[go: up one dir, main page]

KR101054775B1 - Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears - Google Patents

Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears Download PDF

Info

Publication number
KR101054775B1
KR101054775B1 KR1020080115876A KR20080115876A KR101054775B1 KR 101054775 B1 KR101054775 B1 KR 101054775B1 KR 1020080115876 A KR1020080115876 A KR 1020080115876A KR 20080115876 A KR20080115876 A KR 20080115876A KR 101054775 B1 KR101054775 B1 KR 101054775B1
Authority
KR
South Korea
Prior art keywords
carburizing
heat treatment
temperature
less
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020080115876A
Other languages
Korean (ko)
Other versions
KR20100056880A (en
Inventor
강창원
조봉래
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080115876A priority Critical patent/KR101054775B1/en
Publication of KR20100056880A publication Critical patent/KR20100056880A/en
Application granted granted Critical
Publication of KR101054775B1 publication Critical patent/KR101054775B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

중량%로, C 0.28∼0.33%, Si 0.2% 이하, Mn 1.20~1.45%, P 0.020% 이하, S 0.020% 이하, Ni 0.75~0.85%, Cr 0.35~0.45%, B 0.001~0.003%, 나머지 철 및 불가피한 불순물을 포함하는 조성을 갖는 차량 변속기 기여류용 합금강 및 침탄 열처리 방법이 소개된다. 이 방법은 진공 침탄로를 이용하여 부품을 A1~A3 온도 영역 내의 비교적 저온에서 침탄시킨 후 고압 가스로 냉각 열처리하며, 이에 따르면, 진공 침탄 열처리로 인한 부품의 열변형이 현저히 감소된다.By weight%, C 0.28 to 0.33%, Si 0.2% or less, Mn 1.20 to 1.45%, P 0.020% or less, S 0.020% or less, Ni 0.75 to 0.85%, Cr 0.35 to 0.45%, B 0.001 to 0.003%, the rest An alloy steel and a carburizing heat treatment method for a vehicle transmission contribution stream having a composition containing iron and unavoidable impurities are introduced. This method uses a vacuum carburizing furnace to carburize the parts at a relatively low temperature in the A 1 to A 3 temperature range and then to heat-treat them with high-pressure gas, whereby the thermal deformation of the parts due to vacuum carburizing heat treatment is significantly reduced.

애뉼러스 기어, 열변형, 침탄, 열처리 Annular Gear, Heat Deflection, Carburizing, Heat Treatment

Description

차량 변속기 기어류용 합금강 및 침탄 열처리 방법{STEEL ALLOY FOR VEHICLE TRANSMISSION GEARS AND CARBURIZATION HEAT TREATMENT METHOD THEREOF}Alloy steel and carburizing heat treatment method for vehicle transmission gears {STEEL ALLOY FOR VEHICLE TRANSMISSION GEARS AND CARBURIZATION HEAT TREATMENT METHOD THEREOF}

본 발명은 애뉼러스 기어와 같이 열변형에 민감한 차량 변속기 기어류용 합금강 및 이러한 합금강으로 제조된 부품의 침탄 열처리 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to alloy steel for vehicle transmission gears that are sensitive to heat deformation, such as annular gears, and to carburizing heat treatment methods for parts made of such alloy steels.

차량 변속기의 기어류는 엔진 동력을 직접 차동계로 전달시키는 부품으로, 피로강도, 내마모성 및 충격 인성이 요구되며, 이를 위해 일반적으로 침탄 열처리된다.Gears of the vehicle transmission are components that directly transmit engine power to the differential system, and require fatigue strength, wear resistance, and impact toughness, and are generally carburized and heat treated.

이러한 침탄 열처리시에는 부품에 변형이 발생하게 되는데, 변형량이 과다한 경우에는 부품간 조립성 저하, 이상 소음 문제 등을 유발하게 된다. 특히, 자동변속기용 유성기어 장치의 주요 부품인 애뉼러스기어는, 도 1에서 볼 수 있는 바와 같이, 내치(internal teeth)(1)를 갖는 원통형 부품으로서, 직경이 크고 두께가 얇아 열변형에 특히 민감하다.When the carburizing heat treatment is performed, deformation occurs in the component. When the amount of deformation is excessive, the assemblability between components is degraded and abnormal noise problems are caused. In particular, the annular gear, which is a main part of the planetary gear device for an automatic transmission, is a cylindrical part having internal teeth 1, as shown in FIG. 1, and has a large diameter and a thin thickness. be sensitive.

기존에는 애뉼러스기어와 같은 부품의 침탄 열처리는, 열변형을 최소화하기 위하여 가스 침탄 및 노냉 후 고주파 열처리하는 방식으로 실시되었다. 상기 고주파 열처리 시에는, 부품을 지그에 물려 열변형이 방지되도록 하였다. 그러나, 이러 한 방법은 부품을 하나씩 처리해야 하므로, 작업 효율 감소 및 비용 증가 등의 문제가 있었으며, 지그 고정 후 강제 냉각에 따른 기어의 치형 변형이 발생되는 문제가 있었다.In the past, carburizing heat treatment of parts such as annular gears was performed by high frequency heat treatment after gas carburization and furnace cooling in order to minimize thermal deformation. During the high frequency heat treatment, the parts were bitten by a jig to prevent thermal deformation. However, this method has a problem such as reducing the work efficiency and increase the cost, because the parts must be processed one by one, there was a problem that the tooth deformation of the gear due to forced cooling after fixing the jig.

최근에는 생산성이 뛰어나며 또한, 균일 냉각이 가능하여 열변형에 유리한 진공 침탄법이 소개되고 있다. 이 진공 침탄법은 진공 침탄로를 이용하여 진공 분위기에서 침탄 후 가스로 소입 처리하는데, 이러한 진공 침탄법에 의해 열처리 비용 저감 및 치형 균일화에 따른 소음 저감 효과를 얻을 수 있었으나, 그러나, 기어 형상의 뒤틀림이 심하여 진원도, 원통도 등의 형상 측면에서는 소입 시 지그를 이용하는 기존의 가스 침탄법에 비하여 불리하다는 단점이 있었다.Recently, a vacuum carburizing method has been introduced, which is excellent in productivity and uniformly cooled, which is advantageous for thermal deformation. This vacuum carburizing method uses a vacuum carburizing furnace to quench the gas after carburizing in a vacuum atmosphere. The vacuum carburizing method reduces the heat treatment cost and reduces the noise due to the uniformity of the teeth. However, the gear shape is distorted. Due to the severe shape, such as roundness, cylindricalness, etc., there is a disadvantage in that it is disadvantageous compared with the conventional gas carburizing method using a jig for hardening.

본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 제안된 것으로, 침탄 열처리시 형상 변형을 저감시킬 수 있는 차량 변속기 기어류에 적합한 합금강을 제공함을 목적으로 한다.The present invention has been proposed to solve the above problems, and an object of the present invention is to provide an alloy steel suitable for vehicle transmission gears that can reduce shape deformation during carburizing heat treatment.

또한, 본 발명은 애뉼러스 기어와 같은 열변형에 민감한 차량 변속기 기어류에 적합한 침탄 열처리 방법을 제공함을 목적으로 한다.It is also an object of the present invention to provide a carburizing heat treatment method suitable for vehicle transmission gears sensitive to heat deformation such as an annular gear.

또한, 노냉 후 고주파 열처리하는 기존의 가스 침탄법을 대체하여 높은 생산성을 확보할 수 있는 침탄 열처리 방법을 제공하고자 한다.In addition, it is to provide a carburization heat treatment method that can secure a high productivity by replacing the existing gas carburizing method of high-frequency heat treatment after the furnace cooling.

상술한 바와 같은 목적을 달성하기 위한 본 발명에 다른 차량 변속기 기어류용 합금강은, 중량%로, C 0.28∼0.33%, Si 0.2% 이하, Mn 1.20~1.45%, P 0.020% 이하, S 0.020% 이하(0은 불포함), Ni 0.75~0.85%, Cr 0.35~0.45%, B 0.001~0.003%, 나머지 철 및 불가피한 불순물을 포함하는 조성을 갖는다.Alloy steel for vehicle transmission gears according to the present invention for achieving the object as described above, by weight%, C 0.28 ~ 0.33%, Si 0.2% or less, Mn 1.20 ~ 1.45%, P 0.020% or less, S 0.020% or less (0 is not included), Ni 0.75 to 0.85%, Cr 0.35 to 0.45%, B 0.001 to 0.003%, the remaining iron and inevitable impurities.

상기 합금강 중의 용존 산소량은 15ppm 이하인 것이 바람직하다.It is preferable that the dissolved oxygen amount in the said alloy steel is 15 ppm or less.

한편, 본 발명에 따른 침탄 열처리 방법은, 상술된 합금강으로 제조된 부품을 진공 침탄로를 이용하여 A1~A3 온도 영역 내의 침탄 온도로 가열하는 과정; 상기 침탄 온도에서 침탄 가스를 공급하면서 부품의 표면부를 침탄시키는 과정; 및 상기 표면부에 마르텐사이트 상이 형성되고 심부에는 마르텐사이트와 상변화를 겪지 않 은 최초 페라이트의 혼합상이 형성되도록, 침탄된 상기 부품을 고압 가스로 열처리하는 과정;을 포함한다.On the other hand, the carburization heat treatment method according to the invention, the process of heating the carburizing temperature in the A 1 ~ A 3 temperature range of the parts made of the alloy steel described above using a vacuum carburizing furnace; Carburizing the surface of the part while supplying carburizing gas at the carburizing temperature; And heat-treating the carburized part with a high-pressure gas so that a martensite phase is formed on the surface portion and a first ferrite mixed phase which does not undergo phase change with the martensite is formed on the core portion.

바람직하게는, 상기 침탄 온도는 부품 중 페라이트의 상분율이 30~50% 이내가 되도록 하는 온도 구간 내에서 설정된다. 또한, 바람직하게는 상기 침탄 온도는 740~760℃이다.Preferably, the carburizing temperature is set within a temperature range such that the phase fraction of ferrite in the part is within 30-50%. In addition, the carburization temperature is preferably 740 to 760 ° C.

상술한 바와 같은 본 발명에 따른 차량 변속기 기어류용 합금강은, 종래 변속기 기어류 합금강으로 사용되던 SCr420HB에 비하여 A1~A3 온도 또한 낮아, 이러한 합금강으로 제조된 차량 부품을 A1~A3 온도 영역 내에서 침탄한 후 소입하는 과정에서의 온도 변화가 적어 부품의 형상 변형이 현저하게 감소된다.As described above, the alloy steel for vehicle transmission gears according to the present invention has a lower A 1 to A 3 temperature than the SCr420HB, which has been used as a conventional transmission gear alloy steel, so that a vehicle part made of such alloy steel can be used in the A 1 to A 3 temperature range. The change in temperature during the quenching process after carburizing in the interior is small, which greatly reduces the shape deformation of the part.

또한, 본 발명에 따른 침탄 열처리 방법은, 오스테나이트화 온도 A3 이상에서 실시되었던 기존의 가스 또는 진공 침탄 열처리법과 비교하여, 상당히 낮은 A1~A3 온도 영역 내에서 침탄 처리하므로, 특히 소입 시, 부품의 형상 뒤틀림이 감소되며, 특히 애뉼러스 기어와 같은 열변형에 민감한 차량 변속기 기어류의 침탄 열처리에 적합하다.In addition, the carburizing heat treatment method according to the present invention is carburized in a considerably lower A 1 to A 3 temperature range, compared with the conventional gas or vacuum carburizing heat treatment method which has been carried out at the austenitization temperature A 3 or higher, and therefore, particularly during quenching. In addition, the shape distortion of the part is reduced, and is particularly suitable for carburizing heat treatment of vehicle transmission gears that are sensitive to heat deformation such as an annular gear.

또한, 본 발명에 따른 침탄 열처리 방법은, 부품을 진공 침탄로에 다량 투입한 후 연속적으로 침탄 열처리할 수 있으므로, 소입시 지그를 이용하는 기존의 가스 침탄방법에 비하여 생산성이 우수하다.In addition, the carburizing heat treatment method according to the present invention can be continuously carburized after a large amount of components are put into a vacuum carburizing furnace, and thus, productivity is superior to that of a conventional gas carburizing method using a jig during quenching.

이하에서는 첨부된 도면을 참조하여 본 발명에 대하여 보다 상세하게 살펴본다.Hereinafter, with reference to the accompanying drawings looks at in more detail with respect to the present invention.

침탄 열처리시 열변형이 일어나는 주요 원인은 미세조직의 변태 및 급격한 온도 감소(ΔT)에 의한 체적변화에 있다. 소입 과정에서 오스테나이트상(γ)은 마르텐사이트상(α')으로 상변태가 일어나게 되는데, 결정구조가 FCC(Face Centered Cubic) 에서 BCT(Body Centered Tetragonal)로 바뀌게 된다. 이때, BCT 구조가 격자간격이 더 넓어 체적이 팽창하게 되는 반면, 급냉시에 온도가 낮아짐에 따라 부품 자체의 체적이 급격히 감소하게 되는데, 이러한 여러가지 요인들이 상호 결합하여 변형이 발생하게 된다.The main cause of thermal deformation during carburizing heat treatment is the volume change due to the transformation of microstructure and rapid temperature decrease (ΔT). In the quenching process, the austenite phase (γ) is transformed into a martensite phase (α '), and the crystal structure is changed from FCC (Face Centered Cubic) to BCT (Body Centered Tetragonal). In this case, while the BCT structure has a wider lattice spacing, the volume expands, and as the temperature decreases during quenching, the volume of the component itself rapidly decreases. These various factors combine with each other to cause deformation.

위와 같은 이유로 발생되는 침탄 열처리시의 열변형을 최소화 하기 위해서는 소입시 온도 변화(ΔT)를 최소화하는 것이 필요하다. 이를 위한 방안으로서, 본 출원인은 한국특허출원 제2008-0087666호를 통해, 오스테나이트상과 페라이트상이 공존하는 이상(dual phase: 도 2 참조) 영역에서 침탄 처리하여 부품의 승온 및 침탄 확산공정에서 일정량의 페라이트상(α)이 상변화 없이 유지되도록 하고, 이를 통해 소입 시, 오스테나이트로부터 마르텐사이트로의 변태 분율을 낮추어 체적 변화를 최소화함으로써 침탄 열처리 부품의 열변형이 저감되도록 하는 방안을 제시한 바 있다.In order to minimize thermal deformation during carburization heat treatment caused by the above reasons, it is necessary to minimize the temperature change (ΔT) during quenching. As a solution for this, the present applicant has carburized in an abnormal region in which an austenite phase and a ferrite phase coexist (dual phase: see FIG. 2) through a Korean Patent Application No. 2008-0087666, and a certain amount in a temperature raising and carburizing diffusion process of a part. The ferrite phase of α is maintained without phase change, and through this, a method of reducing thermal deformation of carburized heat-treated parts by minimizing volume change by lowering the transformation fraction from austenite to martensite is shown. have.

본 발명은 위 출원에 소개된 발명의 내용의 연장선상에 있는 것으로, 침탄 열처리 온도를 위 출원발명의 경우 보다 낮출 수 있도록 함으로써, 소입 시의 온도 변화가 더욱 저감되도록 하고, 이를 통해 부품의 열변형을 더욱 저감시키고자 하는 것이다. 보다 구체적으로, 본 발명에 따른 합금강은 A1 및 A3 온도가 위 출원발명에서 사용되는 합금강의 온도보다 낮아지도록 설계된 것이다. 아래의 표 1에서, 실시예는 본 발명에 따른 합금강의 일례, 비교예는 SCr420HB이다.The present invention is an extension of the contents of the invention introduced in the above application, by lowering the carburizing heat treatment temperature than in the case of the present invention, to further reduce the temperature change at the time of quenching, through which the thermal deformation of the parts To further reduce the More specifically, the alloy steel according to the present invention is designed such that the temperature of A1 and A3 is lower than the temperature of the alloy steel used in the present invention. In Table 1 below, Examples are examples of alloy steel according to the present invention, Comparative Example is SCr420HB.

구분division Ar3Ar3 Ac3(0.8%C)Ac3 (0.8% C) Ac1Ac1 침탄 가능온도Carburizing Temperature 실시예Example 776℃776 ℃ 733℃733 ℃ 705℃705 740~760℃740 ~ 760 ℃ 비교예Comparative example 796℃796 ℃ 752℃752 ℃ 732℃732 ℃ 770~790℃770 ~ 790 ℃

위의 표 1에서 Ac3(0.8%C)는 침탄 열처리되는 부품이 0.8%의 탄소 농도를 가지고 있을 때 승온시의 오스테나이트화 온도이다. 침탄 열처리되는 부품의 표면 탄소 농도는 침탄 과정에서 대략 0.8% 정도까지 증가하므로, Ac3(0.8%C) 온도는 부품의 표면을 완전히 오스테나이이트화될 수 있도록 하기 위하여 필요한 일 조건에 해당한다. Ar3는 주지된 바와 같이 오스테나이트 단상 영역에서 냉각 시 초석 페라이트상이 석출 시작되는 온도이다.In Table 1, Ac3 (0.8% C) is the austenitization temperature at elevated temperature when the carburized part has a carbon concentration of 0.8%. Since the surface carbon concentration of the carburized part is increased to about 0.8% during the carburizing process, the Ac3 (0.8% C) temperature corresponds to one condition necessary to fully austenite the surface of the part. Ar3 is a temperature at which the cornerstone ferrite phase starts to precipitate upon cooling in the austenite single phase region, as is well known.

이하 본 발명에 따른 합금강의 조성에 대하여 살펴본다.Hereinafter, the composition of the alloy steel according to the present invention will be described.

탄소(C) 0.28~0.33 중량% 포함된다. 탄소의 함량이 0.28 중량% 미만일 경우 상변태 온도를 낮출 수 있는 오스테나이트 안정화 효과가 제한되어 저온 침탄 목적을 달성하기 어려워진다. 반면 0.33 중량%를 초과하는 경우에는 모재 탄소 함유량 증가로 인해 소재 경도가 상승하게 되어 각종 가공성이 저하되게 되며, 또한 침탄 열처리후 심부 경도 상승으로 부품의 취성이 높아지게 된다.It contains 0.28 to 0.33% by weight of carbon (C). If the carbon content is less than 0.28% by weight, the austenite stabilization effect that can lower the phase transformation temperature is limited, making it difficult to achieve the low temperature carburizing purpose. On the other hand, when the content exceeds 0.33% by weight, the hardness of the material increases due to an increase in the base metal carbon content, thereby decreasing various workability, and also increasing the brittleness of parts due to the increase in core hardness after carburizing heat treatment.

규소(Si) 0.2 중량% 이하 포함된다. 규소는 페라이트 안정화 원소로써, 0.2 중량%를 초과하여 첨가될 시 주요 상변태 온도 저감을 어렵게 한다.0.2 wt% or less of silicon (Si) is included. Silicon is a ferrite stabilizing element, making it difficult to reduce the main phase transformation temperature when added in excess of 0.2% by weight.

망간(Mn)은 1.20~1.45 중량% 포함된다. 망간은 오스테나이트 안정화 원소로써, 1.20 중량% 미만일 경우 저온침탄을 위한 상변태 온도 저감이 어려워지며, 1.45 중량%를 초과할 경우 강재에 점성을 부여하여 가공을 어렵게 한다.Manganese (Mn) is contained in 1.20 ~ 1.45% by weight. Manganese is an austenite stabilizing element, and when it is less than 1.20% by weight, it is difficult to reduce the phase transformation temperature for low temperature carburization, and when it exceeds 1.45% by weight, it becomes difficult to process by giving viscosity to the steel.

니켈(Ni)은 0.75~0.85 중량% 포함된다. 니켈 또한 오스테나이트 안정화 원소로써, 저온침탄이 가능하도록 0.75 중량% 이상으로 하되, 고가의 니켈 사용을 최소화하기 위해 0.85 중량% 이하로 제한하였다. 또한 본 발명에서는 크롬 함유량 저감으로 인한 소입성 저하를 방지하기 위해 소입성 향상 효과가 있는 니켈의 함유량을 0.75~0.85 중량% 수준으로 설계하였다.Nickel (Ni) is contained 0.75 to 0.85% by weight. Nickel is also an austenite stabilizing element, which is 0.75% by weight or more to enable low temperature carburization, but is limited to 0.85% by weight or less to minimize the use of expensive nickel. In addition, in the present invention, in order to prevent the drop in hardenability due to the reduction of the chromium content, the content of nickel having an effect of improving the hardenability is designed to be 0.75 to 0.85% by weight.

크롬(Cr)의 함유량은 0.35~0.45 중량% 이다. 크롬은 가장 주요한 페라이트 안정화 원소로써, 첨가시 철강의 변태 온도를 상승시키게 된다. 따라서, 저온 침탄 목적을 달성하기 위하여 크롬의 최대 함량은 0.45 중량% 이하로 제한된다. 한편, 침탄 후 소입성 확보를 위하여서는 크롬의 함량은 0.35 중량% 이상 첨가될 필요가 있다.The content of chromium (Cr) is 0.35 to 0.45 wt%. Chromium is the most important ferrite stabilizing element and, when added, increases the transformation temperature of steel. Therefore, the maximum content of chromium is limited to 0.45% by weight or less in order to achieve the low temperature carburizing purpose. On the other hand, in order to secure the hardenability after carburization, the content of chromium needs to be added at least 0.35% by weight.

인(P), 황(S)은 인성 등 합금강의 품질을 저하시키는 대표적인 불순물로서 0.020 중량% 이하(0 포함)로 관리될 필요가 있으며, 합금강의 청정도 유지, 즉 비금속 개재물의 저감을 위해 용존 산소량은 15ppm 이하(0 포함)가 되도록 관리될 필요가 있다. 한편, 붕소(B)는 열처리 경화능의 향상을 위해 10~30ppm 함유시킨다. 붕소의 함량이 30pm을 넘게 되면 취성이 문제된다.Phosphorus (P) and sulfur (S) are representative impurities that degrade the quality of alloy steel such as toughness and need to be managed at 0.020% by weight or less (including 0), and dissolved in order to maintain the cleanliness of alloy steel, that is, reduce non-metallic inclusions. The amount of oxygen needs to be managed to be 15 ppm or less (including 0). On the other hand, boron (B) is contained 10 ~ 30ppm to improve the heat treatment hardenability. If the boron content exceeds 30pm brittleness is a problem.

도 3을 참조하여, 본 발명에 따른 침탄 열처리 공정의 일례를 살펴본다.Referring to Figure 3, looks at an example of the carburizing heat treatment process according to the present invention.

본 발명에 따르면 침탄 열처리는 진공 침탄로를 이용하여 진공 분위기 하에서 실시된다. 진공 분위기는 저압 무산화 분위기, 즉, 침탄 열처리 과정 중 부품 표면의 산화가 방지되도록 산소 분압이 낮고 저압으로 제어된 조건을 지칭하는 것이다. 이러한 침탄 열처리는, 도 3에서 보듯이, 가열 공정, 침탄 공정, 그리고 고압 가스를 이용한 소입 공정을 포함한다.According to the present invention, the carburization heat treatment is performed in a vacuum atmosphere using a vacuum carburizing furnace. Vacuum atmosphere refers to a low pressure anoxic atmosphere, that is, a condition where the oxygen partial pressure is low and controlled at a low pressure so as to prevent oxidation of the surface of the part during the carburizing heat treatment process. This carburization heat treatment includes a heating step, a carburization step, and a hardening step using a high pressure gas, as shown in FIG.

가열 공정Heating process

본 발명에 따르면 침탄은 A1~A3 온도 영역 내, 바람직하게는 740~760℃에서 이루어진다. 부품은 진공 침탄로를 이용하여 이러한 침탄 온도로 승온된 후 유지 또는 소킹(soaking)된다. 통상적으로, 진공 침탄로에는 다량의 부품이 한꺼번에 투입되는데, 이 경우, 로 내 위치에 따라 온도차가 존재하므로, 로 내에 투입된 부품들은 온도가 균일해질 때까지 충분히 소킹될 필요가 있다. 부품의 승온 시간은 열변형뿐만 아니라 생산성을 고려하여 결정되며, 소킹 시간은 대략 30분에서 1시간 정도로 족한 것으로 판단된다.According to the invention carburization takes place in the A 1 to A 3 temperature range, preferably at 740 to 760 ° C. The part is heated to this carburizing temperature using a vacuum carburizing furnace and then held or soaked. Typically, a large amount of parts are introduced into a vacuum carburizing furnace at a time. In this case, since there is a temperature difference depending on the position in the furnace, the parts put into the furnace need to be sufficiently soaked until the temperature becomes uniform. The temperature rise time of the part is determined in consideration of productivity as well as thermal deformation, and the soaking time is considered to be sufficient for approximately 30 minutes to 1 hour.

통상적으로 침탄용 부품은 상온에서 펄라이트와 페라이트의 혼합조직을 갖는다. 이러한 부품을 A1~A3 온도 영역에서 소킹시키면, 상온에서의 펄라이트는 모두 오스테나이트화되며, 상온에서의 페라이트는 일부만이 오스테나이트화 되고 나머지(즉, 최초 페라이트)는 변태되지 않고 그대로 잔류한다. 즉, 가열 공정을 통해 상기 부품은 오스테나이트와 페라이트의 혼합 조직을 갖게 된다. 여기서 중요한 것은 침탄 온도에서 부품 중 페라이트의 상분율이 30~50% 이내가 되어야 한다는 것(자세한 내용은 후술)이며, 이러한 사항을 고려하여 침탄 온도가 결정되어야 한다는 것이다.Typically, carburizing parts have a mixed structure of pearlite and ferrite at room temperature. When these parts are soaked in the A 1 to A 3 temperature range, all pearlite at room temperature is austenitized, only part of the ferrite at room temperature is austenitized and the rest (i.e., the first ferrite) remains unchanged. . That is, the part has a mixed structure of austenite and ferrite through a heating process. The important thing here is that the phase fraction of ferrite in the carburizing temperature should be within 30-50% (details will be described later), and the carburizing temperature should be determined in consideration of these matters.

침탄 공정Carburizing process

기존의 가스 및 진공 침탄 공정은, 특징적으로, A3 온도 이상의 오스테나이트 단상 영역에서 실시되었다. 그에 비해 본 발명에 따르면 침탄 공정은 오스테나이트와 페라이트가 공존하는 이상 영역, 즉, A1~A3 온도 영역 내에서 실시된다. 아는 바와 같이, A1은 오트테나이트가 페라이트와 세멘타이트로 변태되는 온도이며, A3는 스테나이트화 온도이다. 한편, 본 발명에 따르면 침탄 온도는 740~760℃가 바람직한데, 740℃ 미만하에서는 확산 계수가 낮아 침탄 시간이 길어지고, 페라이트 분율이 50%를 넘게 되어 심부 경도의 하락으로 인한 물성 저하가 문제될 수 있다. 또한, 소입시 온도 변화에 의한 열변형 최소화를 위하여 760℃ 이하에서 침탄 처리된다.Existing gas and vacuum carburizing processes are characteristically carried out in the austenite single phase region above the A 3 temperature. In contrast, according to the present invention, the carburization process is performed in an abnormal region where austenite and ferrite coexist, that is, in the temperature range of A 1 to A 3 . As is known, A 1 is the temperature at which the austenite is transformed into ferrite and cementite, and A 3 is the stenitization temperature. On the other hand, according to the present invention, the carburizing temperature is preferably 740 to 760 ° C. Under 740 ° C, the diffusion coefficient is low and the carburizing time is long, and the ferrite fraction exceeds 50%. Can be. In addition, carburization is performed at 760 ° C. or less to minimize thermal deformation due to temperature change during quenching.

부품이 놓여진 진공 침탄로의 챔버 내에 아세틸렌이나 에틸렌 가스와 같은 침탄 가스가 공급시키면, 탄소가 부품에 침탄 및 확산된다. 탄소가 침탄 및 확산된 부품 표면부는 탄소 농도가 높아져 오스테나이트화되며, 탄소의 확산이 미치지 못하는 부품 심부는 앞서 가열 공정 후의 조직인 오스테나이트와 페라이트의 혼합상을 갖는다. 따라서, 심부에서의 페라이트의 상분율은 30~50% 정도라고 말할 수 있다.When a carburizing gas such as acetylene or ethylene gas is supplied into the chamber of the vacuum carburizing furnace in which the part is placed, carbon is carburized and diffused into the part. The surface of the component carburized and diffused carbon has a high carbon concentration, resulting in austenitization, and the core of the component unable to diffuse carbon has a mixed phase of austenite and ferrite, which is a structure after the heating process. Therefore, it can be said that the ferrite phase percentage in the core portion is about 30 to 50%.

소입Hardening 공정 fair

침탄이 완료된 부품은 고압 가스를 이용하여 마르텐사이트 변태 개시 온도(Ms)까지 급냉되는데, 초기 냉각속도가 12℃/sec 이상으로 유지되어야 한다. 상기 가스에는 질소, 헬륨, 수소 등이 이용될 수 있으며, 오일이나 염욕을 이용한 소입은 불균일 냉각으로 인한 부품의 변형을 야기하므로 기피된다. 이와 같이 소입된 부품의 표면부에는 마르텐사이트와 잔류 오스테나이트의 혼합 조직이 형성되며, 내부에는 상기 최초 페라이트와 마르텐사이트의 혼합 조직이 형성된다.The carburized parts are quenched to a martensite transformation start temperature (Ms) using high pressure gas, and the initial cooling rate should be maintained at 12 ° C / sec or more. Nitrogen, helium, hydrogen, and the like may be used for the gas, and quenching using oil or salt bath is avoided because it causes deformation of parts due to uneven cooling. The mixed structure of martensite and residual austenite is formed in the surface portion of the quenched part, and the mixed structure of the first ferrite and martensite is formed therein.

상기 소입 완료된 부품, 특히 애뉼러스 기어와 같은 변속기 기어류 부품의 심부 페라이트 상분율은 30~50% 정도일 필요가 있다. 심부의 페라이트량이 30% 미만으로 적을 경우 상변태로 인한 변형량이 많아 부품의 열변형 저감 효과가 미미할 수 있으며, 심부의 페라이트량이 50%를 초과할 경우 열변형은 저감 효과는 좋으나 심부의 경도 및 인성이 침탄 열처리되는 변속기 기어류 부품에서 요구되는 수준에 미치지 못한다.The core ferrite percentage of the hardened parts, in particular of transmission gear parts such as annular gears, needs to be about 30-50%. If the amount of ferrite in the core is less than 30%, there is a large amount of deformation due to phase transformation, so that the effect of reducing heat deformation of the parts may be insignificant. Carburizing heat treatment does not reach the required level for transmission gear parts.

기존과 달리 본 발명에 따를 경우, 소입 전, 침탄 완료된 부품을 별도로 노냉시키지 않아도 된다. 기존의 기어류 침탄 열처리 방법에 따라 실시되었던 노냉은 부품의 열변형을 감소시키기 위하여 소입 시작 온도를 낮추는 것을 목적으로 하나, 본 발명에 따를 경우 침탄 온도는 740~760℃로서 기존의 920℃ 정도 보다 훨씬 낮아지므로, 노냉의 필요성이 상당히 저감된다. 당연하게도, 생산성을 일부 고려하지 않는다면, 품질 향상을 위해 소입 전 노냉을 실시할 수 있다.Unlike the conventional case, according to the present invention, it is not necessary to separately cool the carburized parts before hardening. The furnace cooling, which was carried out according to the conventional gear carburizing heat treatment method, aims at lowering the quenching start temperature in order to reduce the thermal deformation of the parts. Since it is much lower, the need for furnace cooling is significantly reduced. Naturally, if some productivity is not taken into account, furnace cooling can be carried out before quenching to improve quality.

한편, 종래 가스 또는 진공 침탄공정에 의할 경우에도, 침탄 열처리된 부품의 심부에 페라이트와 마르텐사이트가 공존하도록 할 수 있다. 즉, 대상물을 오스테나이트 단상 영역에서 침탄을 실시한 다음 노냉을 통해 이상(γ+α) 영역에 유지시킨 후 소입하게 되면, 마르텐사이트와 페라이트의 혼합조직이 발생된다. 그러나, 이 페라이트는, 침탄 과정에서 오스테나이트로 1차 변태된 후 위 노냉 및 소입 과정에서 페라이트로 2차 변태된 것이므로, 대상물의 형상 뒤틀림을 야기한다.On the other hand, even in the case of the conventional gas or vacuum carburizing process, the ferrite and martensite can coexist in the core of the carburized heat-treated component. That is, when the object is carburized in the austenite single phase region and then maintained in the abnormal (γ + α) region through the furnace cooling, it is quenched to generate a mixed structure of martensite and ferrite. However, this ferrite is the first transformation of the austenite in the carburizing process and then the second transformation of the ferrite in the stomach furnace cooling and quenching process, thus causing the shape distortion of the object.

이상, 본 발명의 특정 실시예에 관하여 도시하고 설명하였지만, 본 발명의 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음이 이해될 필요가 있다.While specific embodiments of the present invention have been illustrated and described, those of ordinary skill in the art may vary the present invention without departing from the spirit of the invention as set forth in the following claims. It is to be understood that modifications and variations are possible.

도 1은 통상적인 애뉼러스 기어를 도시한 도면,1 shows a conventional annular gear,

도 2는 통상적인 Fe-C 평형 상태도의 일례,2 is an example of a conventional Fe-C equilibrium diagram,

도 3은 본 발명의 실시에에 따른 침탄 열처리 공정을 도시한 도면,3 is a view showing a carburization heat treatment process according to an embodiment of the present invention;

Claims (5)

삭제delete 삭제delete 진공 침탄로를 이용한 침탄 열처리 방법으로서,As a carburization heat treatment method using a vacuum carburizing furnace, 부품을 A1~A3 온도 영역 내의 침탄 온도로 가열하는 과정;Heating the part to a carburizing temperature within the A 1 to A 3 temperature range; 상기 침탄 온도에서 침탄 가스를 공급하면서 부품의 표면부를 침탄시키는 과정; 및Carburizing the surface of the part while supplying carburizing gas at the carburizing temperature; And 상기 표면부에 마르텐사이트 상이 형성되고 심부에는 마르텐사이트와 상변화를 겪지 않은 최초 페라이트의 혼합상이 형성되도록, 침탄된 상기 부품을 고압 가스로 열처리하는 과정;을 포함하며,Heat treating the carburized part with a high pressure gas such that a martensite phase is formed at the surface portion and a first ferrite mixed phase which is not subjected to phase change is formed at the core portion. 상기 부품은 중량%로, C 0.28∼0.33%, Si 0.2% 이하(0은 불포함), Mn 1.20~1.45%, P 0.020% 이하(0 포함), S 0.020% 이하(0 포함), Ni 0.75~0.85%, Cr 0.35~0.45%, B 0.001~0.003%, 용존 산소량이 0.0015% 이하(0 포함), 나머지 철 및 불가피한 불순물을 포함하는 조성을 갖는 것을 특징으로 하는 침탄 열처리 방법.The parts are in weight%, C 0.28 ~ 0.33%, Si 0.2% or less (0 is not included), Mn 1.20 ~ 1.45%, P 0.020% or less (including 0), S 0.020% or less (including 0), Ni 0.75 ~ Carburizing heat treatment method characterized in that it has a composition containing 0.85%, Cr 0.35 ~ 0.45%, B 0.001 ~ 0.003%, dissolved oxygen amount 0.0015% or less (including 0), the remaining iron and inevitable impurities. 청구항 3에 있어서, 상기 침탄 온도는, 부품 중 페라이트의 상분율이 30~50% 이내가 되도록 하는 온도 구간 내에서 설정되는 것을 특징으로 하는 침탄 열처리 방법.The method of claim 3, wherein the carburization temperature is set within a temperature range such that the percentage of ferrite in the part is within 30 to 50%. 청구항 3에 있어서, 상기 침탄 온도는 740~760℃인 것을 특징으로 하는 침탄 열처리 방법.The method of claim 3, wherein the carburizing temperature is 740 ~ 760 ℃ carburizing heat treatment method, characterized in that.
KR1020080115876A 2008-11-20 2008-11-20 Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears Expired - Fee Related KR101054775B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080115876A KR101054775B1 (en) 2008-11-20 2008-11-20 Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080115876A KR101054775B1 (en) 2008-11-20 2008-11-20 Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears

Publications (2)

Publication Number Publication Date
KR20100056880A KR20100056880A (en) 2010-05-28
KR101054775B1 true KR101054775B1 (en) 2011-08-05

Family

ID=42280818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080115876A Expired - Fee Related KR101054775B1 (en) 2008-11-20 2008-11-20 Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears

Country Status (1)

Country Link
KR (1) KR101054775B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961257B1 (en) 2019-02-28 2019-03-22 한수연 Carburization heat method for automobile transmission and heat apparatus thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136016A (en) 1997-07-18 1999-02-09 Toa Steel Co Ltd Quenching method for case hardening steel capable of preventing heat treatment strain
JP2001303173A (en) * 2000-04-26 2001-10-31 Mitsubishi Seiko Muroran Tokushuko Kk Steels for carburizing and carbonitriding
JP2002121645A (en) * 2000-10-17 2002-04-26 Nkk Bars & Shapes Co Ltd Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136016A (en) 1997-07-18 1999-02-09 Toa Steel Co Ltd Quenching method for case hardening steel capable of preventing heat treatment strain
JP2001303173A (en) * 2000-04-26 2001-10-31 Mitsubishi Seiko Muroran Tokushuko Kk Steels for carburizing and carbonitriding
JP2002121645A (en) * 2000-10-17 2002-04-26 Nkk Bars & Shapes Co Ltd Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961257B1 (en) 2019-02-28 2019-03-22 한수연 Carburization heat method for automobile transmission and heat apparatus thereof

Also Published As

Publication number Publication date
KR20100056880A (en) 2010-05-28

Similar Documents

Publication Publication Date Title
US8608870B2 (en) Carburization heat treatment method and method of use
CN105026602B (en) The semi-finished product and its manufacture method of high-frequency quenching component
KR101129370B1 (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
KR101559616B1 (en) Gear and method for producing same
JP4560141B2 (en) Surface hardening machine structural steel and machine structural steel parts
CN108277449B (en) Heat treatment method for carburizing and quenching low-carbon alloy steel workpiece
US11047036B2 (en) Method of fabricating a nitrided low-alloy steel part
JP7524586B2 (en) Case hardening steel, high strength member and manufacturing method thereof
WO2011115255A1 (en) Spring steel and surface treatment method for steel material
KR101054775B1 (en) Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears
JP2790788B2 (en) Low distortion type steel material for carburized hardened gears
KR101144516B1 (en) Alloy Steel for Low Temperature Vacuum Carburizing
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2008248282A (en) Induction hardening part and manufacturing method thereof
KR100999151B1 (en) Carburized Heat Treatment Method and Carburized Heat Treated Vehicle Parts
KR20000027040A (en) Method for heat treatment of surface of steel to reduce heating transformation
KR20210023321A (en) Low Deformation Heat Treatment of Steel Parts
KR102177936B1 (en) High-temperature carburizing heat treatment method after Pre-nitriding
CN111876564B (en) Spheroidizing annealing process of hexagonal alloy tool steel S2
JP6881498B2 (en) Parts and their manufacturing methods
KR20100066143A (en) Steel for low decarburization and manufacturing method of the same
JP2023144674A (en) Steel for nitriding having excellent cold forging property and cold forged nitrided component
KR20160075220A (en) Nitrogen solution process
KR20100115637A (en) Eco friendly nitrocarburizing process at high temperature
KR20120043546A (en) Cr-mo alloy steel for annulus gear of transmission and annulus gear of transmission manufactured by using the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20081120

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20101119

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20110629

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20110801

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20110802

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20150731

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20160729

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20180730

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20200729

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20210728

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20220727

Start annual number: 12

End annual number: 12

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20240512