KR101042960B1 - Solid Polymer Electrolyte and Fuel Cell for Fuel Cell - Google Patents
Solid Polymer Electrolyte and Fuel Cell for Fuel Cell Download PDFInfo
- Publication number
- KR101042960B1 KR101042960B1 KR1020050010816A KR20050010816A KR101042960B1 KR 101042960 B1 KR101042960 B1 KR 101042960B1 KR 1020050010816 A KR1020050010816 A KR 1020050010816A KR 20050010816 A KR20050010816 A KR 20050010816A KR 101042960 B1 KR101042960 B1 KR 101042960B1
- Authority
- KR
- South Korea
- Prior art keywords
- group
- fuel cell
- solid polymer
- polymer electrolyte
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 46
- 239000007787 solid Substances 0.000 title claims abstract description 39
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 35
- 229920005989 resin Polymers 0.000 claims abstract description 50
- 239000011347 resin Substances 0.000 claims abstract description 50
- 125000003118 aryl group Chemical group 0.000 claims abstract description 29
- 229920002396 Polyurea Polymers 0.000 claims abstract description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 21
- -1 difluoromethylene group Chemical group 0.000 claims description 14
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 8
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 3
- 125000001072 heteroaryl group Chemical group 0.000 claims description 3
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 abstract description 13
- 239000012528 membrane Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 10
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005342 ion exchange Methods 0.000 description 7
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- 229920001228 polyisocyanate Polymers 0.000 description 5
- 239000005056 polyisocyanate Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000005586 carbonic acid group Chemical group 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000008053 sultones Chemical class 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LPVHVQFTYXQKAP-YFKPBYRVSA-N (4r)-3-formyl-2,2-dimethyl-1,3-thiazolidine-4-carboxylic acid Chemical compound CC1(C)SC[C@@H](C(O)=O)N1C=O LPVHVQFTYXQKAP-YFKPBYRVSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- INWVTRVMRQMCCM-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 INWVTRVMRQMCCM-UHFFFAOYSA-N 0.000 description 1
- ADYVCZCQSVYNPQ-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)C1=CC=CC=C1 ADYVCZCQSVYNPQ-UHFFFAOYSA-N 0.000 description 1
- SMVFRSABZADTNS-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(F)(F)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(F)(F)C1=CC=CC=C1 SMVFRSABZADTNS-UHFFFAOYSA-N 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- OYTKINVCDFNREN-UHFFFAOYSA-N amifampridine Chemical compound NC1=CC=NC=C1N OYTKINVCDFNREN-UHFFFAOYSA-N 0.000 description 1
- 229960004012 amifampridine Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- XGQFWDYNLZZYDR-UHFFFAOYSA-N butyl acetate;isocyanic acid Chemical compound N=C=O.CCCCOC(C)=O XGQFWDYNLZZYDR-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- PFIQRPNWLUAMOF-UHFFFAOYSA-N ethyl 2-isocyanatopropanoate Chemical compound CCOC(=O)C(C)N=C=O PFIQRPNWLUAMOF-UHFFFAOYSA-N 0.000 description 1
- MENMOBMPDFLUHJ-UHFFFAOYSA-N ethyl acetate;isocyanic acid Chemical compound N=C=O.CCOC(C)=O MENMOBMPDFLUHJ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZZYXNRREDYWPLN-UHFFFAOYSA-N pyridine-2,3-diamine Chemical compound NC1=CC=CN=C1N ZZYXNRREDYWPLN-UHFFFAOYSA-N 0.000 description 1
- MIROPXUFDXCYLG-UHFFFAOYSA-N pyridine-2,5-diamine Chemical compound NC1=CC=C(N)N=C1 MIROPXUFDXCYLG-UHFFFAOYSA-N 0.000 description 1
- VHNQIURBCCNWDN-UHFFFAOYSA-N pyridine-2,6-diamine Chemical compound NC1=CC=CC(N)=N1 VHNQIURBCCNWDN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
프로톤 전도도, 내열성, 역학적 강도가 우수한 연료전지용 고체고분자 전해질 및 이 전해질을 구비한 연료전지를 제공한다. 방향족 폴리우레아 수지로 이뤄진 주쇄에, 측쇄 R1, R2, R3, R4가 결합되어 있는 프로톤 전도성 수지를 구비하고 있는 것을 특징으로 하는 연료전지용 고체고분자 전해질을 채용한다.Provided are a solid polymer electrolyte for a fuel cell excellent in proton conductivity, heat resistance, and mechanical strength, and a fuel cell having the electrolyte. A solid polymer electrolyte for a fuel cell is employed in which a main chain made of an aromatic polyurea resin is provided with a proton conductive resin in which side chains R 1 , R 2 , R 3 , and R 4 are bonded.
Description
본 발명은 연료전지용 고체고분자 전해질 및 그것을 이용한 연료전지에 관한 것으로, 특히 전해질막에 가습하면서 발전을 수행하는 연료전지에 적절히 이용할 수 있는 고체고분자 전해질에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte for a fuel cell and a fuel cell using the same, and more particularly, to a solid polymer electrolyte that can be suitably used in a fuel cell that generates electricity while humidifying the electrolyte membrane.
최근, 지구환경이 나빠지면서 클린 에너지의 보급 개발이 전세계적으로 초미의 과제가 되고 있다. 예를 들어, 교통관계에 있어서는 교통망의 발달에 따른 차량의 주행대수의 증가에 의해 자동차 등의 내연기관의 배기가스에 의한 도시대기오염이 문제가 되고 있다. 이 대책으로 전기자동차, 하이브리드카로 불리는 전기ㆍ내연기관병용 자동차 등이 개발되고 있는데, 경량의 다루기 쉽고 게다가 대기를 오염시키지 않는 에너지원으로서 연료전지 등의 이용도 그 하나로 유망하다. 또한 가정에의 연료전지 도입도 교통분야의 경우와 마찬가지다.In recent years, as the global environment worsens, the development of the spread of clean energy has become a very small task worldwide. For example, in traffic relations, urban air pollution due to exhaust gas from internal combustion engines such as automobiles has become a problem due to an increase in the number of vehicles driven due to the development of the transportation network. As a countermeasure, electric vehicles and automobiles for electric and internal combustion engines, called hybrid cars, have been developed. The use of fuel cells, etc., is also promising as an energy source that is lightweight and easy to handle and does not pollute the atmosphere. In addition, the introduction of fuel cells into the home is the same as in the transportation sector.
연료전지에는 전해액의 종류에 따라 알칼리형, 인산형, 용융탄산염형, 고체전해질형, 고체고분자형 등 여러 가지 타입의 연료전지가 있는데, 저온에서 가동할 수 있고, 다루기 쉬우며, 또한 출력밀도가 높은 고체고분자형이 전기자동차, 가정 등의 에너지원으로 주목을 받고 있다.There are various types of fuel cells, such as alkali type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte, which can operate at low temperature, is easy to handle, and has a high output density. High solid polymer type is attracting attention as an energy source for electric vehicles and households.
이 고체고분자형 연료전지의 전해질에는 프로톤 전도막이 이용된다. 프로톤 전도막에는 연료전지의 전극반응에 관여하는 프로톤에 대해 높은 이온전도성이 요구된다. 이와 같은 프로톤 전도막으로 예전부터 초강산기함유 불소계 고분자가 알려져 있다. 그러나, 이런 고분자 전해재료는 불소계 고분자이기 때문에 매우 비싸고, 또한 프로톤 전도의 매체가 물이라는 점에서 항상 가습하여 물을 보급할 필요가 있는 등 문제가 있다.A proton conductive membrane is used for the electrolyte of this solid polymer fuel cell. Proton conductive membranes require high ion conductivity for protons involved in the electrode reaction of a fuel cell. As such proton conductive membranes, super acidic acid-containing fluorine-based polymers have been known for a long time. However, such a polymer electrolyte material is very expensive because it is a fluorine-based polymer, and there is a problem in that it is necessary to always supply water by humidifying from the fact that the medium for proton conduction is water.
그런데, 프로톤 전도성을 갖게 하기 위해 방향족 골격에 카본산기, 술폰산기, 인산기 등의 이온 해리기를 함유시키는 것은 특개2002-280019호 또는 특개2002-358978호에 기재되어 있다. 그러나, 이들 이온 해리기는 특히 고온에서 탈리(脫離)되기 쉬우며, 또한 프로톤 전도막의 유연성을 손상시킬 우려가 있고, 게다가 프로톤 전도도가 낮은 점 등의 문제점이 있다. 특표평8-504293호에도 관련된 기재가 있지만, 프로톤 전도도에 대해서는 개시되어 있지 않다. Incidentally, in order to provide proton conductivity, it is described in Japanese Patent Application Laid-Open No. 2002-280019 or No. 2002-358978 to include an ionic dissociation group such as a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group in an aromatic skeleton. However, these ion dissociation groups are particularly susceptible to desorption at high temperatures, deteriorate the flexibility of the proton conductive membrane, and also have problems such as low proton conductivity. JP-A-8-504293 also discloses related descriptions, but it does not disclose proton conductivity.
또한, '고체고분자형 연료전지용 이온교환막의 개발'((주)GMC, 2000년 5월 발행, p.98)에는 폴리벤즈이미다졸에 설톤(sultone)을 반응시켜 활성수소기를 도입하는 방법에 대해 기재되어 있는데, 상기 방법으로 도입할 수 있는 것은 술폰산기 뿐이며, 다른 활성수소기에는 적용할 수 없다. In addition, 'Development of Ion Exchange Membrane for Solid Polymer Fuel Cell' (GMC, published in May 2000, p.98) describes a method for introducing active hydrogen groups by reacting sultone with polybenzimidazole. Although described, only sulfonic acid groups can be introduced by the above method, and are not applicable to other active hydrogen groups.
본 발명은 상기 사정을 감안하여 이뤄진 것으로, 프로톤 전도도, 내열성, 역학적 강도가 우수한 연료전지용 고체고분자 전해질 및 이 전해질을 구비한 연료전 지를 제공하는 것을 목적으로 한다.The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid polymer electrolyte for fuel cells excellent in proton conductivity, heat resistance, and mechanical strength, and a fuel cell having the electrolyte.
상기 목적을 달성하기 위해 본 발명은 이하의 구성을 채용했다.In order to achieve the above object, the present invention employs the following configurations.
본 발명의 연료전지용 고체고분자 전해질은 방향족 폴리우레아 수지로 이뤄진 주쇄에, 측쇄 R1, R2, R3, R4가 결합되어 있는 하기 화학식[1]로 표시되는 프로톤 전도성 수지를 구비하고 있는 것을 특징으로 한다.The solid polymer electrolyte for fuel cells of the present invention includes a proton conductive resin represented by the following general formula [1] in which a side chain R 1 , R 2 , R 3 , and R 4 are bonded to a main chain made of an aromatic polyurea resin. It features.
단, 하기 화학식[1] 중 X1 및 X2는 각각 S, O, 술포닐기, 탄소수가 1-3인 직쇄메틸렌기, 디플루오르메틸렌기, 헥사플루오르프로필렌기, 헤테로 방향족 고리 중 어느 하나이며, R1, R2, R3, R4 중 적어도 하나가 알킬술폰산기 또는 카본산기이며, n은 20-1000의 범위이다.However, X <1> and X <2> in following General formula [1] are respectively any of S, O, a sulfonyl group, a C1-Cm linear group, a difluoromethylene group, a hexafluoropropylene group, and a heteroaromatic ring, At least one of R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, and n is in the range of 20-1000.
또한 본 발명에서는 R1, R2, R3, R4 모두가 알킬술폰산기 또는 카본산기일 수도 있다.In the present invention, all of R 1 , R 2 , R 3 , and R 4 may be alkylsulfonic acid groups or carboxylic acid groups.
[화학식 1][Formula 1]
상기 구성에 의하면, 프로톤 전도성 수지의 주쇄로서 방향족 고리를 포함하 는 방향족 폴리우레아 수지가 구비되어 있으므로, 고체고분자 전해질의 내열성 및 강도를 향상할 수 있다. 또한 측쇄 R1, R2, R3, R4 중 적어도 하나가 알킬술폰산기 또는 카본산기이므로, 전해질의 프로톤 전도성을 향상할 수 있다.According to the said structure, since the aromatic polyurea resin containing an aromatic ring is provided as a principal chain of a proton conductive resin, the heat resistance and the strength of a solid polymer electrolyte can be improved. In addition, since at least one of the side chains R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, proton conductivity of the electrolyte can be improved.
또한 본 발명에서는 상기 화학식[1]에서 R1, R2, R3, R4 중 적어도 하나가 알킬술폰산기 또는 카본산기이고, 나머지가 수소, 탄소수 1 내지 4의 알킬기, 탄소수 6 내지 9의 방향족 고리를 포함하는 관능기 중 어느 하나 이상의 치환기일 수도 있다.In the present invention, at least one of R 1 , R 2 , R 3 , R 4 in the general formula [1] is an alkyl sulfonic acid group or a carboxylic acid group, and the remainder is hydrogen, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 9 carbon atoms. It may be a substituent of any one or more of the functional group containing a ring.
또한 본 발명의 연료전지용 고체고분자 전해질은 상술한 연료전지용 고체고분자 전해질로, 상기 프로톤 전도성 수지에 1종 이상의 산이 함침되어 있는 것을 특징으로 한다.In addition, the solid polymer electrolyte for fuel cells of the present invention is the above-described solid polymer electrolyte for fuel cells, and is characterized in that the proton conductive resin is impregnated with at least one acid.
특히, 본 발명의 연료전지용 고체고분자 전해질에서는, 상기 산이 인산 또는 포스폰산 중 어느 한쪽 또는 양쪽인 것이 바람직하다.In particular, in the solid polymer electrolyte for fuel cells of the present invention, it is preferable that the acid is either or both of phosphoric acid and phosphonic acid.
상기 구성에 의하면, 상기 산이 프로톤 전도성 수지에 함침됨으로써, 프로톤 전도성을 더욱 높일 수 있다.According to the above structure, the acid is impregnated in the proton conductive resin, thereby further increasing the proton conductivity.
이어서, 본 발명의 연료전지는 상기 어느 하나에 기재된 연료전지용 고체고분자 전해질을 구비한 것을 특징으로 한다.Next, the fuel cell of the present invention is provided with the solid polymer electrolyte for a fuel cell according to any one of the above.
이 구성에 의하면, 내열성 및 프로톤 전도성이 우수한 고체고분자 전해질을 구비하고 있으므로, 발전 특성이 우수한 고성능 연료전지를 제공할 수 있다.According to this structure, since the solid polymer electrolyte which is excellent in heat resistance and proton conductivity is provided, the high performance fuel cell excellent in power generation characteristics can be provided.
이하, 본 발명의 실시 형태를 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail.
본 발명의 연료전지용 고체고분자 전해질은 폴리우레아 수지로 이뤄진 주쇄에, 활성수소기가 말단에 통합되어 있는 측쇄가 결합되어 형성된 프로톤 전도성 수지로 구성되어 있다. 본 발명에서의 측쇄는 폴리우레아 수지의 주쇄 중 우레아기 및/또는 우레탄기로부터 분기해 있다. 이 구조 이외에서는 높은 프로톤 전도도를 얻을 수 없다.The solid polymer electrolyte for a fuel cell of the present invention is composed of a proton conductive resin formed by combining a main chain made of polyurea resin with a side chain having an active hydrogen group integrated at an end thereof. The side chains in the present invention branch from the urea group and / or urethane group in the main chain of the polyurea resin. Outside of this structure, high proton conductivity cannot be obtained.
더욱 구체적으로는 본 발명의 연료전지용 고체고분자 전해질은 방향족 폴리우레아 수지로 이뤄진 주쇄에, 측쇄 R1, R2, R3, R4 가 결합되어 있는 하기 화학식[2]으로 표시되는 프로톤 전도성 수지를 구비하여 구성되어 있다. 또한 하기 화학식[2] 중 X1 및 X2는 각각 S, O, 술포닐기, 탄소수가 1-3인 직쇄 메틸렌기, 디플루오르 메틸렌기, 헥사플루오르 프로필렌기, 헤테로방향족 고리 중 어느 하나이며, n은 20-1000의 범위이다.More specifically, the solid polymer electrolyte for a fuel cell of the present invention comprises a proton conductive resin represented by the following general formula [2] in which side chains R 1 , R 2 , R 3 , and R 4 are bonded to a main chain made of an aromatic polyurea resin. It is comprised. In addition, X <1> and X <2> in following General formula [2] are respectively S, O, a sulfonyl group, a linear methylene group of 1-3 carbon atoms, a difluoro methylene group, a hexafluoro propylene group, a heteroaromatic ring, and n Is in the range of 20-1000.
[화학식 2][Formula 2]
측쇄 R1, R2, R3, R4 는 폴리우레아 수지 속에 포함되는 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽에 결합한 치환기이고, 그 적어도 하나가 알킬술폰산기 또는 카본산기이고, 나머지가 수소, 탄소수 1 내지 4의 알킬기, 탄소수 6 내지 9의 방향족 고리를 포함하는 관능기 중 어느 하나 이상의 치환기이다.The side chains R 1 , R 2 , R 3 and R 4 are substituents bonded to any one or both of the urea group or urethane group included in the polyurea resin, at least one of which is an alkylsulfonic acid group or a carboxylic acid group, and the rest are hydrogen, It is a substituent of any one or more of the C1-C4 alkyl group and the functional group containing a C6-C9 aromatic ring.
측쇄 R1, R2, R3, R4 중 어느 하나를 구성하는 알킬술폰산기 또는 카본산기에는 활성수소기가 포함되어 있으며, 이 활성수소기에 의해 프로톤의 전도가 일어나며, 연료전지용 고체고분자 전해질에 프로톤 전도성이 부여된다.The alkylsulfonic acid group or carbonic acid group constituting any one of the side chains R 1 , R 2 , R 3 , and R 4 contains an active hydrogen group, and the conduction of protons occurs by the active hydrogen groups, and the protons are used in the solid polymer electrolyte for fuel cells. Conductivity is imparted.
또한 측쇄 R1, R2, R3, R4 모두가 알킬술폰산기 또는 카본산기일 수도 있고, 측쇄 R1, R2, R3, R4 의 일부가 알킬술폰산기 또는 카본산기이면, 전부가 알킬술폰산기 또는 카본산기가 아니라도 상관없다. 이 경우, 알킬술폰산기 또는 카본산기 이외의 치환기로서 수소, 탄소수 1 내지 4의 알킬기, 탄소수 6 내지 9의 방향족 고리를 포함하는 관능기 중 어느 하나 이상의 치환기를 이용할 수 있다. 여기서, 탄소수 1 내지 4의 알킬기란, 메틸기, 에틸기, 프로필기, 부틸기를 가리킨다. 또한 탄소수 6 내지 9의 방향족 고리를 포함하는 관능기란, 페닐기, 벤질기, 페닐에틸기, 페닐프로필기를 가리킨다. 알킬기의 탄소수가 4를 넘거나 방향족 고리를 포함하는 관능기의 탄소수가 9를 넘으면, 측쇄 R1 - R4 에 의해 주쇄를 구성하는 방향족 폴리우레아 수지의 결정성이 저하되고, 내열성이 저하되므로 바람직하지 않다.Further, all of the side chains R 1 , R 2 , R 3 , and R 4 may be alkylsulfonic acid groups or carboxylic acid groups, and if a part of the side chains R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, all of them It may not be an alkylsulfonic acid group or a carboxylic acid group. In this case, as a substituent other than an alkyl sulfonic acid group or a carboxylic acid group, the substituent of any one or more of hydrogen, the C1-C4 alkyl group, and the functional group containing a C6-C9 aromatic ring can be used. Here, a C1-C4 alkyl group refers to a methyl group, an ethyl group, a propyl group, and a butyl group. In addition, the functional group containing a C6-C9 aromatic ring refers to a phenyl group, benzyl group, a phenylethyl group, and a phenylpropyl group. When the carbon number of the alkyl group exceeds 4 or the carbon number of the functional group containing an aromatic ring exceeds 9, the crystallinity of the aromatic polyurea resin constituting the main chain by side chains R 1 -R 4 is lowered and heat resistance is lowered. not.
이어서, 주쇄를 구성하는 방향족 폴리우레아 수지는 내열성 및 내약품성이 우수한 특징이 있으며, 연료전지용 고체고분자 전해질의 내열성 및 역학적 강도를 높일 수 있다. Subsequently, the aromatic polyurea resin constituting the main chain is characterized by excellent heat resistance and chemical resistance, and can improve the heat resistance and mechanical strength of the solid polymer electrolyte for fuel cells.
방향족 폴리우레아 수지에는 원료 모노머의 종류에 따라 그 분자구조 속에 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽을 갖추게 된다. 이들 우레아기 및 우레탄기에는 질소에 결합한 활성수소가 존재한다. 이 활성수소에 대해 여러 관능기가 반응함으로써 폴리우레아 수지에 측쇄 R1 - R4 가 결합된다. 예를 들어, 알킬술폰기는 설톤류 등이 개열(開裂)함으로써 형성된다. 또한 카본산기는 말단 이소시아네이트기함유 에스테르 화합물이 결합하고, 에스테르 부분이 가수분해하면, 그 측쇄의 말단에는 카본산기가 위치하게 된다.The aromatic polyurea resin has either or both of a urea group and a urethane group in its molecular structure depending on the kind of the raw material monomer. In these urea and urethane groups, there are active hydrogens bound to nitrogen. Various functional groups react with this active hydrogen, and side chain R <1> -R <4> is couple | bonded with polyurea resin. For example, the alkyl sulfone group is formed by cleavage of sultones and the like. In addition, when a carbonic acid group has the terminal isocyanate group containing ester compound, and an ester part hydrolyzes, a carbonic acid group is located in the terminal of the side chain.
방향족 폴리우레아 수지는 예를 들어, 방향족 폴리이소시아네이트와 방향족 폴리아민의 반응에 의해 얻어진다.An aromatic polyurea resin is obtained by reaction of aromatic polyisocyanate with aromatic polyamine, for example.
방향족 폴리이소시아네이트의 예로는, 톨리렌 디이소시아네이트, 디페닐메탄 디이소시아네이트(이하, MDI라고 한다), 4, 4'-디페닐에테르 디이소시아네이트(ODI), 크실렌 디이소시아네이트, 나프탈렌 디이소시아네이트, 4. 4'-디페닐술파이드 디이소시아네이트, 4, 4'-디페닐술폭사이드 디이소시아네이트, 디페닐에탄 디이소시아네이트, 디페닐프로판 디이소시아네이트, 디페닐디플루오르메탄 디이소시아네이트, 디페닐헥사플루오르프로필렌 디이소시아네이트 등을 예시할 수 있고, 나아가 이들에 기재된 화합물의 유도체도 예시할 수 있다. 이들 방향족 폴리이소시아네이트는, 필요에 따라 병용할 수도 있다. 폴리이소시아네이트의 NCO%는 통상 20% 이상 48% 이하, 바람직하게는 25% 이상 48% 이하이다. 이 범위 밖에서는 연료전지용 고체고분자 전해질의 내열성, 역학적 강도가 저하된다.Examples of the aromatic polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate (hereinafter referred to as MDI), 4, 4'-diphenylether diisocyanate (ODI), xylene diisocyanate, naphthalene diisocyanate, 4. 4 '-Diphenylsulfide diisocyanate, 4, 4'-diphenyl sulfoxide diisocyanate, diphenylethane diisocyanate, diphenylpropane diisocyanate, diphenyldifluoromethane diisocyanate, diphenylhexafluoropropylene diisocyanate, etc. It can illustrate, and also the derivative of the compound described in these can also be illustrated. These aromatic polyisocyanate can also be used together as needed. The NCO% of the polyisocyanate is usually 20% or more and 48% or less, preferably 25% or more and 48% or less. Outside this range, the heat resistance and mechanical strength of the solid polymer electrolyte for fuel cells are reduced.
방향족 폴리아민으로는, 4, 4'-디페닐에테르디아민(ODA), (폴리테트라에틸렌 옥사이드-디-P-아미노벤조에이트), (4, 4'-디아미노-3, 3'-디에틸아미노-5, 5'-디아미노디페닐메탄), (2, 2', 3, 3'-테트라클로로-4, 4'-디아미노디페닐메탄), (3, 3'-디클로로-4, 4'-디아미노디페닐메탄), (트리메틸렌비스(4-아미노벤조에이트)), (3, 5'-디메틸티오톨루엔디아민), 2, 3-디아미노피리딘, 2, 5-디아미노피리딘, 2, 6-디아미노피리딘, 3, 4-디아미노피리딘 등을 예시할 수 있다. 이들은 혼합하여 사용할 수도 있다. 이들 중에서 특히 4, 4'-디페닐에테르디아민(ODA)이 바람직하다. 아민가는 통상 28 이상 200 이하의 범위가 바람직하고, 28이상 150이하가 더욱 바람직하다. 이 범위 밖에서는 연료전지용 고체고분자 전해질의 역학적 강도가 저하된다.As an aromatic polyamine, 4, 4'- diphenyl ether diamine (ODA), (polytetraethylene oxide-di-P-aminobenzoate), (4, 4'- diamino-3, 3'- diethylamino -5, 5'-diaminodiphenylmethane), (2, 2 ', 3, 3'-tetrachloro-4, 4'-diaminodiphenylmethane), (3, 3'-dichloro-4, 4 '-Diaminodiphenylmethane), (trimethylenebis (4-aminobenzoate)), (3, 5'-dimethylthiotoluenediamine), 2, 3-diaminopyridine, 2, 5-diaminopyridine, 2, 6- diaminopyridine, 3, 4-diaminopyridine, etc. can be illustrated. These can also be mixed and used. Among these, 4, 4'- diphenyl ether diamine (ODA) is preferable. The amine number is usually preferably in the range of 28 or more and 200 or less, more preferably 28 or more and 150 or less. Outside this range, the mechanical strength of the solid polymer electrolyte for fuel cells is lowered.
방향족 폴리이소시아네이트와 방향족 폴리아민의 반응은 통상 NCO지수 90이상 110이하, 바람직하게는 95이상 105이하이다. 이 범위 밖에서는 양호한 내열성 및 강도를 가진 막을 얻을 수 없다.The reaction of the aromatic polyisocyanate with the aromatic polyamine is usually 90 or more and 110 or less, preferably 95 or more and 105 or less. Outside this range, a film with good heat resistance and strength cannot be obtained.
폴리우레아 수지 속의 우레아기 및/또는 우레탄기와, 측쇄 R1 - R4 와의 반응은 용매의 존재하에 폴리우레탄에서의 공지의 반응에 의해 수행된다.The reaction with the urea groups and / or urethane groups in the polyurea resin and the side chains R 1 to R 4 is carried out by known reaction in the polyurethane in the presence of a solvent.
측쇄 R1 - R4 에 결합시키는 치환기로 알킬술폰산기를 도입하는 경우는, 폴리우레아 수지 중 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽에 설톤류 등을 개열시켜 결합시킨다.When introducing an alkylsulfonic acid group into the substituent which couple | bonds with side chain R <1> -R <4> , sultone etc. are cleaved and bonded to either or both of the urea group or urethane group in polyurea resin.
반응식의 일예를 하기 화학식[3]에 나타낸다. 구체적으로는 수소화 나트륨 등을 폴리우레아 수지(3-1)에 첨가하여 우레아기 또는 우레탄기에 포함되는 질소에 결합된 활성수소를 나트륨과 치환(3-2)한 다음, 이 나트륨에 설톤화합물(3-3)을 반응시킨다. 이 때, 설톤화합물이 개열하여 측쇄가 되어 우레아 수지에 화합(3-4)한다. 또 산으로 치환함으로써 측쇄의 말단에 설톤화합물에서 유래하는 술폰산기(3-5)가 형성된다. 설톤화합물로는 (알킬)프로판설톤, 부탄설톤을 들 수 있다.An example of reaction scheme is shown in following Chemical formula [3]. Specifically, sodium hydride and the like are added to the polyurea resin (3-1) to substitute active sodium bonded to nitrogen contained in the urea group or urethane group with sodium (3-2), and then to the sodium sultone compound (3). React -3). At this time, the sultone compound cleaves into side chains and is compounded to the urea resin (3-4). In addition, the sulfonic acid group (3-5) derived from a sultone compound is formed in the terminal of a side chain by substituting with an acid. Examples of the sultone compound include (alkyl) propane sultone and butane sultone.
[화학식 3](3)
또한 측쇄 R1 - R4 에 결합시키는 치환기로서 카본산기를 도입할 경우, 폴리우레아 수지 중 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽에 말단 이소시아네이트기 함유 에스테르 화합물을 결합하고, 에스테르 부분을 가수분해시킨다.In addition, when a carboxylic acid group is introduced as a substituent bonded to the side chains R 1 -R 4 , a terminal isocyanate group-containing ester compound is bonded to one or both of a urea group or a urethane group in the polyurea resin to hydrolyze the ester moiety. .
말단 이소시아네이트기 함유 에스테르 화합물의 구체예로는, 이소시아나토 초산부틸, 이소시아나토 초산에틸, 안식향산(benzoate)에틸, 이소시아나토프로피온산에틸 등을 예시할 수 있다. Specific examples of the terminal isocyanate group-containing ester compound include isocyanate butyl acetate, isocyanate ethyl acetate, ethyl benzoate, ethyl isocyanatopropionate, and the like.
폴리우레아 수지 중 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽과 말단 이소시아네이트기함유 에스테르 화합물과의 반응은 용매의 존재하에 폴리우레탄에서의 공지의 방법에 의해 수행된다. 반응식의 일예를 하기의 화학식[4]에 나타낸다. 이 반응에서, 용매로는 디메틸포름아미드, 디메틸술폭사이드, 디메틸아세토아미드 등이 바람직하다. 필요에 따라 우레탄화촉매를 사용할 수도 있다. 우레탄화 촉매로는 주석화합물이 바람직하다.The reaction of either or both of the urea group or urethane group in the polyurea resin with the terminal isocyanate group-containing ester compound is carried out by a known method in polyurethane in the presence of a solvent. An example of the reaction scheme is shown in the following formula [4]. In this reaction, dimethylformamide, dimethyl sulfoxide, dimethylacetoamide, etc. are preferable as the solvent. A urethanation catalyst can also be used as needed. A tin compound is preferable as a urethanation catalyst.
또한 폴리우레아 수지 중 우레아기 또는 우레탄기 중 어느 한쪽 또는 양쪽과 말단 이소시아네이트기함유 에스테르 화합물과의 반응물(4-2)의 에스테르 부분을 카본산으로 변환하려면, 공지의 가수분해 방법을 들 수 있다.Moreover, a well-known hydrolysis method is mentioned in order to convert the ester part of the reactant (4-2) of either or both of a urea group or a urethane group in a polyurea resin, and a terminal isocyanate group containing ester compound.
[화학식 4][Formula 4]
또한 본 실시형태의 연료전지용 고체고분자 전해질은 프로톤 전도성 수지에 1종 이상의 산을 함침시켜서 이뤄지는 것일 수도 있다. 상기 산으로는 인산 또는 포스폰산 중 어느 한쪽 또는 양쪽인 것이 바람직하다. 이 인산 등의 함침량(도프량)은 상기 화학식[2]에 나타내는 프로톤 전도성 수지의 반복 단위 1몰당, 4몰 내지 32몰의 범위로 하는 것이 바람직하다. 프로톤 전도성 수지에 인산 등을 함침시킴으로써 고체고분자 전해질의 프로톤 전도성을 더욱 높일 수 있다.In addition, the solid polymer electrolyte for fuel cells of the present embodiment may be made by impregnating one or more acids with a proton conductive resin. The acid is preferably either one or both of phosphoric acid and phosphonic acid. It is preferable to make the impregnation amount (dope amount), such as phosphoric acid, into 4 mol-32 mol per mole of repeating unit of the proton conductive resin shown by the said General formula [2]. By impregnating the proton conductive resin with phosphoric acid or the like, the proton conductivity of the solid polymer electrolyte can be further increased.
이어서, 본 발명에 관한 연료전지에 대해 구체적으로 설명한다. 본 발명에 관한 연료전지에는 프로톤 전도성을 가진 고분자막으로 상술한 연료전지용 고체고분자 전해질이 구비되어 있다.Next, the fuel cell concerning this invention is demonstrated concretely. The fuel cell according to the present invention is provided with a polymer electrolyte membrane having a proton conductivity as described above.
연료전지는 프로톤 전도성을 가진 고분자막과 그 양쪽에 접촉하여 배치되는 양극 및 음극(한 쌍의 전극)으로 구성된다. 연료인 수소는 음극에서 전기화학적으로 산화되어 프로톤과 전자를 생성한다. 이 프로톤은 고분자막내에서 수송되어 산소가 공급되는 양극에 도달한다. 한편 음극에서 생성한 전자는 연료전지에 접속된 외부 부하를 통해 양극으로 흐르고, 양극에서 프로톤과 산소와 전자가 반응하여 물이 생성된다.The fuel cell is composed of a polymer film having proton conductivity and a positive electrode and a negative electrode (a pair of electrodes) disposed in contact with both sides. Hydrogen, the fuel, is electrochemically oxidized at the cathode to produce protons and electrons. This proton is transported in the polymer membrane to reach the anode supplied with oxygen. On the other hand, electrons generated at the cathode flow to the anode through an external load connected to the fuel cell, and proton, oxygen, and electron react at the anode to generate water.
상기 연료전지를 구성하는 전극은 도전재, 바인더 및 촉매로 구성되어 있다. 도전재로는 전기전도성 성질이면 어느 것이든 상관없으며, 각종 금속이나 탄소 재료 등을 들 수 있다. 예를 들어, 아세틸렌 블랙 등의 카본 블랙, 활성탄 및 흑연 등을 들 수 있고, 이들은 단독 혹은 혼합하여 사용된다.The electrode constituting the fuel cell is composed of a conductive material, a binder, and a catalyst. Any conductive material may be used as long as it is electrically conductive, and various metals and carbon materials may be mentioned. For example, carbon black, such as acetylene black, activated carbon, graphite, etc. are mentioned, These are used individually or in mixture.
또한 바인더로는 본 발명의 프로톤 전도성 수지를 사용하는 것이 바람직한데, 다른 수지를 이용할 수도 있다. 그 경우, 다른 수지는 발수성을 가진 불소 수지가 바람직하다. 불소 수지 중에서도 융점이 400℃ 이하인 것이 더욱 바람직하고, 예를 들어, 폴리테트라플루오르 에틸렌, 테트라플루오르 에틸렌-퍼플루오르 알킬비닐 에테르 공중합체 등을 들 수 있다.Moreover, although it is preferable to use the proton conductive resin of this invention as a binder, other resin can also be used. In that case, the other resin is preferably a fluorine resin having water repellency. It is further more preferable that melting | fusing point is 400 degrees C or less among fluororesins, For example, a polytetrafluoro ethylene, a tetrafluoro ethylene- perfluoro alkyl vinyl ether copolymer, etc. are mentioned.
전극의 촉매로는 수소의 산화 반응 및 산소의 환원 반응을 촉진하는 금속이면, 특별히 한정되지 않지만, 예를 들어 납, 철, 망간, 코발트, 크롬, 갈륨, 바나듐, 텅스텐, 루테늄, 이리듐, 팔라듐, 백금, 로듐 또는 그들의 합금을 들 수 있다.The catalyst of the electrode is not particularly limited as long as it is a metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen, but for example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, Platinum, rhodium or their alloys.
이상에서 설명한 바와 같이, 본 발명의 연료전지용 고체고분자 전해질에 의하면, 프로톤 전도도, 내열성 및 역학적 강도를 향상시킬 수 있다. 또한 본 발명의 연료전지에 의하면, 발전 특성을 더욱 향상시킬 수 있다.As described above, according to the solid polymer electrolyte for fuel cells of the present invention, proton conductivity, heat resistance and mechanical strength can be improved. In addition, according to the fuel cell of the present invention, the power generation characteristics can be further improved.
[실시예][Example]
(실시예 1)(Example 1)
아르곤 분위기 하에서 4, 4'-디페닐에테르디아민(ODA) 1.040g을 N-메틸피롤리돈 15ml에 용해하고, 다시 아르곤 분위기하에서 디페닐메탄디이소시아네이트(MDI) 1.250g을 천천히 적하했다. 그 후, 120℃에서 3시간 반응시킨 후, 반응용액을 메탄올에 다시 침전시켜서 백색의 방향족 폴리우레아 수지(이하, PU-MDOD로 표기한다)를 회수했다.1.040 g of 4,4'-diphenyletherdiamine (ODA) was dissolved in 15 ml of N-methylpyrrolidone under argon atmosphere, and 1.250 g of diphenylmethane diisocyanate (MDI) was slowly added dropwise under argon atmosphere. Then, after making it react at 120 degreeC for 3 hours, the reaction solution was precipitated again in methanol, and white aromatic polyurea resin (it calls it PU-MDOD hereafter) was collect | recovered.
이어서, 아르곤 분위기 하에, 80℃에서 N-메틸피롤리돈 10ml에 수소화 나트륨(NaH) 0.120g을 분산시켰다. 또한 앞서 얻어진 PU-MDOD 1.035g을 N-메틸피롤리돈 용액 10ml에 용해시켰다. 그리고, 수소화 나트륨의 N-메틸피롤리돈 용액에 PU-MDOD의 N-메틸피롤리돈 용액을 서서히 적하했다. 적하한 후의 용액이 투명해지고 나서 1, 4-부탄설톤 0.681g을 적하했다. 적하 후, 석출한 고체를 감압여과하여 회수하고, 에탄올로 세정함으로써 담황색의 고체상태의 프로톤 전도수지의 나트륨염(이하, s-PU-MDOD(Na)라고 표기한다)이 얻어졌다. 얻어진 s-PU-MDOD(Na)를 디메틸아세토아미드(이하, DMAc라고 표기한다)에 용해시키고 나서 용액을 유리 기판상에 캐스트하고, 80℃에서 건조함으로써 담황색 투명 필름을 얻었다. 이 필름을 1mol/L의 염산수용액에 12시간 이상 담가둠으로써 Na이온을 수소 이온으로 치환하여 프로톤 전도수지(이하, s-PU-MDOD(H)라고 표기한다)로 이뤄진 필름을 얻었다. 이렇게 하여 측쇄에 알킬술폰산기가 도입되어 있는 방향족 폴리우레아 수지로 된 실시예 1의 고체고분자 전해질막을 제조했다. 얻어진 고분자막의 막두께는 37㎛이었다. 하기 화학식[5]에 본 실시예에서의 방향족 폴리우레아 수지의 합성으로부터 프로톤 전도수지의 합성까지 반응 스킴을 나타낸다. 또한 하기 화학식[6]에 실시예 1의 s-PU-MDOD(H)의 구조식을 나타낸다. 이 하기 화학식[6]에 나타내는 구조는 상기 구조식[2]에서 X1을 O로 하고, X2를 CH2로 하며, R1-R3 를 H로 하고, R4를 OC3H6SO3H로 한 것이다.Subsequently, under argon atmosphere, 0.120 g of sodium hydride (NaH) was dispersed in 10 ml of N-methylpyrrolidone at 80 ° C. In addition, 1.035 g of the previously obtained PU-MDOD was dissolved in 10 ml of N-methylpyrrolidone solution. And the N-methylpyrrolidone solution of PU-MDOD was dripped gradually to the N-methylpyrrolidone solution of sodium hydride. 0.681 g of 1, 4-butanesulfons were dripped after the solution after dripping became transparent. After dropping, the precipitated solid was collected by filtration under reduced pressure and washed with ethanol to obtain a sodium salt of a pale yellow solid proton conductive resin (hereinafter referred to as s-PU-MDOD (Na)). The resulting s-PU-MDOD (Na) was dissolved in dimethylacetoamide (hereinafter referred to as DMAc), and then the solution was cast on a glass substrate and dried at 80 ° C to obtain a pale yellow transparent film. The film was immersed in 1 mol / L aqueous hydrochloric acid solution for 12 hours or longer to replace Na ions with hydrogen ions to obtain a film made of a proton conductive resin (hereinafter referred to as s-PU-MDOD (H)). Thus, the solid polymer electrolyte membrane of Example 1 which consists of aromatic polyurea resin in which the alkyl sulfonic acid group was introduce | transduced into the side chain was produced. The film thickness of the obtained polymer film was 37 micrometers. The following reaction scheme is shown in the following general formula [5] from the synthesis | combination of the aromatic polyurea resin to the synthesis | combination of a proton conductive resin. Moreover, the structural formula of s-PU-MDOD (H) of Example 1 is shown to following General formula [6]. In the structure [6], X 1 is represented by O, X 2 is represented by CH 2 , R 1 -R 3 is represented by H, and R 4 is represented by OC 3 H 6 SO 3. H was done.
[화학식 5][Chemical Formula 5]
[화학식 6][Formula 6]
(실시예 2)(Example 2)
디페닐메탄디이소시아네이트(MDI)를 4, 4'-디페닐에테르디이소시아네이트(ODI)로 바꾼 것 이외에는 실시예 1과 똑같이 하여 프로톤 전도수지(이하, s-PU-ODOD(H)로 표기한다)로 이뤄진 필름을 얻었다. 이렇게 하여 측쇄에 알킬술폰산기가 도입되어 이뤄진 방향족 폴리우레아 수지로 구성된 실시예 2의 고체고분자 전해질막을 제조했다. 얻어진 고분자막의 막두께는 41㎛이었다. Proton conductive resin (hereinafter, referred to as s-PU-ODOD (H)) in the same manner as in Example 1 except that diphenylmethane diisocyanate (MDI) was changed to 4, 4'-diphenyl ether diisocyanate (ODI). Obtained a film made of. Thus, the solid polymer electrolyte membrane of Example 2 which consists of the aromatic polyurea resin by which the alkyl sulfonic acid group was introduce | transduced into the side chain was produced. The film thickness of the obtained polymer film was 41 micrometers.
하기 화학식[7]에 본 실시예에서의 방향족 폴리우레아 수지의 합성으로부터 프로톤전도수지의 합성까지 반응 스킴을 나타낸다. 또한 하기 화학식[8]에 본 실시예 2의 s-PU-ODOD(H)의 구조식을 나타낸다. 이 하기 화학식[8]에 나타내는 구조는 상기 구조식[2]에서 X1 및 X2를 O로 하고, R1-R3를 H로 하며, R4를 OC3H6SO3H로 한 것이다.The following reaction scheme is shown in the following general formula [7] from the synthesis of the aromatic polyurea resin to the synthesis of the proton conductive resin. Moreover, the structural formula of s-PU-ODOD (H) of this Example 2 is shown by following General formula [8]. In the structure [2], X 1 and X 2 are represented by O, R 1 to R 3 are represented by H, and R 4 is represented by OC 3 H 6 SO 3 H.
[화학식 7][Formula 7]
[화학식 8][Formula 8]
(실시예 3)(Example 3)
실시예 1에서 얻어진 s-PU-MDOD(Na)를 85% 인산에 12시간 침적시킴으로써 프로톤 전도수지에 인산이 함침되어 이뤄진 실시예 3의 고체고분자 전해질막을 제조했다. 얻어진 고분자막의 막두께는 35㎛이었다.The solid polymer electrolyte membrane of Example 3 was prepared by impregnating s-PU-MDOD (Na) obtained in Example 1 with 85% phosphoric acid for 12 hours to impregnate the proton conductive resin with phosphoric acid. The film thickness of the obtained polymer film was 35 micrometers.
(비교예 1)(Comparative Example 1)
플라스크에 시판중인 폴리에테르에테르케톤 25g과 진한 유황 125ml를 투입하고, 질소기류하에서 실온에서 48시간 교반하여 폴리에테르에테르케톤을 술폰화시켰다. 교반 후의 반응용액을 3리터의 탈이온수에 천천히 적하하여 술폰화 폴리에테르에테르케톤을 석출하고, 여과 회수했다. 얻어진 석출물을 실시예 1과 똑같은 방법으로 성막하고, 황색 투명한 막이 얻어졌다. 이렇게 하여 비교예 1의 고체고분자 전해질막을 얻었다.25 g of commercially available polyether ether ketone and 125 ml of concentrated sulfur were added to the flask, and the mixture was stirred for 48 hours at room temperature under nitrogen stream to sulfonate the polyether ether ketone. The reaction solution after stirring was slowly added dropwise to 3 liters of deionized water to precipitate sulfonated polyether ether ketone, which was collected by filtration. The obtained precipitate was formed into a film in the same manner as in Example 1 to obtain a yellow transparent film. Thus, the solid polymer electrolyte membrane of Comparative Example 1 was obtained.
실시예 1-3 및 비교예 1의 고체고분자 전해질막에 대해 프로톤 전도도 및 이온교환용량을 측정했다. 결과를 표 1에 나타낸다. 또한 프로톤 전도도, 이온교환용 량의 측정은 아래와 같은 순서로 수행했다.The proton conductivity and the ion exchange capacity of the solid polymer electrolyte membranes of Examples 1-3 and Comparative Example 1 were measured. The results are shown in Table 1. The proton conductivity and ion exchange capacity were measured in the following order.
프로톤 전도도: 짧은 책자 형태의 전해질막의 표면에 5mm간격으로 백금선(직경 0.2mm)를 압압하여 전극으로 하고, 교류(1kHz)를 인가했을 때의 저항을 임피던스 애널라이저로 측정했다. 전극 간격과 저항의 기울기(R), 전해질막의 두께(t), 전해질막의 폭(D)으로부터 1/(R×T×D)에 의해 프로톤 전도도를 구했다. 측정은 80℃, 습도 95%에서 수행했다.Proton Conductivity: A platinum wire (0.2 mm in diameter) was pressed on the surface of an electrolyte membrane in the form of a short booklet to form an electrode, and resistance when alternating current (1 kHz) was applied was measured by an impedance analyzer. Proton conductivity was calculated by 1 / (R x T x D) from the electrode spacing, the slope of the resistance (R), the thickness (t) of the electrolyte membrane, and the width (D) of the electrolyte membrane. The measurement was performed at 80 degreeC and 95% of humidity.
이온교환용량: 짧은 책자 형태의 전해질막을 80℃, 감압하에서 12시간 건조시켜 중량을 측정하고, 이 필름을 1mol/L의 염화 나트륨 수용액 40mL에 12시간 이상 침적시킨다. 막을 침적시킨 염화 나트륨 수용액을 20mL 채취하고, 0.05mol/L의 수산화 나트륨 수용액으로 계(系) 내의 산을 측정했다. 계(系) 내의 산의 몰수(M)와 건조시 막의 중량(W)으로부터 M/W에 의해 이온교환용량(meq/g)을 구했다.Ion-exchange capacity: A short booklet-type electrolyte membrane was dried at 80 ° C. under reduced pressure for 12 hours, and weighed, and the film was immersed in 40 mL of 1 mol / L aqueous sodium chloride solution for at least 12 hours. 20 mL of the sodium chloride aqueous solution which deposited the film | membrane was extract | collected, and the acid in the system was measured with 0.05 mol / L sodium hydroxide aqueous solution. The ion exchange capacity (meq / g) was determined by M / W from the number of moles of acid (M) in the system and the weight (W) of the membrane during drying.
[표 1]TABLE 1
또한 실시예 3 및 비교예 1의 고체고분자 전해질막에 대해 100℃에서 프로톤 전도도를 측정했다. 그 결과를 표 2에 나타낸다.In addition, proton conductivity was measured at 100 ° C for the solid polymer electrolyte membranes of Example 3 and Comparative Example 1. The results are shown in Table 2.
[표 2]TABLE 2
표 1에 나타낸 바와 같이, 실시예 1 및 2에 대해서는 비교예 1보다도 이온교 환용량이 적음에도 불구하고, 프로톤 전도도가 높게 되어 있는 것을 알 수 있다. 이온 교환용량은 프로톤 전도수지의 주쇄에 결합하는 측쇄의 양에 비례하는 것이며, 실시예 1 및 2에서는 측쇄의 양이 적음에도 불구하고, 높은 프로톤 전도도를 나타내고 있다. 또한 일반적으로 수지의 측쇄가 적을수록 수지 자체의 결정성이 향상하여 내열성이 높아지기 때문에 실시예 1 및 2에서는 내열성도 뛰어나다고 추측할 수 있다.As shown in Table 1, it can be seen that in Examples 1 and 2, although the ion exchange capacity is smaller than that of Comparative Example 1, the proton conductivity is higher. The ion exchange capacity is proportional to the amount of side chains bound to the main chain of the proton conductive resin. In Examples 1 and 2, the amount of the side chains is high, but the proton conductivity is high. In general, the fewer the side chains of the resin, the better the crystallinity of the resin itself and the higher the heat resistance. Therefore, in Examples 1 and 2, it can be assumed that the heat resistance is also excellent.
또한, 표 2에 나타낸 바와 같이, 인산을 함침시킨 실시예 3의 전해질막은 100℃의 비교적 고온에서 비교예 1보다도 프로톤 전도도가 대폭 높아져 있는 것을 알 수 있다. 이와 같이 프로톤 전도수지에 인산을 함침시킨 전해질막은 100℃이상의 온도에서 작동시키는 연료전지에서 우수한 발전 특성을 발휘하는 것으로 여겨진다.As shown in Table 2, it can be seen that the electrolyte membrane of Example 3 impregnated with phosphoric acid has a significantly higher proton conductivity than Comparative Example 1 at a relatively high temperature of 100 ° C. The electrolyte membrane impregnated with phosphoric acid in the proton conductive resin is considered to exhibit excellent power generation characteristics in a fuel cell operated at a temperature of 100 ° C. or higher.
본 발명에 의하면, 프로톤 전도도, 내열성, 역학적 강도가 우수한 연료전지용 고체고분자 전해질 및 이 전해질을 구비한 연료전지를 제공할 수 있다.
According to the present invention, it is possible to provide a solid polymer electrolyte for a fuel cell excellent in proton conductivity, heat resistance and mechanical strength, and a fuel cell including the electrolyte.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/253,657 US7829209B2 (en) | 2004-10-22 | 2005-10-20 | Solid polymer electrolyte for fuel cell and fuel cell containing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2004-00308358 | 2004-10-22 | ||
JP2004308358A JP4684620B2 (en) | 2004-10-22 | 2004-10-22 | Solid polymer electrolyte for fuel cell and fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060041767A KR20060041767A (en) | 2006-05-12 |
KR101042960B1 true KR101042960B1 (en) | 2011-06-20 |
Family
ID=36538207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050010816A Expired - Lifetime KR101042960B1 (en) | 2004-10-22 | 2005-02-04 | Solid Polymer Electrolyte and Fuel Cell for Fuel Cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4684620B2 (en) |
KR (1) | KR101042960B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4818703B2 (en) * | 2005-12-12 | 2011-11-16 | 三星エスディアイ株式会社 | Proton conducting solid polymer electrolyte and fuel cell |
KR100745741B1 (en) * | 2006-08-22 | 2007-08-02 | 삼성에스디아이 주식회사 | Membrane electrode assembly for fuel cell and fuel cell using same |
JP5736671B2 (en) | 2009-06-19 | 2015-06-17 | 日産自動車株式会社 | Polyurea electrolyte and method for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6028030A (en) | 1997-03-06 | 2000-02-22 | Nippon Paper Industrie Co., Ltd. | Thermal sensitive recording medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4161751B2 (en) * | 2003-03-12 | 2008-10-08 | トヨタ自動車株式会社 | Proton conducting material, proton conducting material membrane, and fuel cell |
JP4440616B2 (en) * | 2003-12-11 | 2010-03-24 | 三星エスディアイ株式会社 | Proton conducting electrolyte and fuel cell |
JP4851072B2 (en) * | 2004-07-27 | 2012-01-11 | 三星エスディアイ株式会社 | ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL |
-
2004
- 2004-10-22 JP JP2004308358A patent/JP4684620B2/en not_active Expired - Lifetime
-
2005
- 2005-02-04 KR KR1020050010816A patent/KR101042960B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6028030A (en) | 1997-03-06 | 2000-02-22 | Nippon Paper Industrie Co., Ltd. | Thermal sensitive recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP4684620B2 (en) | 2011-05-18 |
KR20060041767A (en) | 2006-05-12 |
JP2006120518A (en) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5384335B2 (en) | Ion conductive membrane | |
US20150307659A1 (en) | Ion conducting polymer comprising partially branched block copolymer and use thereof | |
KR20180060811A (en) | Membrane electrode assembly, fuel cell comprising the same and manufacturing method thereof | |
KR102168673B1 (en) | Carbazole-based anion exchange material, fuel cell electrode and membrane/electrode assembly comprising the same as a binder | |
US20070218334A1 (en) | Methods for making sulfonated non-aromatic polymer electrolyte membranes | |
US7781085B2 (en) | Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell | |
CN113527684A (en) | Oxygen reduction catalyst layer based on grafted polybenzimidazole as proton conductor and preparation method thereof | |
KR100524819B1 (en) | High Temperature Proton Exchange Membrane Using Ionomer/Soild Proton Conductor, Preparation Method Thereof and Fuel Cell Containing the Same | |
JP2009129703A (en) | DENDRONIZED POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME, SOLID POLYMER ELECTROLYTE MEMBRANE, ELECTRODE FOR SOLID POLYMER TYPE FUEL CELL, AND FUEL CELL | |
KR101042960B1 (en) | Solid Polymer Electrolyte and Fuel Cell for Fuel Cell | |
KR100590551B1 (en) | Proton conductive layer, preparing method therefor, and fuel cell using the same | |
JP4664683B2 (en) | Membrane-electrode assembly and fuel cell thereof | |
JP5233065B2 (en) | Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell | |
KR20120067171A (en) | Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same | |
US7829209B2 (en) | Solid polymer electrolyte for fuel cell and fuel cell containing the same | |
JP2005290318A (en) | Solid polymer electrolyte | |
JP2009026638A (en) | Solid polymer electrolyte | |
JP4637488B2 (en) | Gel electrolyte and fuel cell electrode and fuel cell | |
JP5054309B2 (en) | Solid polymer electrolyte | |
KR101797160B1 (en) | Polymer electrolyte membrane precursor composition for fuel cell, polymer electrolyte membrane for fuel cell, method for manufacturing the same, membrane electrode assembly and fuel cell system including the same | |
JP5080019B2 (en) | Solid polymer electrolyte | |
JP2005251409A (en) | Solid polymer electrolyte, membrane using the same, electrolyte / catalyst electrode assembly, membrane / electrode assembly, and fuel cell | |
Wang | Anion Exchange and Bipolar Membranes for Electrochemical Energy Conversion and Storage | |
KR101342598B1 (en) | Proton conductive polymer electrolyte and fuel cell employin the same | |
KR100695114B1 (en) | Proton conductive solid polymer electrolyte and fuel cell using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20050204 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20091104 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20050204 Comment text: Patent Application |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20110530 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20110614 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20110615 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20140526 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150519 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20150519 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160518 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20160518 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170526 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20170526 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180518 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20180518 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20200604 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20210601 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20230522 Start annual number: 13 End annual number: 13 |