[go: up one dir, main page]

KR100979031B1 - Nitrogen oxide removal catalyst and its manufacturing method - Google Patents

Nitrogen oxide removal catalyst and its manufacturing method Download PDF

Info

Publication number
KR100979031B1
KR100979031B1 KR1020030072850A KR20030072850A KR100979031B1 KR 100979031 B1 KR100979031 B1 KR 100979031B1 KR 1020030072850 A KR1020030072850 A KR 1020030072850A KR 20030072850 A KR20030072850 A KR 20030072850A KR 100979031 B1 KR100979031 B1 KR 100979031B1
Authority
KR
South Korea
Prior art keywords
catalyst
solution
carrier
bentonite
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1020030072850A
Other languages
Korean (ko)
Other versions
KR20050037627A (en
Inventor
양희성
박기용
고준호
정삼헌
오태영
성희제
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020030072850A priority Critical patent/KR100979031B1/en
Publication of KR20050037627A publication Critical patent/KR20050037627A/en
Application granted granted Critical
Publication of KR100979031B1 publication Critical patent/KR100979031B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9427Processes characterised by a specific catalyst for removing nitrous oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 우레아를 환원제로 이용하여 질소산화물을 효과적으로 제거할 수 있는 질소산화물 제거용 촉매 및 그 제조방법에 관한 것으로, 그 목적은 우수한 질소산화물 제거활성 뿐만 아니라 촉매 활성 저하의 다양한 요인들에 대한 보다 향상된 내구성을 가지는 새로운 촉매를 개발하여 제공하는 것이며, The present invention relates to a catalyst for removing nitrogen oxide and a method for preparing the same, which can effectively remove nitrogen oxide using urea as a reducing agent. To develop and provide new catalysts with improved durability,

디젤엔진 또는 연소가스내에 포함된 질소산화물을 제거하는 촉매상에서 환원제인 암모니아와 반응시켜 질소와 물로 전환시키는 공정에 사용되는 촉매에 있어서, 상기 촉매는 벤토나이트 용액 또는 벤토나이트와 활성탄 혼합용액에 주석 필러링 용액과 타이타니아 필러링 용액을 첨가/교반하고, 암모니아수에 의해 pH를 9 로 유지한 후 여과, 세척, 건조, 소성에 의해 담체를 형성하고, 상기 형성된 분말상태의 담체를 활성물질이 용해된 용액에 넣어 교반하고, 건조/소성하여 활성물질을 담지하므로써, 표면적 증가와 기공분포의 마이크로 영역(< 30Å) 이하에서 메죠 및 매크로(50∼150Å) 영역을 구비하도록 한 질소산화물 제거용 촉매 및 그 제조방법을 제공함에 있다.A catalyst used in a process for converting nitrogen and water by reacting with ammonia, a reducing agent, on a catalyst for removing nitrogen oxides contained in a diesel engine or combustion gas, wherein the catalyst is a bentonite solution or a tin filler solution in a mixed solution of bentonite and activated carbon. And a titania filler solution are added / stirred, the pH is maintained at 9 by ammonia water, and then a carrier is formed by filtration, washing, drying, and calcination, and the powdered carrier is placed in a solution in which the active substance is dissolved. A catalyst for removing nitrogen oxides having a meso and macro (50 to 150 kPa) area under the micro area (<30 kPa) of surface area increase and pore distribution by stirring, drying / firing and supporting the active substance, and a method of manufacturing the same In providing.

SCR, 질소산화물, PILC, Clay, 벤토나이트SCR, NOx, PILC, Clay, Bentonite

Description

질소산화물 제거용 촉매 및 그 제조방법 {Catalyst for Nitrogen Oxide Removal and method for Manufacturing the same}Catalyst for nitrogen oxide removal and its manufacturing method {Catalyst for Nitrogen Oxide Removal and method for Manufacturing the same}

도 1 은 Ti-PLIC의 BET 측정데이타1 is BET measurement data of Ti-PLIC

도 2 은 Sn-Ti-PILC의 BET 측정데이타2 is BET measurement data of Sn-Ti-PILC

도 3 은 Sn-Ti-활성탄 30중량%-PILC의 BET 측정데이타3 is BET measurement data of Sn-Ti-activated carbon 30% by weight-PILC

도 4 은 Sn-Ti-활성탄 10중량%-PILC의 BET 측정데이타
4 is BET measurement data of 10 wt% -PILC of Sn-Ti-activated carbon;

본 발명은 우레아를 환원제로 이용하여 질소산화물을 효과적으로 제거할 수 있는 질소산화물 제거용 촉매 및 그 제조방법에 관한 것으로, Ti-PLIC에 주석을 필러링하여 만든 담체에 바니디아, 텅스텐, 몰리브덴 등의 활성물질을 담지한 촉매 및 그 제조방법에 관한 것이다.The present invention relates to a catalyst for removing nitrogen oxides capable of effectively removing nitrogen oxides using urea as a reducing agent, and a method of manufacturing the same. The present invention relates to a carrier made of tin-filled Ti-PLIC, such as vaniadia, tungsten, and molybdenum. The present invention relates to a catalyst supporting an active substance and a method of preparing the same.

질소산화물은 발전소나 내연기관 그리고 질산공장등에서 주로 발생하며, 이의 종류로는 일산화질소, 이산화질소, 삼산화질소, 일산화이질소, 삼산화이질소, 사산화이질소, 오산화이질소의 7 종이 존재하는 것으로 알려져 있으나, 대기중에 존재하는 것은 일산화이질소, 일산화질소, 이산화질소가 대부분이다. 일반적으로 질소산화물(NOx)이라 함은 일산하질소와 이산화질소를 말하며, 대부분의 발전소나 자동차 등에서 발생되는 질소산화물은 일산화질소의 형태이므로 이의 저감을 위한 기술개발이 중요하다. Nitrogen oxides are mainly produced in power plants, internal combustion engines, and nitric acid plants. Seven kinds of nitrogen oxides are known: nitrogen monoxide, nitrogen dioxide, nitrogen trioxide, dinitrogen monoxide, dinitrogen trioxide, dinitrogen tetraoxide, and dinitrogen pentoxide. Most of them are dinitrogen monoxide, nitrogen monoxide and nitrogen dioxide. In general, nitrogen oxides (NOx) refer to nitrogen monoxide and nitrogen dioxide. Since most nitrogen oxides generated in power plants or automobiles are in the form of nitrogen monoxide, it is important to develop a technology for reducing them.

지금까지 발전소 등에서 화석연료를 사용할 때 발생하는 질소산화물을 제거하는 다양한 기술들이 연구되어 왔으며, 그 중에서 선택적 촉매환원(Selective Catalytic Reduction, SCR)기술은 고정원에서 배출되는 질소산화물을 제거하기 위해 현재까지 제시된 여러 기술 중에서 경제적, 법률적 그리고, 기술적인 모든 측면들을 충족시킬 수 있는 기술이다. 이 기술은 촉매를 사용하여 배기가스 중에 포함되어 있는 질소산화물 제거 촉매의 비중이 SCR 공정 전체 투자비와 운영비에서 매우 크게 차지하고 있다. Until now, various techniques for removing nitrogen oxides generated when using fossil fuels in power plants have been studied. Among them, Selective Catalytic Reduction (SCR) technology has been studied to remove nitrogen oxides from fixed sources. Among the technologies presented, it is a technology that can satisfy all economic, legal and technical aspects. In this technology, the proportion of the nitrogen oxide removal catalyst contained in the exhaust gas using the catalyst is very large in the overall investment and operating cost of the SCR process.

70년대 이후로 암모니아를 환원제로한 질소산화물 환원 촉매 공정에 관한 많은 연구와 특허가 발표되었다. 미국특허 4,048,112(1976)에서 마슈시타 (Matsushita) 등은 타이타니아에 바나디아를 담지한 촉매를 제시하였으며 이후로 바나디아-타이타니아를 기초로한 촉매들에 대하여 많은 연구가 수행되었다. 또한 미국 특허 4,085,193(1978)에서 나카지마(Nakajima) 등은 타이타니아를 주성분으로한 몰리브데늄(Mo), 텅스텐(W), 철(Fe), 바나듐(V), 니켈(Ni), 코발트(Co), 크롬(Cr), 우라늄(U) 등 다양한 금속 산화물을 첨가한 촉매들을 제시하였다. 최근에는 기존 촉매의 성능을 향상시키기 위하여 촉매에 다양한 기능을 부여함으로써 촉매의 성능을 향상시키려는 많은 시도가 있었다. 특히 암모니아를 환원제로 사용한 일산화질소의 선택적 촉매 환원 공정에서 이산화황(SO2)과 같은 황화합물의 촉매독에 대한 내구성은 가장 중요한 요소로서 이를 향상시키기 위한 많은 연구들이 진행되고 있으며, 또한 앞서 언급된 것처럼 기존의 SCR 촉매로 많이 사용되고 있는 바나디아-타이타니아 또는 타이타니아의 특성을 포함하는 새로운 담체의 개발은 관점에서 많은 연구가 수행되고 있다. 본 발명에 앞서 미국 특허 6,475,944(2002)에서 황화물을 포함하는 연소 가스 내에서도 질소산화물을 촉매상에서 환원제인 암모니아와 반응시켜 질소와 물로 전환시키는 우수한 V2O5/Ti-PILC 촉매를 발명하여 특허를 등록한바 있다.Since the 1970s, many studies and patents on nitrogen oxide reduction catalyst processes using ammonia as a reducing agent have been published. In US Pat. No. 4,048,112 (1976), Matsushita et al. Proposed a catalyst supporting vanadia in Titania, and since then, many studies have been conducted on catalysts based on vanadia-titania. In addition, in US Pat. No. 4,085,193 (1978), Nakajima et al. Described molybdenum (Mo), tungsten (W), iron (Fe), vanadium (V), nickel (Ni), and cobalt (Co) based on titania. Catalysts to which various metal oxides, such as chromium (Cr) and uranium (U), are added, have been proposed. Recently, many attempts have been made to improve the performance of catalysts by imparting various functions to the catalysts to improve the performance of existing catalysts. In particular, in the selective catalytic reduction process of nitrogen monoxide using ammonia as a reducing agent, the durability of the catalytic poison of sulfur compounds such as sulfur dioxide (SO2) is the most important factor, and many studies have been conducted to improve this. The development of a new carrier including the properties of vanadia-titania or titania, which is widely used as an SCR catalyst, has been carried out in terms of research. Prior to the present invention, US Patent No. 6,475,944 (2002) has registered and patented an excellent V2O5 / Ti-PILC catalyst which converts nitrogen oxides into nitrogen and water by reacting nitrogen oxides with a reducing agent on a catalyst even in a combustion gas containing sulfides.

촉매를 이용한 질소산화물의 선택적 환원 공정은 설치 위치에 따라서 매우 다른 촉매들의 응용을 가지고 있으나, 상기와 같은 종래의 촉매 및 현재 상용 촉매로 많이 쓰이는 바나디아-타이타니아 촉매의 경우 황화합물에는 상대적으로 강한 내구성을 가지나, 기계적 강도가 약하고, 알카리 또는 알카리토금속 등의 촉매독에 의한 문제를 가지고 있다. The selective reduction of nitrogen oxides using catalysts has applications of very different catalysts depending on the installation location. However, the conventional catalysts and the vanadia-titania catalysts commonly used as commercial catalysts have relatively high durability against sulfur compounds. Branches are weak in mechanical strength, and have problems due to catalyst poisons such as alkali or alkaline earth metals.

또한 기존에 발명된 촉매들은 주로 비표면적은 크나 분포에 있어서 마크로 영역의 기공들이 대부분을 차지하는 경향이 있으므로, 질소산화물제거 촉매들의 내구성에 있어서 문제되었던 기공 막힘에 의한 내구성 저하문제가 대두되는 등 여러 가지 문제점이 있었다.In addition, the catalysts of the present invention tend to occupy most of the pores in the macro region in terms of their specific surface area, but the degradation of durability due to pore blockage, which has been a problem in the durability of nitrogen oxide removal catalysts, has been raised. There was a problem.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 우수한 질소산화물 제거활성 뿐만 아니라 촉매 활성 저하의 다양한 요인들에 대한 보다 향상된 내구성을 가지는 새로운 촉매를 개발하는데 있다. 즉, 본 발명은 종래의 타이타니아를 담체로한 촉매의 기계적 강도가 보다 우수하고, 또한 비표면적을 크게 향상 시켜 촉매 내부에서 배기가스중의 질소산화물과 환원제인 암모니아와의 반응이 이루어질 수 있는 공간을 확보하여 효율을 높일 수 있는 질소산화물 제거용 촉매 및 이의 제조방법을 제공하는 것이다. The present invention has been made in consideration of the above problems, and an object thereof is to develop a new catalyst having improved durability against various factors of deterioration of catalyst activity as well as excellent nitrogen oxide removal activity. In other words, the present invention provides a more excellent mechanical strength of the catalyst based on titania as a support, and improves the specific surface area, thereby providing a space in which the reaction between the nitrogen oxide in the exhaust gas and the ammonia as the reducing agent can be performed. It is to provide a catalyst for removing nitrogen oxide and a method for producing the same that can secure the efficiency.

본 발명의 또 다른 목적은 기공 분포면에서 마이크로(< 30Å) 기공보다는 메죠 및 매크로(50∼150Å) 기공을 구비하도록 촉매의 구조적인 특성을 변화시켜 촉매의 수명을 연장하고, 이를 통해 촉매 사용시 우려되는 배기가스중의 Soot 또는 2차 합성물질에 의한 촉매 기공 막힘을 최대한 방지하는 것이다. Another object of the present invention is to change the structural characteristics of the catalyst to have meso and macro (50 to 150 Å) pores rather than micro (<30 Å) pores in terms of pore distribution, thereby prolonging the life of the catalyst, thereby causing concern when using the catalyst. This is to prevent the catalyst pore clogging caused by the soot or secondary synthetic material in the exhaust gas as much as possible.

본 발명의 또다른 목적은 황화합물 뿐만 아니라 알카리 또는 알카리토금속류 등의 촉매독에 대한 내구성을 증가시키고 질소산화물 제거 활성의 범위를 저온 영역으로 확장할 수 있는 질소산화물 제거용 촉매 및 그 제조방법을 제공하는 것이다.
It is another object of the present invention to provide a catalyst for removing nitrogen oxide and a method for producing the same, which can increase the durability of catalyst poisons such as alkali or alkaline earth metals as well as sulfur compounds and extend the range of nitrogen oxide removal activity to a low temperature region. It is.

본 발명은 과량의 산소가 존재하는 발전소 , 디젤엔진, 소각로 등의 배기가스 내에 포함된 질소산화물과 환원제로 주입되는 우레아의 열분해물인 암모니아가 Sn-Ti-PILC와 Sn-Ti-활성탄-PILC에 담지된 바나디아, 텅스텐, 몰리브덴 등의 촉매상에서 반응하여 질소와 물로 전환되는 촉매 반응에 관한 촉매와 그 제거 반응이 효율적으로 이루어질 수 있도록 촉매의 내부 구조를 조절할 수 있는 질소산화물 제거용 촉매 및 그 제조 방법에 관한 것으로, 본 발명에서 개발된 촉매는 일반적인 공지기술에 의해 제조된 Ti-PILC에 주석(Sn) 또는, 주석과 활성탄(Active Carbon)을 함께 필러링하여 만든 담체에 바니디아, 텅스텐, 몰리브덴 등의 활성 물질을 담지하도록 되어 있다. 즉, 본 발명은 벤토나이트에 주석산화물(SnO2)과 타이타니아(TiO2)를 필러링 시켜 제조된 Sn-Ti-PILC에 바나디아(V2O5), 텅스텐(WO3), 몰리브덴(MoO3)등의 활성물질 0.5∼20wt%를 담지하도록 되어 있다. According to the present invention, ammonia, which is a thermal decomposition product of urea injected into a nitrogen oxide and a reducing agent contained in exhaust gas of a power plant, a diesel engine, an incinerator, etc., in which excess oxygen exists, is supported on Sn-Ti-PILC and Sn-Ti-activated carbon-PILC. Catalyst for the catalytic reaction of reacting on the catalyst such as vanadium, tungsten, molybdenum and the like and converted to nitrogen and water, and a catalyst for removing nitrogen oxide capable of controlling the internal structure of the catalyst so that the removal reaction can be efficiently performed The catalyst developed in the present invention relates to a carrier made by filling tin (Sn) or tin and active carbon (Ti) with Ti-PILC prepared by a general known technique, such as vaniadia, tungsten, molybdenum, and the like. It is intended to support the active substance of. That is, the present invention 0.5 in the active material such as vanadium (V2O5), tungsten (WO3), molybdenum (MoO3) in Sn-Ti-PILC prepared by filling tin oxide (SnO 2 ) and titania (TiO2) in bentonite It is supposed to carry 20 wt%.

상기 벤토나이트는 극히 미세한 입자로된 점토로서, 스멕타이트(smectite)류의 광물로 이루어진 것을 말하며, 주 구성 광물은 몬모리로나이트이다. 몬모리로나이트는 규산염 광물로서 치환성 염기의 화학성분( Ca, K, Na, Mg)에 따라 다른 특성을 가진다. 치환성 양이온이 나트륨(Na)인 경우는 수분을 흡수함으로써 부피가 15배 정도까지 팽창하는 특성을 가지는 팽윤성 벤토나이트이며 치환성 양이온이 칼슘(Ca)인 경우는 비팽윤성 벤토나이트이다. 필러링 현상은 가역적 팽창현상에 기초를 두고 있으므로 본 발명에 사용된 벤토나이트는 치환성 양이온으로 나트륨이 대부분인 또는 나트륨으로 이온 교환된 벤토나이트이다.The bentonite is a clay composed of extremely fine particles, and refers to one composed of smectite-type minerals, and the main constituent mineral is montmorillonite. Montmorillonite is a silicate mineral that has different properties depending on the chemical composition of the substitutable base (Ca, K, Na, Mg). When the replaceable cation is sodium (Na), it is swellable bentonite having the property of expanding up to 15 times in volume by absorbing moisture, and non-swellable bentonite when the replaceable cation is calcium (Ca). Since the filler phenomenon is based on reversible expansion phenomenon, bentonite used in the present invention is bentonite which is mostly sodium or ion exchanged with sodium as a substitutional cation.

또한, 상기 활성물질은 20wt% 이상 담지하게 될 경우, 기체가 확산될 수 있는 경로를 막는 역효과가 나타나게 되므로 표면에 담지된 활성물질 만이 반응에 참 여하게 되는 현상이 발생되므로, 0.5∼20 wt% 범위내에서 담지하는 것이 바람직하다.In addition, when the active material is supported 20wt% or more, the adverse effect of blocking the path to the gas diffusion will appear, so only the active material supported on the surface will participate in the reaction, 0.5 to 20 wt% It is preferable to carry it within the range.

또한, 상기 주석과 티타늄은 비표면적을 증가시키기 위하여 벤토나이트 단위그램당 각각 1∼100 밀리몰을 기준으로 필러링한다. 상기 주석과 티타늄의 주입량을 100밀리몰 이상으로 할 경우, 더 이상의 비표면적 증가가 없으므로, 그 이상의 주입은 경제적 및 비표면적 향상 측면에서 의미가 없게 된다.
In addition, the tin and titanium are filler based on 1 to 100 millimoles per gram of bentonite in order to increase the specific surface area. When the amount of the tin and titanium implanted is 100 millimolar or more, there is no further increase in specific surface area, so that further implantation becomes meaningless in terms of economic and specific surface area improvement.

또한, 본 발명은 벤토나이트와 활성탄을 혼합하고, 여기에 주석산화물(SnO2)과 타이타니아(TiO2)를 필러링 시켜 Sn-Ti-활성탄-PILC을 제조하고, 여기에 바나듐(V2O5), 텅스텐 산화물(WO3), 몰리브덴 산화물(MoO3)을 담지할 수도 있다. In addition, the present invention is mixed with bentonite and activated carbon, and the tin oxide (SnO 2 ) and titania (TiO 2 ) to be filler to prepare Sn-Ti-activated carbon-PILC, vanadium (V 2 O 5), tungsten oxide ( WO 3) and molybdenum oxide (MoO 3) may be supported.

상기 활성탄(Activated Carbon)은 야자각, 목재류, 갈탄, 무연탄, 유연탄 등의 탄소질을 원료로 제조되는 미세세공이 잘 발달된 무정형 탄소의 집합체로서, 활성화 과정을 통해 분자 크기 정도의 미세세공이 형성되어 큰 내부 표면적을 갖는 흡착제이다. 활성탄은 1g당 1000㎡ 이상의 큰 내부 표면적을 갖으며 이 내부표면에 존재하는 탄소원자의 관능기가 주위의 액체 또는 기체에 인력을 가하여 피흡착질의 분자를 흡착하는 성질이 있다. The activated carbon is an aggregate of well-developed amorphous carbon made of carbonaceous materials such as palm shell, wood, lignite, anthracite, bituminous coal, and the like, and micropores of molecular size are formed through an activation process. It is an adsorbent having a large internal surface area. Activated carbon has a large internal surface area of 1000 m 2 or more per g, and the functional group of carbon atoms present on the inner surface attracts molecules of adsorbate by attracting the surrounding liquid or gas.

또한, 상기 주석과 티타늄은 비표면적을 증가시키기 위하여 벤토나이트와 활성탄 혼합물 단위그램당 각각 1∼100 밀리몰을 기준으로 필러링한다. 상기 주석과 티타늄의 주입량을 100밀리몰 이상으로 할 경우, 더 이상의 비표면적 증가가 없으 므로, 그 이상의 주입은 경제적 및 비표면적 향상 측면에서 의미가 없게 된다.
In addition, the tin and titanium are filler based on 1 to 100 millimoles each gram of bentonite and activated carbon mixture to increase the specific surface area. When the amount of the tin and titanium implanted is 100 millimolar or more, there is no further increase in specific surface area, so that further implantation is meaningless in terms of economic and specific surface area improvement.

이와 같은 필러링에 의해 제조된 Sn-Ti/PILC에 바나디아(V2O5), 텅스텐 산화물(WO3), 몰리브덴 산화물(MoO3)을 담지한 촉매 및, Sn-Ti-활성탄/PILC에 바나디아(V2O5), 텅스텐 산화물(WO3), 몰리브덴 산화물(MoO3)을 담지한 촉매는 150~300㎡/g의 표면적을 갖는다.
A catalyst supporting vanadium (V 2 O 5), tungsten oxide (WO 3) and molybdenum oxide (MoO 3) in Sn-Ti / PILC prepared by such a filler, and vanadia (V 2 O 5) in Sn-Ti-activated carbon / PILC , A catalyst supporting tungsten oxide (WO 3) and molybdenum oxide (MoO 3) has a surface area of 150 to 300 m 2 / g.

본 발명의 촉매는 점토의 현탁용액에 주석 필러링 용액과 타이타니아 필러링 용액을 첨가/교반하고, 암모니아수에 의해 pH를 9 로 유지한 후 여과, 세척, 건조, 소성에 의해 담체를 형성하는 담체 형성단계와, 상기 형성된 분말상태의 담체를 활성물질이 용해된 용액에 넣어 교반하고, 건조/소성하여 활성물질을 담지하는 활성물질 담지단계로 이루어져 있다. The catalyst of the present invention forms a carrier by adding / stirring a tin filler solution and a titania filler solution to a suspension solution of clay and maintaining a pH of 9 with ammonia water and then forming a carrier by filtration, washing, drying and calcining. And the active material carrying step of supporting the active material by stirring the dried powder carrier in a solution in which the active material is dissolved, and drying / firing.

상기 담체 형성단계는 증류수에 벤토나이트를 넣어 교반하여 벤토나이트 현택액 또는 벤토나이트와 활성탄의 혼합용액을 형성하고, 주석 필러링 용액 및 타이타니아 용액을 형성, 상온에서 숙성한 다음, 상기 벤토나이트 현택액 또는 벤토나이트와 활성탄의 혼합용액에 주석 필러링 용액 및 타이타니아 필러링 용액을 순서대로 가하고, 이에 암모니아수를 첨가하여 pH 9를 유지하도록 조정한 다음, 여과, 세척, 건조, 소성하도록 되어 있다. In the carrier forming step, bentonite is added to distilled water and stirred to form a bentonite suspension solution or a mixed solution of bentonite and activated carbon, a tin filler solution and a titania solution are aged and aged at room temperature, and then the bentonite suspension or bentonite and activated carbon The tin filler solution and the titania filler solution were added to the mixed solution in this order, and adjusted to maintain pH 9 by adding ammonia water thereto, followed by filtration, washing, drying and firing.

또한, 상기 활성물질 담지단계는 활성물질 전구체를 증류수에 녹인 후 옥살산을 이용하여 pH 2∼3.0 으로 조정하고, 이에 분말상태의 담체를 넣어 교반한 후 물을 증발시킨 다음, 이를 건조/소성하도록 되어 있다.
In addition, the active material supporting step is to dissolve the active material precursor in distilled water and adjust the pH to 2 ~ 3.0 using oxalic acid, and to put the powder carrier in the stirring and evaporate the water, and then to dry / fire have.

상기와 같이 제조된 촉매의 최종 형상은 첫째, 촉매물질을 전량 반죽하여 압출기에서 벌집, 판상 등의 형태로 만드는 경우와 둘때, 반죽한 촉매를 일정한 크기의 알갱이(또는 팰랫)로 만드는 경우, 셋째, 촉매가 붙어 있을 수 있는 금속, 세라믹 등의 모재(담체)에 촉매물질을 워시코팅, 디핑 등의 방법으로 입히는 방법이 있으며, 본 발명의 촉매는 5㎛ 정도로 분쇄하여 일정량의 수분과, 바인더(알루미나졸, 실리카졸 등)와 혼합하여 혼합 슬러리를 제조한 후, 벌집형 코디얼라이트에 워시코팅, 또는 디핑법을 사용하여 촉매물질을 입힌 다음, 제조된 벌집형 촉매를 110℃에서 건조하고 350℃에서 5시간동안 소성하였으며, 활성물질의 담지는 일정량의 활성물질(V, W, Mo) 전구체를 용액상으로 제조하여 준비하고 앞에서 제조된 기재된 기재인 Sn-Ti-PILC 와 Sn-Ti-활성탄-PILC 가 입혀진 벌집형 코디얼라이트에 디핑법을 이용하여 최종 활성이 있는 촉매를 완성하도록 되어 있다.
The final shape of the catalyst prepared as described above is, firstly, when the entire amount of the catalyst material is kneaded in the form of honeycomb, plate, etc. in the extruder, and when the kneaded catalyst is made into granules (or pallets) of a constant size, third, There is a method of coating the catalyst material on the substrate (carrier), such as metal, ceramic, etc., to which the catalyst may be attached, by wash coating or dipping. Sol, silica sol, etc.) to prepare a mixed slurry, and then, the honeycomb cordialite is coated with a catalyst material using wash coating or dipping. Then, the prepared honeycomb catalyst is dried at 110 ° C. and 350 ° C. It was calcined for 5 hours at, and the active material was prepared by preparing a predetermined amount of active material (V, W, Mo) precursor in solution and prepared the above-described substrates of Sn-Ti-PILC and Sn-Ti-Bow. The honeycomb cordial coated with Na-PILC was used to complete the catalyst with the final activity by dipping.

도 3 은 Sn-Ti-활성탄 30중량%-PILC의 BET 측정데이타를 도시한 것으로, 비표면적인 240㎥/g 이고, 기공분포가 주로 마이크로와 메크로 영역대에 형성된 BET 측정결1과이고, 도 4 는 Sn-Ti-활성탄 10중량%-PILC의 BET 측정데이타를 도시한 것으로, 비표면적이 148㎥/g이고 기공분포가 주로 마이크로와 메크로 영역대에 형성된 BET 측정결과를 도시한 것이다. FIG. 3 shows BET measurement data of Sn-Ti-activated carbon 30 wt% -PILC, which has a specific surface area of 240 m 3 / g, and a pore distribution mainly formed in the micro and macro region. 4 shows BET measurement data of 10 wt% -PILC of Sn-Ti-activated carbon, showing a BET measurement result having a specific surface area of 148 m 3 / g and pore distribution mainly formed in the micro and macro regions.

일반적으로 20Å까지를 마이크로 기공영역, 20-100Å까지를 메죠 기공영역, 100Å 이상을 매크로 영역으로 분류한다. 도 1 내지 도 4 의 그래프는 X축의 기공 지름(Å)별 Y축에 표시된 촉매 그램당 기공부피를 나타낸 것으로 도 1 및 도 2 가 X축에서 마이크로 영역(< 20-30Å)이 Y축의 0.17과 0.325㎤/g 기공부피가 주로 발달되어 있다. 그러나 도 3 및 도 4 의 그래프에서는 활성탄을 첨가함으로써 메죠 기공인 100Å 기공지름까지도 기공부피가 발달된 결과를 얻은 결과를 보여주고 있다.
In general, up to 20 ms are classified into micro-pore areas, 20-100 ms to meso pore regions, and more than 100 ms are classified as macro regions. The graphs of FIGS. 1 to 4 show pore volume per gram of catalyst displayed on the Y axis for each pore diameter of the X axis. FIGS. 1 and 2 show that the micro area (<20-30 μs) is 0.17 0.325 cm 3 / g pore volume is mainly developed. However, the graphs of FIGS. 3 and 4 show the results of pore volume development up to 100 mm pore diameter, which is a meso pore, by adding activated carbon.

이와 같이 본 발명은 기공 구조 분포 및 크기를 조절하기 위해 벤토나이트, 벤토나이트와 활성탄 혼합물을 필러링에 사용하였으며, 활성탄의 혼합은 벤토나이트 단위 그램당 1에서 50%까지, 보다 바람직하게는 20% 이상의 조건으로 제조하는 것이 효과적이다. 다른 성분으로는 주석산, 셀룰로오스, 계면활성제 등이 있다.As such, the present invention used a mixture of bentonite, bentonite and activated carbon in the filler to adjust the pore structure distribution and size, the mixture of activated carbon is 1 to 50% per gram of bentonite, more preferably at 20% or more It is effective to manufacture. Other components include tartaric acid, cellulose, surfactants, and the like.

본 발명에서 사용되어진 Sn-Ti-PILC는 제조 조건과 공정에 따라서 다른 특성을 나타내게 되므로, 본 발명은 타이타니아 전구체로는 사염화티타늄을 사용하였으며, 주석의 전구체로는 스테닉테트라클로라이드와 스테너스바이클로라이드를 사용하여 효과적인 필러링 효과를 얻을 수 있도록 하였다.
Since Sn-Ti-PILC used in the present invention exhibits different characteristics according to manufacturing conditions and processes, the present invention uses titanium tetrachloride as a titania precursor, and stenic tetrachloride and steners bichloride as precursors of tin. It was used to obtain an effective filler effect.

이하 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같다.
Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 1Example 1

- Sn-Ti-PILC 담체의 제조는 다음과 같다. -Preparation of Sn-Ti-PILC carrier is as follows.                     

본 발명에서 타이타니아의 필러링은 일반적으로 공지된 방법에 따라 제조된다. PILC의 기초가 되는 점토물질로는 몬모리로나이트 구조가 주를 이루는 벤토나이트로서 볼크레이(Vol Clay)에서 제공되어지는 활성화 나트륨 벤토나이트를 사용하였다. 구체적인 제조 방법은 우선 1.5L 정도의 증류수에 10g 정도의 벤토나이트를 넣고 잘 분산되도록 5시간 이상 교반한다. 그리고 주석을 필러링하기 위해 전구체로서 스테너스클로라이드 9.2g을 0.25L 증류수에 용해시켜 필러링 용액을 만든다. 또한 티타늄을 필러링하기 위해 2M 농도의 염산(HCl) 용액에 사염화 타이타늄을 가하고 이 혼합물에 증류수를 천천히 가하여 최종적으로 0.1 - 1.0M 타이타늄 농도와 0.1 - 1.0M 염산 농도의 필러링 용액을 만든다. 이렇게 만들어진 각각의 용액을 상온에서 12시간 정도 숙성한 후 점토의 현탁 용액에 주석 필러링 용액을 먼저 천천히 가하고 다음에 타이타니아 필러링 용액을 천천히 넣는다. 그리고 이 현탁액을 12시간 정도 강하게 교반하여 준다. 그리고 여기에 암모니아수 0.018ℓ를 첨가하여 pH가 9가 되도록 하였다. 다음 이를 여과하고 충분히 세척한 후 110℃ 분위기에서 건조를 수행하고 건조된 샘플은 2℃/min의 승온 속도로 350℃까지 천천히 온도를 올린 후 350℃에서 5시간 동안 소성되었다.

Filling of titania in the present invention is generally prepared according to known methods. As the clay material underlying PILC, activated sodium bentonite provided by Vol Clay is used as bentonite mainly composed of montmorillonite structure. In a specific manufacturing method, first, about 10 g of bentonite is put in 1.5 L of distilled water and stirred for 5 hours or more so as to be well dispersed. Then, 9.2 g of stenus chloride as a precursor is dissolved in 0.25 L distilled water to prepare tin filler. In addition, titanium tetrachloride is added to a solution of 2M hydrochloric acid (HCl) to fill titanium, and distilled water is slowly added to the mixture to form a filler solution of 0.1-1.0M titanium and 0.1-1.0M hydrochloric acid. Each solution was aged at room temperature for 12 hours, and then the tin filler solution was slowly added to the clay suspension solution, followed by the titania filler solution. The suspension is then stirred vigorously for about 12 hours. And 0.018 L of ammonia water was added here and pH was set to 9. Next, the resultant was filtered and sufficiently washed, followed by drying in an atmosphere of 110 ° C., and the dried sample was slowly heated to 350 ° C. at a temperature rising rate of 2 ° C./min, and then fired at 350 ° C. for 5 hours.

실시예 2Example 2

- Sn-Ti-PILC에 담지된 바나디아, 텅스텐, 몰리브덴 촉매의 제조는 다음과 같다. Preparation of vanadia, tungsten and molybdenum catalysts supported on Sn-Ti-PILC is as follows.                     

본 발명에서 Sn-Ti-PILC에 담지된 바나디아, 텅스텐, 몰리브덴 촉매는 실시예 1과 같은 방법에 의하여 제조된 Sn-Ti-PILC 담체에 일반적으로 공지된 기술인 담지법에 의해서 제조되었는데 이때 바나디아 전구체로는 암모늄 메타 바나데이트(NH4VO3)를 사용하였다. 텅스텐의 전구체로는 암모늄 메타텅스테이트하이드레이트[(NH4)6W12O39·H2O]를 사용하였다. 그리고 몰리브덴의 전구체로는 암모늄몰리브데이트[(NH4)6Mo7O24·4H2O]를 사용하였다. 제조과정은 우선 바나디아의 전구체를 계산된 양만큼 평량하여 증류수에 녹인후 옥살산(COOHCOOH)을 이용하여 pH=2-3.0에 맞추어 여기에 담체인 Sn-Ti-PILC를 분말 상태로 만들어 넣어 2시간 정도 잘 교반한 후에 회전 증발기를 이용하여 물을 증발시킨다. 그리고 110℃에서 12시간 건조 후 450℃에서 5시간 동안 소성시켜 제조하였다. 텅스텐과 몰리브덴의 경우는 각각 필요한 만큼의 양을 평량하고 증류수에 넣어 교반하여 제조하였다. 이때 촉매상의 바나듐, 텅스텐, 몰리브덴의 양은 8 중량%, 5 중량%, 5 중량%를 포함하도록 제조하였다.
In the present invention, the vanadium, tungsten, and molybdenum catalyst supported on Sn-Ti-PILC were prepared by a supporting method, which is generally known to Sn-Ti-PILC carrier prepared by the same method as Example 1, wherein vanadia Ammonium meta vanadate (NH 4 VO 3) was used as a precursor. As a precursor of tungsten, ammonium metatungstate hydrate [(NH 4) 6 W 12 O 39 .H 2 O] was used. As the precursor of molybdenum, ammonium molybdate [(NH 4) 6 Mo 7 O 24. 4H 2 O] was used. In the manufacturing process, first, the precursor of vanadia is weighed by a calculated amount and dissolved in distilled water, and then oxalic acid (COOHCOOH) is used to make Sn-Ti-PILC, which is a carrier, according to pH = 2-3.0. After stirring well, water is evaporated using a rotary evaporator. And after drying for 12 hours at 110 ℃ was prepared by firing at 450 ℃ for 5 hours. In the case of tungsten and molybdenum, each of the required amounts of basis weight was prepared by stirring in distilled water. The amount of vanadium, tungsten, molybdenum on the catalyst was prepared to include 8% by weight, 5% by weight, 5% by weight.

실시예 3Example 3

- Sn-Ti-활성탄-PILC 담체의 제조는 다음과 같다.-Preparation of Sn-Ti-activated carbon-PILC carrier is as follows.

본 발명에서 필러링을 위해 사용된 활성탄은 삼천리에서 제공하는 분말상 활성탄을 사용하였다. 구체적인 제조 방법은 우선 1.5L 정도의 증류수에 10g 정도의 벤토나이트와 2g 정도의 활성탄을 혼합물을 넣고 잘 분산되도록 5시간 이상 교반한다. Sn-Ti-활성탄-PILC 담체의 주석과 타이타니아의 필러링은 실시예 1과 같은 방 법으로 제조된다.
The activated carbon used for the filler in the present invention used powdered activated carbon provided by Samchully. In a specific manufacturing method, first, a mixture of about 10 g of bentonite and about 2 g of activated carbon in 1.5 L of distilled water is stirred for 5 hours or more so as to be well dispersed. Filling of tin and titania of the Sn-Ti-activated carbon-PILC carrier was prepared in the same manner as in Example 1.

실시예 4Example 4

- Sn-Ti-활성탄-PILC에 담지된 바나디아, 텅스텐, 몰리브덴 촉매의 제조는 다음과 같다.Preparation of vanadia, tungsten and molybdenum catalysts supported on Sn-Ti-activated carbon-PILC is as follows.

본 발명에서 Sn-Ti-활성탄-PILC에 담지된 바나디아, 텅스텐, 몰리브덴 촉매는 실시예 2와 같은 방법에 의하여 제조되었다. 사용된 Sn-Ti-활성탄-PILC 담체는 실시예 3과 같은 방법으로 제조된 것을 사용하였다.

In the present invention, the vanadium, tungsten, and molybdenum catalysts supported on Sn-Ti-activated carbon-PILC were prepared by the same method as in Example 2. Sn-Ti-activated carbon-PILC carrier used was prepared in the same manner as in Example 3.

본 발명에서 실시예 1-4에 따라 제조된 촉매들은 5%의 산소를 포함하는 질소분위기에서 질소산화물중 일산화질소의 선택적 촉매 환원 반응에 대하여 조사하였으며 그 결과는 표 1 과 같다. 또한, 본 발명에서는 제조된 촉매에 대해서 질소산화물 제거 성능을 실험하기 위해 고정층 반응기 시스템을 사용하였으며, 상기 고정층 반응기 시스템은 원하는 배기가스 조성을 만들기 위한 가스 주입부분, 반응기 부분, 분석 부분으로 구성되어 있다. In the present invention, the catalysts prepared according to Examples 1-4 were examined for the selective catalytic reduction reaction of nitrogen monoxide in nitrogen oxide in a nitrogen atmosphere containing 5% oxygen. The results are shown in Table 1 below. In addition, in the present invention, a fixed bed reactor system was used to test nitrogen oxide removal performance of the prepared catalyst, and the fixed bed reactor system includes a gas injection part, a reactor part, and an analysis part to make a desired exhaust gas composition.

또한, 특별한 언급이 없는 한 본 발명에서는 1,000ppm의 일산화질소와 암모니아 5%의 산소를 포함하는 질소로 이루어져 있으며 반응조건은 10,000/hr의 반응기 공간속도와 200-500℃ 범위에서 수행되었다. 질소산화물을 제거하기 위한 선택적촉매환원(SCR)기술은 촉매에 따라 반응 온도폭이 다르나, 본 발명에서는 200∼500℃범위에서 운전이 가능하며, 바람직하게는 300∼450℃에서 더욱 우수한 질소산화물 제거결과를 구비한다. In addition, unless otherwise specified, the present invention consists of nitrogen containing 1,000 ppm of nitrogen monoxide and 5% oxygen of ammonia, and the reaction conditions were performed at a reactor space velocity of 10,000 / hr and a range of 200-500 ° C. Selective catalytic reduction (SCR) technology for removing nitrogen oxides, the reaction temperature range is different depending on the catalyst, in the present invention can be operated in the range of 200 ~ 500 ℃, preferably better nitrogen oxide removal at 300 ~ 450 ℃ Results.

표 1TABLE 1

촉 매catalyst 제거활성(%)
반응온도(℃)
% Removal activity
Reaction temperature (℃)
250250 300300 350350 400400 V2O5-WO3-MoO3/Ti-PILCV 2 O 5 -WO 3 -MoO 3 / Ti-PILC 8888 9595 9696 9595 V2O5-WO3-MoO3/Sn-Ti-PILCV 2 O 5 -WO 3 -MoO 3 / Sn-Ti-PILC 9393 9898 9898 9797 V2O5-WO3-MoO3//Sn-Ti-활성탄-PILCV 2 O 5 -WO 3 -MoO 3 // Sn-Ti-Activated Carbon-PILC 9191 9696 9595 9595

상기의 표에 나타낸 결과들은 미국특허등록(US 6,475,944)에서 언급한 촉매(V2O5-WO3-MoO3/Ti-PILC)의 활성과 본 발명에서 제조한 촉매의 질소산화물 제거 활성을 비교한 것이다.
The results shown in the above table compare the activity of the catalyst (V 2 O 5 -WO 3 -MoO 3 / Ti-PILC) mentioned in the US patent registration (US 6,475,944) with the nitrogen oxide removal activity of the catalyst prepared in the present invention. It is.

또한, 본 발명에서는 제조된 촉매의 구조 및 물성을 알아보기 위해 비표면적과 기공 분포를 BET 장비(ASAP2000 기기)를 이용하여 측정하였으며, 조사한 결과를 표 2 에 나타내었다.In addition, in the present invention, the specific surface area and pore distribution were measured by using a BET device (ASAP2000 device) in order to determine the structure and physical properties of the prepared catalyst, and the results of the investigation are shown in Table 2.

표 2TABLE 2

촉매 종류Catalyst type Clay 혼합 조성Clay mixing composition Aver. BET
(㎡/g)
Aver. BET
(㎡ / g)
Max. P.A
(P.V)
Diameter
(Å)
Max. PA
(PV)
Diameter
(A)
Sn + Ti/PILC 4 a) Sn + Ti / PILC 4 a) Clay Clay 240240 3232 Sn + Ti + 활성탄/PILC 1 b) Sn + Ti + Activated Carbon / PILC 1 b) Clay + 활성탄 2.5g [10 wt%] Clay + Activated Carbon 2.5g [10 wt%] 196196 (70)(70) Sn + Ti + 활성탄/PILC 2c) Sn + Ti + Activated Carbon / PILC 2 c) Clay + 활성탄 5g [20 wt%] Clay + Activated Carbon 5g [20 wt%] 148.8148.8 25(90)25 (90) Sn + Ti + 활성탄/PILC 3 d) Sn + Ti + Activated Carbon / PILC 3 d) Clay + 활성탄 8.5g [30 wt%] Clay + activated carbon 8.5g [30 wt%] 240240 (10~100)(10-100) TiO2 e) TiO 2 e) -- 72.572.5 7474 Sn/PILC 4f) Sn / PILC 4 f) Clay Clay 141141 2020 Sn/PILC 5g) Sn / PILC 5 g) Clay + TiO2 Powder + CeO2PowderClay + TiO 2 Powder + CeO 2 Powder 154154 20 (102)20 (102) Ti/PILC 4h) Ti / PILC 4 h) Clay Clay 150150 3030

a) Clay에 Sn과 Ti를 필러링한 촉매a) Catalyst with Sn and Ti fillerd in clay

b-d) Clay와 활성탄에 Sn, Ti를 필러링한 촉매b-d) Sn and Ti fillers on clay and activated carbon

e) 시약급 상용 TiO2e) reagent grade commercial TiO2

f) Sn만 필러링한 촉매f) Sn only filler

g) Clay에 시약급 상용 TiO2를 혼합하여 Sn 필러링후 제조한 촉매
g) Catalyst prepared after Sn filler by mixing reagent grade commercial TiO2 in Clay

상기에서와 같이 Ti/PILC 촉매의 비표면적과 평균 기공분포가 마이크로 영역으로 분포되어 있는 반면, 본 발명에서 제조된 촉매(a)는 비표면적을 상당량 증가시키는 결과를 얻었다. 또한 본 발명에서 제조된 촉매(b-d)에서는 기존의 Ti/PILC 촉매의 비표면적을 상당량 증가시키면서 기공 분포도 마이크로 영역에서 메크로 영역으로 평균치를 향상시켰음을 알 수 있다.
As described above, while the specific surface area and average pore distribution of the Ti / PILC catalyst are distributed in the micro region, the catalyst (a) prepared in the present invention has a significant increase in the specific surface area. In addition, it can be seen that the catalyst (bd) prepared in the present invention improved the average value of the pore distribution in the micro region to the macro region while significantly increasing the specific surface area of the existing Ti / PILC catalyst.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.
The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

이와 같이 본 발명에서 개발된 V, W, Mo/Sn-Ti-PILC 촉매와 V, W, Mo/Sn-Ti-활성탄-PILC 촉매의 경우, 기존의 상용촉매와 V, W, Mo/Ti-PILC 촉매와 비교해서 비표면적이 향상되고, 내구성 향상에 도움이 되는 메크로 기공의 구조가 증가하였고 또한 효율도 우수함을 보였다.Thus, in the case of the V, W, Mo / Sn-Ti-PILC catalyst and V, W, Mo / Sn-Ti-activated carbon-PILC catalyst developed in the present invention, the conventional commercial catalyst and V, W, Mo / Ti- Compared to the PILC catalyst, the specific surface area is improved, and the structure of the macropores, which helps to improve the durability, is increased and the efficiency is also excellent.

즉 촉매독과 황화합물에 대한 내구성은 촉매에서 담체로 쓰이는 물질의 구조적 변수에 의하여 조절될 수 있으며, 담체의 구조적 변수로 기공의 크기 분포를 조절하여 즉 마이크론 단위의 기공 지름을 가지는 매크로 기공과 옴스트롱 단위를 가지는 마이크로 기공이 동시에 존재하는 기공 분포를 가지도록 촉매를 설계함으로써 촉매독 문제를 해결할 수 있다. 낮은 확산도를 가지는 촉매독들은 주로 매크로 기공에 침적되며 따라서 매크로 기공을 촉매독들을 걸러내는 필터로서 작용하게 함으로써 촉매독에 대한 내구성을 향상시킬 수 있다. 또한 기공의 크기를 키움으로써 활성저하의 요인으로 알려진 암모늄 황산염 등에 촉매의 기공의 막힘 현상을 줄일 수 있으며, 이로 인해 수명 및 내구성이 우수하게 되는 등 많은 효과가 있다.








That is, the durability of the catalyst poison and the sulfur compound can be controlled by the structural variables of the material used as the carrier in the catalyst, and by controlling the pore size distribution by the structural variable of the carrier, that is, macropores and omstrongs having a pore diameter in microns. The catalyst poison problem can be solved by designing the catalyst such that the micropores having the unit have a pore distribution at the same time. Catalytic poisons having a low diffusivity are mainly deposited in the macropores and thus can improve the durability to the catalyst poison by making the macropores act as a filter for filtering the catalyst poisons. In addition, by increasing the pore size, it is possible to reduce the clogging of the pores of the catalyst, such as ammonium sulfate, which is known as a deactivation factor, and thus has many effects such as excellent life and durability.








Claims (15)

디젤엔진 또는 연소가스내에 포함된 질소산화물을 제거하는 촉매상에서 환원제인 암모니아와 반응시켜 질소와 물로 전환시키는 공정에 사용되는 촉매에 있어서, In the catalyst used in the process of converting nitrogen and water by reacting with ammonia, a reducing agent, on a catalyst for removing nitrogen oxide contained in a diesel engine or combustion gas, 상기 촉매는 벤토나이트에 주석산화물(SnO2)과 타이타니아(TiO2)를 필러링 시킨 담체에 활성물질을 0.5∼20wt% 담지하되,The catalyst is supported by 0.5 to 20wt% of an active material on a carrier in which tin oxide (SnO 2) and titania (TiO 2) are filled in bentonite. 상기 활성물질은 바나디아(V2O5), 텅스텐(WO3), 몰리브덴(MoO3)로 이루어진 군에서 하나 이상을 선택하는 것을 특징으로 하는 질소산화물 제거용 촉매.The active material is a nitrogen oxide removal catalyst, characterized in that at least one selected from the group consisting of vanadium (V2O5), tungsten (WO3), molybdenum (MoO3). 제 1 항에 있어서;The method of claim 1; 상기 담체에는 활성탄이 더 첨가 되는 것을 특징으로 하는 질소산화물 제거용 촉매.Catalyst for removing nitrogen oxides, characterized in that activated carbon is further added to the carrier. 제 2 항에 있어서;The method of claim 2; 상기 활성탄은 벤토나이트 단위 그램당 1∼50wt% 범위내에서 혼합되는 것을 특징으로 하는 질소산화물 제거용 촉매.The activated carbon is a nitrogen oxide removal catalyst, characterized in that mixed in the range of 1 to 50wt% per gram of bentonite. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서;The method of any one of claims 1 to 3; 상기 벤토나이트 단위 그램당, 벤토나이트와 활성탄 혼합물 단위그램당 주석과 티타늄은 각각 1∼100 밀리몰 첨가되는 것을 특징으로 하는 질소산화물 제거용 촉매.Per gram of bentonite, tin and titanium per gram of bentonite and activated carbon mixture are added in an amount of 1 to 100 millimoles, respectively. 삭제delete 제 1 항 내지 제 3 항 중 어느 한 항에 있어서;The method of any one of claims 1 to 3; 상기 촉매는 150∼300㎡/g 의 표면적을 구비하는 것을 특징으로 하는 질소산화물 제거용 촉매.The catalyst for removing nitrogen oxides, characterized in that having a surface area of 150 ~ 300 m 2 / g. 제 1 항에 있어서;The method of claim 1; 상기 촉매는 질소산화물 제거를 위하여 암모니아와 우레아에 의하여 일산화질소 환원반응에 사용되는 것을 특징으로 질소산화물 제거용 촉매.The catalyst for removing nitrogen oxides, characterized in that used for the nitrogen monoxide reduction reaction by ammonia and urea to remove the nitrogen oxides. 제 7 항에 있어서;The method of claim 7; 상기 질소산화물 제거를 위한 일산화질소 환원반응에서 온도는 200-500℃인 것을 특징으로 하는 질소산화물 제거용 촉매.Nitrogen oxide removal catalyst, characterized in that the temperature in the nitrogen monoxide reduction reaction for nitrogen oxide removal is 200-500 ℃. 제 7 항 또는 제 8 항에 있어서;The method of claim 7 or 8; 상기 촉매는 코디얼라이트 하니콤 담체에 코팅하여 사용하거나, 팰렛 형태로 형성하여 사용하는 것을 특징으로 하는 질소산화물 제거용 촉매.The catalyst is used for coating on the cordialite honeycomb carrier, or a catalyst for removing nitrogen oxides, characterized in that formed in the form of a pallet. 디젤엔진 또는 연소가스내에 포함된 질소산화물을 제거하는 촉매상에서 환원제인 암모니아와 반응시켜 질소와 물로 전환시키는 공정에 사용되는 촉매의 제조방법에 있어서, In the method for producing a catalyst used in the process of converting nitrogen and water by reacting with ammonia as a reducing agent on a catalyst for removing nitrogen oxide contained in a diesel engine or combustion gas, 상기 촉매는 점토의 현탁용액에 주석 필러링 용액과 타이타니아 필러링 용액을 첨가/교반하고, 암모니아수에 의해 pH를 9 로 유지한 후 여과, 세척, 건조, 소성에 의해 담체를 형성하는 담체 형성단계;The catalyst is a carrier forming step of forming a carrier by filtration, washing, drying and calcining after adding / stirring a tin filler solution and a titania filler solution to a suspension solution of clay and maintaining the pH at 9 with ammonia water; 상기 형성된 분말상태의 담체를 활성물질이 용해된 용액에 넣어 교반하고, 건조/소성하여 활성물질을 담지하는 활성물질 담지단계로 이루어지되,Wherein the carrier in the powder form formed in the active material is dissolved in the solution and stirred, dried / fired to carry out the active material carrying step of supporting the active material, 상기 활성물질은 바나디아(V2O5), 텅스텐(WO3), 몰리브덴(MoO3)로 이루어진 군에서 하나 이상을 선택하는 것을 특징으로 하는 질소산화물 제거용 촉매 제조방법.The active material is a method for producing a catalyst for removing nitrogen oxides, characterized in that at least one selected from the group consisting of vanadia (V2O5), tungsten (WO3), molybdenum (MoO3). 제 10 항에 있어서;The method of claim 10; 상기 담체 형성단계는 증류수에 벤토나이트를 넣어 교반하여 점토의 현탁액을 형성하는 단계;The carrier forming step includes the steps of adding bentonite to distilled water to form a suspension of clay; 스테너스클로라이드를 증류수에 용해하여 주석 필러링 용액을 형성하는 단계;Dissolving stenus chloride in distilled water to form a tin filler solution; 염산용액에 사염화타이타늄을 가하고 이 혼합물에 증류수를 가하여 티타늄을 필러링하기 위한 용액을 형성하는 단계;Adding titanium tetrachloride to the hydrochloric acid solution and distilled water to the mixture to form a solution for filling titanium; 상기 각각의 용액을 상온에서 숙성하는 단계;Aging the respective solutions at room temperature; 상기 점토의 현탁용액에 주석 필러링 용액을 가하고, 타이타니아 필러링 용액을 순서대로 가한 후, 이 현탁액을 교반하는 단계;Adding a tin filler solution to the suspension of clay, adding a titania filler solution in order, and then stirring the suspension; 상기 교반된 현탁액에 암모니아수를 첨가하여 pH 9를 유지하도록 조정하는 단계;Adjusting to maintain pH 9 by adding ammonia water to the stirred suspension; 상기 pH 가 조정된 용액을 여과/세척한 후 건조하고 이를 소성하여 담체를 제조하는 것을 특징으로 하는 질소산화물 제거용 촉매 제조방법.The method for preparing a catalyst for removing nitrogen oxides, characterized in that the carrier is prepared by filtration / washing the pH-adjusted solution, drying and calcining the solution. 제 10 항 또는 제 11 항에 있어서;12. The method of claim 10 or 11; 상기 점토의 현탁액에는 활성탄이 더 첨가되는 것을 특징으로 하는 질소산화물 제거용 촉매 제조방법.Activated carbon is further added to the suspension of clay, the method for producing a catalyst for removing nitrogen oxides, characterized in that. 제 10 항에 있어서;The method of claim 10; 상기 활성물질 담지단계는 활성물질 전구체를 증류수에 녹인 후 옥살산을 이용하여 pH 2∼3.0 으로 조정하는 단계;The active material supporting step may be performed by dissolving the active material precursor in distilled water and adjusting the pH to 2 to 3.0 using oxalic acid; 상기 활성물질 용액에 분말상태의 담체를 넣어 교반한 후 물을 증발시킨 다음 이를 건조/소성하는 단계를 통해 이루어진 것을 특징으로 하는 질소산화물 제거용 촉매 제조방법.The method of preparing a catalyst for removing nitrogen oxides, characterized in that the active material solution is put into a powder carrier and stirred, followed by evaporating water and drying / firing it. 삭제delete 제 10 항에 있어서;The method of claim 10; 상기 바나디아의 전구체는 암모늄 메타 바나데이트이고, 텅스텐의 전구체는 암모늄 메타텅스테이트하이드레이트이며, 몰리브덴의 전구체는 암모늄몰리브데이트 인 것을 특징으로 하는 질소산화물 제거용 촉매 제조방법.The precursor of vanadia is ammonium meta vanadate, the precursor of tungsten is ammonium metatungstate hydrate, the precursor of molybdenum is ammonium molybdate, the method for producing a catalyst for removing nitrogen oxides.
KR1020030072850A 2003-10-20 2003-10-20 Nitrogen oxide removal catalyst and its manufacturing method Expired - Lifetime KR100979031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030072850A KR100979031B1 (en) 2003-10-20 2003-10-20 Nitrogen oxide removal catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030072850A KR100979031B1 (en) 2003-10-20 2003-10-20 Nitrogen oxide removal catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20050037627A KR20050037627A (en) 2005-04-25
KR100979031B1 true KR100979031B1 (en) 2010-08-30

Family

ID=37240260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030072850A Expired - Lifetime KR100979031B1 (en) 2003-10-20 2003-10-20 Nitrogen oxide removal catalyst and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100979031B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009150A (en) 2015-07-15 2017-01-25 현대중공업 주식회사 SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
KR20170028641A (en) 2015-09-04 2017-03-14 현대중공업 주식회사 Manufacturing Method of Titania Carrier used in De-NOx Catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767563B1 (en) * 2006-04-03 2007-10-17 한국전력기술 주식회사 Method of preparing a vanadium / titania-based catalyst having excellent nitrogen oxide removal activity in a wide temperature range by the introduction of ball milling and its use
CN115925125B (en) * 2022-01-24 2024-08-20 重庆交通大学 Ecological floating bed device for landscape water body restoration treatment
CN114733510B (en) * 2022-04-11 2024-04-05 苏州西热节能环保技术有限公司 A high-strength marine SCR catalyst and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07823A (en) * 1993-06-15 1995-01-06 Chiyoda Corp Catalyst for removing nitrogen oxides in exhaust gas
KR20000020980A (en) * 1998-09-25 2000-04-15 김형벽 Vanadium catalyst impregnated in bentonite being filled by titania for removing nitrogenous oxide
JP2001300309A (en) 2000-04-20 2001-10-30 Hyundai Heavy Industries Co Ltd Vanadium oxide catalyst in which titania for removing nitrogen oxides is impregnated in columnar bentnite
US6475944B1 (en) 2000-03-27 2002-11-05 Hyundai Heavy Industries Co., Ltd. Vanadia catalyst impregnated on titania-pillared clay for the removal of nitrogen oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07823A (en) * 1993-06-15 1995-01-06 Chiyoda Corp Catalyst for removing nitrogen oxides in exhaust gas
KR20000020980A (en) * 1998-09-25 2000-04-15 김형벽 Vanadium catalyst impregnated in bentonite being filled by titania for removing nitrogenous oxide
US6475944B1 (en) 2000-03-27 2002-11-05 Hyundai Heavy Industries Co., Ltd. Vanadia catalyst impregnated on titania-pillared clay for the removal of nitrogen oxide
JP2001300309A (en) 2000-04-20 2001-10-30 Hyundai Heavy Industries Co Ltd Vanadium oxide catalyst in which titania for removing nitrogen oxides is impregnated in columnar bentnite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009150A (en) 2015-07-15 2017-01-25 현대중공업 주식회사 SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
US11148122B2 (en) 2015-07-15 2021-10-19 Korea Shipbuilding & Offshore Engineering Co., Ltd. SCR catalyst for removing nitrogen oxides and method for producing same
KR20170028641A (en) 2015-09-04 2017-03-14 현대중공업 주식회사 Manufacturing Method of Titania Carrier used in De-NOx Catalyst

Also Published As

Publication number Publication date
KR20050037627A (en) 2005-04-25

Similar Documents

Publication Publication Date Title
Zha et al. Improved NO x reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts
DE10015696B4 (en) Catalytic mass for the removal of nitrogen oxides based on titanium column supported clay
US4833113A (en) Denitration catalyst for reducing nitrogen oxides in exhaust gas
KR100439004B1 (en) A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides and A Method for Preparing the Same
US5137855A (en) Catalysts for selective catalytic reduction denox technology
WO2008150462A2 (en) Catalyst for selective reduction of nitrogen oxides, method for making same and use thereof
KR102033967B1 (en) Low Temperature SCR Catalyst Added Carbon Supported Active Catalystic Materials and Preparation Method Thereof
KR101308496B1 (en) Methods of manufacturing a honeycomb catalyst
CN114505066B (en) Denitrification catalyst and preparation method thereof and denitrification method
KR100911797B1 (en) Nitrogen oxide removal catalyst, preparation method thereof and nitrogen oxide removal method
CN104923213A (en) Nontoxic rare-earth denitration catalyst and preparation method and application thereof
KR100979031B1 (en) Nitrogen oxide removal catalyst and its manufacturing method
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
KR100439005B1 (en) A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides at High Temperature Window and A Method for Preparing the Same
US20050159304A1 (en) High temperature denitrification catalyst and method for preparation thereof
JP3492592B2 (en) Nitrogen oxide removal catalyst
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
KR100629574B1 (en) Catalyst for removing nitrogen oxide using activated carbon and its manufacturing method
KR100938716B1 (en) Method for preparing a catalyst for combustion in which a platinum group metal is supported on a mesoporous titanium dioxide aggregate support impregnated with a metal oxide
KR100641694B1 (en) Titania manufacturing method for denitrification catalyst extrusion
KR100415434B1 (en) Bania catalyst supported on bentonite filled with titania to remove nitrogen oxides
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2002173370A (en) Titania porous material and catalyst
CN103949240A (en) Pillared rectorite denitration catalyst and preparation method and application thereof
Zhenzhen et al. Graphitic carbon nitride (G-C3n4) as a super support for Mn-Ce based Nh3-scr catalyst: Improvement of catalytic activity and H2o/So2 tolerance

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20031020

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20081001

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20031020

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20100426

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20100730

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20100824

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20100824

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20130814

Start annual number: 4

End annual number: 5

FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20160728

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20170801

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20180801

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20180829

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20200806

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20210728

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20220725

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20230801

Start annual number: 14

End annual number: 14

PC1801 Expiration of term

Termination date: 20240420

Termination category: Expiration of duration