[go: up one dir, main page]

KR101017180B1 - Stainless steel divider and coating method - Google Patents

Stainless steel divider and coating method Download PDF

Info

Publication number
KR101017180B1
KR101017180B1 KR1020080137519A KR20080137519A KR101017180B1 KR 101017180 B1 KR101017180 B1 KR 101017180B1 KR 1020080137519 A KR1020080137519 A KR 1020080137519A KR 20080137519 A KR20080137519 A KR 20080137519A KR 101017180 B1 KR101017180 B1 KR 101017180B1
Authority
KR
South Korea
Prior art keywords
stainless steel
coating
weight
plating layer
electroless
Prior art date
Application number
KR1020080137519A
Other languages
Korean (ko)
Other versions
KR20100079104A (en
Inventor
송민규
김준호
전창성
박성연
노길태
김윤성
이태원
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020080137519A priority Critical patent/KR101017180B1/en
Publication of KR20100079104A publication Critical patent/KR20100079104A/en
Application granted granted Critical
Publication of KR101017180B1 publication Critical patent/KR101017180B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명의 스테인리스 스틸 분리판은 인 0.5 내지 30 중량%, 코발트 0.1 내지 20 중량% 및 니켈 50 내지 99.4 중량%를 포함하는 무전해 일차 도금층 피막이 코팅된 것을 특징으로 한다. 또한, 본 발명의 스테인리스 스틸 분리판의 코팅방법은 스테인리스 스틸 분리판의 표면을 탈지하여 청정화하는 단계 및 상기 청정화된 분리판을 인 0.5 내지 30 중량%, 코발트 0.1 내지 20 중량% 및 니켈 50 내지 99.4 중량%를 포함하는 무전해 도금 용액이 담긴 도금욕에 침지시켜 무전해 일차 도금층 피막을 형성하는 단계로 이루어지는 것을 특징으로 한다.Stainless steel separator of the present invention is characterized in that the coating of the electroless primary plating layer containing 0.5 to 30% by weight of phosphorus, 0.1 to 20% by weight of cobalt and 50 to 99.4% by weight of nickel. In addition, the coating method of the stainless steel separator plate of the present invention is the step of degreasing and cleaning the surface of the stainless steel separator plate and 0.5 to 30% by weight phosphorus, 0.1 to 20% by weight of cobalt and 50 to 99.4 nickel It is characterized by consisting of a step of forming an electroless primary plating layer film by immersing in a plating bath containing an electroless plating solution containing a weight%.

스테인리스 스틸, 분리판, 코팅, 도금 Stainless steel, separator, coated, plated

Description

스테인리스 스틸 분리판 및 그 코팅방법{Stainless Steel Separator and Method of Coating the Same}Stainless Steel Separator and Method of Coating the Same}

본 발명은 스테인리스 스틸 분리판 및 그 제조방법에 관한 것으로, 보다 상세하게는 스테인리스 스틸 분리판의 내식성을 증가시킬 수 있는 스테인리스 스틸 분리판 및 그 제조방법에 관한 것이다.The present invention relates to a stainless steel separator and a method for manufacturing the same, and more particularly, to a stainless steel separator and a method for manufacturing the same, which can increase the corrosion resistance of the stainless steel separator.

연료 전지(Fuel cell)라 함은 메탄올, 에탄올, 천연기체와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 말한다.The fuel cell refers to a power generation system that directly converts the chemical reaction energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas into electrical energy.

용융탄산염 연료전지(molten carbonate fuel cell: MCFC)는 650℃ 이상의 고온에서 운전되기 때문에 전기화학 반응속도가 빨라 전극재료로 백금촉매 대신 니켈을 사용할 수 있다. 따라서 경제적인 이점이 있을 뿐만 아니라, 백금 전극에 피독 물질로 작용하는 일산화탄소는 수성가스 전환 반응을 통하여 연료로 이용하는 니켈 전극의 특성으로 인해 석탄가스, 천연가스, 메탄올 및 바이오매스 등을 이용할 수 있으므로 다양한 연료 선택이 가능하다. 그리고 열회수 증기발생기(heat recovery steam generator: HRSG) 등을 이용한 하부 사이클로 양질의 고온 폐열을 회수하여 사용하면 전체 발전 시스템을 열효율을 약 60% 이상으로 제고시킬 수 있다.Since molten carbonate fuel cell (MCFC) is operated at a high temperature of more than 650 ℃, the electrochemical reaction rate is fast, it is possible to use nickel instead of platinum catalyst as an electrode material. Therefore, in addition to economic advantages, carbon monoxide, which acts as a poisoning substance on the platinum electrode, may use coal gas, natural gas, methanol, and biomass due to the characteristics of the nickel electrode used as fuel through a water gas conversion reaction. Fuel selection is possible. In addition, by recovering and using high-quality waste heat as a lower cycle using a heat recovery steam generator (HRSG), the entire power generation system can improve the thermal efficiency to about 60% or more.

또한 MCFC의 고온운전 특성은 연료전지 스택 내부에서 전기화학 반응과 연료개질 반응을 동시에 진행시켜 내부개질 형태의 채용이 가능하도록 하는 장점을 제공한다. 이러한 내부개질형 용융탄산염 연료전지는 전기화학반응의 발열량을 별도의 외부 열교환기없이 직접 흡열반응인 개질반응에 이용하므로 외부개질형 MCFC 보다 전체 시스템의 열효율이 추가로 증가하는 동시에 시스템 구성이 간단해진다는 이점이 있다.In addition, the high temperature operation characteristics of the MCFC provides an advantage that the internal reforming form can be adopted by simultaneously proceeding the electrochemical reaction and the fuel reforming reaction in the fuel cell stack. Since the internally reformed molten carbonate fuel cell uses the calorific value of the electrochemical reaction in a direct endothermic reforming reaction without a separate external heat exchanger, the thermal efficiency of the entire system is further increased and the system configuration is simpler than the external reforming MCFC. Has the advantage.

통상적으로 MCFC는 분리판/캐소드 전극/전해질/애노드 전극/분리판의 반복 적층 구조로 이루어진다. 이때, 분리판(separator)은 MCFC 스택에서 하층 셀의 캐소드(cathode) 부분과 상층 셀의 애노드(anode) 부분을 격리시키는 동시에 각 셀들을 집진부에서 전기적으로 연결하는 역할을 한다. MCFC 분리판의 부식환경은 전해질판으로부터 전해질이 다공성 전극을 통해 이동하여 박막을 형성한 집전부와 전해질을 함유한 전해질판과 접촉하고 있는 웨트-실(wet-seal)부로 나눌 수가 있다. 애노드는 H2, CO2, CO 및 H2O 등을 성분으로 하는 연료가스측으로 환원분위기에 해당하는 반면에, 캐소드는 O2, N2 및 CO2 등을 성분으로 하는 산화가스측으로 산화분위기를 갖는다.Typically, the MCFC consists of a repeating stacked structure of a separator plate / cathode electrode / electrolyte / anode electrode / separator plate. In this case, the separator separates the cathode portion of the lower layer cell from the anode portion of the upper layer cell in the MCFC stack and electrically connects each cell in the dust collector. The corrosion environment of the MCFC separator may be divided into a current collector in which an electrolyte moves from the electrolyte plate through the porous electrode to form a thin film, and a wet-seal part in contact with the electrolyte plate containing the electrolyte. The anode corresponds to the reducing atmosphere toward the fuel gas containing H 2 , CO 2 , CO, and H 2 O, while the cathode forms the oxidation atmosphere toward the oxidizing gas comprising O 2 , N 2, and CO 2 . Have

MCFC는 고온에서 부식성이 강한 용융탄산염을 전해질로 사용하기 때문에 구 성재료의 부식이 문제가 된다. 분리판의 집전부측의 부식은 부식 생성물로 인한 전기전도도 저하와 전극의 기공 폐쇄 등 전반적인 전지의 성능을 저하시키는 주요한 요인으로 되고 있다. 이러한 분위기에서 분리판의 분리판/집전체 및 웨트-실부에 요구되는 조건은 650℃의 작동온도에서 연료가스, 산화가스 및 전해질에 대한 내식성이 우수하여야 하며, 집전판에 있어서 전기전도도가 높고, 고온강도가 높을 것 등이 요구된다.Since MCFC uses highly corrosive molten carbonate as an electrolyte at high temperatures, corrosion of components is a problem. Corrosion on the current collector side of the separator is a major factor that degrades overall battery performance, such as reduced electrical conductivity due to corrosion products and pore closure of electrodes. In this atmosphere, the conditions required for the separator / current collector and wet seal of the separator should be excellent in corrosion resistance to fuel gas, oxidizing gas and electrolyte at an operating temperature of 650 ° C., and have high electrical conductivity in the current collector plate. High temperature strength is required.

MCFC의 분리판 재료로 사용되는 스테인리스 스틸은 고온 용융탄산염 분위기에서 부식이 심각하여 일반적으로 표면에 알루미늄 확산막을 코팅함으로써 내식성을 향상시켜 사용하고 있다. 현재 분리판 재료로 사용되고 있는 316L 또는 310S 스테인리스 스틸은 용융탄산염과 접하고 있을 때 심하게 부식되어 MCFC의 수명과 성능을 저하시키는 주요한 요인으로 작용하고 있다. 특히 분리판의 여러 부분 중 전해질과 직접 접하는 웨트-실부분의 부식이 가장 심각한 것으로 알려져 있어 MCFC 실용화에는 웨트-실부의 부식 문제가 선결 과제라고 할 수 있다. 현재 MCFC의 웨트-실부에는 알루미늄을 코팅하고 확산막을 형성시킴으로써 부식을 방지하는 방법이 일반적으로 사용되고 있다.Stainless steel, which is used as MCFC's separator material, is highly corrosive in high temperature molten carbonate atmosphere and is generally used to improve the corrosion resistance by coating aluminum diffusion film on the surface. 316L or 310S stainless steel, which is currently used as a separator material, is severely corroded when it comes into contact with molten carbonate, which is a major factor in reducing the life and performance of MCFC. In particular, the corrosion of the wet-sea part directly contacting the electrolyte is known to be the most serious of the various parts of the separator, and the problem of corrosion of the wet-sea part is a prerequisite for the practical application of MCFC. At present, a wet seal of MCFC is generally used to prevent corrosion by coating aluminum and forming a diffusion film.

산화분위기에서 스테인리스 스틸은 MCFC의 전해질로 사용되는 리튬카보네이트(Li2CO3)와 포타슘 카보네이트(K2CO3)의 혼합염과 접촉할 때 표면에 LiFeO2 형태의 산화물이 생성되고, 내부에는 크롬과 철의 혼합 산화물이 형성되는 이중 구조를 가지는 것으로 알려져 있다. 그러나 이러한 산화물 층은 산소가 스테인리스 스틸의 내부로 확산되는 것을 억제시키지 못하므로 스테인리스 스틸 내에서는 산화 반응이 계속 진행된다. 그러나, 스테인리스 스틸의 표면에 알루미늄 확산층이 형성되면 용융탄산염과의 반응에 의해 알루미늄 산화물이 LiAlO2의 표면에 생성됨으로써 산소의 내부 확산과 스테인리스 스틸의 주성분인 철, 크롬 및 니켈의 외부 확산을 억제시켜 스테인리스 스틸의 내식성을 향상시키는 것으로 보고되고 있다. In the oxidizing atmosphere, stainless steel forms an oxide of LiFeO 2 on its surface when it comes into contact with a mixed salt of lithium carbonate (Li 2 CO 3 ) and potassium carbonate (K 2 CO 3 ), which is used as an electrolyte for MCFC. It is known to have a dual structure in which a mixed oxide of iron and iron is formed. However, this oxide layer does not inhibit the diffusion of oxygen into the interior of the stainless steel, so the oxidation reaction continues in the stainless steel. However, when the aluminum diffusion layer is formed on the surface of stainless steel, aluminum oxide is formed on the surface of LiAlO 2 by reaction with molten carbonate, thereby suppressing the internal diffusion of oxygen and the external diffusion of iron, chromium and nickel which are the main components of stainless steel. It is reported to improve the corrosion resistance of stainless steel.

현재 스테인리스 스틸 표면에 알루미늄을 코팅하는 방법으로는 이온증착, 전기도금, 플라즈마 스프레잉 및 슬러리 코팅 등이 많이 사용되고 있으나 기존의 코팅 방법에 비해 고가의 장치 및 공정이 필요 없고, 다양한 형상의 지지체에도 코팅이 가능한 방법이 필요하다. 일반적인 슬러리 코팅 방법은 특정 분체와 용매가 혼합된 슬러리를 실편 표면에 얇은 층으로 코팅한 후 열처리를 통하여 시편 표면에 박막을 형성시키는 방법으로서, 시편 표면에 코팅된 슬러리 층은 모두 박막으로 변화된다. 그러나 다공질로 형성된 알루미늄층은 연료전지 작동조건에서 스테인리스 스틸 모재가 카보네이트 전해질에 쉽게 노출될 수 있는 환경을 제공한다.Currently, as a method of coating aluminum on the surface of stainless steel, ion deposition, electroplating, plasma spraying, and slurry coating are widely used, but they do not require expensive equipment and processes compared to conventional coating methods, and are coated on various shapes of supports. I need this possible way. A general slurry coating method is a method in which a thin powder is coated on a surface of a specimen with a mixture of a specific powder and a solvent, and a thin film is formed on the surface of the specimen by heat treatment. The slurry layer coated on the surface of the specimen is changed into a thin film. However, the porous aluminum layer provides an environment where the stainless steel base material can be easily exposed to the carbonate electrolyte under fuel cell operating conditions.

반면에 무전해도금은 환원제를 사용하여 용액내의 금속이온을 모재 표면에 금속 층으로 석출하게 하는 방법이다. 적절한 촉매화 공정을 거친 모재를 수세 후 무전해도금욕에 침지하면 곧 화학도금 반응이 일어나 화학적 환원에 의해 금속이 석출된다. 무전해 도금피막은 전해도금과 달리 도금욕에 피도금물을 침지하는 것 만으로 균일한 도금피막을 모재상에 용이하게 형성할 수 있는 점에서 우수하다. 니켈에 인 및 붕소를 첨가한 무전해 도금 피막은 비교적 높은 경도를 가지므로 여러 가지 기계부품 등의 표면처리에 사용되고 있다. 니켈과 인으로 구성된 무전해 도금 피막은 일반적으로 도금욕이 안정하므로 고속에서의 형성에 적합하다. 그러나 고경도의 피막을 형성하기 위해서는 280℃ 이상의 고온에서 열처리를 필요로 한다. 그러나, 고온에서의 열처리는 피막 자체의 인성이 저하되고 충격강도도 낮아진다는 문제가 있다. 종래의 니켈과 붕소로 된 무전해 도금 피막은 도금욕이 불안정하므로 고속으로 피막을 석출시키기가 곤란하다는 문제가 있다.On the other hand, electroless plating is a method of depositing metal ions in solution as a metal layer on the surface of a base material using a reducing agent. Subsequently, the base material, which has undergone the proper catalysis, is immersed in an electroless plating bath after washing with water, and then a chemical plating reaction occurs to precipitate the metal by chemical reduction. Unlike electroplating, an electroless plating film is excellent in that a uniform plating film can be easily formed on a base material only by immersing a plated object in a plating bath. Electroless plating films in which phosphorus and boron are added to nickel have a relatively high hardness and are used for surface treatment of various mechanical parts and the like. Electroless plating films composed of nickel and phosphorus are generally suitable for formation at high speed because the plating bath is stable. However, in order to form a high hardness film, heat treatment is required at a high temperature of 280 ° C or higher. However, heat treatment at high temperatures has a problem that the toughness of the coating itself is lowered and the impact strength is also lowered. Conventional electroless plating films made of nickel and boron have a problem that it is difficult to deposit the coating at high speed because the plating bath is unstable.

상술한 종래기술의 문제점들을 해결하기 위해, 본 발명자들은 고온 열처리에 의하여도 경도 및 내식 특성이 우수하고, 도금층의 기밀성이 우수하며, 석출속도 및 부착성이 우수한 스테인리스 스틸 분리판 및 그 코팅방법을 개발하기에 이르렀다.In order to solve the above-mentioned problems of the prior art, the inventors of the present invention provide a stainless steel separator and its coating method which are excellent in hardness and corrosion resistance, excellent in airtightness of the plating layer, and excellent in deposition rate and adhesion even by high temperature heat treatment. To develop.

본 발명의 목적은 고온 열처리에 의하여도 경도 및 내식 특성이 우수한 스테인리스 스틸 분리판 및 그 코팅방법을 제공하는 것이다.An object of the present invention is to provide a stainless steel separator and its coating method excellent in hardness and corrosion resistance even by high temperature heat treatment.

본 발명의 다른 목적은 도금층의 기밀성이 우수한 스테인리스 스틸 분리판 및 그 코팅방법을 제공하는 것이다.Another object of the present invention is to provide a stainless steel separator and a coating method thereof having excellent airtightness of the plating layer.

본 발명의 또 다른 목적은 석출속도 및 부착성이 우수한 스테인리스 스틸 분리판 및 그 코팅방법을 제공하는 것이다.Still another object of the present invention is to provide a stainless steel separator having excellent precipitation rate and adhesion and a coating method thereof.

본 발명의 상기 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

본 발명의 스테인리스 스틸 분리판은 인 0.5 내지 30 중량%, 코발트 0.1 내지 20 중량% 및 니켈 50 내지 99.4 중량%를 포함하는 무전해 일차 도금층 피막이 코팅된 것을 특징으로 한다.Stainless steel separator of the present invention is characterized in that the coating of the electroless primary plating layer containing 0.5 to 30% by weight of phosphorus, 0.1 to 20% by weight of cobalt and 50 to 99.4% by weight of nickel.

여기서,here,

상기 분리판은 상기 일차 도금층 피막 위에 인 0.5 내지 30 중량%, 텅스텐 0.1 내지 15 중량% 및 니켈 55 내지 99.4 중량%를 포함하는 무전해 이차 도금층 피막이 코팅된 것을 특징으로 한다.The separator may be coated with an electroless secondary plating layer including 0.5 to 30% by weight of phosphorus, 0.1 to 15% by weight of tungsten, and 55 to 99.4% by weight of nickel on the primary plating layer.

상기 일차 도금층 피막의 기공도는 0.1 내지 25 %인 것을 특징으로 한다.The porosity of the primary plating layer is characterized in that 0.1 to 25%.

상기 일차 도금층 피막의 두께는 전체 피막 두께의 25 내지 75 %인 것을 특징으로 한다.The thickness of the primary plating layer is characterized in that 25 to 75% of the total film thickness.

상기 전체 피막 두께는 2 내지 200 ㎛인 것을 특징으로 한다.The total film thickness is characterized in that 2 to 200 ㎛.

또한, 본 발명의 스테인리스 스틸 분리판의 코팅방법은 스테인리스 스틸 분리판의 표면을 탈지하여 청정화하는 단계 및 상기 청정화된 분리판을 인 0.5 내지 30 중량%, 코발트 0.1 내지 20 중량% 및 니켈 50 내지 99.4 중량%를 포함하는 무전해 도금 용액이 담긴 도금욕에 침지시켜 무전해 일차 도금층 피막을 형성하는 단계로 이루어지는 것을 특징으로 한다.In addition, the coating method of the stainless steel separator plate of the present invention is the step of degreasing and cleaning the surface of the stainless steel separator plate and 0.5 to 30% by weight phosphorus, 0.1 to 20% by weight of cobalt and 50 to 99.4 nickel It is characterized by consisting of a step of forming an electroless primary plating layer film by immersing in a plating bath containing an electroless plating solution containing a weight%.

상기 스테인리스 스틸 분리판의 코팅방법은 상기 일차 도금층 피막 위에 인 0.5 내지 30 중량%, 텅스텐 0.1 내지 15 중량% 및 니켈 55 내지 99.4 중량%를 포함하는 무전해 도금 용액에 침지시켜 무전해 이차 도금층 피막을 코팅하는 단계를 더 포함하는 것을 특징으로 한다.The coating method of the stainless steel separator plate is immersed in an electroless plating solution containing 0.5 to 30% by weight of phosphorus, 0.1 to 15% by weight of tungsten and 55 to 99.4% by weight of nickel on the primary plating layer to form an electroless secondary plating layer. It further comprises the step of coating.

상기 무전해 도금 용액은 수용성 니켈염, 환원제 및 착화제를 포함하는 것을 특징으로 한다.The electroless plating solution is characterized in that it comprises a water-soluble nickel salt, a reducing agent and a complexing agent.

상기 수용성 니켈염, 환원제 및 착화제의 양은 각각 0.1 g/L 내지 100 g/L인 것을 특징으로 한다.The amount of the water-soluble nickel salt, reducing agent and complexing agent is characterized in that each 0.1 g / L to 100 g / L.

상기 환원제는 차아인산(H2PO2), 차아인산나트륨(NaH2PO2·H2O)과 같은 차아인산염, 디메틸아민보란, 트리메틸아민보란 및 히드라진으로 이루어지는 그룹으로부 터 선택되는 것을 특징으로 한다.The reducing agent is selected from the group consisting of hypophosphite (H 2 PO 2 ), hypophosphite such as sodium hypophosphite (NaH 2 PO 2 · H 2 O), dimethylamine borane, trimethylamine borane and hydrazine do.

상기 착화제는 말산, 숙신산, 락트산 및 시트르산과 같은 카르복실산, 카르복신산의 나트륨염 및 글리신, 알라닌, 이미노디아세트산, 알기닌 및 글루탐산과 같은 아미노산으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 한다.The complexing agent is characterized in that it is selected from the group consisting of carboxylic acids such as malic acid, succinic acid, lactic acid and citric acid, sodium salts of carboxylic acids and amino acids such as glycine, alanine, iminodiacetic acid, arginine and glutamic acid.

상기 무전해 도금 용액은 안정제를 더 포함하는 것을 특징으로 한다.The electroless plating solution is characterized in that it further comprises a stabilizer.

상기 안정제는 아세트산납과 같은 수용성 납염 및 티오디글리콜산과 같은 황화합물로 이루어지는 그룹으로부터 선택되는 것을 특징으로 한다.The stabilizer is selected from the group consisting of water-soluble lead salts such as lead acetate and sulfur compounds such as thiodiglycolic acid.

상기 안정제의 양은 0.1 g/L 내지 100 g/L인 것을 특징으로 한다.The amount of stabilizer is characterized in that from 0.1 g / L to 100 g / L.

상기 도금욕의 온도는 30℃ 내지 95℃인 것을 특징으로 한다.The temperature of the plating bath is characterized in that 30 ℃ to 95 ℃.

본 발명은 고온 열처리에 의하여도 경도 및 내식 특성이 우수하고, 도금층의 기밀성이 우수하며, 석출속도 및 부착성이 우수한 스테인리스 스틸 분리판 및 그 코팅방법을 제공한다.The present invention provides a stainless steel separator and its coating method which are excellent in hardness and corrosion resistance, excellent in airtightness of the plating layer, and excellent in deposition rate and adhesion even by high temperature heat treatment.

상기 목적을 달성하기 위하여, 본 발명은 스테인리스 스틸 분리판의 웨트-실부를 다층 코팅하는 방법에 있어서, 분리판의 표면을 탈지하여 청정화하는 단계, 및 상기 청정화된 분리판 표면에 니켈-인의 합금으로 이루어진 기초층과 니켈-인-텅스텐의 합금으로 이루어진 표면층을 순차적으로 형성하는 단계를 포함하여 이루 어지는 것을 특징으로 하는 무전해 도금 방법을 제공한다.In order to achieve the above object, the present invention is a method of multilayer coating the wet-sealed portion of the stainless steel separator, the step of degreasing and cleaning the surface of the separator plate, and the nickel-phosphorus alloy on the surface of the separator plate It provides an electroless plating method comprising the step of sequentially forming a surface layer consisting of a base layer made of an alloy of nickel-phosphorus-tungsten.

무전해 니켈도금 용액은 수용성 니켈염, 환원제 및 착화제를 포함한다. 황산니켈 및 염화니켈은 전형적인 수용성 니켈염이다. 사용된 니켈염의 양은 바람직하게는 0.1 g/L 내지 100 g/L, 보다 바람직하게는 1 g 내지 50 g/L이다. 환원제의 예는 차아인산(H2PO2), 차아인산나트륨(NaH2PO2·H2O)과 같은 차아인산염, 디메틸아민보란, 트리메틸아민보란 및 히드라진을 포함한다. 사용된 환원제의 양은 바람직하게는 0.1 g/L 내지 100 g/L, 보다 바람직하게는 1 g 내지 50 g/L이다. 착화제의 예는 말산, 숙신산, 락트산 및 시트르산과 같은 카르복실산, 카르복신산의 나트륨염 및 글리신, 알라닌, 이미노디아세트산, 알기닌 및 글루탐산과 같은 아미노산을 포함한다. 사용된 착화제의 양은 바람직하게는 0.1 mg/L 내지 100 mg/L, 보다 바람직하게는 1 mg 내지 50 mg/L이다.The electroless nickel plating solution includes a water soluble nickel salt, a reducing agent and a complexing agent. Nickel sulfate and nickel chloride are typical water soluble nickel salts. The amount of nickel salt used is preferably 0.1 g / L to 100 g / L, more preferably 1 g to 50 g / L. Examples of reducing agents include hypophosphite (H 2 PO 2 ), hypophosphite such as sodium hypophosphite (NaH 2 PO 2 · H 2 O), dimethylamineborane, trimethylamineborane and hydrazine. The amount of reducing agent used is preferably 0.1 g / L to 100 g / L, more preferably 1 g to 50 g / L. Examples of complexing agents include carboxylic acids such as malic acid, succinic acid, lactic acid and citric acid, sodium salts of carboxylic acids and amino acids such as glycine, alanine, iminodiacetic acid, arginine and glutamic acid. The amount of complexing agent used is preferably 0.1 mg / L to 100 mg / L, more preferably 1 mg to 50 mg / L.

통상적으로 안정제가 무전해니켈 도금용액에 더 첨가된다. 안정제의 예는 아세트산납과 같은 수용성 납염 및 티오디글리콜산과 같은 황화합물이다. 사용된 안정제의 양은 바람직하게는 0.1 mg/L 내지 100 mg/L, 보다 바람직하게는 0.5 mg 내지 20 mg/L이다.Typically, stabilizers are added to the electroless nickel plating solution. Examples of stabilizers are water soluble lead salts such as lead acetate and sulfur compounds such as thiodiglycolic acid. The amount of stabilizer used is preferably 0.1 mg / L to 100 mg / L, more preferably 0.5 mg to 20 mg / L.

본 발명의 도금피막의 형성은 모재의 피도금 표면을 상기 성분을 포함하는 도금욕에 일정시간 침지함으로써 형성할 수 있다. 도금욕의 온도는 욕의 안정성과 석출속도 등을 고려하여 결정하는데, 예컨대 30 내지 95℃, 바람직하게는 30 내지 90℃의 범위로 하는 것이 좋다. 그리고 도금욕에 대한 침지 시간을 조정함으로써 도금 피막의 두께를 적절히 조정할 수 있다. 일차 도금층 피막의 두께는 전체 피막 두께의 25 내지 75 %인 것이 바람직하고, 전체 피막 두께는 피막 경도와, 인성, 접동특성 및 내식성을 고려하며, 2 내지 200 mm, 바람직하게는 20 내지 150 mm 범위로 하는 것이 좋다.Formation of the plating film of the present invention can be formed by immersing the surface to be plated of the base material in a plating bath containing the above components for a predetermined time. The temperature of the plating bath is determined in consideration of the stability of the bath and the precipitation rate, and the like, for example, preferably in the range of 30 to 95 ° C, preferably 30 to 90 ° C. And the thickness of a plating film can be adjusted suitably by adjusting the immersion time to a plating bath. It is preferable that the thickness of the primary plating layer is 25 to 75% of the total film thickness, and the overall film thickness takes into account film hardness, toughness, sliding properties and corrosion resistance, and is in the range of 2 to 200 mm, preferably 20 to 150 mm. It is good to do.

그리고 모재의 피도금 표면에는 도금 피막과의 부착성을 양호하게 할 목적으로 도금욕에 침지하기 전에 통상의 도금공정에서 행해지는 전처리를 하는 것이 바람직하다. 이러한 전처리로서는 예컨대 용제 또는 알칼리 용액을 사용한 탈지, 아연치환 처리, 산침지 처리 등을 들 수 있다.The surface to be plated of the base material is preferably subjected to pretreatment performed in a normal plating step before being immersed in the plating bath for the purpose of improving adhesion with the plated film. Examples of such pretreatment include degreasing using a solvent or an alkaline solution, zinc substitution treatment, and acid immersion treatment.

용융탄산염 연료전지 분리판 모재로는 스테인리스 스틸을 사용할 수 있으며 바람직하게는 오스테나이트계 스테인리스 스틸을 사용할 수 있다. 오스테나이트계는 스테인리스에 7% 이상의 니켈을 첨가하게 되면 오스테나이트 조직이 되고, 우수한 내식성, 내산화성, 인성을 가진다. 그러나 산성 부식에 약하고 열처리에 의해 강도가 높아지지 않는 단점이 있다.Molten carbonate fuel cell separator base material may be used stainless steel, preferably austenitic stainless steel may be used. In the austenitic system, when 7% or more of nickel is added to the stainless steel, the austenitic structure becomes an austenite structure and has excellent corrosion resistance, oxidation resistance, and toughness. However, it is weak in acid corrosion and has a disadvantage in that its strength does not increase by heat treatment.

본 발명은 인을 0.5 내지 30 중량%, 코발트를 0.1 내지 20 중량% 함유하는 니켈 무전해 도금 피막을 일차 도금층으로 형성하는데, 바람직하게는 인을 1.0 내지 20 중량%, 코발트를 0.5 내지 10 중량% 함유한다. 이 때 코발트 금속이온을 얻기 위해서는 CoCl2·7H2O (염화코발트수용액)을 사용한다. 니켈 무전해 도금 피막중의 인의 함유량이 0.5 중량% 이하인 경우에는 치아인산염을 환원제로 하는 도금액에서는 도금을 형성할 수가 없고 욕의 안정성도 불량하며 도금 석출 속도도 느려진 다. 그리고 인의 함유량이 30 중량%를 초과하면 도금피막이 비결정질이 되어 고온 열처리에서도 고경도를 얻을 수 없다. 코발트의 성분이 0.1 중량% 이하인 경우에는 열처리를 하는 경우에도 석출경도는 낮고 10 중량% 이상인 경우에는 부착성이 저하된다. 또한, 일차 도금층 피막의 기공도는 0.1 내지 25 %인 것이 바람직하다. 일차 도금층 피막의 기공도가 25%를 초과하게 되면 이차 도금층의 형성시 스테인리스 스틸 모재와 이차 도금층이 직접 접촉하여 전체 도금층의 결착력이 저하될 수 있다.The present invention forms a nickel electroless plating film containing 0.5 to 30% by weight of phosphorus and 0.1 to 20% by weight of cobalt as a primary plating layer, preferably 1.0 to 20% by weight of phosphorus and 0.5 to 10% by weight of cobalt. It contains. At this time, CoCl 2 · 7H 2 O (cobalt chloride aqueous solution) is used to obtain cobalt metal ions. When the phosphorus content in the nickel electroless plating film is 0.5% by weight or less, plating cannot be formed in a plating solution containing phosphate as a reducing agent, the stability of the bath is poor, and the plating deposition rate is slowed. If the content of phosphorus exceeds 30% by weight, the plating film becomes amorphous and high hardness cannot be obtained even at high temperature heat treatment. When the cobalt component is 0.1% by weight or less, the precipitation hardness is low even when the heat treatment is performed, and when 10% by weight or more, the adhesion decreases. In addition, the porosity of the primary plating layer film is preferably 0.1 to 25%. When the porosity of the primary plating layer exceeds 25%, the stainless steel base material and the secondary plating layer may directly contact each other when the secondary plating layer is formed, thereby lowering the binding force of the entire plating layer.

상기 일차 도금층 위에 인을 0.5 내지 30 중량%, 텅스텐을 0.1 내지 15 중량% 함유하는 니켈 무전해 도금 피막을 이차 도금층으로 형성하는데, 바람직하게는 인을 1.0 내지 20 중량%, 텅스텐을 0.5 내지 10 중량% 함유한다. 이때 텅스텐 금속 이온을 얻기 위해서는 소듐텅스테이트(Na2WO4)를 사용하며, 소디움카보네이트를 도금욕의 pH를 9.0으로 조절하기 위한 버퍼로 사용한다.A nickel electroless plating film containing 0.5 to 30% by weight of phosphorus and 0.1 to 15% by weight of tungsten is formed on the primary plating layer as a secondary plating layer, preferably 1.0 to 20% by weight of phosphorus and 0.5 to 10% by weight of tungsten. It contains%. In this case, sodium tungstate (Na 2 WO 4 ) is used to obtain tungsten metal ions, and sodium carbonate is used as a buffer for adjusting the pH of the plating bath to 9.0.

일차 도금층에서와 같이 니켈 무전해 도금 피막중의 인의 함유량이 0.5 중량% 이하인 경우에는 치아인산염을 환원제로 하는 도금액에서는 도금을 형성할 수가 없고 욕의 안정성도 불량하며 도금 석출 속도도 느려진다. 그리고 인의 함유량이 30 중량%를 초과하면 도금피막이 비결정질이 되어 고온 열처리에서도 고경도를 얻을 수 없다. 텅스텐의 성분이 0.1 중량% 이하인 경우에는 도금층의 기밀성이 저하되어 전해액의 침투가 용이하고, 15 중량% 이상인 경우에는 석출 속도가 매우 느리다. 상기 텅스텐은 그 특성상 단독으로 도금되지 않는 성질을 가지고 있는바, 니켈, 팔라듐 등을 공석하여 선택적으로 사용하는 것이 바람직하다.When the phosphorus content in the nickel electroless plating film is 0.5 wt% or less, as in the primary plating layer, plating cannot be formed in the plating solution containing phosphate as a reducing agent, the stability of the bath is poor, and the plating precipitation rate is also slowed. If the content of phosphorus exceeds 30% by weight, the plating film becomes amorphous and high hardness cannot be obtained even at high temperature heat treatment. When the tungsten component is 0.1% by weight or less, the airtightness of the plating layer is lowered, so that the electrolyte is easily penetrated, and when it is 15% by weight or more, the deposition rate is very slow. Since the tungsten has a property of not being plated alone due to its characteristics, it is preferable to selectively use vaccinated nickel, palladium, or the like.

이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들에 대해 상세히 설명하고자 한다. 단 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 권리 범위가 이러한 실시예에 의해 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are merely to illustrate the present invention, but the scope of the present invention is not limited by these examples.

실시예 1Example 1

샘플 시편은 두께 0.3 mm의 스테인리스 스틸 STS 310S 강판으로 #2000의 SiC 페이퍼로 표면을 연마하고, 초음파 세척조에서 15분간 10% 소디움 하이드록사이드 용액으로 탈지한 후 흐르는 탈이온수로 잔류 알카리 성분을 완전히 제거하여 상온 건조하였다. 시편은 1M H3PO4 수용액으로 전처리하였다.The sample specimen was a 0.3 mm thick stainless steel STS 310S steel plate polished with # 2000 SiC paper, degreased with a 10% sodium hydroxide solution for 15 minutes in an ultrasonic cleaning bath, and then completely removed with residual deionized water by flowing deionized water. Dried at room temperature. Specimens were pretreated with 1M H 3 PO 4 aqueous solution.

그리고 상기 전처리된 시편을 하기 표 1에 표시된 성분의 도금조에서 약 15분간 기초도금을 진행하여 기초 도금층을 형성하였다. 이때 도금조의 온도는 40℃로 유지하였다.The pretreated specimen was then plated in a plating bath of the components shown in Table 1 for about 15 minutes to form a foundation plating layer. At this time, the temperature of the plating bath was maintained at 40 ℃.

Figure 112008090759114-pat00001
Figure 112008090759114-pat00001

이어서 상기 기초 도금층을 형성한 시편을 하기 표 2에 표시된 조건에서 약 20분간 중간 도금을 진행하여 중간 도금층을 형성하였다. 이때 도금조의 온도는 60℃로 유지하였다.Subsequently, the specimen on which the foundation plating layer was formed was subjected to intermediate plating for about 20 minutes under the conditions shown in Table 2 to form an intermediate plating layer. At this time, the temperature of the plating bath was maintained at 60 ℃.

Figure 112008090759114-pat00002
Figure 112008090759114-pat00002

상기 표2에 표시된 조건에서 형성된 도금층의 두께는 약 20 마이크론(micron)으로 형성되며, 최종 도금층의 두께는 용도와 사용하는 부식환경에 맞게 내식성 한도를 정해 임의로 조절할 수 있다. 2차 도금층을 형성한 후 시편은 탈이온수 세척과 상온건조후 400℃에서 1시간 동안 열처리하였다.The thickness of the plating layer formed under the conditions shown in Table 2 is formed to about 20 microns (micron), the thickness of the final plating layer can be arbitrarily adjusted by determining the corrosion resistance limit according to the use and the corrosion environment used. After forming the secondary plating layer, the specimen was heat-treated at 400 ° C. for 1 hour after washing with deionized water and drying at room temperature.

비교예 1Comparative Example 1

샘플 시편으로 별도의 표면코팅이 없는 STS 310S 강판을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다.As the sample specimen was carried out in the same manner as in Example 1 except for using the STS 310S steel sheet without a separate surface coating.

비교예 2Comparative Example 2

알루미늄 분체를 사용하여 슬러리를 제조하고 스테인리스 스틸 316L 시편의 표면에 스프레이 페인팅 방법으로 알루미늄층을 형성시킨 후 완전히 건조시키고 최종적으로 열처리를 수행하였다. 입자 크기가 40 ~ 75 mm인 알루미늄 분체를 소량의 결합제와 함께 아세톤 및 t-부틸 알콜에 혼합시키고, 초음파를 인가하여 균일하게 분산시켜 슬러리를 제조하였다.Slurry was prepared using aluminum powder, and an aluminum layer was formed on the surface of stainless steel 316L specimen by spray painting, followed by complete drying and finally heat treatment. Aluminum powder having a particle size of 40 to 75 mm was mixed with a small amount of binder in acetone and t-butyl alcohol and uniformly dispersed by applying ultrasonic waves to prepare a slurry.

스테인리스 스틸은 10 x 2 cm2 크기의 시편을 CCl4 용액에서 초음파 세척 후 사용하였다. 슬러리 페인팅을 수행할때는 내경 0.5 mm의 분사기를 사용하였으며, 시편의 온도는 50℃로 유지하였다. 적절한 두께로 알루미늄층이 시편의 일면에 형성되도록 반복코팅을 실시한 후 완전히 건조시킨 다음, 석영관 내에 시편을 장착하고 수소분위기에서 열처리 하였다. 열처리는 600 내지 800℃에서 3 내지 12 시간 동안 진행하였으며, 온도 상승 및 하강 속도는 5℃/min으로 설정하였다. 석영관 내부로는 팔라듐 막을 통해 정제된 수소를 10 cc/min의 속도로 공급하였다. 열처리를 수행한 후 시편 위에 남아 있는 알루미늄 분체를 제거하고 시편의 부식 시험을 수행하였다.Stainless steel was used after ultrasonic cleaning of 10 x 2 cm 2 specimen in CCl 4 solution. When performing slurry painting, an injector with an internal diameter of 0.5 mm was used, and the temperature of the specimen was maintained at 50 ° C. After repeated coating so that an aluminum layer was formed on one side of the specimen to an appropriate thickness, it was completely dried, and then the specimen was mounted in a quartz tube and heat-treated in a hydrogen atmosphere. The heat treatment was performed at 600 to 800 ° C. for 3 to 12 hours, and the temperature rising and falling rate was set at 5 ° C./min. Inside the quartz tube, purified hydrogen was supplied at a rate of 10 cc / min through a palladium membrane. After the heat treatment was carried out to remove the aluminum powder remaining on the specimen and to perform a corrosion test of the specimen.

비교예 3Comparative Example 3

전처리된 시편을 하기 표 3에 표시된 성분의 도금조에서 약 25분간 기초도금을 진행하여 니켈과 인의 단일합금 도금층을 형성한 것을 제외하고는 실시예 1과 동일하게 수행하였다.The pre-treated specimens were carried out in the same manner as in Example 1 except that the plating was performed for about 25 minutes in the plating bath of the components shown in Table 3 to form a single alloy plating layer of nickel and phosphorus.

Figure 112008090759114-pat00003
Figure 112008090759114-pat00003

상술한 바와 같이, 본 발명의 연료 전지용 분리판은 내식 특성을 증가시킬 수 있다.As described above, the separator for fuel cells of the present invention can increase the corrosion resistance.

도 1은 본 발명의 실시예 1에 따른 스테인리스 스틸 웨트-실부의 도금층 단면도이다. 도 1에서 보여주는 바와 같이, 실시예 1에 따른 무전해 삼원합금 도금층은 모재와 코팅의 계면 구분이 확실치 않고 완전 밀착 결합되어 있는 무전해도금의 특성을 보이고 있다. 또한 1차 도금층과 2차 도금층 계면의 구분이 없어져 단일층으로 합금화 되었음을 알 수 있다.1 is a cross-sectional view of a plating layer of a stainless steel wet seal portion according to Embodiment 1 of the present invention. As shown in FIG. 1, the electroless ternary alloy plating layer according to Example 1 shows the characteristics of the electroless plating in which the interface between the base material and the coating is not sure and is completely intimately bonded. In addition, it can be seen that there is no distinction between the interface between the primary plating layer and the secondary plating layer, thereby alloying a single layer.

도 2는 본 발명의 비교예 2에 따른 Al 상 애노다이징의 단면 구조를 나타낸 단면도이다. 도 2에서 보여주는 바와 같이 비교예2의 경우에는 실시예 1과 달리 치밀한 단면구조를 가지지 않는 다공성이 많은 구조를 나타내므로 전해액의 모재 침투성이 높은 단점이 있다.2 is a cross-sectional view showing a cross-sectional structure of Al phase anodizing according to Comparative Example 2 of the present invention. As shown in FIG. 2, in the case of Comparative Example 2, unlike Example 1, since the porous structure does not have a dense cross-sectional structure, there is a disadvantage in that the penetration of the base material of the electrolyte is high.

전기화학적 분극 시험에서는 5 x 2 cm2 크기의 시편을 1 M 황산수용액에 넣고, 표준칼로메전극 (standard calomel electrode)을 기준전극으로 사용하여 -1.2 내지 0.1 V의 전위영역에서 1 mV/sec의 속도로 전위를 주사하여 Tafel 곡선을 얻고, 부식전류와 부식전위를 결정하였다.In the electrochemical polarization test, 5 x 2 cm 2 specimens were placed in 1 M aqueous solution of sulfuric acid, and a standard calomel electrode was used as a reference electrode at 1 mV / sec in the potential region of -1.2 to 0.1 V. The Tafel curves were obtained by scanning the potential at velocity, and the corrosion current and corrosion potential were determined.

도 3은 본 발명의 실시예 1에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이고, 도 4는 본 발명의 비교예 1에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이며, 도 5는 본 발명의 비교예 2에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다. 또한, 도 6은 본 발명의 비교예 3에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다.3 is a graph showing a Tafel curve of the corrosion potential against the corrosion current according to Example 1 of the present invention, Figure 4 is a graph showing a Tafel curve of the corrosion potential against the corrosion current according to Comparative Example 1 of the present invention, 5 is a graph showing the Tafel curve of the corrosion potential with respect to the corrosion current according to Comparative Example 2 of the present invention. 6 is a graph showing a Tafel curve of corrosion potential against corrosion current according to Comparative Example 3 of the present invention.

도 3 내지 6에서 보여주는 바와 같이, 도 3의 실시예 1에서는 종래의 알루미늄 애노다이징을 사용한 도 4의 비교예 1 및 도 5의 비교예 2와 비교할 때, 현저하게 높은 부식전위와 현저하게 낮은 부식전류를 나타내어 매우 우수한 특성을 가지는 것을 확인할 수 있었다. 또한, 니켈과 인 합금의 단일 도금층인 도 6의 비교예 3은 전지 운전조건인 0 V 이상의 전압영역에서 정비례관계의 I-V 특성을 보여 부식에 취약한 것으로 나타났다.As shown in Figures 3 to 6, in Example 1 of Figure 3, compared with Comparative Example 1 of Figure 4 and Comparative Example 2 of Figure 5 using conventional aluminum anodizing, significantly higher corrosion potential and significantly lower Corrosion current was shown to have very excellent characteristics. In addition, Comparative Example 3 of FIG. 6, which is a single plating layer of nickel and phosphorus alloys, was found to be vulnerable to corrosion by showing I-V characteristics of a direct relationship in a voltage range of 0 V or more, which is a battery operating condition.

도 실시예 1 및 비교예 1 내지 3의 표준수소전극에 대한 부식전위(V) 및 부식전류(㎂)에서 얻어진 데이터를 하기 표 4에 나타내었다.The data obtained from the corrosion potential (V) and the corrosion current (V) for the standard hydrogen electrodes of Examples 1 and Comparative Examples 1 to 3 are shown in Table 4 below.

Figure 112008090759114-pat00004
Figure 112008090759114-pat00004

상기 표 4에서 알 수 있는 바와 같이 본 발명에 따른 스테인리스 스틸 웨트-실부의 도금층은 높은 부식전위와 낮은 부식전류를 나타내어 내식 특성이 매우 우수하다는 것을 알 수 있었다.As can be seen from Table 4, the plating layer of the stainless steel wet-seal part according to the present invention showed a high corrosion potential and a low corrosion current, so that the corrosion resistance was very excellent.

도 1은 본 발명의 실시예 1에 따른 스테인리스 스틸 웨트-실부의 도금층 단면도이다.1 is a cross-sectional view of a plating layer of a stainless steel wet seal portion according to Embodiment 1 of the present invention.

도 2는 본 발명의 비교예 2에 따른 Al 상 애노다이징의 단면 구조를 나타낸 단면도이다.2 is a cross-sectional view showing a cross-sectional structure of Al phase anodizing according to Comparative Example 2 of the present invention.

도 3은 본 발명의 실시예 1에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다.3 is a graph showing the Tafel curve of the corrosion potential with respect to the corrosion current according to Example 1 of the present invention.

도 4는 본 발명의 비교예 1에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다.4 is a graph showing the Tafel curve of the corrosion potential with respect to the corrosion current according to Comparative Example 1 of the present invention.

도 5는 본 발명의 비교예 2에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다.5 is a graph showing the Tafel curve of the corrosion potential with respect to the corrosion current according to Comparative Example 2 of the present invention.

도 6은 본 발명의 비교예 3에 따른 부식전류에 대한 부식전위의 Tafel 곡선을 나타낸 그래프이다.6 is a graph showing the Tafel curve of the corrosion potential with respect to the corrosion current according to Comparative Example 3 of the present invention.

Claims (15)

인 0.5 내지 30 중량%;0.5-30 wt% phosphorus; 코발트 0.1 내지 20 중량%; 및0.1 to 20 weight percent of cobalt; And 니켈 50 내지 99.4 중량%;50 to 99.4 weight percent nickel; 를 포함하는 무전해 일차 도금층 피막이 코팅된 것을 특징으로 하는 스테인리스 스틸 분리판.Stainless steel separator plate characterized in that the electroless primary plating layer coating comprising a coating. 제1항에 있어서, 상기 분리판은 상기 일차 도금층 피막 위에The method of claim 1, wherein the separator is on the primary plating layer coating 인 0.5 내지 30 중량%;0.5-30 wt% phosphorus; 텅스텐 0.1 내지 15 중량%; 및0.1 to 15 weight percent tungsten; And 니켈 55 내지 99.4 중량%;Nickel 55-99.4 weight percent; 를 포함하는 무전해 이차 도금층 피막이 코팅된 것을 특징으로 하는 스테인리스 스틸 분리판.Stainless steel separator plate characterized in that the electroless secondary plating layer coating comprising a coating. 제1항에 있어서, 상기 일차 도금층 피막의 기공도는 0.1 내지 25 %인 것을 특징으로 하는 스테인리스 스틸 분리판.The stainless steel separator according to claim 1, wherein the porosity of the primary plating layer is 0.1 to 25%. 제1항에 있어서, 상기 일차 도금층 피막의 두께는 전체 피막 두께의 25 내지 75 %인 것을 특징으로 하는 스테인리스 스틸 분리판.The stainless steel separator according to claim 1, wherein the thickness of the primary plating layer is 25 to 75% of the total thickness of the coating. 제4항에 있어서, 상기 전체 피막 두께는 2 내지 200 ㎛인 것을 특징으로 하는 스테인리스 스틸 분리판.The stainless steel separator according to claim 4, wherein the total film thickness is 2 to 200 mu m. 스테인리스 스틸 분리판의 표면을 탈지하여 청정화하는 단계; 및Degreasing and cleaning the surface of the stainless steel separator; And 상기 청정화된 분리판을 인 0.5 내지 30 중량%, 코발트 0.1 내지 20 중량% 및 니켈 50 내지 99.4 중량%를 포함하는 무전해 도금 용액이 담긴 도금욕에 침지시켜 무전해 일차 도금층 피막을 형성하는 단계;Forming the electroless primary plating layer by immersing the cleaned separator in a plating bath containing an electroless plating solution containing 0.5 to 30% by weight of phosphorus, 0.1 to 20% by weight of cobalt, and 50 to 99.4% by weight of nickel; 로 이루어지는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.Coating method of the stainless steel separator, characterized in that consisting of. 제6항에 있어서, 상기 스테인리스 스틸 분리판의 코팅방법은 상기 일차 도금층 피막 위에 인 0.5 내지 30 중량%, 텅스텐 0.1 내지 15 중량% 및 니켈 55 내지 99.4 중량%를 포함하는 무전해 도금 용액에 침지시켜 무전해 이차 도금층 피막을 코팅하는 단계를 더 포함하는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅 방법.The method of claim 6, wherein the coating method of the stainless steel separator is immersed in an electroless plating solution containing 0.5 to 30% by weight of phosphorus, 0.1 to 15% by weight of tungsten and 55 to 99.4% by weight of nickel on the primary plating layer. Coating method of the stainless steel separator further comprises the step of coating the electroless secondary plating layer coating. 제6항 또는 제7항에 있어서, 상기 무전해 도금 용액은 수용성 니켈염, 환원제 및 착화제를 포함하는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.8. The method of claim 6 or 7, wherein the electroless plating solution comprises a water-soluble nickel salt, a reducing agent, and a complexing agent. 제8항에 있어서, 상기 수용성 니켈염, 환원제 및 착화제의 양은 각각 0.1 g/L 내지 100 g/L인 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The method of claim 8, wherein the amount of the water-soluble nickel salt, the reducing agent, and the complexing agent is 0.1 g / L to 100 g / L, respectively. 제8항에 있어서, 상기 환원제는 차아인산(H2PO2), 차아인산나트륨(NaH2PO2·H2O)과 같은 차아인산염, 디메틸아민보란, 트리메틸아민보란 및 히드라진으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The method of claim 8, wherein the reducing agent is selected from the group consisting of hypophosphite (H 2 PO 2 ), hypophosphite such as sodium hypophosphite (NaH 2 PO 2 · H 2 O), dimethylamine borane, trimethylamine borane and hydrazine Coating method of a stainless steel separator, characterized in that. 제8항에 있어서, 상기 착화제는 말산, 숙신산, 락트산 및 시트르산과 같은 카르복실산, 카르복신산의 나트륨염 및 글리신, 알라닌, 이미노디아세트산, 알기닌 및 글루탐산과 같은 아미노산으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The complexing agent of claim 8 wherein the complexing agent is selected from the group consisting of carboxylic acids such as malic acid, succinic acid, lactic acid and citric acid, sodium salts of carboxylic acids and amino acids such as glycine, alanine, iminodiisacetic acid, arginine and glutamic acid. Coating method of the stainless steel separator, characterized in that. 제8항에 있어서, 상기 무전해 도금 용액은 안정제를 더 포함하는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The method of claim 8, wherein the electroless plating solution further comprises a stabilizer. 제12항에 있어서, 상기 안정제는 아세트산납과 같은 수용성 납염 및 티오디글리콜산과 같은 황화합물로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.13. The method of claim 12, wherein the stabilizer is selected from the group consisting of water-soluble lead salts such as lead acetate and sulfur compounds such as thiodiglycolic acid. 제12항에 있어서, 상기 안정제의 양은 0.1 g/L 내지 100 g/L인 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The method of claim 12, wherein the amount of the stabilizer is 0.1 g / L to 100 g / L. 제6항에 있어서, 상기 도금욕의 온도는 30℃ 내지 95℃인 것을 특징으로 하는 스테인리스 스틸 분리판의 코팅방법.The method of claim 6, wherein the plating bath has a temperature of 30 ° C to 95 ° C.
KR1020080137519A 2008-12-30 2008-12-30 Stainless steel divider and coating method KR101017180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080137519A KR101017180B1 (en) 2008-12-30 2008-12-30 Stainless steel divider and coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080137519A KR101017180B1 (en) 2008-12-30 2008-12-30 Stainless steel divider and coating method

Publications (2)

Publication Number Publication Date
KR20100079104A KR20100079104A (en) 2010-07-08
KR101017180B1 true KR101017180B1 (en) 2011-02-25

Family

ID=42640248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080137519A KR101017180B1 (en) 2008-12-30 2008-12-30 Stainless steel divider and coating method

Country Status (1)

Country Link
KR (1) KR101017180B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120016980A (en) 2010-08-17 2012-02-27 한국전자통신연구원 Image encoding method and apparatus, and decoding method and apparatus
KR101332300B1 (en) * 2011-04-28 2013-11-25 (주)지오데코 ELECTROLESS Ni-P PLATING SOLUTION FOR FUEL CELL SEPARATOR, AND FUEL CELL SEPARATOR USING THE SAME
JP7005939B2 (en) * 2017-05-25 2022-01-24 日本電産リード株式会社 Contact probe
JP6474860B2 (en) * 2017-06-28 2019-02-27 小島化学薬品株式会社 Electroless nickel strike plating solution and method for forming nickel plating film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof

Also Published As

Publication number Publication date
KR20100079104A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
Wu et al. A review of modified metal bipolar plates for proton exchange membrane fuel cells
JP5614861B2 (en) Process for manufacturing electrodes used in fuel cells
Fetohi et al. Ni–P and Ni–Co–P coated aluminum alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications
Antunes et al. Corrosion of metal bipolar plates for PEM fuel cells: A review
Fetohi et al. Study of different aluminum alloy substrates coated with Ni–Co–P as metallic bipolar plates for PEM fuel cell applications
Liu et al. Towards cost-effective and durable bipolar plates for proton exchange membrane electrolyzers: A review
KR101017180B1 (en) Stainless steel divider and coating method
TWI515944B (en) Stainless steel foil for separator between solid polymer fuel cell
CN110061257A (en) Metal-based bipolar plate for PEMFC (proton exchange Membrane Fuel cell) and preparation method thereof
CA2982476A1 (en) Metal sheet for separators of polymer electrolyte fuel cells
CN101488574A (en) Proton exchange film fuel cell stainless steel bi-polar plate and production thereof
WO2015159467A1 (en) Stainless-steel foil for separator of polymer electrolyte fuel cell
CN118773608B (en) Anti-hydrogen embrittlement composite coating for bipolar plate of PEM electrolyzer and preparation method thereof
JP2012119126A (en) Solid oxide fuel battery
JP5806099B2 (en) Surface treatment method for fuel cell separator
KR100917610B1 (en) Coating method of metal connecting material for solid oxide fuel cell
Odetola et al. Electrodeposition of functional coatings on bipolar plates for fuel cell applications–a review
JP5699624B2 (en) Metal plate for polymer electrolyte fuel cell separator and method for producing the same
Hwang et al. A study of a corrosion-resistant coating for a separator for a molten carbonate fuel cell
JP5700183B1 (en) Stainless steel foil for separator of polymer electrolyte fuel cell
CN100349315C (en) Method for surface treating stainless steel double polar plate of proton exchanging film fuel cell
CN101369668A (en) Metal bipolar plate for polymer electrolyte membrane fuel cell and preparation method thereof
Guan et al. 3‐D Tin‐Carbon Fiber Paper Electrodes for Electrochemically Converting CO2 to Formate/Formic Acid
JP5625902B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
Richards et al. Review–Metallic bipolar plates and their usage in energy conversion systems

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20081230

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20110210

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20110216

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20110216

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20131206

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20141230

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20151208

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20161206

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20161206

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20171204

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20190102

Start annual number: 9

End annual number: 9

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20201127