KR101022247B1 - Catalyst for simultaneous reduction of N2O and NOX and its preparation method - Google Patents
Catalyst for simultaneous reduction of N2O and NOX and its preparation method Download PDFInfo
- Publication number
- KR101022247B1 KR101022247B1 KR1020080083850A KR20080083850A KR101022247B1 KR 101022247 B1 KR101022247 B1 KR 101022247B1 KR 1020080083850 A KR1020080083850 A KR 1020080083850A KR 20080083850 A KR20080083850 A KR 20080083850A KR 101022247 B1 KR101022247 B1 KR 101022247B1
- Authority
- KR
- South Korea
- Prior art keywords
- zeolite
- catalyst
- nitrous oxide
- iron
- nitrogen oxides
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 61
- 230000009467 reduction Effects 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 158
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000010457 zeolite Substances 0.000 claims abstract description 61
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 58
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims abstract description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000001272 nitrous oxide Substances 0.000 claims abstract description 27
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 15
- 239000011591 potassium Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 239000003638 chemical reducing agent Substances 0.000 claims description 25
- 229910052680 mordenite Inorganic materials 0.000 claims description 12
- 238000005342 ion exchange Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 13
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 238000010531 catalytic reduction reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013142 basic testing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
본 발명은 철(Fe) 및 칼륨(K)이 담지된 제올라이트를 포함하는 것을 특징으로 하는 아산화질소(N2O) 및 질소산화물(NOx) 동시환원용 촉매, 상기 촉매의 제조방법 및 상기 촉매를 이용하여 아산화질소(N2O) 및 질소산화물(NOx)을 동시에 제거하는 방법에 관한 것이다. The present invention is a catalyst for the simultaneous reduction of nitrous oxide (N 2 O) and nitrogen oxides (NO x ), characterized in that it comprises a zeolite loaded with iron (Fe) and potassium (K), a method for preparing the catalyst and the catalyst It relates to a method for simultaneously removing nitrous oxide (N 2 O) and nitrogen oxides (NO x ) using.
제올라이트 담지체, 철(Fe), 칼륨(K), 아산화질소(N2O) 및 질소산화물(NOx) 동시환원용 촉매 Catalyst for simultaneous reduction of zeolite support, iron (Fe), potassium (K), nitrous oxide (N2O) and nitrogen oxides (NOx)
Description
본 발명은 N2O 및 NOx 동시환원용 촉매, 그 제조방법 및 이를 이용한 N2O 및 NOx의 제거방법에 관한 것이다.The present invention relates to a catalyst for the simultaneous reduction of N 2 O and NO x , a method for preparing the same and a method for removing N 2 O and NO x using the same.
다수의 공정, 예를 들면 연소 공정이나 질산의 공업적 생산 공정은 일산화질소(NO), 이산화질소(NO2) 및 아산화질소(N2O)가 담지된 배출 가스를 생성한다. NO 및 NO2가 생태학적으로 유해한 영향(산성비, 스모그 형성)을 미치는 화합물로서 오랫동안 인지되어 왔고, 이들의 최대 허용 가능한 방출 한계치가 전 세계적으로 설정되어 있으며, 아산화질소가 성층권 오존의 분해 및 온실 효과에 중대한 영향을 미치고 있기 때문에 환경 보호의 초점이 최근 수년간 아산화질소로 점점 더 모아지고 있다. 따라서, 환경 보호적인 이유로 NOx방출과 함께 N2O와 NOx를 별도로 제거 하기 위한 다수의 가능한 방법이 이미 공지되어 있다.Many processes, for example combustion processes or industrial production processes of nitric acid, produce exhaust gases carrying nitrogen monoxide (NO), nitrogen dioxide (NO 2 ) and nitrous oxide (N 2 O). NO and NO 2 have long been recognized as compounds with ecologically detrimental effects (acid ratio, smog formation), their maximum allowable emission limits are set worldwide, and nitrous oxide is the decomposition and stratification effect of stratospheric ozone. Environmental protection has been increasingly focused on nitrous oxide in recent years as it has a significant impact on the environment. Thus, for environmental protection reasons many possible methods for the separate removal of N 2 O and NO x with NO x emissions are already known.
NOx 농도는 주로 다양한 환원제를 사용하는 NOx의 촉매 환원을 포함하는 방법으로 감소되는데, 제올라이트 촉매가 종종 사용되어 왔다. Cu 함유 제올라이트와는 별개로, Fe 함유 제올라이트는 실제 적용에 있어서 특별한 이점이 있다. 사용된 환원제는 주로 암모니아[미국 특허공보 제5,451,387호 참조] 또는 탄화수소[Feng, K and W.K. Hall in Journal of catalysis 166, pp.368-376(1997) 참조]이다.The NO x concentration is reduced mainly by the method involving catalytic reduction of NO x using various reducing agents, zeolite catalysts have often been used. Apart from Cu-containing zeolites, Fe-containing zeolites have particular advantages in practical applications. The reducing agent used is mainly ammonia [see US Pat. No. 5,451,387] or hydrocarbons [see Feng, K and WK Hall in Journal of catalysis 166, pp. 368-376 (1997)].
또한, 일본 공개특허공보 평7-060126호에는 펜타실 유형(MFI)의 Fe 함유 제올라이트의 존재하에서 N2O를 NH3로 환원시키는 촉매가 기술되어 있다. 그러나, 공업적으로 사용가능한 분해율이 단지 450℃ 초과의 온도에서만 달성되므로, 촉매의 열 안정성이 특히 요구된다. Japanese Laid-Open Patent Publication No. 7-060126 also describes a catalyst for reducing N 2 O to NH 3 in the presence of a Fe containing zeolite of pentasil type (MFI). However, thermal stability of the catalyst is particularly required since industrially usable decomposition rates are only achieved at temperatures above 450 ° C.
미국 특허공보 제4,571,329호는 우선 NOx로 NH3의 반응을 촉진시켜 H2O를 N2를 형성하고 다음에 또한 N2O로 NH3의 반응을 촉진시켜 H2O와 N2를 형성하는 Fe 치환된 제올라이트 촉매의 존재하에 암모니아에 의해 NOx와 N2O를 환원시키는 방법을 개시한다. 적합한 것으로 언급된 촉매는 모더나이트(MOR), 클리놉틸로라이트(NZ), 파우자사이트 및 제올라이트 Y로 구성된 그룹으로부터 철 치환된 제올라이트이다.US-A-4571329 discloses a priority to promote the reaction of NH 3 with NO x by forming the H 2 O N 2, and also promoting the reaction of NH 3 to N 2 O in the following to form the H 2 O and N 2 A method of reducing NO x and N 2 O with ammonia in the presence of a Fe substituted zeolite catalyst is disclosed. Catalysts mentioned as suitable are zeolites which are iron substituted from the group consisting of mordenite (MOR), clinoptilolite (NZ), faujasite and zeolite Y.
촉매를 이용한 N2O 분해기술은 온도에 따라 고온, 중온, 저온으로 분류되며, 그 중 고온처리방법은 환원제의 주입 없이 550℃ 내외, 또는 그 이상의 온도영역에 서 N2O가 분해된다. 또한, 환원제 주입을 할 경우 450℃ 전후에서 효과적으로 분해되는 선택적 촉매환원(SCR) 방법은 기존 화학약품 제조공정에서 주로 이용하고 있다. The decomposition of N 2 O using a catalyst is classified into high temperature, medium temperature, and low temperature according to the temperature. Among them, the high temperature treatment method decomposes N 2 O in a temperature range of about 550 ° C. or higher without introducing a reducing agent. In addition, the selective catalytic reduction (SCR) method that is effectively decomposed at around 450 ℃ when the reducing agent is injected is mainly used in the existing chemical manufacturing process.
NOx의 경우 SCR 방법으로 환원제를 주입하여 제거하는 방법이 기존에 많이 사용되고 있으며, 주로 반응온도 300 내지 400℃내외이며, 그 이상 온도가 증가할수록 NOx의 제거효율은 감소되는 것으로 알려져 있다. 최근 N2O와 NOx의 제거를 위해 저온부의 활성을 증대시키는 연구를 각국에서 진행하고 있으며, 특히 저온부의 활성을 증대하고자 하는 노력이 진행되고 있다.In the case of NO x , a method of injecting and removing a reducing agent by the SCR method has been widely used. The reaction temperature is about 300 to 400 ° C., and as the temperature is increased, the removal efficiency of NO x is known to decrease. Recently, researches to increase the activity of the low temperature part for the removal of N 2 O and NO x are in progress in each country, in particular efforts to increase the activity of the low temperature part is underway.
기존 국내외적으로 발명되어 있는 N2O 분해 촉매는 환원제를 넣어 주입하는 SCR 방법으로 이용되고 있다. NOx 또한 SCR 방법은 상용공정으로 이미 성능이 입증되어 있다. 하나의 반응기에서 N2O와 NOx를 동시 저감하는 기술이 적용된 사례는 없으며, 국내외적으로 기초실험 단계에 불과하다. 그 중에서 SCR 기술이 N2O 및 NOx의 동시환원에 효과적인 것으로 알려져 있으나, 이는 보통 암모니아를 환원제로 사용하였을 때이며, 암모니아를 환원제로 사용하였을 경우 NOx와 N2O의 반응온도영역이 달라 동시환원에 많은 어려움이 있다. 따라서, 신규 촉매의 개발 뿐 아니라 암모니아를 대체할 수 있는 환원제의 개발이 필요한 것으로 판단되었다.The N 2 O decomposition catalyst, which has been invented at home and abroad, has been used as an SCR method of injecting a reducing agent. NO x The SCR method has already been proven in commercial processes. There is no case where the technology of simultaneously reducing N 2 O and NO x is applied in one reactor, and it is only a basic test step at home and abroad. Among them, the SCR technique is known to be effective for the simultaneous reduction of N 2 O and NO x , but this is usually when ammonia is used as a reducing agent, and when ammonia is used as a reducing agent, the reaction temperature ranges of NO x and N 2 O are different. There are many difficulties in the reduction. Therefore, it was determined that the development of a reducing agent capable of replacing ammonia as well as the development of a new catalyst is necessary.
종래기술은 NOx 및 N2O 각각의 촉매반응 조건(반응온도 및 환원제의 주입조 건 등)이 달라 촉매 반응기를 2단으로 두어 각각 제거해야 했던 문제점이 있었다. 특히, 특허출원 제2002-7009062호는 촉매층을 2단으로 두어 1단에서는 N2O를 분해하고 2단에서는 암모니아를 주입하여 NOx를 제거하는 방법에 관하여 개시하고 있고, 특허출원 제2003-7011939호는 450℃ 미만에서 철 담지 제올라이트 촉매를 이용하여 암모니아를 환원제로 사용하여 N2O와 NOx를 제거하는 방법에 관하여 개시하고 있고, 특허출원 제2004-7020303호는 제올라이트로 이루어진 2개의 촉매상 위에 1단에서 N2O를 분해하고 2단에서 환원제를 주입하여 미분해된 N2O 및 NOx를 분해하는 방법에 관하여 개시하고 있다. 이는 N2O와 NOx의 최적 분해 온도가 다르기 때문이며, 최적 온도를 맞출 수 있는 조건 또는 촉매가 개발되어야 할 필요성이 있는 것으로 나타났다.The prior art has a problem in that the catalytic reaction conditions (reaction temperature and injection conditions of the reducing agent, etc.) of each of NO x and N 2 O are different, so that the catalyst reactor must be removed in two stages. In particular, Patent Application No. 2002-7009062 discloses a method for removing NO x by decomposing N 2 O in the first stage and injecting ammonia in the second stage by providing the catalyst layer in two stages. Patent application 2003-7011939 No. discloses a method for removing N 2 O and NO x using ammonia as a reducing agent using an iron-supported zeolite catalyst below 450 ° C., and patent application 2004-7020303 describes two catalyst beds made of zeolite. A method of decomposing N 2 O and NO x by decomposing N 2 O in the first stage and injecting a reducing agent in the second stage is disclosed. This is because the optimum decomposition temperature of N 2 O and NO x is different, it appears that there is a need to develop a condition or catalyst to meet the optimum temperature.
특히 환원제를 암모니아를 사용하였을 경우 환원제의 취급이 용이하지 않을 뿐 아니라 N2O와 NOx의 반응온도영역이 다르므로 추가적으로 다른 환원제의 필요성 또한 요구된다.In particular, when ammonia is used as the reducing agent, not only the handling of the reducing agent is easy, but also the need for another reducing agent is additionally required because the reaction temperature range of N 2 O and NO x is different.
본 발명의 목적은 하나의 선택적촉매환원(SCR) 반응탑에서 N2O 및 NOx를 동시에 환원시킬 수 있는 촉매, 이러한 촉매의 제조방법 및 이를 이용하여 N2O 및 NOx를 동시에 제거시키는 방법을 제공하는 것이다.An object of the present invention is a catalyst capable of simultaneously reducing N 2 O and NO x in one selective catalytic reduction (SCR) reaction tower, a method for preparing such a catalyst, and a method for simultaneously removing N 2 O and NO x using the same. To provide.
상기 목적에 따라, 본 발명에서는 철(Fe) 및 칼륨(K)이 담지된 제올라이트를 포함하는 아산화질소(N2O) 및 질소산화물(NOx) 동시환원용 촉매를 제공한다.In accordance with the above object, the present invention provides a catalyst for the simultaneous reduction of nitrous oxide (N 2 O) and nitrogen oxides (NO x ) comprising a zeolite bearing iron (Fe) and potassium (K).
본 발명의 바람직한 실시예에 의하면, 제올라이트가 펜타실(MFI)형 제올라이트, 모더나이트(MOR)형 제올라이트, 클리놉틸로라이트 천연(NZ) 제올라이트 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직하다.According to a preferred embodiment of the present invention, the zeolite is preferably selected from the group consisting of pentasil (MFI) zeolite, mordenite (MOR) zeolite, clinoptilolite natural (NZ) zeolite and mixtures thereof.
또한, Fe가 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%이고, K가 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%인 것이 바람직하다.It is also preferred that Fe is 0.1 to 10.0% by weight based on the total weight of the catalyst, and K is 0.1 to 10.0% by weight based on the total weight of the catalyst.
또한, 본 발명에서는 제올라이트를 준비하는 단계; 상기 제올라이트에 Fe를 담지하는 단계; 상기 Fe가 담지된 제올라이트에 K를 담지하는 단계; 및 상기 Fe 및 K가 담지된 제올라이트를 건조하고 소성하는 단계를 포함하는 아산화질소(N2O) 및 질소산화물(NOx) 동시환원용 촉매 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a zeolite; Supporting Fe in the zeolite; Supporting K on the Fe-supported zeolite; And it provides a method for producing a catalyst for the simultaneous reduction of nitrous oxide (N 2 O) and nitrogen oxides (NO x ) comprising the step of drying and calcining the Fe and K-supported zeolite.
본 발명의 바람직한 실시예에 의하면, 제올라이트가 펜타실(MFI)형 제올라이트, 모더나이트(MOR)형 제올라이트, 클리놉틸로라이트 천연(NZ) 제올라이트 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직하다.According to a preferred embodiment of the present invention, the zeolite is preferably selected from the group consisting of pentasil (MFI) zeolite, mordenite (MOR) zeolite, clinoptilolite natural (NZ) zeolite and mixtures thereof.
또한, 제올라이트에 Fe를 담지하는 방법으로 이온교환시켜 담지할 수 있고, Fe가 담지된 제올라이트에 K를 담지하는 방법으로 함침법을 사용할 수 있다.In addition, the zeolite can be supported by ion exchange by a method of supporting Fe, and the impregnation method can be used as a method of supporting K on a Fe-supported zeolite.
본 발명의 바람직한 실시예에 의하면, Fe가 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%이고, K가 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%인 것이 바람직하다.According to a preferred embodiment of the present invention, it is preferable that Fe is 0.1 to 10.0% by weight based on the total weight of the catalyst, and K is 0.1 to 10.0% by weight based on the total weight of the catalyst.
또한, 본 발명에서는 상기 제조방법에 의해 준비된 촉매를 아산화질소(N2O) 및 질소산화물(NOx)를 함유하는 가스와 반응시키는 것을 포함하는, 아산화질소(N2O) 및 질소산화물(NOx) 동시 제거방법을 제공한다.In addition, the present invention comprises reacting the catalyst prepared by the production method with a gas containing nitrous oxide (N 2 O) and nitrogen oxides (NO x ), nitrous oxide (N 2 O) and nitrogen oxides (NO x ) provides a method of simultaneous removal.
본 발명의 바람직한 실시예에 의하면, 상기 반응은 CH4, C3H6, C3H8, NH3 및 이들의 혼합물로 이루어진 군으로부터 선택된 환원제의 존재하에 실시되는 것이 바람직하다.According to a preferred embodiment of the present invention, the reaction is preferably carried out in the presence of a reducing agent selected from the group consisting of CH 4 , C 3 H 6 , C 3 H 8 , NH 3 and mixtures thereof.
또한, 상기 반응은 400℃ 이하에서 실시되는 것이 바람직하다.In addition, it is preferable that the said reaction is performed at 400 degrees C or less.
본 발명에 따른 촉매는 하나의 SCR 반응탑에서 N2O 및 NOx를 동시에 환원시 킬 수 있어서 N2O, NOx 단독 발생 사업장 뿐만 아니라 동시발생 사업장에서도 유용하게 사용될 수 있으며, 이로인해 각종 산업 연소설비와 화학약품 제조설비에 적용이 가능할 것으로 기대된다.Since the catalyst according to the present invention can reduce N 2 O and NO x simultaneously in one SCR reaction tower, it can be usefully used not only in N 2 O and NO x generation sites but also in simultaneous generation sites. It is expected to be applicable to combustion facilities and chemical manufacturing facilities.
이하에서는 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 촉매는 철 및 칼륨이 담지된 제올라이트를 포함한다.The catalyst of the present invention includes a zeolite carrying iron and potassium.
본 발명의 제올라이트 담지체로 사용될 수 있는 제올라이트는 펜타실(MFI)형 제올라이트, 모더나이트(MOR)형 제올라이트, 클리놉틸로라이트 천연(NZ) 제올라이트 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직하고, 가장 바람직하게는 MOR형 제올라이트이다. 이때, 제올라이트 담지체의 SiO2/Al2O3의 비가 13 내지 90인 것이 바람직하다.The zeolite that can be used as the zeolite support of the present invention is preferably selected from the group consisting of pentasil (MFI) zeolite, mordenite (MOR) zeolite, clinoptilolite natural (NZ) zeolite and mixtures thereof, Most preferably, it is a MOR zeolite. At this time, the ratio of SiO 2 / Al 2 O 3 of the zeolite carrier is preferably 13 to 90.
철(Fe)은 이온교환에 의해 제올라이트에 담지하는 것이 바람직하며, 상기 철은 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%인 것이 바람직하다.Iron (Fe) is preferably supported on the zeolite by ion exchange, the iron is preferably 0.1 to 10.0% by weight based on the total weight of the catalyst.
칼륨(K)은 함침법으로 철이 담지된 제올라이트에 담지하는 것이 바람직하며, 상기 칼륨은 촉매 전체 중량을 기준으로 0.1 내지 10.0중량%인 것이 바람직하다.Potassium (K) is preferably supported on the iron-supported zeolite by the impregnation method, the potassium is preferably 0.1 to 10.0% by weight based on the total weight of the catalyst.
본 발명의 촉매를 이용하는 촉매상은 어떤 방식으로도 구성될 수 있다. 예를 들면, 튜브 반응기 또는 방사상 바스켓 반응기의 형태일 수 있다. 처리될 가스 스트림에 기체 환원제가 도입되는 방식도 또한 반응 영역의 업스트림에서 행해지는 한, 자유롭게 선택될 수 있다.The catalyst bed using the catalyst of the invention can be constructed in any way. For example, it may be in the form of a tube reactor or a radial basket reactor. The manner in which the gas reducing agent is introduced into the gas stream to be treated can also be freely chosen as long as it is done upstream of the reaction zone.
본 발명에 따른 촉매의 제조방법은 산업적으로 입수 가능한 제올라이트 담지체를 준비하여 바람직하게는 3회 이상 세척하고 건조하는 단계와, 제올라이트 담지체에 철을 담지하기 위한 이온교환단계와 건조 후, 철이 담지된 제올라이트 담지체에 칼륨을 담지하기 위한 함침단계 및 건조/소성 단계로 이루어질 수 있다. 먼저 제올라이트 담지체는 1차로 증류한 증류수를 이온교환필터나 중공사막필터 등을 통과한 3차 증류수로 적어도 3회 이상 세척 후 건조하여 준비하는 것이 바람직하다. 그리고, 전이금속인 철의 이온교환을 위해 철을 60 내지 90℃, 바람직하게는 70 내지 80℃의 온도에서 적어도 6시간, 바람직하게는 4시간 동안 제올라이트에 담지시킨다. 그 후, 제올라이트 담지체를 100 내지 120℃, 바람직하게는 105 내지 115℃의 정도의 온도에서 24 시간 이상, 바람직하게는 12시간 이상 건조한다. 다음으로, 철이 담지된 제올라이트 담지체에 회전증발기를 이용하여 칼륨을 함침법으로 담지한 후, 100 내지 120℃, 바람직하게는 105 내지 115℃ 정도의 온도에서 24시간 이상, 바람직하게는 12시간 이상 건조하고, 450 내지 550℃ 이상, 바람직하게는 500℃ 이상에서 3 내지 5시간 이상, 바람직하게는 4시간 이상 소성하여 Fe-K-제올라이트 담지체 촉매를 제조한다. 이때 활성물질의 전구체로서 철과 칼륨은 NO3 -, Cl-, CO3 - 및 SO4 -로 이루어진 음이온을 포함할 수 있다.In the method for preparing a catalyst according to the present invention, an industrially available zeolite support is prepared, preferably washed and dried three times or more, and an ion exchange step for supporting iron in the zeolite support and after drying, iron is supported. It may be composed of an impregnation step and a drying / baking step for supporting potassium in the zeolite carrier. First, the zeolite carrier is preferably prepared by washing the first distilled distilled water with tertiary distilled water passed through an ion exchange filter or a hollow fiber membrane filter at least three times and then drying. Then, iron is supported on the zeolite for at least 6 hours, preferably 4 hours at a temperature of 60 to 90 ° C, preferably 70 to 80 ° C for ion exchange of iron, which is a transition metal. Thereafter, the zeolite carrier is dried at a temperature of about 100 to 120 ° C, preferably about 105 to 115 ° C for at least 24 hours, preferably at least 12 hours. Next, after impregnating potassium on the iron-supported zeolite carrier by using a rotary evaporator, at a temperature of 100 to 120 ° C., preferably 105 to 115 ° C., at least 24 hours, preferably at least 12 hours. It is dried and calcined at 450 to 550 ° C. or higher, preferably at 500 ° C. or higher for 3 to 5 hours or more, preferably 4 hours or more to prepare a Fe—K-zeolite carrier catalyst. In this case, iron and potassium as precursors of the active material may include anion composed of NO 3 − , Cl − , CO 3 −, and SO 4 − .
본 발명에 따른 촉매를 이용하여 선택적 촉매 환원방법으로 아산화질소(N2O) 및 질소산화물(NOx)을 제거하는 방법은 본 발명에 의한 촉매를 아산화질소 및 질소산화물과 200 내지 500℃, 바람직하게는 300 내지 400℃의 반응온도 및 10,000 내지 20,000h-1의 공간속도로 접촉시켜 실시한다. 또한, 상기 반응시 통상적으로 사용되는 환원제를 추가로 사용하여 이산화질소 및 질소산화물을 제거할 수 있다. 이때, 주입되는 환원제는 CH4, C3H6, C3H8, NH3 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고 주입되는 환원제의 농도는 300 내지 3,000ppm일 수 있다.The method of removing nitrous oxide (N 2 O) and nitrogen oxides (NO x ) by the selective catalytic reduction method using the catalyst according to the present invention is a catalyst according to the
이하 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
비교예 1Comparative Example 1
산업적으로 입수 가능한 NZ형 제올라이트(왕표화학)를 1차로 증류한 증류수를 이온교환필터나 중공사막필터를 통과한 3차 증류수로 적어도 3회 이상 세척하고 건조시켜 제올라이트 담지체를 준비하였다. 그 후, 철의 이온교환을 위해 0.1N의 철을 70 내지 80℃의 온도에서 4시간 동안 NZ형 제올라이트에 담지시켰다. NZ형 제올라이트를 105℃에서 건조시키고, 500℃에서 4시간 이상 소성하여 Fe-NZ 촉매를 제조하였다.The zeolite carrier was prepared by first washing distilled water obtained by distilling the first industrially available NZ zeolite (Kwangpyo Chemical) with tertiary distilled water through an ion exchange filter or a hollow fiber membrane filter and drying at least three times. Thereafter, 0.1 N of iron was supported on NZ zeolite for 4 hours at a temperature of 70 to 80 ° C. for iron ion exchange. The NZ zeolite was dried at 105 ° C. and calcined at 500 ° C. for at least 4 hours to produce a Fe-NZ catalyst.
비교예 2Comparative Example 2
NZ형 제올라이트 대신에 MOR형 제올라이트(Zeolyst, Sud-chemi)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 Fe-MOR 촉매를 제조하였다.A Fe-MOR catalyst was prepared in the same manner as in Preparation Example 1, except that MOR zeolite (Zeolyst, Sud-chemi) was used instead of NZ zeolite.
비교예 3Comparative Example 3
NZ형 제올라이트 대신에 MFI형 제올라이트(Zeolyst, Sud-chemi)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 Fe-MFI 촉매를 제조하였다.A Fe-MFI catalyst was prepared in the same manner as in Preparation Example 1, except that MFI zeolite (Zeolyst, Sud-chemi) was used instead of NZ zeolite.
실시예Example
MOR형 제올라이트(Zeolyst, Sud-chemi)를 1차로 증류한 증류수를 이온교환필터나 중공사막필터를 통과한 3차 증류수로 적어도 3회 이상 세척하고 건조시켜 제올라이트 담지체를 준비하였다. 그 후, 철의 이온교환을 위해 0.1N의 철을 70 내지 80℃의 온도에서 4시간 동안 MOR형 제올라이트에 담지시켰다. 그 후, MOR형 제올라이트를 105℃에서 12시간 이상 건조시키고, 회전증발기를 이용하여 칼륨을 함침법으로 담지한 후, 다시 105℃에서 12시간 이상 건조시키고, 500℃에서 4시간 이상 소성하여 Fe-K-MOR 촉매를 제조하였다. A zeolite carrier was prepared by first washing distilled water obtained by distilling MOR zeolite (Zeolyst, Sud-chemi) first with distilled water passed through an ion exchange filter or a hollow fiber membrane filter at least three times. Thereafter, 0.1 N of iron was supported on MOR zeolite for 4 hours at a temperature of 70 to 80 ° C. for iron ion exchange. Thereafter, MOR zeolite was dried at 105 DEG C for at least 12 hours, and potassium was impregnated using a rotary evaporator, followed by further drying at 105 DEG C for at least 12 hours, and calcining at 500 DEG C for at least 4 hours to form Fe-. K-MOR catalyst was prepared.
실험예 1Experimental Example 1
비교예 1 내지 3 및 실시예에 의하여 제조된 촉매를 이용하여 아산화질소 및 질소산화물의 제거율을 실험하였다. N2O, NOx 각각 1,000ppm, 환원제(CH4, C3H6, C3H8 또는 NH3) 2,000ppm를 비교예 1 내지 3 및 실시예에 의하여 제조된 촉매와 함께 반응탑에 주입하고 반응온도 350℃, 공간속도 10,000 내지 20,000h-1에서 반응시 켰다.Removal rates of nitrous oxide and nitrogen oxides were tested using the catalysts prepared according to Comparative Examples 1 to 3 and Examples. 1,000 ppm of N 2 O, NO x and 2,000 ppm of reducing agent (CH 4 , C 3 H 6 , C 3 H 8 or NH 3 ) were injected into the reaction tower together with the catalysts prepared according to Comparative Examples 1 to 3 and Examples. And a reaction temperature of 350 ° C. and a space velocity of 10,000 to 20,000 h −1 .
하기 표 1에 N2O 및 NOx의 전환율을 나타내었다. 표 1의 (a)는 NOx의 전환율이고 (b)는 N2O의 전환율을 의미한다.Table 1 shows the conversion of N 2 O and NO x . Table 1 (a) is the conversion of NO x and (b) means the conversion of N 2 O.
실험예Experimental Example 2 2
반응온도를 400℃로 한 것을 제외하고는 실험예 1과 동일하게 실시하여 아산화질소 및 질소산화물의 제거율을 실험하였다.Except that the reaction temperature was 400 ℃ was carried out in the same manner as in Experiment 1 to test the removal rate of nitrous oxide and nitrogen oxides.
하기 표 2에 N2O 및 NOx의 전환율을 나타내었다. 표 2의 (a)는 NOx의 전환율이고 (b)는 N2O의 전환율을 의미한다.Table 2 shows the conversion of N 2 O and NO x . (A) of Table 2 is the conversion rate of NO x and (b) means the conversion rate of N 2 O.
실험예 1 및 2에서 보는 바와 같이, 본 발명의 실시예에 따른 Fe-K-MOR 촉매는 비교예 1 내지 3에 따른 촉매와 달리 NOx 뿐만 아니라 N2O에 대해서도 전환율이 크다는 것을 알 수 있다. 더군다나, 350℃의 저온에서도 다른 촉매에 비하여 전환율이 크며, 특히 C3H6 및 C3H8 환원제의 존재하에서는 NOx 및 N2O 모두 70% 이상의 제거율을 보임을 알 수 있다. 또한, 400℃의 경우에는 NOx 및 N2O 모두 95% 이상의 제거율을 나타내고 있어 다른 촉매에 비해 본 발명의 촉매가 NOx 및 N2O 동시 제거에 효과적임을 보여준다.As shown in Experimental Examples 1 and 2, it can be seen that the Fe-K-MOR catalyst according to the embodiment of the present invention has a high conversion rate for N 2 O as well as for NO x , unlike the catalysts according to Comparative Examples 1 to 3. . In addition, the conversion rate is higher than other catalysts even at a low temperature of 350 ℃, especially in the presence of C 3 H 6 and C 3 H 8 reducing agent, both NO x and N 2 O can be seen that more than 70% removal rate. In addition, in the case of 400 ℃, both NO x and N 2 O exhibits a removal rate of 95% or more, showing that the catalyst of the present invention is more effective in simultaneous removal of NO x and N 2 O than other catalysts.
도 1은 환원제로 C3H6을 사용하였을 때 온도변화에 따른 N2O 및 NOx의 전환율을 도시한 도면이다.1 is a view showing the conversion of N 2 O and NO x according to the temperature change when using C 3 H 6 as a reducing agent.
도 2는 환원제로 C3H8을 사용하였을 때 온도변화에 따른 N2O 및 NOx의 전환율을 도시한 도면이다.2 is a view showing the conversion of N 2 O and NO x with temperature change when using C 3 H 8 as a reducing agent.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080083850A KR101022247B1 (en) | 2008-08-27 | 2008-08-27 | Catalyst for simultaneous reduction of N2O and NOX and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080083850A KR101022247B1 (en) | 2008-08-27 | 2008-08-27 | Catalyst for simultaneous reduction of N2O and NOX and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100025187A KR20100025187A (en) | 2010-03-09 |
KR101022247B1 true KR101022247B1 (en) | 2011-03-21 |
Family
ID=42176777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080083850A KR101022247B1 (en) | 2008-08-27 | 2008-08-27 | Catalyst for simultaneous reduction of N2O and NOX and its preparation method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101022247B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101362845B1 (en) * | 2010-12-06 | 2014-02-14 | 그린프라 주식회사 | Production method of a direct decomposition catalyzer for cleaning nitrous oxide |
KR101367725B1 (en) | 2010-12-06 | 2014-02-26 | 그린프라 주식회사 | Production method of a nano catalyzer for cleaning nitrous oxide |
KR20170123470A (en) | 2016-04-29 | 2017-11-08 | (주)명성씨.엠.아이 | Scrubber for removing N2O contained in the waste gas |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0136893B1 (en) * | 1994-11-03 | 1998-04-25 | 강박광 | Selective catalytic reduction of nitrogen oxide |
KR20030004320A (en) * | 2000-01-14 | 2003-01-14 | 크루프 우데 게엠베하 | Method for the removal of NOx and N2O from the residual gas in nitric acid production |
KR100519461B1 (en) * | 2003-07-10 | 2005-10-06 | 고등기술연구원연구조합 | Natural zeolite-supported catalyst, method of manufacturing the same, and method of removal of n2o using the same |
US20060228283A1 (en) | 2005-02-28 | 2006-10-12 | Catalytic Solutions, Inc. | Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols |
-
2008
- 2008-08-27 KR KR1020080083850A patent/KR101022247B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0136893B1 (en) * | 1994-11-03 | 1998-04-25 | 강박광 | Selective catalytic reduction of nitrogen oxide |
KR20030004320A (en) * | 2000-01-14 | 2003-01-14 | 크루프 우데 게엠베하 | Method for the removal of NOx and N2O from the residual gas in nitric acid production |
KR100519461B1 (en) * | 2003-07-10 | 2005-10-06 | 고등기술연구원연구조합 | Natural zeolite-supported catalyst, method of manufacturing the same, and method of removal of n2o using the same |
US20060228283A1 (en) | 2005-02-28 | 2006-10-12 | Catalytic Solutions, Inc. | Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101362845B1 (en) * | 2010-12-06 | 2014-02-14 | 그린프라 주식회사 | Production method of a direct decomposition catalyzer for cleaning nitrous oxide |
KR101367725B1 (en) | 2010-12-06 | 2014-02-26 | 그린프라 주식회사 | Production method of a nano catalyzer for cleaning nitrous oxide |
KR20170123470A (en) | 2016-04-29 | 2017-11-08 | (주)명성씨.엠.아이 | Scrubber for removing N2O contained in the waste gas |
Also Published As
Publication number | Publication date |
---|---|
KR20100025187A (en) | 2010-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5356018B2 (en) | Method for reducing nitrogen oxide concentration in gas | |
KR100785645B1 (en) | Apparatus and method for reducing the content of NOX and N2O | |
RU2259227C2 (en) | METHOD OF REMOVING NOx AND N2O FROM NITRIC ACID PRODUCTION RESIDUAL GAS | |
US20080044331A1 (en) | Method for Reducing the Content of N2O and NOx in Gases | |
KR20050020998A (en) | Method and device for reducing the NOx and N2O of gases | |
Sanchez-Escribano et al. | Low temperature selective catalytic reduction of NOx by ammonia over H-ZSM-5: an IR study | |
KR100801451B1 (en) | Method and apparatus for removing nitrous oxide in nitric acid production facility | |
KR100937594B1 (en) | Zeolite Catalyst for Decomposition of Nitrous Oxide and Nitrogen Oxide and Decomposition and Removal Method of Nitrous Oxide and Nitrogen Oxide Using the Catalyst | |
KR101022247B1 (en) | Catalyst for simultaneous reduction of N2O and NOX and its preparation method | |
KR20040010605A (en) | Method of reducing the N2O content of gases and selected catalysts | |
US8568677B2 (en) | P/S-TM-comprising zeolites for decomposition of N2O | |
CN110947416A (en) | Iron/molecular sieve catalyst for NH3-SCR and its preparation method and application | |
RU2598902C2 (en) | Zeolites containing phosphorus/sulphur as a transition metal for n2o decomposition | |
KR100519461B1 (en) | Natural zeolite-supported catalyst, method of manufacturing the same, and method of removal of n2o using the same | |
KR101799022B1 (en) | Simultaneous reduction method of nitrogen monoxide and nitrous oxide from exhausted gas by ammonia reductant and catalystic reactor for reducing simultaneously nitrogen monoxide and nitrous oxide from exhausted gas | |
EP2193843B1 (en) | Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and method of removing nitrogen oxides using the same | |
KR101799030B1 (en) | Catalyst for reducing simultaneously nitrogen monoxide and nitrous oxide from exhausted gas stream containing moisture and manufacturing method thereof | |
KR100847739B1 (en) | Catalyst for removing nitrous oxide, preparation method thereof and method for removing nitrous oxide using the catalyst | |
KR100772022B1 (en) | Natural zeolite support catalyst for nitrous oxide removal and its manufacturing method and nitrous oxide removal method using the catalyst | |
KR20050064506A (en) | The manganese-impregnated carbon catalyst for the removal of nitrogen oxides | |
KR100523287B1 (en) | Cu/ZEOLITE CATALYST FOR REMOVAL OF NITROGEN OXIDES AND PROCESS OF PREPARING SAME | |
KR20050064503A (en) | Iron-impregnated carbon catalyst for removing nitrogen oxides | |
KR20050064234A (en) | Feso4-impregnated carbon catalyst for removing nitrogen oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20080827 |
|
PA0201 | Request for examination | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20090611 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20100723 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20101215 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20110308 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20110309 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20140306 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20140306 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150303 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20150303 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160303 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20160303 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170303 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20170303 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180305 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20180305 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190304 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20190304 Start annual number: 9 End annual number: 9 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20201219 |