[go: up one dir, main page]

KR101065249B1 - Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom - Google Patents

Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom Download PDF

Info

Publication number
KR101065249B1
KR101065249B1 KR1020100022904A KR20100022904A KR101065249B1 KR 101065249 B1 KR101065249 B1 KR 101065249B1 KR 1020100022904 A KR1020100022904 A KR 1020100022904A KR 20100022904 A KR20100022904 A KR 20100022904A KR 101065249 B1 KR101065249 B1 KR 101065249B1
Authority
KR
South Korea
Prior art keywords
negative electrode
electrode material
secondary battery
lithium secondary
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020100022904A
Other languages
Korean (ko)
Inventor
염철
오정훈
한정민
박병천
장원석
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR1020100022904A priority Critical patent/KR101065249B1/en
Application granted granted Critical
Publication of KR101065249B1 publication Critical patent/KR101065249B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 심재 탄소재료; 및 피복용 저결정성 탄소에 의해 형성되어 상기 심재 탄소재료를 둘러싸는 피복층을 구비하는 리튬 이차전지용 음극재를 산소를 포함한 분위기에서 열처리하는 단계를 포함하는 리튬 이차전지용 음극재의 제조방법에 관한 것으로, 피복된 음극재 표면의 결함제거 공정을 통해 활성 작용기를 제거하여 전해액 분해반응을 억제하고, 전기 전도도를 향상시켜서, 전기 화학적 쿨롱 효율과 수명을 향상시킨다. 또한, 음극재 입자 내부에 미세 기공을 형성하여, 전해액이 침투하기 용이한 구조를 형성하여 리튬 이온의 흡장과 탈리가 원활해지고, 압축 특성도 향상되어 고밀도용 재료로 적합하다.The present invention is a core carbon material; And a heat treatment of an anode material for a lithium secondary battery formed of a coating low crystalline carbon and having a covering layer surrounding the core carbon material in an atmosphere containing oxygen. The defect removal process on the surface of the coated negative electrode material removes active functional groups to suppress electrolyte decomposition reactions and improve electrical conductivity, thereby improving electrochemical coulombic efficiency and lifetime. In addition, fine pores are formed inside the negative electrode material particles to form a structure in which electrolyte easily penetrates, thereby facilitating occlusion and desorption of lithium ions, and also improving compression characteristics, making them suitable for high density materials.

Description

리튬 이차전지용 음극재의 제조방법과 이로부터 형성된 음극재를 포함하는 리튬 이차전지{Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom}A method of manufacturing a negative electrode material for a lithium secondary battery and a lithium secondary battery including a negative electrode material formed therefrom {Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom}

본 발명은 리튬 이차전지용 음금재의 제조방법에 대한 것이다.The present invention relates to a method of manufacturing a drink material for a lithium secondary battery.

비디오 카메라, 무선전화기, 핸드폰, 노트북 컴퓨터 등 각종 휴대용 전자기기가 일상생활에 급속히 보급되면서 전원 공급원으로 사용되는 이차전지의 수요가 크게 증가되었고, 그 중에서 리튬 이차전지는 용량이 크고 에너지밀도가 높은 우수한 전지 특성 때문에 국내외적으로 활발한 연구개발이 진행되어, 현재 이차전지 중에서 가장 광범위하게 사용되고 있다.As portable electronic devices such as video cameras, cordless phones, mobile phones, and notebook computers are rapidly spreading in daily life, the demand for secondary batteries used as a power source has increased greatly. Among them, lithium secondary batteries have high capacity and high energy density. Due to the battery characteristics, active research and development has been carried out at home and abroad, and is currently the most widely used secondary battery.

리튬 이차전지는 기본적으로 양극과 음극 및 전해질로 이루어지며, 따라서 리튬 이차전지에 대한 연구개발은 크게 양극(cathode) 및 음극(anode) 재료, 전해질(electrolyte)에 관한 연구로 나눌 수 있다.A lithium secondary battery basically consists of a positive electrode, a negative electrode, and an electrolyte. Therefore, research and development of a lithium secondary battery can be largely divided into studies on a cathode, an anode material, and an electrolyte.

이 중에서 리튬 이차전지의 음극재료로서 사용되고 있는 천연흑연은 초도 용량은 우수하나 효율과 사이클 용량이 떨어지는 특성을 나타낸다. 이는 고결정성의 천연흑연 에지(edge) 부분에서의 전해액 분해반응이 원인으로 알려져 있다.Among these, natural graphite, which is used as a negative electrode material for lithium secondary batteries, exhibits excellent initial capacity but poor efficiency and cycle capacity. This is known to be due to the electrolyte decomposition reaction in the highly crystalline natural graphite edge portion.

이러한 특성을 극복하기 위해, 일본공개특허 제2002-348109호는 결정질계 탄소재료의 엣지 부분에서 전해액의 분해 반응이 유발되는 것을 방지하기 위해 탄화물층을 코팅한 탄소재료계 음극재 특성에 대해 개시하고 있지만, 피복된 탄화물층은 표면에 결함을 다수 포함하며, 또한 압축특성, 전기 전도성 및 전해액 주액성을 열화시켜서, 고밀도에서 쿨롱 효율 및 수명 특성을 향상시키는 한계를 가지는 문제점이 있다.In order to overcome this characteristic, Japanese Laid-Open Patent Publication No. 2002-348109 discloses a carbon material negative electrode material coated with a carbide layer in order to prevent the decomposition reaction of the electrolyte from occurring at the edge of the crystalline carbon material. However, the coated carbide layer contains a number of defects on the surface, and also has a problem of deteriorating the compressive characteristics, the electrical conductivity, and the electrolyte pouring ability, thereby improving the coulombic efficiency and life characteristics at high density.

본 발명은 탄화물층을 코팅한 탄소재료계 음극재에 대한 표면의 결함을 제거하는 방법의 제공을 목적으로 한다.An object of the present invention is to provide a method for removing surface defects on a carbonaceous anode material coated with a carbide layer.

본 발명의 리튬 이차전지용 음극재의 제조방법은 심재 탄소재료; 및 피복용 저결정성 탄소에 의해 형성되어 상기 심재 탄소재료를 둘러싸는 피복층을 구비하는 리튬 이차전지용 음극재를 산소를 포함한 분위기에서 열처리하는 단계를 포함한다.Method for producing a negative electrode material for a lithium secondary battery of the present invention is a core carbon material; And heat-treating a negative electrode material for a lithium secondary battery formed of a low crystalline carbon for coating and having a coating layer surrounding the core carbon material in an atmosphere containing oxygen.

본 발명은 피복된 음극재 표면의 결함제거 공정을 통해 활성 작용기를 제거하여 전해액 분해반응을 억제하고, 전기 전도도를 향상시켜서, 전기 화학적 쿨롱 효율과 수명을 향상시킨다. 또한, 음극재 입자 내부에 미세 기공을 형성하여, 전해액이 침투하기 용이한 구조를 형성하여 리튬 이온의 흡장과 탈리가 원활해지고, 압축 특성도 향상되어 고밀도용 재료로 적합하다.The present invention removes active functional groups through the defect removal process on the surface of the coated negative electrode material to suppress the decomposition of the electrolyte solution and improve the electrical conductivity, thereby improving the electrochemical coulombic efficiency and lifespan. In addition, fine pores are formed inside the negative electrode material particles to form a structure in which electrolyte easily penetrates, thereby facilitating occlusion and desorption of lithium ions, and also improving compression characteristics, making them suitable for high density materials.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미아 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as a semantic concept consistent with the technical spirit of the present invention based on the principle of the present invention.

본 발명에 따라 금속 및 금속산화물 복합체가 저결정성 탄소가 피복된 탄소계 음극재의 표면의 결함을 제거하여 음극재를 제조하는 방법은 다음과 같다.According to the present invention, a method of manufacturing a negative electrode material by removing a defect on the surface of a carbon-based negative electrode material coated with a low crystalline carbon metal and metal oxide composite is as follows.

심재 탄소재료; 및 피복용 저결정성 탄소에 의해 형성되어 상기 심재 탄소재료를 둘러싸는 피복층을 구비하는 리튬 이차전지용 음극재를 산소를 포함한 분위기에서 열처리 한다.Core carbon material; And a negative electrode material for a lithium secondary battery formed of a low crystalline carbon for coating and including a coating layer surrounding the core carbon material in a atmosphere containing oxygen.

이러한 심재 탄소 재료는 천연흑연, 인조흑연, 소프트카본 및 하드카본 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 사용할 수 있고, 또한 이러한 저결정성 탄소는 피치(pitch), 타르(tar), 페놀수지, 퓨란수지 및 풀푸릴알콜 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 사용할 수 있다.The core carbon material may be one compound selected from natural graphite, artificial graphite, soft carbon, and hard carbon, or a mixture of two or more thereof, and such low crystalline carbon may include pitch, tar, One compound selected from phenol resin, furan resin, and furfuryl alcohol, or a mixture of two or more thereof can be used.

바람직하게는 본 발명의 심재 탄소 재료와 저결정성 탄소는, 85 내지 95 : 5 내지 15 중량비로 혼합된다.Preferably, the core carbon material and the low crystalline carbon of the present invention are mixed in a weight ratio of 85 to 95: 5 to 15.

저결정성 탄소가 피복된 탄소계 음극재는 표면에 산소 및 활성작용기를 과도하게 포함하고 있는 등의 결점이 존재하는 데, 산소를 포함한 분위기에서 열처리 하여 이러한 결점의 개선이 가능하다. The carbon-based negative electrode material coated with low crystalline carbon has defects such as excessively containing oxygen and active functional groups on its surface, and the defects can be improved by heat treatment in an atmosphere containing oxygen.

이때의 열처리 분위기의 산소의 함량은 10 내지 35 부피%인 것이 바람직하고, 열처리 온도는 540 내지 580℃인 것이 바람직하다. 산소의 함량 및 열처리 온도가 낮은 경우에는 결함의 개선 효과가 미미하고, 너무 높은 경우에는 피복된 탄소질이 과도하게 제거될 염려가 있다.The content of oxygen in the heat treatment atmosphere at this time is preferably 10 to 35% by volume, and the heat treatment temperature is preferably 540 to 580 ° C. When the oxygen content and the heat treatment temperature are low, the effect of improving defects is insignificant, and when too high, the coated carbonaceous material may be excessively removed.

이렇게 제조된 본 발명의 음극재는 통상적인 음극 제조방법에 따라, 도전재, 바인더 및 유기 용매와 혼합하여 활물질 페이스트로 제조된 후, 구리 포일(foil)과 같은 통상적으로 사용되는 음극 집전체에 도포된 다음, 건조, 열처리 및 압착하여 리튬 이차전지용 음극을 제조하는 데 사용될 수 있다.The negative electrode material of the present invention prepared as described above is prepared as an active material paste by mixing with a conductive material, a binder, and an organic solvent according to a conventional negative electrode manufacturing method, and then applied to a commonly used negative electrode current collector, such as a copper foil. Next, it can be used to prepare a negative electrode for a lithium secondary battery by drying, heat treatment and compression.

또한, 상기와 같이 본 발명에 따라 제조된 음극 및 리튬계 전이금속 화합물이 소정 두께로 양극 집전체에 코팅되어 제조된 양극을 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 이차전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 이차전지의 제조도 가능하다. 이러한 리튬 이차전지 제조 방법은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로 상세한 설명은 생략하기로 한다.
In addition, as described above, the negative electrode and the lithium-based transition metal compound prepared according to the present invention are coated on the positive electrode current collector with a predetermined thickness to face the positive electrode with a separator therebetween, and the separator is impregnated with an electrolyte solution for a lithium secondary battery. It is also possible to manufacture a lithium secondary battery capable of phosphorus charging and discharging. Since such a lithium secondary battery manufacturing method is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예Example

실시예 1Example 1

구상의 천연흑연에 10%의 피치를 고속으로 약 10 분 건식 혼합하고, 이 혼합물을 2200℃에서 1시간 동안 비활성 분위기에서 소성하여 피복된 음극재를 제조하였다. 이렇게 얻어진 음극 활물질을 20% 산소 부피농도 분위기에서 550℃의 온도로, 25시간 동안 열처리하는 결함제거 공정을 실시하여 표면결합이 제거된 음극재를 제조하였다.10% pitch was dry-mixed at high speed for about 10 minutes to spherical natural graphite, and the mixture was calcined at 2200 ° C. for 1 hour in an inert atmosphere to prepare a coated negative electrode material. The negative electrode active material thus obtained was subjected to a defect removal process of heat-treating for 25 hours at a temperature of 550 ° C. in a 20% oxygen volume concentration atmosphere to prepare a negative electrode material from which surface bonding was removed.

실시예 2Example 2

570℃의 온도에서 결함제거 공정을 실시한 것을 제외하고는, 실시예 1과 상기 실시예 1과 동일한 방법으로 음극재를 제조하였다.
A negative electrode material was manufactured in the same manner as in Example 1 and Example 1, except that the defect removal process was performed at a temperature of 570 ° C.

실시예 3Example 3

30시간 동안 결함제거 공정을 실시한 것을 제외하고는, 실시예 1과 상기 실시예 1과 동일한 방법으로 음극재를 제조하였다.
Except that the defect removal process was performed for 30 hours, a negative electrode material was prepared in the same manner as in Example 1 and Example 1.

실시예 4Example 4

30% 산소 부피농도 분위기에서 결함제거 공정을 실시한 것을 제외하고는, 실시예 1과 상기 실시예 1과 동일한 방법으로 음극재를 제조하였다.
A negative electrode material was manufactured in the same manner as in Example 1 and Example 1, except that the defect removal process was performed in a 30% oxygen volume concentration atmosphere.

비교예 1Comparative Example 1

구상의 천연흑연에 10%의 피치를 고속으로 약 10 분 건식 혼합하고, 이 혼합물을 2200℃에서 1시간 동안 비활성 분위기에서 소성하여 피복된 음극재를 제조하였다.
10% pitch was dry-mixed at high speed for about 10 minutes to spherical natural graphite, and the mixture was calcined at 2200 ° C for 1 hour in an inert atmosphere to prepare a coated negative electrode material.

시험예Test Example

시험예 1. X-선 광전자 분광기 및 적외선 퓨리에 변환 적외선 분광기 평가Test Example 1. Evaluation of X-ray photoelectron spectrometer and infrared Fourier transform infrared spectrometer

음극재의 표면에 활성작용기의 제거여부를 조사하기 위해서, 실시예 1-4 및 비교예 1에서 제조된 음극재에 대한 X-선 광전자 분광기와 퓨리에 변환 적외선 분광기를 사용하여 표면 산소 함량과 1546cm-1 위치의 흑연 흡수도 대비 3451cm-1 위치의 수산기 흡수도 비율로 함량을 측정하였고, 그 결과를 하기 표 1에 나타냈다.
In order to investigate the removal of active functional groups on the surface of the negative electrode material, the surface oxygen content and 1546 cm -1 were measured using a X-ray photoelectron spectrometer and a Fourier transform infrared spectrometer for the negative electrode materials prepared in Examples 1-4 and Comparative Example 1. The content was measured by the ratio of absorbing hydroxyl groups at a position of 3451 cm −1 relative to graphite absorbance at the position, and the results are shown in Table 1 below.

시험예 2. 4탐침(4-point probe) 평가Test Example 2. Four-point Probe Evaluation

음극재의 전기 전도성이 향상여부를 조사하기 위해서, 실시예 1-4 및 비교예 1에서 제조된 음극재에 대한 1.6g/cc의 전극밀도 상태에서 4탐침(4-point probe)를 사용하여 단위 길이 당 전기 저항을 측정하였고, 그 결과를 하기 표 1에 나타냈다.
In order to investigate whether the electrical conductivity of the negative electrode material was improved, a unit length was used by using a 4-point probe at an electrode density of 1.6 g / cc for the negative electrode material prepared in Examples 1-4 and Comparative Example 1. The sugar electrical resistance was measured and the results are shown in Table 1 below.

시험예 3. 수은 기공도 및 전해액 함침성 평가Test Example 3 Evaluation of Mercury Porosity and Electrolyte Impregnation

음극재의 내부 미세 기공이 형성 및 전해액 함침성이 향상 여부를 조사하기 위하여, 실시예 1-4 및 비교예 1에서 제조된 음극재에 대한 수은 기공도를 측정하여 단위 중량당 직경 3.7㎛ 기공의 부피의 값과 400㎕의 전해액 흡수 시간을 하기 표 1에 나타냈다.
In order to investigate whether the internal fine pores of the negative electrode material is formed and the electrolyte impregnation property is improved, the volume of the pore diameter of 3.7 μm per unit weight is measured by measuring mercury porosity of the negative electrode material prepared in Examples 1-4 and Comparative Example 1. The values of and 400 µl of the electrolyte absorption time are shown in Table 1 below.

시험예 4. 압축률 평가Test Example 4 Evaluation of Compression Ratio

음극재의 압축률의 향상 여부를 조사하기 위해서, 실시예 1-4 및 비교예 1에서 제조된 음극재에 대한 70MP에서의 겉보기 밀도를 측정하여 하기 표 1에 나타냈다.
In order to investigate the improvement of the compression rate of the negative electrode material, the apparent density at 70 MP for the negative electrode material prepared in Examples 1-4 and Comparative Example 1 was measured and shown in Table 1 below.

시험예 5. 전지특성 평가Test Example 5 Battery Characteristic Evaluation

실시예 1-4 및 비교예 1에서 제조된 음극재 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입, 믹서(Mixer)를 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하였다. 건조된 전극을 1.6g/cm3 가 되도록 압착하여 전극으로 사용하여 코인형 전지(coin cell)를 이용하여 평가하였다.100 g of the negative electrode material prepared in Examples 1-4 and Comparative Example 1 was put into a 500 ml reactor, and a small amount of N-methylpytolidone (NMP) and a binder (PVDF) were added and mixed by using a mixer. Prepared. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare an electrode. The dried electrode was compressed to be 1.6 g / cm 3 and used as an electrode, and evaluated using a coin cell.

충방전 시험은 전위를 0.01~1.5V의 범위로 규제하여, 충전 전류 0.5mA/cm2로 0.01V 될때 까지 충전하고, 또한 0.01V의 전압을 유지하며, 충전전류가 0.02mA/cm2 될때까지 충전을 계속하였다. 그리고 방전전류는 0.5mA/cm2로 1.5V까지의 방전을 행하였다. 하기 표 1에서 충방전 효율은 충전한 전기용량에 대해 방전한 전기용량의 비율을 나타낸다.The charge / discharge test regulates the potential in the range of 0.01 to 1.5V, charges until it becomes 0.01V at the charging current of 0.5mA / cm 2 , and maintains the voltage of 0.01V until the charging current becomes 0.02mA / cm 2 . Charging continued. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2 . In Table 1 below, the charge and discharge efficiency indicates the ratio of the discharged capacitance to the charged capacitance.

산소함량(%)Oxygen content (%) 수산기
흡수도
Hydroxyl
Absorbance
전기저항
(Ω/cm)
Electrical resistance
(Cm / cm)
기공 부피
(cc/g×103)
Pore volume
(cc / g × 10 3 )
전해액 흡수시간(sec)Electrolytic solution absorption time (sec) 겉보기 밀도
(70MP,g/cc)
Apparent density
(70 MP, g / cc)
충방전 전지특성Charge / discharge battery characteristics
효율
(%)
efficiency
(%)
용량유지율
(50th cycle,%)
Capacity maintenance rate
(50th cycle,%)
실시예 1Example 1 2.032.03 2.682.68 0.30.3 4.84.8 3636 1.871.87 94.794.7 92.292.2 실시예 2Example 2 2.182.18 2.492.49 0.20.2 3.43.4 4646 1.911.91 93.593.5 88.488.4 실시예 3Example 3 2.092.09 2.332.33 0.20.2 3.63.6 4343 1.921.92 91.691.6 88.588.5 실시예 4Example 4 2.192.19 2.542.54 0.30.3 3.73.7 4444 1.881.88 91.791.7 87.687.6 비교예 1Comparative Example 1 4.594.59 4.254.25 1.41.4 1.01.0 5454 1.691.69 93.593.5 69.269.2

비교예 1과 대비하여 실시예 1-4의 음극재는 피복된 음극재 표면의 결함제거 공정을 통해 전기화학적 쿨롱 효율과 수명이 향상되었음을 알 수 있다. 즉, 본 발명의 결함제거 공정은 산소원자 함량 및 관련 활성작용기를 제거하여 전해액 부반응을 억제하고, 전기 전도성 향상과 기공 발달을 통해 리튬의 흡장-탈리가 원활하도록 하였다.In comparison with Comparative Example 1, it can be seen that the negative electrode material of Example 1-4 is improved in electrochemical coulombic efficiency and life through a defect removal process on the surface of the coated negative electrode material. That is, the defect elimination process of the present invention removes the oxygen atom content and related active functional groups to suppress the side reaction of the electrolyte, and facilitate the occlusion and desorption of lithium through the improvement of electrical conductivity and pore development.

Claims (8)

심재 탄소재료; 및 피복용 저결정성 탄소에 의해 형성되어 상기 심재 탄소재료를 둘러싸는 피복층을 구비하는 리튬 이차전지용 음극재를 산소를 포함한 분위기에서 열처리하는 단계를 포함하는 리튬 이차전지용 음극재의 제조방법.Core carbon material; And heat-treating a negative electrode material for a rechargeable lithium battery having a coating layer formed of low crystalline carbon for covering and surrounding the core carbon material in an atmosphere containing oxygen. 제 1항에 있어서,
상기 산소의 함량은 10 내지 35 부피%인 것을 특징으로 하는 리튬 이차전지용 음극재의 제조방법.
The method of claim 1,
The content of the oxygen is a manufacturing method of the negative electrode material for a lithium secondary battery, characterized in that 10 to 35% by volume.
제 1항에 있어서,
상기 열처리 온도는 540 내지 580℃인 것을 특징으로 하는 리튬 이차전지용 음극재의 제조방법.
The method of claim 1,
The heat treatment temperature is a manufacturing method of the negative electrode material for a lithium secondary battery, characterized in that 540 to 580 ℃.
제 1항에 있어서,
상기 심재 탄소 재료는 천연흑연, 인조흑연, 소프트카본 및 하드카본 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극재의 제조방법.
The method of claim 1,
The core carbon material is a method for producing a negative electrode material for a lithium secondary battery, characterized in that the compound or two or more kinds selected from natural graphite, artificial graphite, soft carbon and hard carbon.
제 1항에 있어서,
상기 저결정성 탄소는 피치(pitch), 타르(tar), 페놀수지, 퓨란수지 및 풀푸릴알콜 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극재의 제조방법.
The method of claim 1,
The low crystalline carbon is a method of producing a negative electrode material for a lithium secondary battery, characterized in that the compound selected from pitch, tar (tar), phenol resin, furan resin and furfuryl alcohol or a mixture of two or more kinds.
제 1항에 있어서,
상기 심재 탄소 재료와 저결정성 탄소는, 85 내지 95 : 5 내지 15 중량비로 혼합되는 것을 특징으로 하는 리튬 이차전지용 음극재의 제조방법.
The method of claim 1,
The core carbon material and the low crystalline carbon are mixed in a weight ratio of 85 to 95: 5 to 15, the manufacturing method of the negative electrode material for a lithium secondary battery.
음극재 및 바인더가 음극 집전체 상에 코팅되어 형성된 리튬 이차전지용 음극에 있어서,
상기 음극재는 제 1항 내지 제 6항 중 어느 한 항의 제조방법에 의해 제조된 음극재인 것을 특징으로 하는 리튬 이차전지용 음극.
In the negative electrode for a lithium secondary battery formed by coating a negative electrode material and a binder on the negative electrode current collector,
The negative electrode material is a negative electrode material for a lithium secondary battery, characterized in that the negative electrode material prepared by the method of any one of claims 1 to 6.
음극, 양극, 상기 음극과 양극 사이에 개재된 세퍼레이터, 및 전해액을 구비하는 리튬 이차전지에 있어서,
상기 음극은 제 7항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.
In a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution,
The negative electrode is a lithium secondary battery, characterized in that the negative electrode according to claim 7.
KR1020100022904A 2010-03-15 2010-03-15 Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom Expired - Fee Related KR101065249B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100022904A KR101065249B1 (en) 2010-03-15 2010-03-15 Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100022904A KR101065249B1 (en) 2010-03-15 2010-03-15 Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom

Publications (1)

Publication Number Publication Date
KR101065249B1 true KR101065249B1 (en) 2011-09-19

Family

ID=44957449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100022904A Expired - Fee Related KR101065249B1 (en) 2010-03-15 2010-03-15 Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom

Country Status (1)

Country Link
KR (1) KR101065249B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682804A (en) * 2018-04-25 2018-10-19 福建翔丰华新能源材料有限公司 A kind of hard carbon cladding soft carbon is used as the preparation method of lithium ion battery negative material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090927A (en) 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Method for producing carbon anode material for lithium secondary battery
JP2000208145A (en) 1999-01-13 2000-07-28 Petoca Ltd Production of graphite material for high-capacity lithium ion secondary battery negative electrode
JP2003346796A (en) 2002-05-23 2003-12-05 Hitachi Ltd Composite carbon material and lithium ion secondary battery
KR20080097875A (en) * 2007-05-03 2008-11-06 엘에스엠트론 주식회사 Anode material for a secondary battery and a secondary battery comprising the same as a negative electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090927A (en) 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Method for producing carbon anode material for lithium secondary battery
JP2000208145A (en) 1999-01-13 2000-07-28 Petoca Ltd Production of graphite material for high-capacity lithium ion secondary battery negative electrode
JP2003346796A (en) 2002-05-23 2003-12-05 Hitachi Ltd Composite carbon material and lithium ion secondary battery
KR20080097875A (en) * 2007-05-03 2008-11-06 엘에스엠트론 주식회사 Anode material for a secondary battery and a secondary battery comprising the same as a negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682804A (en) * 2018-04-25 2018-10-19 福建翔丰华新能源材料有限公司 A kind of hard carbon cladding soft carbon is used as the preparation method of lithium ion battery negative material
CN108682804B (en) * 2018-04-25 2021-05-25 深圳市翔丰华科技股份有限公司 Preparation method of lithium ion battery cathode material with hard carbon-coated soft carbon

Similar Documents

Publication Publication Date Title
KR101031920B1 (en) Anode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same as cathode
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR102756676B1 (en) Anode Having Double Active Material Layers, Method of Preparing the Same, and Secondary Battery Comprising the Same
CN101840787A (en) Method for manufacturing positive plate of lithium ion capacitor and lithium ion capacitor using positive plate
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JP2015115233A (en) Negative electrode for magnesium ion secondary battery and magnesium ion secondary battery
Zhu et al. A lithiophilic carbon scroll as a Li metal host with low tortuosity design and “Dead Li” self-cleaning capability
KR20160113981A (en) Negative electrode active material and method for preparing the same
KR20090111129A (en) Anode active material for secondary battery, electrode for secondary battery comprising same, secondary battery and manufacturing method thereof
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
JP5246697B2 (en) Method for manufacturing electrode for electric double layer capacitor
KR100978422B1 (en) Anode active material for secondary battery, electrode for secondary battery comprising same and secondary battery
KR101595616B1 (en) Conductive agent for lithium secondary battery and electrode for lithium secondary battery comprising the same
KR102433365B1 (en) Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101673171B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
CN118448601A (en) A high first-time efficiency fast-charging graphite composite material and its preparation method and application
KR102732571B1 (en) COF-based electrode active material composition, manufacturing method thereof, COF-based electrode slurry composition containing the same, and the electrode for lead-carbon batteries
KR101065249B1 (en) Method for producing a negative electrode material for a lithium secondary battery and a lithium secondary battery comprising a negative electrode material formed therefrom
KR20150059726A (en) Graphite anode with improved lithium pre-doping speed and lithium ion capacitor employing the same
KR101500644B1 (en) Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode
KR20120094018A (en) Negative electrode material for an electrical storage device, and negative electrode using said material
CN113659117A (en) A kind of preparation method of carbon-doped sandwich structure lithium ion battery negative electrode material
KR20140077227A (en) Active material for cathode of lithium ion capacitor and manufacturing method for the same
KR102837210B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100315

PA0201 Request for examination
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20101020

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20110819

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20110908

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20110909

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20150706

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20160704

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20170705

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20190619