[go: up one dir, main page]

KR101013754B1 - Construction vacuum panel insulation and manufacturing method - Google Patents

Construction vacuum panel insulation and manufacturing method Download PDF

Info

Publication number
KR101013754B1
KR101013754B1 KR1020100058107A KR20100058107A KR101013754B1 KR 101013754 B1 KR101013754 B1 KR 101013754B1 KR 1020100058107 A KR1020100058107 A KR 1020100058107A KR 20100058107 A KR20100058107 A KR 20100058107A KR 101013754 B1 KR101013754 B1 KR 101013754B1
Authority
KR
South Korea
Prior art keywords
vacuum panel
vacuum
panel insulation
fine particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020100058107A
Other languages
Korean (ko)
Inventor
황교식
육상수
육근용
Original Assignee
엔알티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔알티 주식회사 filed Critical 엔알티 주식회사
Priority to KR1020100058107A priority Critical patent/KR101013754B1/en
Application granted granted Critical
Publication of KR101013754B1 publication Critical patent/KR101013754B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Thermal Insulation (AREA)

Abstract

본 발명은 분말을 액상화시킨 후 고압으로 미립화시켜 포집을 통해 가압 성형하여 내부에 수많은 공극이 생성되어 단열 성능을 향상시킨 건축용 진공판넬단열재 및 제조방법에 관한 것으로, 더욱 상세하게는 단위 중량당 이산화규소(SiO2)70%, 산화알루미늄(Al2O3)13%, 산화칼슘(CaO)17%분말을 혼합한 실리카분말을 용융틀에서 1000~1500℃ 범위의 온도로 가열 용융하여 낙하시키고, 산소를 고압으로 낙하는 용융액에 분사하여 흩날리는 막대 형태의 미립자를 성형틀 내로 흡입 포집하여 회전하는 가압롤러에 의해 판 형태로 단열재를 성형하고, 코어재를 절단하여 2개 1조로 넓은 면을 계단 형태가 되도록 적층시켜 상하좌우면 중 일 측면만 제외하고 모든 면을 알루미늄박판으로 형성된 밀폐봉지로 감싸고, 상기 밀폐봉지가 감싸지지 않은 개방부를 통해 공기를 흡입제거한 다음 개방부를 밀봉하여 진공판넬단열재를 제조하도록 구성하는 것을 특징으로 하여; 분말을 용융상태에서 용융액에 산소를 고압으로 분사시켜 용융액이 미립화되면서 포집하여 성형함으로써 내부에 수 많은 공극이 생성되도록 하는 효과가 있다.The present invention relates to a vacuum panel heat insulating material and a manufacturing method for building a vacuum panel heat insulating material to improve the heat insulation performance by forming a large number of pores therein by pulverizing the powder and liquefied by high pressure to atomize the powder, more specifically silicon dioxide per unit weight (SiO2) 70%, aluminum oxide (Al2O3) 13%, calcium oxide (CaO) 17% mixed silica powder is melted by heating to a temperature ranging from 1000 ~ 1500 ℃ in the melting mold to drop the oxygen at high pressure Insulate the rod-shaped particles sprayed into the molten liquid into the forming mold by collecting suction and collecting the fine particles in the form of a plate by the rotating pressure roller, cut the core material and laminate the wide surface into two sets of steps Except for one side of the upper, lower, left, and right sides, all sides are wrapped in a sealed bag formed of aluminum foil, and the air is opened through an open portion in which the sealed bag is not wrapped. To seal the mouth and then opened to remove characterized in that it adapted to produce a vacuum thermal insulation panel; In the molten state, oxygen is injected into the melt at a high pressure to collect and shape the melt while the melt is atomized, thereby producing a large number of voids therein.

Figure R1020100058107
Figure R1020100058107

Description

건축용 진공판넬단열재 및 제조방법{Method for manufacturing vacuum insulation panel}Vacuum panel insulation and manufacturing method for building {Method for manufacturing vacuum insulation panel}

본 발명은 건축용 진공판넬단열재 및 제조방법에 관한 것으로, 특히 분말을 액상화시킨 후 고압으로 미립화시켜 포집을 통해 가압 성형하여 내부에 수많은 공극이 생성되어 단열 성능을 향상시킨 건축용 진공판넬단열재 및 제조방법에 관한 것이다.The present invention relates to a vacuum panel insulating material and a manufacturing method for building, in particular, to a vacuum liquefied powder and then atomized at high pressure to form a large number of pores in the interior by press forming through the collection to improve the insulation performance and architectural vacuum panel insulation and manufacturing method. It is about.

근래, 지구환경 문제인 온난화를 방지하는 것의 중요성으로부터, 에너지 절약화가 요망되고 있으며, 민생용 기기에 대해서도 에너지 절약의 추진이 행해지고 있다. In recent years, from the importance of preventing the warming which is a global environmental problem, energy saving is desired, and the promotion of energy saving is performed also for the consumer equipment.

특히, 냉동 냉장고에 대해서는, 냉열을 효율적으로 이용한다는 관점으로부터, 우수한 단열성을 갖는 단열재가 요구되고 있다. In particular, for a refrigerator refrigerator, a heat insulating material having excellent heat insulating properties is demanded from the viewpoint of efficiently utilizing cold heat.

고성능 단열재로서, 다공체로 이루어지는 심재(core)와, 심재를 외포재에 의해 덮고 내부를 감압 밀폐하여 구성된 진공 단열재가 있다. As a high performance heat insulating material, there are a core made of a porous body and a vacuum heat insulating material formed by covering the core material with an outer cover material and sealing the inside under reduced pressure.

이러한, 진공 단열재의 심재로는, 일반적으로 분말체 재료, 섬유 재료, 또는 연통화한 발포체 등이 사용되고 있는데, 보다 한층 단열 성능이 우수한 진공 단열재가 요구되고 있다.As a core material of such a vacuum heat insulating material, generally a powder material, a fiber material, or the foamed material which communicated is used, The vacuum heat insulating material which is more excellent in heat insulation performance is calculated | required.

일반적으로, 진공 단열재는 외포재 내부가 감압되어 있기 때문에, 그 전열기구로의 기체 성분의 열전도와 대류의 영향은 작다. In general, the vacuum insulator has a reduced pressure inside the outer cover material, and therefore, the influence of heat conduction and convection of the gas component to the heat transfer mechanism is small.

또한, 상온 이하의 온도 영역에서의 사용에서, 복사의 기여도 거의 없다. 따라서, 상온 이하의 냉동 냉장고에 적용하는 진공 단열재에서는, 고체 성분의 열전도를 억제하는 것이 중요해진다. In addition, in use in the temperature range below room temperature, there is little contribution of radiation. Therefore, in the vacuum heat insulating material applied to the refrigeration refrigerator below normal temperature, it becomes important to suppress the heat conduction of a solid component.

그래서, 단열 성능이 우수한 진공 단열재용 심재로, 여러 섬유재료가 보고되어 있다.Therefore, various fiber materials are reported as a core material for vacuum insulation materials which is excellent in heat insulation performance.

예를 들면, 일본국 특허 공표공보 평11-506708호에는 섬유성 재료 전체에 걸쳐 저용융 유리 조성물이나 붕산과 같은 열가소성의 무기 바인더 재료를 분산시킨 심재를 이용한 진공 단열재가 개시되어 있다. For example, Japanese Patent Application Laid-open No. Hei 11-506708 discloses a vacuum insulator using a core material in which a low melting glass composition or a thermoplastic inorganic binder material such as boric acid is dispersed throughout a fibrous material.

이러한, 종래의 진공 단열재는 2개의 인접한 유리섬유와 유리섬유가 무기 바인더 재료에 의해 교점에서 결합부를 형성하고 있다. 이에 의해, 섬유 집합물 개개의 섬유가 일체화하고 있다. In this conventional vacuum insulator, two adjacent glass fibers and glass fibers form a joint at an intersection by an inorganic binder material. Thereby, the fiber of each fiber aggregate is integrated.

이러한, 제품의 일례로는 절연재료의 블랭킷, 매트 및 단열재가 있다. 또한, 무기 바인더 재료는, 범용적인 수지 바인더와 같이 외포재 중의 진공 조건하에서 바인더로부터 발생하는 가스 성분이 거의 없고, 시간 경과적인 단열 성능의 열화가 작다.Examples of such products are blankets of insulating material, mats and insulation. In addition, the inorganic binder material has almost no gas component generated from the binder under vacuum conditions in the outer cover material like the general-purpose resin binder, and the deterioration of heat insulation performance over time is small.

상기의 구성에서는, 무기질 섬유의 교점에서 결착한 바인더가 결합재로서 작용한다. 그 때문에, 결합부에서 고형화한 바인더가 열 가교됨으로써 단열방향의 열전도가 증대한다. 즉, 바인더나 용출 성분에 의한 결착 부위가 없는 섬유체로 이루어지는 심재와 비교하면, 진공 단열재의 열전도율이 증대하고 있다.In the above configuration, the binder bound at the intersection of the inorganic fibers acts as a binder. For this reason, the thermal conductivity in the adiabatic direction increases because the binder solidified at the bonding portion is thermally crosslinked. That is, compared with the core material which consists of a fiber body which does not have a binding site by a binder or an eluting component, the thermal conductivity of a vacuum heat insulating material is increasing.

한편, 바인더나 용출 성분에 의한 결합 부위가 없는 구성의 섬유체는, 고체 성분의 열전도는 작지만, 그 상태는 부피가 큰 응집 형상이고, 매우 취급이 곤란하다. 또한, 그를 진공 단열재의 심재로서 이용한 경우에는, 대기 압축에 의해 외관 표면성이 손상된다.On the other hand, the fiber body of the structure which does not have the binding site by a binder and an eluting component is small in heat conduction of a solid component, but the state is a bulky aggregation shape, and it is very difficult to handle. In addition, when using it as a core material of a vacuum heat insulating material, an external appearance surface property is impaired by atmospheric compression.

그러나 종래의 진공단열재 경우, 다공성 충진물로는 미세 다공성 무기질섬유로 우레탄폼이나 유리섬유를 사용하며 차단성 외피로는 스테인레스 극박판(STS)의 금속재료를 사용하여 이를 프레스에서 진공 감압하여 성형하도록 하고 있는바, 이는 일반적인 단열재 보다는 단열성능이 좋은 장점은 있으나 여전히 무게가 무거워 취급이 용이하지 못하며, 스테인레스 극박판의 접합부에 용접의 불량이 많고 외관을 단순한 판형상으로만 성형이 가능하므로 요철부나 절곡부 또는 단턱부 등의 형상 모양을 다양하게 성형할 수가 없는 것이며, 스테인레스 극박판이 절곡되면 쉽게 진공파괴가 자주 발생하는 문제점이 있다.However, in the case of the conventional vacuum insulation material, the porous filler uses urethane foam or glass fiber as the microporous inorganic fiber, and the barrier skin is made of a stainless steel ultra-thin plate (STS) metal material to be molded by vacuum reduction under a press. Although it has the advantage of better thermal insulation performance than general insulation, it is still heavy and not easy to handle, and there are many welding defects at the junction of stainless steel thin plate and the appearance can be formed only in a simple plate shape, so that the uneven part or the bent part Or it is not possible to form a variety of shapes, such as the stepped portion, there is a problem that often occurs when the stainless steel thin plate is bent easily vacuum breakage.

그리고, 종래의 진공단열재 진공성형장치를 보면, 상부 진공성형판과 하부진공 성형판 사이로 다공성 충진물이 충진된 밀폐봉지를 넣어 이를 단순히 진공 감압으로서 부피를 줄이도록 하고 있어 진공단열재의 내부의 진공도가 낮아 단열성능이 떨어질 뿐만 아니라, 진공 감압시의 내부 기체를 제거함에 있어 작업시간이 많이 소요되므로 생산성이 저하되는 단점이 있는 것이었다.In addition, in the conventional vacuum insulation material vacuum forming apparatus, an airtight bag filled with a porous filler is inserted between the upper vacuum forming plate and the lower vacuum forming plate to reduce the volume by simply reducing the vacuum pressure, so that the vacuum degree inside the vacuum insulation material is low. In addition to the poor thermal insulation performance, it takes a lot of work time to remove the internal gas during vacuum decompression was a disadvantage that the productivity is lowered.

이에 본 발명은 상기와 같은 종래 기술의 문제점을 감안하여 안출한 것으로 실리카분말을 용융상태에서 용융액에 산소를 고압으로 분사시켜 용융액이 미립화되면서 포집하여 성형함으로써 내부에 수 많은 공극이 생성되도록 하는 건축용 진공판넬단열재 및 제조방법를 제공하는데 목적이 있다.Accordingly, the present invention has been made in view of the above-described problems of the prior art, and the vacuum for building the silica powder is sprayed with oxygen at a high pressure in a molten state at high pressure to collect and shape the molten liquid to form a large number of voids therein. It is an object to provide a panel insulation and a manufacturing method.

그리고, 본 발명의 다른 목적은 용융액이 미립화 상태에서 가압작용으로 성형됨으로써 미립자가 불규칙적으로 배열되어 열이 전도하기 어려운 구조를 갖도록 하는 데 있다.In addition, another object of the present invention is to have a structure in which the fine particles are irregularly arranged so that heat is difficult to conduct by melting in a state where the melt is formed by a press action.

더불어, 본 발명의 또 다른 목적은 실리카분말이 용융상태에서 미립자로 변하면서 포집되어 가압 성형됨으로써 미립자간의 상호 강한 접착력으로 결합되어 강도가 우수해지도록 하는 데 있다.In addition, another object of the present invention is to make the silica powder is transformed into the fine particles in the molten state and is collected and press-molded so that the strength is excellent by combining with the strong adhesion between the fine particles.

상기한 목적을 달성하기 위하여 본 발명은 건축용 진공판넬단열재를 제조하는 방법에 있어서, 단위 중량당 이산화규소(SiO2)70%, 산화알루미늄(Al2O3)13%, 산화칼슘(CaO)17%분말을 혼합한 실리카분말을 용융틀에서 1000~1500℃ 범위의 온도로 가열 용융하여 낙하시키고, 산소를 고압으로 낙하는 용융액에 분사하여 흩날리는 막대 형태의 미립자를 성형틀 내로 흡입 포집하여 회전하는 가압롤러에 의해 판 형태로 단열재를 성형하고, 코어재를 절단하여 2개 1조로 넓은 면을 계단 형태가 되도록 적층시켜 상하좌우면 중 일 측면만 제외하고 모든 면을 알루미늄박판으로 형성된 밀폐봉지로 감싸고, 상기 밀폐봉지가 감싸지지 않은 개방부를 통해 공기를 흡입제거한 다음 개방부를 밀봉하여 진공판넬단열재를 제조하도록 구성하는 것을 특징으로 하는 건축용 진공판넬단열재 제조방법 및 진공판넬단열재를 제공한다.In order to achieve the above object, the present invention provides a method for manufacturing a vacuum panel insulation for building, comprising: 70% silicon dioxide (SiO 2), 13% aluminum oxide (Al 2 O 3), 17% calcium oxide (CaO) powder per unit weight A silica powder is heated and melted in a melting mold at a temperature in the range of 1000 to 1500 ° C., and is pressed by a pressure roller that collects and rotates the rod-shaped particulates that are dispersed by spraying oxygen into the melt falling at high pressure. The insulation is molded in a plate shape, the core material is cut, and the two sides are stacked in a set so that a wide surface becomes a step shape, and all surfaces except one side of the top, bottom, left and right surfaces are covered with an airtight bag formed of aluminum foil, and the airtight bag The vacuum plate for building, characterized in that the vacuum panel insulation is configured to manufacture the vacuum panel insulation by removing the suction through the open portion is not wrapped around the opening It provides a method and a vacuum insulating material manufacturing insulation panels.

이상에서와 같이 본 발명은 실리카분말을 용융상태에서 용융액에 산소를 고압으로 분사시켜 용융액이 미립화되면서 포집하여 성형함으로써 내부에 수 많은 공극이 생성되도록 하는 효과가 있다.As described above, the present invention has an effect of generating a large number of voids therein by injecting and molding the silica powder in a molten state at high pressure to collect the molten liquid as it is atomized.

그리고, 용융액이 미립화 상태에서 가압작용으로 성형됨으로써 미립자가 불규칙적으로 배열되어 열이 전도하기 어려운 구조를 갖도록 하는 효과가 있다.In addition, the molten liquid is molded by the pressing action in the atomized state, and thus the fine particles are irregularly arranged to have a structure in which heat is difficult to conduct.

더불어, 실리카분말이 용융상태에서 미립자로 변하면서 포집되어 가압 성형됨으로써 미립자간의 상호 강한 접착력으로 결합되어 강도가 우수해지도록 하는 효과가 있다.In addition, the silica powder is collected while being changed to the fine particles in the molten state, and is press-molded to combine the fine particles with a strong adhesive force between the fine particles to have an excellent strength.

도 1은 본 발명에 따른 건축용 진공판넬단열재의 제조를 위한 장치구성 단면도,
도 2는 본 발명에 따른 성형틀의 사시도,
도 3은 본 발명에 따른 단열재를 겹친 상태를 나타낸 사시도,
도 4는 도 3의 단열재를 밀봉봉지 내에 삽입한 상태의 사시도,
도 5는 도 4의 밀봉봉지 내에서 공기를 배출시키면서 진공압축하는 상태를 나타낸 사시도,
도 6은 본 발명에 따른 진공판넬단열재를 완성한 사시도,
도 7은 도 6의 A-A선에 따른 단면도,
도 8은 진공판넬단열재를 연속적으로 연결하는 상태를 나타낸 사시도이다.
1 is a cross-sectional view showing the configuration of a device for manufacturing a vacuum panel insulation for building according to the present invention;
2 is a perspective view of a molding die according to the present invention;
3 is a perspective view showing a state in which the heat insulating material according to the present invention is overlapped;
4 is a perspective view of a state in which the heat insulating material of FIG. 3 is inserted into a sealing bag;
5 is a perspective view showing a state in which the vacuum compression while discharging air in the sealing bag of FIG.
6 is a perspective view of the completed vacuum panel insulation according to the present invention,
7 is a cross-sectional view taken along line AA of FIG. 6;
8 is a perspective view showing a state in which the vacuum panel insulation is continuously connected.

이에 상기한 바와 같은 본 발명의 바람직한 실시예를 첨부도면에 의거하여 상세히 설명하면 다음과 같다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.

도 1 내지 도 8에 도시된 바와 같이, 본 발명의 건축용 진공판넬단열재 및 제조방법는 단위 중량당 이산화규소(SiO2)70%, 산화알루미늄(Al2O3)13%, 산화칼슘(CaO)17%분말을 혼합하여 실리카분말(12)을 제조한다.As shown in Figures 1 to 8, the building vacuum panel insulation and the manufacturing method of the present invention is mixed with silicon dioxide (SiO2) 70%, aluminum oxide (Al2O3) 13%, calcium oxide (CaO) 17% powder per unit weight To prepare a silica powder (12).

이렇게, 상기 실리카분말(12)은 용융틀(10)내에서 히터(13)를 이용하여 1000~1500℃ 범위의 온도로 가열 용융한다.Thus, the silica powder 12 is melted by heating to a temperature in the range of 1000 ~ 1500 ℃ using the heater 13 in the melting mold 10.

그리고, 상기 실리카분말(12)은 미세다공을 갖는 것으로 열전도성을 최소화시키는 낮은 밀도와 열전달을 막는 수십억개에 달하는 나노 포켓, 거울처럼 열을 반사하는 열에너지 반사 등의 특징과 경량의 고체구조를 갖는 분말로서, 진공단열재의 진공도를 높여서 단열성을 향상시키며 판넬 성형시 외관에 요철부나 절곡부 또는 단턱부 등의 형상 모양의 변형을 줄 수가 있도록 이루어진 것이다.In addition, the silica powder 12 has microporosity, low density to minimize thermal conductivity, billions of nano-pockets to prevent heat transfer, heat energy reflection to reflect heat like a mirror, and a lightweight solid structure. As the powder, it is made to improve the thermal insulation by increasing the degree of vacuum of the vacuum insulation material and to give a deformation of the shape of the uneven part, the bent part or the stepped part in the appearance during panel molding.

또한, 상기 실리카분말(12)은 인체에 무해하면서 불연재이므로 건축단열재나 냉장고 단열재 등으로 쓰이기에 매우 유리하며 종래의 단열재 심재로 사용되는 유리섬유, 우레탄폼, 스티로폼에 비해 성형성이 뛰어나고 단가가 저렴하여 단열재 심재로 쓰이기에 매우 유리하다In addition, since the silica powder 12 is harmless to humans and is nonflammable, it is very advantageous to be used as a building insulation material or a refrigerator insulation material, and has excellent moldability and low cost compared to glass fiber, urethane foam, and styrofoam used as a conventional insulation core material. It is very advantageous to be used as insulation core material

이때, 상기 용융틀(10)은 전체적으로 측면의 형태가 깔때기 형태로 형성되는데 용융액은 깔때기관(11)을 통해 물줄기 형태를 이루도록 적은 용량으로 낙하시킨다.At this time, the melting mold 10 is formed in the form of a funnel as a whole, the melt is dropped to a small capacity to form a stream of water through the funnel (11).

여기서, 상기 깔때기관(11)을 통해 용융액이 낙하될 때 산소를 고압으로 낙하는 용융액에 분사한다.Here, when the molten liquid falls through the funnel (11), oxygen is injected into the molten liquid falling at high pressure.

이로써, 상기 용융액은 고압으로 분사되는 산소에 의해 흩날리는 막대 형태의 미립자를 성형틀(20) 내로 흡입 포집되어 회전하는 가압롤러(30)에 의해 판 형태로 코어재(40)를 성형한다.As a result, the molten liquid is formed in the form of a plate in the form of a plate by a pressure roller 30 which sucks and collects rod-shaped fine particles scattered by oxygen injected at a high pressure into the mold 20.

이때, 상기 미립자는 원통형 막대 형태로써 직경이 3μ이하이며, 길이는 200u이하로 생성된다.At this time, the fine particles are in the form of a cylindrical rod, the diameter is 3μ or less, the length is produced to 200u or less.

여기서, 상기 성형틀(20)은 미립자가 유입되는 유입부(21)의 면적은 넓고 후방으로 진행할수록 면적이 좁아지며 사각통 형상의 성형부(22)로 구성한다.Here, the mold 20 has a large area of the inlet 21 through which the fine particles flow, and the narrower the area is formed as the square portion is formed in the shape of a rectangular cylinder 22 as it proceeds backward.

아울러, 상기 유입부(21)에는 폭 방향을 따라 다수 개로 블로어홀(21a)이 관통되어 블로어의 흡입력이 작용시 미립자의 유입을 유도하도록 구성한다.In addition, a plurality of blower holes 21a penetrate the inlet portion 21 along the width direction so as to induce the inflow of fine particles when the suction force of the blower is applied.

그리고, 상기 가압롤러(30)는 성형틀(20)의 상하좌우에 형성되는 개방공간(23)을 통해 포집된 미립자를 상하좌우 측에 설치되어 회전하면서 가압하도록 구성한다.In addition, the pressure roller 30 is configured to pressurize the particulates collected through the open space 23 formed in the upper and lower left and right sides of the molding die 20 while rotating the upper and lower left and right sides.

이때, 상기 개방공간(23)은 유입부(21)와 성형부(22)를 구획할 수 있는 위치에 생성되는 것으로, 상기 유입부(21)와 성형부(22)가 개방공간(23) 만큼 이격되어 설치된다. In this case, the open space 23 is generated at a position capable of partitioning the inlet portion 21 and the molding portion 22, and the inlet portion 21 and the molding portion 22 are as much as the open space 23. It is installed spaced apart.

한편, 상기 성형이 완료된 코어재(40)는 성형틀(20)의 성형부(22)를 통과해 노출되면서 하부에 위치된 컨베이어밸트(22a)로 이동되며, 상기 컨베이어밸트(22)의 후방으로 일정한 크기로 코어재(40)를 절단하는 커터(22b)가 설치된다.On the other hand, the completed core material 40 is moved to the conveyor belt (22a) located in the lower portion while being exposed through the molding unit 22 of the molding die 20, to the rear of the conveyor belt 22 The cutter 22b which cuts the core material 40 to a fixed size is provided.

즉, 상기 커터(22b)로 코어재(40)를 절단하여 2개 1조로 넓은 면을 계단 형태가 되도록 적층시켜 상하좌우면 중 일 측면만 제외하고 모든 면을 알루미늄박판으로 형성된 밀폐봉지(50)로 감싼다.That is, by cutting the core material 40 with the cutter 22b and stacking a wide surface in a pair of two to form a staircase, all the surfaces except for one side of the upper, lower, left, and right surfaces formed of aluminum foil 50 Wrapped with

이러한, 상기 밀폐봉지(50)를 제조하기 위해서는 알루미늄박판은 0.05~0.5mm두께이고 4면 외연을 따라 열가소성 접착수지가 도포된 알루미늄박판 두장을 서로 맞대어 겹친 후, 알루미늄박판의 3면 외연을 빙둘러 열접착 제조함으로써 일측에 개구부를 갖도록 제조한다.In order to manufacture the sealed bag 50, the aluminum sheet has a thickness of 0.05 to 0.5 mm and overlaps two sheets of aluminum sheets coated with a thermoplastic adhesive resin along the four sides, and then surrounds the three sides of the aluminum sheet. It is manufactured to have an opening on one side by heat bonding production.

아울러, 상기 밀폐봉지(50)는 외측면으로부터 대전방지를 위한 Ny15μ, 산소침투방지를 위한 PE15μ, 외부공기침투방지를 위한 Al15μ, 산소침투방지를 위한 PE15μ, 접착을 위한 LPP30μ가 내측에 위치되도록 순차적으로 적층하여 구성된다.In addition, the sealed bag 50 is sequentially so that Ny15μ for antistatic, PE15μ for preventing oxygen penetration, Al15μ for preventing outside air penetration, PE15μ for preventing oxygen penetration, LPP30μ for adhesion from the outer side It is laminated | stacked and formed.

이렇게, 상기 밀폐봉지(50)로 감싸진 코어재(40)는 별도의 진공감압장치(도면상 미도시) 내에 삽입하여 개방부를 통해 단열재(41)가 내부에 삽입된 밀폐봉지(50) 내의 공기를 배출시킨다.In this way, the core material 40 wrapped in the sealed bag 50 is inserted into a separate vacuum decompression device (not shown in the drawing) and the air in the sealed bag 50 into which the heat insulating material 41 is inserted through the opening. Discharge it.

즉, 상기 밀폐봉지(50)가 감싸지지 않은 개방부를 통해 공기를 흡입제거한 다음 개방부를 밀봉하여 하는 방법으로 진공판넬단열재(60)를 제조한다.In other words, the vacuum encapsulation material 60 is manufactured by a method of suction-removing air through an open portion in which the sealed bag 50 is not wrapped and then sealing the open portion.

이때, 상기 밀폐봉지(50)의 진공단열계수는 0.003이하W/mok 이하가 적당하며, 감압시 코어재(40)는 최초 부피가 절반으로 감소되면서 진공 감압이 완료되면 개방부를 150~160℃의 범위로 가열접착하여 밀봉하여 완성한다.At this time, the vacuum insulation coefficient of the sealed bag 50 is less than 0.003 W / mok or less, the core material 40 at the time of pressure reduction is reduced to half the initial volume when the vacuum pressure is completed, the opening portion of 150 ~ 160 ℃ It is completed by sealing by heat bonding in the range.

이러한, 진공판넬단열재(60)는 알루미늄박판의 외피재이면서 실리카분말(12)이 심재로 들어간 그 내부의 압력을 감소시키고 밀봉처리한 것이므로, 기체의 열전도계수가 거의 0이기 때문에 우수한 단열성을 가질 수가 있으므로, 진공판넬단열재(60)를 건축용 단열재 및 냉장고 단열재 등에 사용시에 단열성능을 향상시킴과 아울러 단열재의 두께를 크게 줄일 수 있어 내부 공간을 확장하여 사용할 수가 있게 된다.Since the vacuum panel insulation 60 is an outer cover material of an aluminum thin plate and is sealed by reducing the pressure inside the silica powder 12 into the core material, the vacuum panel insulation material 60 may have excellent thermal insulation since the gas thermal conductivity coefficient is almost zero. Therefore, when the vacuum panel insulation 60 is used for building insulation and refrigerator insulation, etc., the insulation performance can be improved and the thickness of the insulation can be greatly reduced, so that the internal space can be expanded.

본 발명은 상술한 실시 예에 한정되지 않으며, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다.The present invention is not limited to the above-described embodiments, and of course, modifications may be made by those skilled in the art without departing from the spirit of the present invention.

이상에서는 본 발명을 특정의 바람직한 실시예를 예를들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications can be made by those who have

10 : 용융틀 11 : 깔때기관
12 : 실리카분말 20 : 성형틀
21 : 유입부 21a : 블로어홀
22 : 성형부 22a : 컨베이어밸트
22b : 커터 23 : 개방공간
30 : 가압롤러 40 : 코어재
50 : 밀봉봉지 60 : 진공판넬단열재
10: melting mold 11: funnel
12 silica powder 20 mold
21 inlet 21a: blower hole
22: forming part 22a: conveyor belt
22b: cutter 23: open space
30: pressure roller 40: core material
50: sealing bag 60: vacuum panel insulation

Claims (8)

건축용 진공판넬단열재를 제조하는 방법에 있어서,
단위 중량당 이산화규소(SiO2)70%, 산화알루미늄(Al2O3)13%, 산화칼슘(CaO)17%분말을 혼합한 실리카분말(12)을 용융틀(10)에서 1000~1500℃ 범위의 온도로 가열 용융하여 낙하시키고,
산소를 고압으로 낙하하는 용융액에 분사하여 흩날리는 막대 형태의 미립자를 성형틀(20) 내로 흡입 포집하여 회전하는 가압롤러(30)에 의해 판 형태로 코어재(40)를 성형하고,
코어재(40)를 절단하여 2개 1조로 넓은 면을 계단 형태가 되도록 적층시켜 상하좌우면 중 일 측면만 제외하고 모든 면을 알루미늄박판으로 형성된 밀폐봉지(50)로 감싸고,
상기 밀폐봉지(50)가 감싸지지 않은 개방부를 통해 공기를 흡입제거한 다음 개방부를 밀봉하여 진공판넬단열재(60)를 제조하도록 구성하는 것을 특징으로 하는 건축용 진공판넬단열재 제조방법.
In the method of manufacturing a building vacuum panel insulation,
A silica powder (12) mixed with 70% of silicon dioxide (SiO2), 13% of aluminum oxide (Al2O3), and 17% of calcium oxide (CaO) per unit weight was prepared at a temperature ranging from 1000 to 1500 ° C in the melting mold 10. By melting by heating
The core material 40 is formed in a plate shape by a pressure roller 30 which suction-collects and rotates the rod-shaped fine particles which are sprayed on the molten liquid falling at high pressure into the forming mold 20 and rotated,
The core material 40 is cut and stacked in a pair of two wide surfaces to form a staircase, and then all surfaces except one side of the top, bottom, left and right surfaces are covered with an airtight bag 50 formed of aluminum foil,
The method of manufacturing a vacuum panel insulation material for building, characterized in that configured to manufacture a vacuum panel insulation material 60 by suctioning and removing the air through the opening that is not enclosed by the sealed bag 50.
제 1항에 있어서, 상기 성형틀(20)은 미립자가 유입되는 유입부(21)의 면적은 넓고 후방으로 진행할수록 면적이 좁아지며 사각통 형상의 성형부(22)로 구성하는 것을 특징으로 하는 건축용 진공판넬단열재 제조방법.According to claim 1, wherein the forming mold 20 is characterized in that the area of the inlet portion 21, the fine particles are introduced into a wider and narrower area as it proceeds to the rear, and is composed of a rectangular cylindrical shaped portion 22 Method for manufacturing vacuum panel insulation for construction. 제 2항에 있어서, 상기 유입부(21)에는 폭 방향을 따라 다수 개로 블로어홀(21a)이 관통되어 블로어의 흡입력이 작용시 미립자의 유입을 유도하도록 구성하는 것을 특징으로 하는 건축용 진공판넬단열재 제조방법.The construction of the vacuum panel insulation material for building according to claim 2, wherein the inlet part 21 has a plurality of blower holes 21a penetrating along the width direction to induce the inflow of fine particles when the suction force of the blower is applied. Way. 제 1항에 있어서, 상기 가압롤러(30)는 성형틀(20)의 상하좌우에 형성되는 개방공간(23)을 통해 포집된 미립자를 상하좌우 측에 설치되어 회전하면서 가압하도록 구성하는 것을 특징으로 하는 건축용 진공판넬단열재 제조방법.The method of claim 1, wherein the pressure roller 30 is configured to pressurize while rotating the particulates collected through the open space 23 formed in the top, bottom, left and right of the molding die 20 is rotated. Method of manufacturing vacuum panel insulation for construction. 건축용 진공판넬단열재에 있어서,
단위 중량당 이산화규소(SiO2)70%, 산화알루미늄(Al2O3)13%, 산화칼슘(CaO)17%분말을 혼합한 실리카분말(12)을 용융틀(10)에서 1000~1500℃ 범위의 온도로 가열 용융하여 낙하시키면서, 산소를 고압으로 낙하하는 용융액에 분사하여 흩날리는 미립자를 폭 방향을 따라 블로어홀(21a)이 관통되어 블로어의 흡입력으로 미립자의 유입을 유도하도록 구성되는 유입부(21)의 면적은 넓고 후방으로 진행할수록 면적이 좁아지며 사각통 형상의 성형부(22)로 구성되는 성형틀(20) 내로 흡입 포집하고 성형틀(20)의 상하좌우에 형성되는 개방공간(23)을 통해 포집된 미립자를 상하좌우 측에 설치되어 회전하면서 가압하는 가압롤러(30)에 의해 판 형태로 코어재(40)를 구성하고,
코어재(40)를 절단하여 2개 1조로 넓은 면을 계단 형태가 되도록 적층시켜 상하좌우면 중 일 측면만 제외하고 모든 면을 알루미늄박판으로 형성된 밀폐봉지(50)로 감싸고,
상기 밀폐봉지(50)가 감싸지지 않은 개방부를 통해 공기를 흡입제거한 다음 개방부를 밀봉하여 진공판넬단열재(60)를 완성하도록 구성하는 것을 특징으로 하는 건축용 진공판넬단열재.
In construction vacuum panel insulation,
A silica powder (12) mixed with 70% of silicon dioxide (SiO2), 13% of aluminum oxide (Al2O3), and 17% of calcium oxide (CaO) per unit weight was prepared at a temperature ranging from 1000 to 1500 ° C in the melting mold 10. The blower hole 21a passes through the blower hole 21a along the width direction to induce the inflow of the fine particles through the suction force of the blower while heating and melting and dropping the fine particles sprayed and dispersed in the molten liquid falling at a high pressure. The area is wider and the area becomes narrower as it proceeds backward, and is collected and suctioned into the forming mold 20 composed of the square-shaped forming portion 22 and through open spaces 23 formed on the upper, lower, left, and right sides of the forming mold 20. The collected fine particles are installed on the top, bottom, left and right side to pressurize while rotating The core material 40 is configured in the form of a plate by the pressure roller 30,
The core material 40 is cut and stacked in a pair of two wide surfaces to form a staircase, and then all surfaces except one side of the top, bottom, left and right surfaces are covered with an airtight bag 50 formed of aluminum foil,
Building vacuum panel insulation material, characterized in that configured to complete the vacuum panel insulation material 60 by suctioning and removing the air through the opening that is not enclosed by the sealed bag (50).
삭제delete 삭제delete 삭제delete
KR1020100058107A 2010-06-18 2010-06-18 Construction vacuum panel insulation and manufacturing method Expired - Fee Related KR101013754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100058107A KR101013754B1 (en) 2010-06-18 2010-06-18 Construction vacuum panel insulation and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100058107A KR101013754B1 (en) 2010-06-18 2010-06-18 Construction vacuum panel insulation and manufacturing method

Publications (1)

Publication Number Publication Date
KR101013754B1 true KR101013754B1 (en) 2011-02-14

Family

ID=43777295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100058107A Expired - Fee Related KR101013754B1 (en) 2010-06-18 2010-06-18 Construction vacuum panel insulation and manufacturing method

Country Status (1)

Country Link
KR (1) KR101013754B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720279A (en) * 2012-06-08 2012-10-10 青岛科瑞新型环保材料有限公司 Production method of wall insulation core board
KR101279000B1 (en) 2010-07-14 2013-07-02 이준석 Using a vacuum insulation panel manufacturing method and a tent tent
KR101889433B1 (en) * 2017-06-02 2018-08-17 주식회사 정양에스지 Vacuum Insulation Block

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291892A (en) * 1995-04-20 1996-11-05 Mitsubishi Chem Corp Laminated vacuum insulation panel
KR20010046206A (en) * 1999-11-11 2001-06-05 이구택 Method for manufacturing molten converter slag into aggregate and formed body made of the aggregate for building material
JP2001280583A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Vacuum heat insulation panel
JP2008286263A (en) * 2007-05-16 2008-11-27 Panasonic Corp Vacuum insulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291892A (en) * 1995-04-20 1996-11-05 Mitsubishi Chem Corp Laminated vacuum insulation panel
KR20010046206A (en) * 1999-11-11 2001-06-05 이구택 Method for manufacturing molten converter slag into aggregate and formed body made of the aggregate for building material
JP2001280583A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Vacuum heat insulation panel
JP2008286263A (en) * 2007-05-16 2008-11-27 Panasonic Corp Vacuum insulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279000B1 (en) 2010-07-14 2013-07-02 이준석 Using a vacuum insulation panel manufacturing method and a tent tent
CN102720279A (en) * 2012-06-08 2012-10-10 青岛科瑞新型环保材料有限公司 Production method of wall insulation core board
CN102720279B (en) * 2012-06-08 2014-08-20 青岛科瑞新型环保材料有限公司 Production method of wall insulation core board
KR101889433B1 (en) * 2017-06-02 2018-08-17 주식회사 정양에스지 Vacuum Insulation Block

Similar Documents

Publication Publication Date Title
KR101279000B1 (en) Using a vacuum insulation panel manufacturing method and a tent tent
JP6150191B2 (en) Method for manufacturing a vacuum insulation panel
CA2050184C (en) High r super insulation panel
CN107405858B (en) Vacuum insulation board
US5090981A (en) Method for making high R super insulation panel
EP2850254B1 (en) Insulating composite product comprising mineral wool and material with superior insulating properties
US20130071640A1 (en) Insulation having a layered structure
CN112677580A (en) Fireproof heat insulation plate and preparation method thereof
KR101013754B1 (en) Construction vacuum panel insulation and manufacturing method
KR102495183B1 (en) Skin material of insulating material for building
CN102720921B (en) Method for producing vacuum heat insulation board from expanded perlite
CN108625741B (en) Composite glass with built-in aerogel and preparation method thereof
EP3393803B1 (en) Method for manufacturing vacuum insulation panels
KR101183524B1 (en) Cold-weather apparel manufacturing method using vacuum insulation panels
CN108625740B (en) Composite glass with built-in aerogel and preparation method thereof
CN117507465A (en) Core material mold, core material, vacuum insulation panel and preparation method
KR20130013145A (en) Vacuum thermal insulator made of a formed glass wood material and its fabrication method
KR101279004B1 (en) Sleeping bag and slepping bag of manufacturing method for vacuum insulation panel
JPH10217413A (en) Vacuum heat insulating body, refrigerator, heat insulating panel, and manufacture of vacuum heat insulating panel
CN108625742B (en) Composite glass with built-in aerogel and preparation method thereof
CN115771318A (en) Vacuum insulation material and its preparation method
CN115012545A (en) Multi-layer air cavity sealing bag heat-insulating fire-proof ultralight composite wall plate
JPS6353018A (en) Preparation of sound shielding and heat insulating plate made of synthetic resin
TWM325353U (en) Improved structure for expanding perlite fireproof material

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100618

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20100706

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20100618

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20100823

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20101104

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20110201

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20110201

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20140129

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20160109