2013-07-15 주식회사 포스코 Coating solution for forming an insulation film on grain-oriented electrical steel sheet, method for manufacturing said coating solution, and method for forming an insulation film on grain-oriented electrical steel sheet by using the same
KR101439503B1 (en) * 2012-11-12 2014-11-03 주식회사 포스코 Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
KR101796234B1 (en) 2015-12-22 2017-11-09 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165082A (en) * 1990-10-27 1992-06-10 Nippon Steel Corp Formation of insulating film on grain oriented steel sheet having excellent workability and heat resistance of iron core
JP2000169972A (en) 1998-12-04 2000-06-20 Nippon Steel Corp Surface treatment agent for grain-oriented electrical steel sheet containing no chromium and method for producing grain-oriented electrical steel sheet using the same
KR20080025733A (en) * 2005-07-14 2008-03-21 신닛뽄세이테쯔 카부시키카이샤 A grain-oriented electrical steel sheet having an insulating film containing no chromium and its insulating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165082A (en) * 1990-10-27 1992-06-10 Nippon Steel Corp Formation of insulating film on grain oriented steel sheet having excellent workability and heat resistance of iron core
JP2000169972A (en) 1998-12-04 2000-06-20 Nippon Steel Corp Surface treatment agent for grain-oriented electrical steel sheet containing no chromium and method for producing grain-oriented electrical steel sheet using the same
KR20080025733A (en) * 2005-07-14 2008-03-21 신닛뽄세이테쯔 카부시키카이샤 A grain-oriented electrical steel sheet having an insulating film containing no chromium and its insulating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507941B1 (en) * 2013-06-26 2015-04-07 주식회사 포스코 Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method

Also Published As

Publication number Publication date
KR20110010483A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
KR100966819B1 (en) Non-chromic coating agent for grain-oriented electrical steel sheet and its manufacturing method and electrical steel sheet using the same and manufacturing method
KR101324260B1 (en) Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same
RU2407818C2 (en) Sheet of grain-oriented electro-technical steel of high tensile strength, insulation film and method of such insulation film treatment
CN101223300B (en) Oriented electrical steel sheet having chrome-free insulating film and insulating film agent thereof
KR102071515B1 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP4878788B2 (en) Insulating coating agent for electrical steel sheet containing no chromium
CN1291661A (en) Orientation electric steel plate with excellent film covering characteristics and its making method
KR20140088131A (en) Coated grain oriented steel
KR101110255B1 (en) Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof
KR101286248B1 (en) Coating solution for forming an insulation film on grain-oriented electrical steel sheet, method for manufacturing said coating solution, and method for forming an insulation film on grain-oriented electrical steel sheet by using the same
KR101228710B1 (en) Coating composition for forming insulating film on electrical steel sheet, method for making insulation film on grain-oriented electrical steel sheet by using the same and grain-oriented electrical steel sheet made by using the same
CN112831200A (en) Coating for chromium-free oriented electromagnetic steel sheet, preparation method thereof and preparation method of chromium-free oriented electromagnetic steel sheet with coating
KR20140062535A (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
KR101507941B1 (en) Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
KR101480504B1 (en) Tension coating composite for oriented electrical steel steet, forming method of tension coating using the same and oriented electrical steel steet using the method
RU2746914C1 (en) Coating solution for formation of insulating film for electrical steel sheet with oriented granular structure and method of producing electrical steel sheet with oriented granular structure
KR101110256B1 (en) Coating composition for forming insulation film, method for manufacturing insulation film of grain-oriented electric steel sheet using it, and Grain-oriented electric steel sheet therof
KR101439503B1 (en) Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
CN112771203A (en) Treating agent for forming chromium-free insulating film, grain-oriented electrical steel sheet with insulating film, and method for producing same
KR20240098717A (en) Insulation coating composition for oriented electrical steel steet, manufacturing method thereof, oriented electrical steel steet with insulation coating film formed on the surface using the same, and manufacturing method thereof
KR20130055911A (en) Tension coating agent for forming insulating film with excellent drying property, electrical resistance and method for forming insulation film using that, and electrical steel sheet with insulating film by that method
RU2386725C2 (en) Textured electrotechnical steel plate having insulating film not containing chrome, and insulating film agent
KR101309724B1 (en) Gran-oriented electrical steel sheet with excellent adhesion property of insulation film and method for manufacturing the same
JP4449454B2 (en) Method for forming chromium-free insulating coating for grain-oriented electrical steel sheet
CN117343557A (en) Paint, oriented silicon steel sheet having coating layer formed from the paint, and method for manufacturing the oriented silicon steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20090724

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110608

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20111209

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120119

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120119

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150115

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160119

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170119

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180117

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20181127

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20181127

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210115

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20230116

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20240117

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20250114

Start annual number: 14

End annual number: 14