KR101005739B1 - Metal wiring formation method of semiconductor device - Google Patents
Metal wiring formation method of semiconductor device Download PDFInfo
- Publication number
- KR101005739B1 KR101005739B1 KR1020030047629A KR20030047629A KR101005739B1 KR 101005739 B1 KR101005739 B1 KR 101005739B1 KR 1020030047629 A KR1020030047629 A KR 1020030047629A KR 20030047629 A KR20030047629 A KR 20030047629A KR 101005739 B1 KR101005739 B1 KR 101005739B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- aluminum
- titanium
- alloy layer
- tial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 73
- 239000002184 metal Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000010936 titanium Substances 0.000 claims abstract description 55
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 36
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 28
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 23
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 238000000151 deposition Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 13
- 238000005137 deposition process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 30
- 230000008021 deposition Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 반도체 소자의 금속배선 형성 방법에 관한 것으로, 티타늄(Ti), 알루미늄(Al), 티타늄(Ti), 알루미늄(Al) 및 티타늄 나이트라이드(TiN)를 연속적으로 증착하되, 고온에서의 알루미늄(Al) 증착 과정에서 티타늄(Ti)과 알루미늄(Al)의 반응에 의해 알루미늄 합금층(TiAl3)이 형성되도록 한다. 따라서 알루미늄(Al)으로 이루어진 금속층의 상부 및 하부에는 합금층(TiAl3)이 형성되며, 최상부에는 합금층(TiAl3)과 티타늄 나이트라이드(TiN)로 이루어진 반사방지막이 형성된다. 본 발명에 따르면 합금층(TiAl3)에 의해 금속배선과 상, 하부층 간의 접착력이 향상되며, 알루미늄(Al) 원자의 이동이 억제되어 소자의 신뢰성이 향상된다. 또한, 금속 원자의 이동에 의해 금속배선에 보이드가 형성된다고 하더라도 합금층(TiAl3)의 저항이 티타늄(Ti)이나 티타늄 나이트라이드(TiN)보다 작기 때문에 반사방지막을 통한 전류의 흐름이 발생되더라도 배선 저항의 급격한 증가가 방지된다. The present invention relates to a method for forming a metal wiring of a semiconductor device, while continuously depositing titanium (Ti), aluminum (Al), titanium (Ti), aluminum (Al) and titanium nitride (TiN), at a high temperature In the (Al) deposition process, an aluminum alloy layer (TiAl 3 ) is formed by reaction of titanium (Ti) and aluminum (Al). Therefore, an alloy layer TiAl 3 is formed on the upper and lower portions of the metal layer made of aluminum (Al), and an antireflection film formed of an alloy layer (TiAl 3 ) and titanium nitride (TiN) is formed on the top. According to the present invention, the adhesion between the metal wiring and the upper and lower layers is improved by the alloy layer TiAl 3 , and the movement of aluminum (Al) atoms is suppressed, thereby improving the reliability of the device. In addition, even though voids are formed in the metal wiring due to the movement of metal atoms, the resistance of the alloy layer TiAl 3 is smaller than that of titanium (Ti) or titanium nitride (TiN). A sharp increase in resistance is prevented.
알루미늄 금속배선, 반사방지막, Ti/Al/TiN, EM, 저항Aluminum metal wiring, antireflection film, Ti / Al / TiN, EM, resistance
Description
도 1a 내지 도 1c는 종래 반도체 소자의 금속배선 형성 방법을 설명하기 위한 단면도. 1A to 1C are cross-sectional views illustrating a metal wiring forming method of a conventional semiconductor device.
도 2는 종래 반도체 소자의 금속배선에서 전자의 이동을 설명하기 위한 부분 단면도.2 is a partial cross-sectional view for explaining the movement of electrons in the metal wiring of the conventional semiconductor device.
도 3a 내지 도 3d는 본 발명에 따른 반도체 소자의 금속배선 형성 방법을 설명하기 위한 단면도. 3A to 3D are cross-sectional views illustrating a method for forming metal wirings of a semiconductor device according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1, 21: 반도체 기판 2, 22: 절연막1, 21:
3, 23, 25: 티타늄 4, 24, 26: 알루미늄3, 23, 25:
5, 11: 반사방지막 5a: 티타늄5, 11:
5b, 27: 티타늄 나이트라이드 10: 하부 금속배선5b, 27: titanium nitride 10: lower metal wiring
12: 플러그 13: 상부 금속배선12: Plug 13: upper metal wiring
14: 보이드 23a, 25a: 알루미늄 합금층
14:
본 발명은 반도체 소자의 금속배선 형성 방법에 관한 것으로, 더욱 상세하게는 금속층의 상부 및 하부에 합금층을 형성하여 금속 원자의 이동을 억제하는 동시에 배선의 저항이 감소되도록 한 반도체 소자의 금속배선 형성 방법에 관한 것이다.
The present invention relates to a method for forming a metal wiring of a semiconductor device, and more particularly, to form an alloy layer on the top and bottom of the metal layer to suppress the movement of metal atoms and at the same time to reduce the resistance of the wiring metal wiring formation of the semiconductor device It is about a method.
일반적으로 반도체 소자의 제조 공정에서 금속배선을 형성하는 과정은 다음과 같다.In general, a process of forming metal wiring in a semiconductor device manufacturing process is as follows.
도 1a에 도시된 바와 같이 소정의 공정을 거친 반도체 기판(1) 상에 절연막(2)을 형성한 후 절연막(2) 상에 티타늄(Ti; 3)을 증착한다. 도 1b와 같이 티타늄(Ti; 3) 상에 알루미늄(Al; 4)을 증착한다. 이 때 알루미늄(Al; 4)이 고온에서 증착되기 때문에 하부의 티타늄(Ti; 3)과 알루미늄(Al; 4)의 반응에 의해 알루미늄 합금층(TiAl3; 3a)이 형성된다. 이 후 도 1c와 같이 알루미늄(Al; 4) 상에 티타늄(Ti; 5a)과 티타늄 나이트라이드(TiN; 5b)로 이루어진 반사방지막(Anti Reflection Coating Layer; ARC)(5)을 형성한다.As shown in FIG. 1A, an
반도체 소자의 제조 과정에서는 상기와 같이 금속배선을 형성한 후 배선의 전기적 신뢰성을 테스트하기 위해 전자 이동도(Electro Migration)를 평가하게 된 다. 전자 이동도를 평가하기 위해서는 금속배선에 높은 전류 및 고온을 인가하여 금속배선을 통한 전자(e-)의 이동이 발생되도록 한다.In the process of manufacturing a semiconductor device, as described above, after the metal wiring is formed, electron migration is evaluated to test the electrical reliability of the wiring. In order to evaluate electron mobility, high current and high temperature are applied to the metal wires so that the electrons (e-) move through the metal wires.
그런데 상기와 같이 금속배선을 형성하면 도 2와 같이 하부 금속배선(10)과 상부 금속배선(13)을 연결하는 비아(Via)의 플러그(12) 경계면에서 알루미늄(Al) 원자의 이동이 시작되기 때문에 예를 들어, 하부 금속배선(10)의 내부 쪽으로 보이드(Void; 14)가 형성되기 시작한다. 이러한 보이드(14)는 금속배선(10) 내부로 ~수십 ㎛ 크기로 증가되는데, 보이드(14)가 형성되어도 일정 시간(Tf)까지는 금속배선(10)을 통해 전류가 흐르게 되지만, 보이드(14)가 커지면 전류가 알루미늄(Al)보다 저항이 큰 반사방지막(11)을 통해 흐르게 되기 때문에 배선의 저항이 급격하게 증가된다. 이러한 현상을 분로층(Shunt layer) 효과라 하는데, 이와 같은 문제점으로 인해 소자의 전기적 특성 및 신뢰성이 저하될 수 있기 때문에 알루미늄(Al)의 구조와 방향성, 그레인 크기, 두께 등을 고려하는 것도 중요하지만 반사방지막의 재질과 구조도 중요하다.
However, when the metal wiring is formed as described above, the movement of aluminum atoms starts at the interface of the
따라서 본 발명은 금속층의 상부 및 하부에 합금층이 형성되도록 함으로써 상기한 단점을 해소할 수 있는 반도체 소자의 금속배선 형성 방법을 제공하는 데 그 목적이 있다.
Accordingly, an object of the present invention is to provide a method for forming a metal wiring of a semiconductor device that can solve the above disadvantages by allowing the alloy layer to be formed on the top and bottom of the metal layer.
상기한 목적을 달성하기 위한 본 발명은 절연막이 형성된 반도체 기판 상에 제 1 금속 및 제 2 금속을 순차적으로 증착하되, 상기 제 1 금속과 제 2 금속의 반응에 의해 상기 제 2 금속의 하부에 제1 합금층이 형성되도록 하는 단계와, 상기 제 2 금속 상에 제 3 금속 및 제 4 금속을 순차적으로 형성하되, 상기 제 3 금속과 제 4 금속의 반응에 의해 상기 제 2 금속의 상부에 제2 합금층이 형성되도록 하는 단계와, 상기 제2 합금층 상에 제 5 금속을 증착하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention sequentially deposits a first metal and a second metal on a semiconductor substrate on which an insulating film is formed, and is formed under the second metal by a reaction of the first metal and the second metal. Forming an alloy layer, and sequentially forming a third metal and a fourth metal on the second metal, wherein the second metal is formed on the second metal by reaction of the third metal and the fourth metal. And forming an alloy layer, and depositing a fifth metal on the second alloy layer.
상기 제 1 금속 및 제 3 금속은 티타늄(Ti)이며, 상기 제 2 금속 및 제 4 금속은 알루미늄(Al)이고, 상기 제 5 금속은 티타늄 나이트라이드(TiN)인 것을 특징으로 한다.The first metal and the third metal are titanium (Ti), the second metal and the fourth metal are aluminum (Al), and the fifth metal is titanium nitride (TiN).
상기 제2 합금층 및 제 5 금속이 반사방지막으로 이용되며, 상기 제1 및 제2 합금층은 TiAl3인 것을 특징으로 한다.The second alloy layer and the fifth metal are used as an antireflection film, and the first and second alloy layers are TiAl 3 .
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3a 내지 도 3d는 본 발명에 따른 반도체 소자의 금속배선 형성 방법을 설명하기 위한 단면도이다.3A to 3D are cross-sectional views illustrating a method for forming metal wirings of a semiconductor device according to the present invention.
도 3a를 참조하면, 소정의 공정을 거친 반도체 기판(21) 상에 절연막(22)을 형성한 후 절연막(22) 상에 10 내지 100Å 두께의 티타늄(Ti; 23)을 증착한다. Referring to FIG. 3A, an
도 3b를 참조하면, 상기 티타늄(Ti; 23) 상에 알루미늄(Al; 24)을 증착한다. 이 때 알루미늄(Al; 24)이 고온에서 증착되기 때문에 하부의 티타늄(Ti; 23)과 알루미늄(Al; 24)의 반응에 의해 알루미늄 합금층(TiAl3; 23a)이 형성된다. Referring to FIG. 3B, aluminum (Al) 24 is deposited on the
도 3c를 참조하면, 상기 알루미늄(Al; 24) 상에 10 내지 100Å 두께의 티타늄(Ti; 25) 및 알루미늄(Al; 26)을 순차적으로 형성한다. Referring to FIG. 3C, titanium (Ti) 25 and aluminum (Al) 26 having a thickness of 10 to 100 μm are sequentially formed on the aluminum (Al) 24.
도 3d를 참조하면, 상기 알루미늄(Al; 26)을 증착하는 과정에서 고온에서의 티타늄(Ti; 25)과 알루미늄(Al; 26)의 반응에 의해 알루미늄 합금층(TiAl3; 25a)이 형성된다. 따라서 상기 알루미늄(Al; 26)은 상기 티타늄(Ti; 25)과의 반응에 의해 모두 소모될 정도의 두께, 예를 들어, 30 내지 300Å 정도로 형성되어야 한다.Referring to FIG. 3D, an aluminum alloy layer TiAl 3 ; 25a is formed by reaction of titanium (Ti) 25 and aluminum (Al; 26) at a high temperature in the process of depositing the aluminum (Al) 26. . Therefore, the aluminum (Al) 26 should be formed to a thickness such that all of them are consumed by the reaction with the titanium (Ti; 25), for example, about 30 to 300 kPa.
이 후 알루미늄 합금층(TiAl3; 25a) 상에 티타늄 나이트라이드(TiN; 27)를 증착하여 알루미늄 합금층(TiAl3; 15a)과 티타늄 나이트라이드(TiN; 17)로 이루어진 반사방지막의 형성을 완료하고, 사진 및 식각 공정으로 패터닝하여 금속배선을 형성한다.Thereafter, titanium nitride (TiN) 27 is deposited on the aluminum alloy layer (TiAl 3 ; 25a), thereby completing the formation of an anti-reflection film including the aluminum alloy layer (TiAl 3 ; 15a) and titanium nitride (TiN; 17). And metallization is formed by patterning by photo and etching processes.
본 발명에서 티타늄(Ti; 23), 알루미늄(Al; 24), 티타늄(Ti; 25), 알루미늄(Al; 26) 및 티타늄 나이트라이드(TiN; 27)는 연속적인 공정으로 증착하며, 고온에서의 알루미늄(Al) 증착 과정에서 티타늄(Ti)과 알루미늄(Al)의 반응에 의해 알루미늄 합금층(TiAl3)이 형성되기 때문에 합금층 형성을 위한 별도의 열처리는 실시하지 않아도 된다.In the present invention, titanium (Ti; 23), aluminum (Al; 24), titanium (Ti; 25), aluminum (Al; 26), and titanium nitride (TiN; 27) are deposited in a continuous process, and at high temperatures. Since the aluminum alloy layer TiAl 3 is formed by the reaction of titanium (Ti) and aluminum (Al) in the aluminum (Al) deposition process, a separate heat treatment for forming the alloy layer does not need to be performed.
상기와 같이 본 발명은 반사방지막(ARC)을 티타늄(Ti)/알루미늄(Al)/티타늄 나이트라이드(TiN)가 적층된 구조로 형성하되, 고온에서의 알루미늄(Al) 증착 과정에서 알루미늄(Al)과 티타늄(Ti)의 반응에 의해 상부 및 하부에 알루미늄 합금층(TiAl3)이 형성되도록 한다. 따라서 알루미늄 합금층(TiAl3)에 의해 금속배선과 상,하부층 간의 접착력이 향상되며, 알루미늄(Al) 원자의 이동이 억제되어 소자의 신뢰성이 향상된다. 만일 원자의 이동에 의해 금속배선에 보이드가 형성된다고 하더라도 알루미늄 합금층(TiAl3)의 저항(μΩ-㎝)이 하기와 같이 티타늄(Ti)이나 티타늄 나이트라이드(TiN)보다 작기 때문에 반사방지막 즉, 알루미늄 합금층(TiAl3)/티타늄 나이트라이드(TiN)를 통한 전류의 흐름에 의해 배선 저항의 급격한 증가가 방지된다. As described above, in the present invention, the anti-reflection film (ARC) is formed in a structure in which titanium (Ti) / aluminum (Al) / titanium nitride (TiN) is stacked, and aluminum (Al) is deposited during the deposition of aluminum (Al) at a high temperature. The aluminum alloy layer TiAl 3 is formed on and under the reaction of titanium with Ti. Therefore, the adhesion between the metal wiring and the upper and lower layers is improved by the aluminum alloy layer TiAl 3 , and the movement of aluminum (Al) atoms is suppressed, thereby improving the reliability of the device. Even if voids are formed in the metal wiring by the movement of atoms, the resistance (μΩ-cm) of the aluminum alloy layer (TiAl 3 ) is smaller than that of titanium (Ti) or titanium nitride (TiN) as follows. The rapid increase in wiring resistance is prevented by the flow of current through the aluminum alloy layer (TiAl 3 ) / titanium nitride (TiN).
Al: 2 ~ 4 > TiAl3: 4 ~ 8 >> Ti: 50 ~ 60 > TiN: 50 ~ 100
Al: 2 to 4> TiAl 3 : 4 to 8 >> Ti: 50 to 60> TiN: 50 to 100
상술한 바와 같이 본 발명은 티타늄(Ti), 알루미늄(Al), 티타늄(Ti), 알루미늄(Al) 및 티타늄 나이트라이드(TiN)를 연속적으로 증착하되, 고온에서의 알루미늄(Al) 증착 과정에서 티타늄(Ti)과 알루미늄(Al)의 반응에 의해 알루미늄 합금층(TiAl3)이 형성되도록 한다. 따라서 알루미늄(Al)으로 이루어진 금속층의 상부 및 하부에는 합금층(TiAl3)이 형성되며, 최상부에는 합금층(TiAl3)과 티타늄 나이트라이드(TiN)로 이루어진 반사방지막이 형성된다. As described above, the present invention continuously deposits titanium (Ti), aluminum (Al), titanium (Ti), aluminum (Al), and titanium nitride (TiN), while titanium is deposited at a high temperature in the process of aluminum (Al) deposition. The aluminum alloy layer TiAl 3 is formed by the reaction of Ti and aluminum. Therefore, an alloy layer TiAl 3 is formed on the upper and lower portions of the metal layer made of aluminum (Al), and an antireflection film formed of an alloy layer (TiAl 3 ) and titanium nitride (TiN) is formed on the top.
본 발명에 따르면 합금층(TiAl3)에 의해 금속배선과 상,하부층 간의 접착력이 향상되며, 알루미늄(Al) 원자의 이동이 억제되어 소자의 신뢰성이 향상된다. 또한, 원자의 이동에 의해 금속배선에 보이드가 형성된다고 하더라도 합금층(TiAl3)의 저항이 티타늄(Ti)이나 티타늄 나이트라이드(TiN)보다 작기 때문에 반사방지막을 통한 전류의 흐름이 이루어지더라도 배선 저항의 급격한 증가가 방지된다.
According to the present invention, the adhesion between the metal wiring and the upper and lower layers is improved by the alloy layer TiAl 3 , and the movement of aluminum (Al) atoms is suppressed, thereby improving the reliability of the device. In addition, even though voids are formed in the metal wiring by the movement of atoms, the resistance of the alloy layer TiAl 3 is smaller than that of titanium (Ti) or titanium nitride (TiN). A sharp increase in resistance is prevented.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030047629A KR101005739B1 (en) | 2003-07-12 | 2003-07-12 | Metal wiring formation method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030047629A KR101005739B1 (en) | 2003-07-12 | 2003-07-12 | Metal wiring formation method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050007983A KR20050007983A (en) | 2005-01-21 |
KR101005739B1 true KR101005739B1 (en) | 2011-01-06 |
Family
ID=37221282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030047629A Expired - Fee Related KR101005739B1 (en) | 2003-07-12 | 2003-07-12 | Metal wiring formation method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101005739B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010058941A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | A method for forming a metal line of a semiconductor device |
KR20020003016A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for manufacturing multi-thin film metal layer |
KR20020068569A (en) * | 2001-02-21 | 2002-08-28 | 동부전자 주식회사 | Method for manufacturing multi-layered metal line of semiconductor device |
-
2003
- 2003-07-12 KR KR1020030047629A patent/KR101005739B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010058941A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | A method for forming a metal line of a semiconductor device |
KR20020003016A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for manufacturing multi-thin film metal layer |
KR20020068569A (en) * | 2001-02-21 | 2002-08-28 | 동부전자 주식회사 | Method for manufacturing multi-layered metal line of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20050007983A (en) | 2005-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3729882B2 (en) | Aluminum contact formation method | |
US20060110920A1 (en) | Low temperature nitride used as cu barrier layer | |
KR100790452B1 (en) | Multi-layer metallization method of semiconductor device using damascene process | |
US20010036734A1 (en) | Method of formation of conductive lines on integrated circuits | |
US6747354B2 (en) | Semiconductor devices having multilevel interconnections and methods for manufacturing the same | |
KR100896159B1 (en) | Semiconductor device and method for manufacturing same | |
US5851920A (en) | Method of fabrication of metallization system | |
JP2616402B2 (en) | Method for manufacturing semiconductor device | |
KR101005739B1 (en) | Metal wiring formation method of semiconductor device | |
US6395629B1 (en) | Interconnect method and structure for semiconductor devices | |
KR100744419B1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2001319930A (en) | Method of manufacturing semiconductor device | |
JP2000124310A (en) | Semiconductor device and manufacture thereof | |
KR100633685B1 (en) | Metal wiring formation method of semiconductor device | |
KR100197669B1 (en) | Metal wiring formation method of semiconductor device | |
KR100517350B1 (en) | Method for fabricating hybrid metal interconnect | |
KR100197665B1 (en) | Forming method for metal wiring in semiconductor device | |
US7601632B2 (en) | Method of forming a metal line of a semiconductor device | |
KR100324020B1 (en) | Metal wiring formation method of semiconductor device | |
KR0172755B1 (en) | Metal layer forming method of semiconductor device | |
KR100240268B1 (en) | Method for forming metal wiring in semiconductor device | |
US20090001581A1 (en) | Metal line of semiconductor device and method of forming the same | |
KR100559579B1 (en) | Metal wiring formation method of semiconductor device | |
JPH1140516A (en) | Manufacture of semiconductor device | |
JPH0235753A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030712 |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20041006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20080703 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20030712 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20100624 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20101221 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20101228 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20101229 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20131118 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20131118 Start annual number: 4 End annual number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20151109 |