[go: up one dir, main page]

KR100956957B1 - Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst - Google Patents

Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst Download PDF

Info

Publication number
KR100956957B1
KR100956957B1 KR1020080102685A KR20080102685A KR100956957B1 KR 100956957 B1 KR100956957 B1 KR 100956957B1 KR 1020080102685 A KR1020080102685 A KR 1020080102685A KR 20080102685 A KR20080102685 A KR 20080102685A KR 100956957 B1 KR100956957 B1 KR 100956957B1
Authority
KR
South Korea
Prior art keywords
manganese
composite oxide
aluminum composite
aluminum
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020080102685A
Other languages
Korean (ko)
Other versions
KR20100043594A (en
Inventor
황성주
유하나
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020080102685A priority Critical patent/KR100956957B1/en
Publication of KR20100043594A publication Critical patent/KR20100043594A/en
Application granted granted Critical
Publication of KR100956957B1 publication Critical patent/KR100956957B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 다공성 망간-알루미늄 복합산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 2-사이클로헥센-1-올 제조방법에 관한 것으로, 보다 상세하게는 케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+과 망간전구체를 수열합성반응 후 소결하는 단계를 포함한 방법으로 제조되며, 평균입경이 5 내지 50 nm이고 Mn/Al 몰비가 10내지 50범위인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 2-사이클로헥센-1-올 제조방법에 관한 것으로, 본 발명에 따라 제조한 다공성 망간 산화물-알루미늄 산화물 복합체는 종래의 망간산화물과는 달리 고온으로 소결처리한 후에도 10-20 nm의 나노크기를 유지하며, 결정성이 향상되는 장점을 가지고 있다. 또한, 반응성 및 선택성이 우수한 알루미늄 산화물과의 망간-알루미늄 복합산화물로, 싸이클로헥센 분자의 산화에 대한 높은 촉매활성을 나타내는 장점을 나타내기도 한다. The present invention relates to a porous manganese-aluminum composite oxide catalyst, a method for preparing the same, and a method for preparing 2-cyclohexen-1-ol using the catalyst, and more particularly, an aluminum hydroxide cation having a keggin structure (AlO 4 Al). 12 (OH) 24 (H 2 O) 12 7 + and a manganese precursor prepared by a method including the step of sintering after the hydrothermal synthesis reaction, the average particle diameter of 5 to 50 nm and Mn / Al molar ratio range of 10 to 50 The present invention relates to a porous manganese-aluminum composite oxide catalyst, a method for preparing the same, and a method for preparing 2-cyclohexen-1-ol using the catalyst, wherein the porous manganese oxide-aluminum oxide composite prepared according to the present invention is a conventional manganese. Unlike oxide, it has the advantage of maintaining the nano size of 10-20 nm even after sintering at high temperature and improving the crystallinity. Of manganese-in aluminum composite oxide, and also it indicates the advantage of exhibiting high catalytic activity for the oxidation of cyclo-hexene molecule.

망간-알루미늄 복합산화물, 촉매, 수열합성, 소결, 결정성 Manganese-Aluminium Composite Oxide, Catalyst, Hydrothermal Synthesis, Sintering, Crystalline

Description

다공성 망간-알루미늄 복합산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 2-사이클로헥센-1-올 제조방법{POROUS MANGANESE-ALUMINUM COMPLEX METAL OXIDE CATALYST, PREPARATION METHOD THEREOF AND PREPARATION METHOD OF 2-CYCLOHEXENE-1-OL USING SAID CATALYST}POROUS MANGANESE-ALUMINUM COMPLEX METAL OXIDE CATALYST, PREPARATION METHOD THEREOF AND PREPARATION METHOD OF 2-CYCLOHEXENE-1-OL USING SAID CATALYST}

본 발명은 다공성 망간-알루미늄 복합산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 2-사이클로헥센-1-올 제조방법에 관한 것으로, 보다 상세하게는 케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+과 망간전구체를 수열합성반응 후 소결하는 단계를 포함한 방법으로 제조되며, 평균입경이 5 내지 50 nm이고 Mn/Al 몰비가 10내지 50범위인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 2-사이클로헥센-1-올 제조방법에 관한 것이다.The present invention relates to a porous manganese-aluminum composite oxide catalyst, a method for preparing the same, and a method for preparing 2-cyclohexen-1-ol using the catalyst, and more particularly, an aluminum hydroxide cation having a keggin structure (AlO 4 Al). 12 (OH) 24 (H 2 O) 12 7 + and a manganese precursor prepared by a method including the step of sintering after the hydrothermal synthesis reaction, the average particle diameter of 5 to 50 nm and Mn / Al molar ratio range of 10 to 50 The present invention relates to a porous manganese-aluminum composite oxide catalyst, a method for producing the same, and a method for preparing 2-cyclohexen-1-ol using the catalyst.

망간 산화물은 전기화학 에너지 저장 장치에 대한 전극, 이상촉매, 흡착제, 바이오센서 등의 다양한 응용성을 가지고 있으며, 저렴한 가격, 풍부한 부존량, 저독성 등의 산업적 응용성에 대한 장점을 가지고 있기 때문에 많은 연구들이 이루어져왔다. 또한 마이크로 결정 크기를 갖는 벌크 상태에 비교하여, 입자의 크기를 나노미터 수준으로 줄인 경우 비표면적 증가를 통해, 망간산화물의 기능성을 보다 향상시킬 수 있기 때문에 여러 가지 나노구조 망간산화물을 개발하려는 많은 시도들이 이루어지고 있다.Manganese oxide has various applications such as electrodes, biphasic catalysts, adsorbents, biosensors, etc. for electrochemical energy storage devices, and many studies have been conducted because it has advantages in industrial applications such as low price, abundant reserves, and low toxicity. come. In addition, many attempts have been made to develop various nanostructured manganese oxides, as the specific surface area can be increased by increasing the specific surface area when the particle size is reduced to nanometer level, compared to the bulk state with microcrystalline size. Are being done.

이러한 다양한 금속산화물 나노구조체를 개발하기 위해 기상-액상-고상법, 역 미셀 법, 수열합성법 등 여러 가지 방법들이 존재하는데, 그 중 저온에서 손쉽고 간단하게 반응할 수 있는 수열합성법이 주로 이용되고 있다. 그러나 수열합성법에 의한 반응은 대부분 저온에서 이루어지기 때문에, 무정형 또는 낮은 결정성을 나타내는 경우가 많다. 기능성 최적화를 위하여 금속산화물의 결정성을 향상시킬 필요성이 있기 때문에, 이를 위하여 고온 소결 과정을 통하여 금속산화물의 결정성을 향상시킨다. 그러나, 이러한 고온의 소결과정은 금속산화물의 결정성의 향상뿐만 아니라 입자크기의 증가라는 결과를 가져온다. 따라서 이 경우 나노결정크기에 기인한 장점을 잃어버리는 결과를 가져온다. In order to develop such various metal oxide nanostructures, various methods such as gas phase-liquid-solid phase method, reverse micelle method, and hydrothermal synthesis method exist. Among them, hydrothermal synthesis method that can be easily and simply reacted at low temperature is mainly used. However, since the reaction by hydrothermal synthesis is mostly performed at low temperature, it often shows amorphous or low crystallinity. Since there is a need to improve the crystallinity of the metal oxide in order to optimize the functionality, for this purpose, the crystallinity of the metal oxide is improved through a high temperature sintering process. However, this high temperature sintering process not only improves the crystallinity of the metal oxide but also increases the particle size. This results in the loss of the advantages attributed to the nanocrystal size.

따라서, 본 발명이 이루고자 하는 기술적 과제는 망간-알루미늄 산화물의 망간-알루미늄 복합산화물를 제조함에 있어, 그 제조 과정이 쉽고 간단하며, 나노미터수준의 입자크기를 유지하면서 높은 결정성을 갖는 다공성 망간-알루미늄 복합산화물 촉매 및 그 제조방법을 제공하는 것이다. Therefore, the technical problem to be achieved in the present invention is to prepare a manganese-aluminum composite oxide of manganese-aluminum oxide, the manufacturing process is easy and simple, porous manganese-aluminum having a high crystallinity while maintaining a nanometer particle size It is to provide a composite oxide catalyst and a method of manufacturing the same.

또한, 본 발명의 또 다른 목적은 상기 촉매의 존재 하에 싸이클로헥센 산화 반응에 의한 2-사이클로헥센-1-올 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for preparing 2-cyclohexene-1-ol by cyclohexene oxidation in the presence of the catalyst.

상기 기술적 과제를 달성하기 위하여, 본 발명은 케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+과 망간전구체를 수열합성반응 후 소결하는 단계를 포함한 방법으로 제조되며, 평균입경이 5 내지 50 nm이고 Mn/Al 몰비가 10내지 50범위인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매를 제공한다.In order to achieve the above technical problem, the present invention includes the step of sintering the aluminum hydroxide cation (AlO 4 Al 12 (OH) 24 (H 2 O) 12 7 + ) and manganese precursor of the keggin structure after the hydrothermal synthesis reaction It is prepared by the method, and provides a porous manganese-aluminum composite oxide catalyst, characterized in that the average particle diameter of 5 to 50 nm and Mn / Al molar ratio ranges from 10 to 50.

또한, 본 발명은 ⅰ)케긴 구조의 알루미늄 전구체와 망간전구체를 수열합성하는 단계 및,; ⅱ)400 내지 800℃ 범위의 온도에서 소결하는 단계를 포함하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법을 제공한다.In addition, the present invention comprises the steps of hydrothermally synthesizing the aluminum precursor and manganese precursor of the keggin structure; Ii) It provides a method for producing a porous manganese-aluminum composite oxide catalyst comprising the step of sintering at a temperature in the range of 400 to 800 ℃.

또한, 본 발명은 상기 알루미늄 전구체와 망간전구체를 수열합성하는 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법을 제공한다.In addition, the present invention provides a method for producing a porous manganese-aluminum composite oxide catalyst, characterized in that hydrothermal synthesis of the aluminum precursor and manganese precursor.

또한, 본 발명은 상기 망간전구체가 과망간산염인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법을 제공한다.In addition, the present invention provides a method for producing a porous manganese-aluminum composite oxide catalyst, characterized in that the manganese precursor is a permanganate.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 사이클로헥산의 산화반응에 의해 2-사이클로헥센-1-올을 제조하는 방법에 있어서, 상기 산화반응이 상기 촉매 존재하에 수행되는 것을 특징으로 하는 2-사이클로헥센-1-올 제조방법을 제공한다.In order to achieve another object of the present invention, the present invention is a method for producing 2-cyclohexen-1-ol by the oxidation reaction of cyclohexane, characterized in that the oxidation reaction is carried out in the presence of the catalyst Provided is a method for preparing 2-cyclohexen-1-ol.

본 발명에 따라 제조한 다공성 망간-알루미늄 복합산화물 촉매는 복잡하지 않은 제조과정을 거치면서도 종래의 망간산화물과는 달리 고온으로 소결처리한 후에도 5-50 nm의 나노크기를 유지하며, 결정성이 향상되는 장점을 가지고 있다. 또한, 본 발명의 다공성 망간-알루미늄 복합산화물 촉매는 반응성 및 선택성이 우수한 알루미늄 산화물과의 망간-알루미늄 복합산화물로, 싸이클로헥센 분자의 산화에 대한 높은 촉매활성을 나타내는 장점을 나타내기도 한다. The porous manganese-aluminum composite oxide catalyst prepared according to the present invention maintains a nano-size of 5-50 nm even after a sintering process at high temperature, unlike a conventional manganese oxide, even though it is not complicated. Has the advantage of being. In addition, the porous manganese-aluminum composite oxide catalyst of the present invention is a manganese-aluminum composite oxide with aluminum oxide having excellent reactivity and selectivity, and also exhibits an advantage of showing high catalytic activity against oxidation of cyclohexene molecules.

이하에서 본 명세서에 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 다공성 망간-알루미늄 복합산화물 촉매는 케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+과 망간전구체를 수열합성반응 후 소결하는 단계를 포함한 방법으로 제조되며, 평균입경이 5 내지 50 nm이고 Mn/Al 몰비가 10내지 50범위인 것을 특징으로 한다.The porous manganese-aluminum composite oxide catalyst of the present invention includes a step of sintering an aluminum hydroxide cation (AlO 4 Al 12 (OH) 24 (H 2 O)) 12 7+ having a keggin structure and a manganese precursor after hydrothermal synthesis. Prepared by the method, the average particle diameter is 5 to 50 nm and Mn / Al molar ratio is characterized in that 10 to 50 range.

본 발명의 다공성 망간-알루미늄 복합산화물 촉매는 ⅰ)케긴 구조의 알루미늄 전구체와 망간전구체를 수열합성하는 단계 및,; ⅱ)400 내지 1,200℃ 범위의 온도에서 소결하는 단계를 포함하는 방법으로 제조된다. 본 발명의 다공성 망간-알루미늄 복합산화물 촉매 제조방법에서 수열합성은 통상 50 내지 150℃ 범위에서 수행되는 것이 바람직하다. 상기 수열합성(hydrothermal reaction)은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 모두 잘 알고 있는 것이므로 본 명세서에서 더 이상의 설명은 하지 않기로 한다.  The porous manganese-aluminum composite oxide catalyst of the present invention comprises the steps of: hydrothermally synthesizing an aluminum precursor having a kegin structure and a manganese precursor; Ii) sintering at a temperature ranging from 400 to 1,200 ° C. In the method for preparing a porous manganese-aluminum composite oxide catalyst of the present invention, hydrothermal synthesis is preferably performed in a range of 50 to 150 ° C. Since the hydrothermal reaction is well known to those of ordinary skill in the art to which the present invention pertains, no further description will be given herein.

전술한 바와 같이, 일반적인 무기촉매의 경우 소결을 하게 되면 입자의 성장으로 거대입자가 되어 촉매활성이 떨어지게 된다. 그러나, 본 발명의 망간-알루미늄 복합산화물 촉매는 고온의 소결처리를 통해 결정성이 향상되면서도 입자의 크기가 5 내지 50 nm 범위로 유지할 수 있어 촉매특성이 매우 우수하다. As described above, in the case of the general inorganic catalyst, when sintered, the particles become large particles due to the growth of the particles, thereby degrading the catalytic activity. However, the manganese-aluminum composite oxide catalyst of the present invention has excellent crystallinity as the particle size can be maintained in the range of 5 to 50 nm while improving crystallinity through high temperature sintering.

본 발명의 망간-알루미늄 복합산화물 촉매의 제조시 소결단계는 400 내지 1,200℃ 범위의 온도, 바람직하게는 400 내지 800℃ 범위의 온도에서 수행되는 것이 바람직하다. 상기 소결이 400℃ 미만에서 수행되는 경우에는 결정성의 향상이 미미하고, 반면 1,200℃를 초과하면 소결 후 촉매 입자가 너무 커지기 때문이다. In the preparation of the manganese-aluminum composite oxide catalyst of the present invention, the sintering step is preferably performed at a temperature in the range of 400 to 1,200 ° C, preferably at a temperature in the range of 400 to 800 ° C. If the sintering is carried out below 400 ℃ the improvement of crystallinity is insignificant, whereas if it exceeds 1,200 ℃ catalyst particles after sintering is too large.

이하에서 본 발명의 바람직한 태양인 실시예를 통해 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to examples which are preferred embodiments of the present invention.

(제조)실시예 및 비교예(Manufacture) Example and Comparative Example

0.2 M 질산알루미늄(aluminium nitrate) 수용액 200 ml에 2.79 M 수산화나트륨(sodium hydroxide) 용액 26 ml을 적하시킴으로써 Al13 7+ 케긴 클러스터(keggin cluster) 이온 수용액을 준비하였다. 이때 OH/Al 몰비는 1.8로 하였다. 이와 별도로 망간전구체로서 0.12 M 과망간산 수용액 50 ml을 준비하였다. 과망간산 수용액과 0.0136 M Al13 7+ 케긴(keggin) 수용액 24 ml을 Mn/Al의 몰비가 18이 되도록 수열반응기에 혼합하여 넣고 70 ℃의 온도를 유지하며 3시간동안 수열합성하여 망간 -알루미늄 복합산화물을 제조하였다. 반응 후 얻은 어두운색의 젖은 분말은 원심분리기를 통해 분리하고 에탄올을 이용하여 세척 후 60 ℃ 오븐에서 건조시켜 망간-알루미늄 복합산화물을 수득하였다. 상기 망간-알루미늄 복합산화물의 결정성을 향상시키기 위해 각각 400, 600 및 800 ℃에서 3시간동안 대기중에서 열처리하였다.An aqueous solution of Al 13 7+ keggin cluster ion was prepared by dropping 26 ml of a 2.79 M sodium hydroxide solution into 200 ml of a 0.2 M aqueous aluminum nitrate solution. At this time, the OH / Al molar ratio was 1.8. Separately, 50 ml of an aqueous 0.12 M permanganic acid solution was prepared as a manganese precursor. Permanganic acid solution and 0.0136 M Al 13 7+ keggin aqueous solution were mixed in a hydrothermal reactor so that the molar ratio of Mn / Al was 18, and the mixture was hydrothermally synthesized for 3 hours while maintaining a temperature of 70 ° C. for manganese-aluminum composite oxide. Was prepared. The dark wet powder obtained after the reaction was separated through a centrifuge, washed with ethanol and dried in an oven at 60 ℃ to obtain a manganese-aluminum composite oxide. In order to improve the crystallinity of the manganese-aluminum composite oxide, heat treatment was performed in air at 400, 600 and 800 ° C. for 3 hours.

도 1은 다공성 망간-알루미늄 복합산화물 분말의 X-선 회절 패턴이다. 도 1에서 각각 a)는 수열합성에 의해 얻어진 망간-알루미늄 복합산화물, b) 400 ℃ 열처리한 망간-알루미늄 복합산화물, c) 600 ℃ 열처리된 망간-알루미늄 복합산화물 및 d) 800 ℃ 열처리한 망간-알루미늄 복합산화물이다. 70 ℃에서 수열합성을 통해 합성된 망간-알루미늄 복합산화물와 400 ℃ 열처리한 망간-알루미늄 복합산화물은 어떠한 브래그(Bragg) 피크도 보이지 않은 비정질 구조를 가지고 있으며, 작은 미립자 형태를 갖는 것을 알 수 있었다. 600 ℃ 열처리한 망간-알루미늄 복합산화물 분말은 2 X 2 기공을 갖는 α-MnO2의 결정구조와 위와 같은 미립자 형태를 갖는 것을 발견하였고, 800 ℃ 열처리한 망간-알루미늄 복합산화물 분말은 Mn3O4/Mn2O3의 결정구조와 미립자 형태를 갖는 것으로 확인하였다. 열처리 후에도 알루미늄 산화물에 기인한 XRD 피크가 관찰되지 않는 것으로 보아 알루미늄 산화물은 비정질에 가까운 상태로 존재하는 것으로 해석된다.1 is an X-ray diffraction pattern of a porous manganese-aluminum composite oxide powder. In Figure 1 each a) is a manganese-aluminum composite oxide obtained by hydrothermal synthesis, b) manganese-aluminum composite oxide heat-treated at 400 ℃, c) manganese-aluminum composite oxide heat-treated at 600 ℃ and d) manganese-heat treatment at 800 ℃ Aluminum composite oxide. The manganese-aluminum composite oxide synthesized through hydrothermal synthesis at 70 ° C. and the manganese-aluminum composite oxide heat-treated at 400 ° C. had an amorphous structure in which no Bragg peak was observed, and had a small particulate form. It was found that the manganese-aluminum composite oxide powder heat-treated at 600 ° C. had a crystal structure of α-MnO 2 having 2 × 2 pores and the above fine particle shape, and the manganese-aluminum composite oxide powder heated at 800 ° C. was Mn 3 O 4. / Mn 2 O 3 It was confirmed to have a crystal structure and a particulate form. Since the XRD peak due to aluminum oxide is not observed even after the heat treatment, it is interpreted that the aluminum oxide exists in an amorphous state.

또한, 열처리에 따른 망간-알루미늄 복합산화물의 국부 구조상태 변화를 확인하기 위해 라만 분광 측정을 하였다. 도 2는 본 발명에 의하여 합성된 다공성 망간-알루미늄 복합산화물의 라만 분광 분석 결과이다. 도2에서 각각 a)는 수열합성에 의해 얻어진 망간-알루미늄 복합산화물, b) 400 ℃ 열처리한 망간-알루미늄 복합산화물, c) 600 ℃ 열처리된 망간-알루미늄 복합산화물 및 d) 800 ℃ 열처리한 망간-알루미늄 복합산화물의 스펙트럼이다. XRD 결과와 일치하게 600 ℃ 열처리한 망간-알루미늄 복합산화물 분말은 α-MnO2 상에 해당하는 라만 스펙트럼을 보였으며 800 ℃ 열처리 후에는 Mn3O4/Mn2O3에 해당하는 스펙트럼을 보였다. 라만 스펙트럼이 국부구조를 잘 반영함에도 불구하고 알루미늄 산화물에 해당하는 라만 피크는 관찰되지 않았다. 여러 가지 알루미늄 산화물 상 중에 α-Al2O3이나 β-Al2O3은 특징적인 라만피크를 보이나 γ-Al2O3는 거의 라만 피크를 나타내지 않는 것으로 알려져 있다. 따라서 합성된 나노복합체 중에 알루미늄 산화물은 γ-Al2O3의 구조로 안정화되어 있다고 해석할 수 있다.In addition, Raman spectroscopy was performed to confirm the local structural state change of the manganese-aluminum composite oxide due to heat treatment. 2 is a Raman spectroscopic analysis of the porous manganese-aluminum composite oxide synthesized according to the present invention. In Fig. 2, respectively, a) represents manganese-aluminum composite oxide obtained by hydrothermal synthesis, b) manganese-aluminum composite oxide heat treated at 400 ° C., c) manganese-aluminum composite oxide heat treated at 600 ° C., and d) manganese heat treated at 800 ° C. It is the spectrum of aluminum composite oxide. According to the XRD results, the manganese-aluminum composite oxide powder heat-treated at 600 ° C. showed a Raman spectrum corresponding to α-MnO 2 and a spectrum corresponding to Mn 3 O 4 / Mn 2 O 3 after 800 ° C. heat treatment. Although the Raman spectrum reflects the local structure well, no Raman peak corresponding to aluminum oxide was observed. Among various aluminum oxide phases, α-Al 2 O 3 and β-Al 2 O 3 show characteristic Raman peaks, but γ-Al 2 O 3 hardly exhibits Raman peaks. Therefore, it can be interpreted that the aluminum oxide in the synthesized nanocomposite is stabilized by the structure of γ-Al 2 O 3 .

이와 같이 얻어진 결정구조의 형태를 확인하기 위해 주사전자현미경(SEM)으로 확인하였다. 도3에서 각각 a)는 수열합성에 의해 얻어진 망간-알루미늄 복합산화물, b) 400 ℃ 열처리한 망간-알루미늄 복합산화물, c) 600 ℃ 열처리된 망간-알루미늄 복합산화물 및 d) 800 ℃ 열처리한 망간-알루미늄 복합산화물의 주사전자현미경 사진이다. 도 3에 보여 지는 것과 같이 70 ℃에서 수열합성을 통해 합성된 망간-알루미늄 복합산화물과 400 ℃, 600 ℃, 800 ℃의 열처리를 한 망간-알루미늄 복합산화물 모두 미립자 형태를 가지고 있다는 것을 확인하였다. 또한, 각각의 결정 크기와 결정 형태, 그리고 원소성분을 교차확인하기 위해서 투과전자현미경(TEM)을 활용하여 측정하였다. 도 4에서 보는 바와 같이 a)는 수열합성에 의해 얻어진 망간-알루미늄 복합산화물, b) 600 ℃ 열처리된 망간-알루미늄 복합산화물이다. 도 3에 나타난 바와 같이, a), c) 두 망간-알루미늄 복합산화물 모두 미립자 형태인 것을 확인할 수 있다. a), b)의 영상 아래의 작은 사진에는 선택적 지역 전자 회절(Selected Area Electron Diffraction)에 대한 점(spot)들이 나타나 있다. a) 경우 비정질, b)의 경우 사방정계 구조를 갖고 있다는 것을 확인할 수 있었다. 도 5의 a), b)는 각각 a)수열합성에 의해 얻어진 망간-알루미늄 복합산화물, b) 600 ℃ 열처리된 망간-알루미늄 복합산화물의 EDS Mapping을 이용한 정량적 분석 결과이다. 이를 통해 알루미늄과 망간이온이 고르게 분포되어 있음을 알 수 있어 망간-알루미늄 복합산화물의 합성을 확인해 준다. 합성한 망간-알루미늄 복합산화물 선구물질의 열중량 분석(TGA) 결과를 도 6에 나타내었다. 도 6 으로부터, 합성한 망간 산화물-알루미늄 산화물 망간-알루미늄 복합산화물은 220 ℃ 부근에서 22%의 급격한 질량감소를 보이는데 이는 흡착된 물분자와 수산화기의 제거에 기인한 것이다. 또한 620 ℃ 부근에서 약간의 질량감소를 나타냄을 확인 할 수 있었는데 이는 망간 +4가 이온이 +3가 이온으로 환원되는 데에 기인하는 산소 함량의 감소 때문이다. 도 7은 다공성 망간-알루미늄 복합산화물 분말의 비표면적 측정을 위한 BET 분석을 통한 등온 흡착 및 탈착곡선을 나타내는 그래프로서, 관찰된 이력현상은 이들이 다공성 구조를 가짐을 확인해 준다. 또한, 각각의 분말의 비표면적 을 보면, a) 수열합성에 의해 얻어진 망간-알루미늄 복합산화물 (416 m2/g), b) 400 ℃ 열처리한 망간-알루미늄 복합산화물 (333 m2/g), c) 600 ℃ 열처리된 망간-알루미늄 복합산화물 (145 m2/g), (d) 800 ℃ 열처리한 망간-알루미늄 복합산화물(68 m2/g)로서 고온으로 갈수록 비표면적은 감소하는 경향을 확인 할 수 있으며, 이는 열처리과정에서 입자간의 소결이 진행하여 입자의 크기가 증가함을 나타낸다.In order to confirm the form of the crystal structure thus obtained, scanning electron microscopy (SEM) was confirmed. In Fig. 3, respectively, a) represents manganese-aluminum composite oxide obtained by hydrothermal synthesis, b) manganese-aluminum composite oxide heat treated at 400 ° C., c) manganese-aluminum composite oxide heat treated at 600 ° C., and d) manganese heat treated at 800 ° C. Scanning electron micrograph of aluminum composite oxide. As shown in FIG. 3, manganese-aluminum composite oxide synthesized through hydrothermal synthesis at 70 ° C. and manganese-aluminum composite oxide subjected to heat treatment at 400 ° C., 600 ° C. and 800 ° C. were confirmed to have particulate forms. In addition, it was measured using a transmission electron microscope (TEM) to cross-check each crystal size, crystal form, and elemental components. As shown in Figure 4 a) is a manganese-aluminum composite oxide obtained by hydrothermal synthesis, b) manganese-aluminum composite oxide heat-treated at 600 ℃. As shown in FIG. 3, it can be seen that a) and c) both manganese-aluminum composite oxides are in particulate form. Small pictures below the images of a) and b) show spots for Selected Area Electron Diffraction. It was confirmed that a) amorphous and b) tetragonal structure. 5 a) and b) are quantitative analysis results using EDS Mapping of a) manganese-aluminum composite oxides obtained by hydrothermal synthesis and b) manganese-aluminum composite oxides heat-treated at 600 ° C., respectively. This shows that aluminum and manganese ions are evenly distributed, confirming the synthesis of manganese-aluminum composite oxide. The thermogravimetric analysis (TGA) results of the synthesized manganese-aluminum composite oxide precursors are shown in FIG. 6. From FIG. 6, the synthesized manganese oxide-aluminum oxide manganese-aluminum composite oxide shows a sudden mass loss of 22% at around 220 ° C. due to the removal of adsorbed water molecules and hydroxyl groups. It was also confirmed that there was a slight mass loss around 620 ℃ because of the decrease in oxygen content due to the reduction of manganese +4 ions into +3 ions. FIG. 7 is a graph showing isothermal adsorption and desorption curves through BET analysis for measuring specific surface areas of porous manganese-aluminum composite oxide powders. The observed hysteresis confirms that they have a porous structure. In addition, the specific surface area of each powder shows: a) manganese-aluminum composite oxide (416 m 2 / g) obtained by hydrothermal synthesis, b) manganese-aluminum composite oxide (333 m 2 / g), heat-treated at 400 ° C., c) Manganese-aluminum composite oxide (145 m 2 / g) heat-treated at 600 ° C, (d) Manganese-aluminum composite oxide (68 m 2 / g) heat-treated at 800 ° C, and the specific surface area decreased with increasing temperature. This indicates that the sintering between the particles in the heat treatment process increases the size of the particles.

(사용)실시예 및 비교예(Use) Examples and Comparative Examples

도 8 내지 도 12는 싸이클로헥산 산화반응에 대한 촉매활성 성능 평가 결과이다. 도 8은 수열합성에 의해 얻어진 다공성 망간-알루미늄 복합산화물, 도 9는 400 ℃ 열처리한 망간-알루미늄 복합산화물, 도 10은 600 ℃ 열처리된 망간-알루미늄 복합산화물, 도 11은 800 ℃ 열처리한 망간-알루미늄 복합산화물에 대한 그래프이며, 도 12는 2시간 이내에 온도별 반응성과 2-사이클로헥센-1-올(2-cyclo-hexene-1-ol)에 대한 선택성을 나타낸 그래프이다. 600 ℃ 열처리 후의 망간-알루미늄 복합산화물은 15분이 경과한 후 90% 이상의 전환빈도수와 60%의 2-cyclo-hexene-1-ol에 대한 선택성을 갖는 매우 높은 활성의 산화촉매임을 확인할 수 있다. 이 결과는 다공성 망간-알루미늄 복합산화물 촉매가 올레핀 분자의 산화 촉매로서의 높은 활성을 갖고 있음을 보여준다.8 to 12 show the results of evaluating catalytic activity for cyclohexane oxidation. FIG. 8 is a porous manganese-aluminum composite oxide obtained by hydrothermal synthesis, FIG. 9 is a manganese-aluminum composite oxide heat-treated at 400 ° C, FIG. 10 is a manganese-aluminum composite oxide heat-treated at 600 ° C, and FIG. 12 is a graph showing the aluminum composite oxide, and FIG. 12 is a graph showing the reactivity according to temperature and the selectivity to 2-cyclohexene-1-ol within 2 hours. After the heat treatment at 600 ° C., the manganese-aluminum composite oxide was found to be a highly active oxidation catalyst having a conversion frequency of 90% or more and selectivity to 60% 2-cyclo-hexene-1-ol after 15 minutes. This result shows that the porous manganese-aluminum composite oxide catalyst has a high activity as an oxidation catalyst of the olefin molecule.

앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것 으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.One embodiment of the present invention described above should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

도 1은 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 결정구조를 나타낸 분말 X-선 회절(powder X-ray diffraction) 그래프1 is a powder X-ray diffraction graph showing the crystal structure of the porous manganese-aluminum composite oxide prepared in the (Manufacture) Examples and Comparative Examples of the present invention

도 2는 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 라만 스펙트럼2 is a Raman spectrum of the porous manganese-aluminum composite oxide prepared in the (Manufacture) Examples and Comparative Examples of the present invention

도 3은 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 결정형태를 주사전자현미경(SEM) 사진3 is a scanning electron microscope (SEM) photograph of the crystalline form of the porous manganese-aluminum composite oxide prepared in (Manufacture) Examples and Comparative Examples of the present invention

도 4는 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 결정형태와 결정구조를 투과전자현미경(TEM) 사진 및 선택적 지역 전자 회절(Selected Area Electron Diffraction)그래프FIG. 4 is a transmission electron microscope (TEM) photograph and a selected area electron diffraction graph of the crystal form and crystal structure of the porous manganese-aluminum composite oxide prepared in the (Manufacture) Examples and Comparative Examples of the present invention.

도 5는 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 EDS 맵핑(mapping) 결과5 is an EDS mapping result of the porous manganese-aluminum composite oxide prepared in the (Manufacture) Examples and Comparative Examples of the present invention.

도 6은 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 열중량 분석기를 이용한 무게 손실에 관한 그래프Figure 6 is a graph of the weight loss using the thermogravimetric analyzer of the porous manganese-aluminum composite oxide prepared in the (Manufacture) Example and Comparative Example of the present invention

도 7은 본 발명의 (제조)실시예 및 비교예에서 제조된 다공성 망간-알루미늄 복합산화물의 BET분석을 통한 등온 흡착 및 탈착곡선을 나타내는 그래프Figure 7 is a graph showing the isothermal adsorption and desorption curves through the BET analysis of the porous manganese-aluminum composite oxide prepared in (Manufacture) Examples and Comparative Examples of the present invention

도 8은 수열합성에 의해 얻어진 다공성 망간-알루미늄 복합산화물의 촉매활성을 나타낸 그래프8 is a graph showing the catalytic activity of a porous manganese-aluminum composite oxide obtained by hydrothermal synthesis

도 9는 400 ℃ 열처리한 망간-알루미늄 복합산화물의 촉매활성을 나타낸 그 래프9 is a graph showing the catalytic activity of a manganese-aluminum composite oxide heat-treated at 400 ℃

도 10은 600 ℃ 열처리된 망간-알루미늄 복합산화물의 촉매활성을 나타낸 그래프10 is a graph showing the catalytic activity of a manganese-aluminum composite oxide heat-treated at 600 ℃

도 11은 800 ℃ 열처리한 망간-알루미늄 복합산화물의 촉매활성을 나타낸 그래프11 is a graph showing the catalytic activity of a manganese-aluminum composite oxide heat-treated at 800 ℃

도 12는 2시간 이내에 온도별 반응성과 2-사이클로헥센-1-올(2-cyclo-hexene-1-ol)에 대한 선택성을 나타낸 그래프(도면 중 (a), (b), (c) 및 (d)는 각각 열처리를 하지 않은 망간-알루미늄 복합산화물, 400 ℃, 600 ℃ 및 800 ℃에서 열처리한 망간-알루미늄 복합산화물의 결과)12 is a graph showing the reactivity and temperature selectivity for 2-cyclohexene-1-ol within 2 hours ((a), (b), (c) and (d) shows the results of manganese-aluminum composite oxides which were not heat treated, and manganese-aluminum composite oxides which were heat treated at 400 ° C., 600 ° C. and 800 ° C., respectively.

Claims (5)

케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+과 망간전구체를 수열합성반응 후 소결하는 단계를 포함한 방법으로 제조되며,It is prepared by a method including the step of sintering after the hydrothermal synthesis of aluminum hydroxide cation (AlO 4 Al 12 (OH) 24 (H 2 O) 12 7 + ) of the keggin structure and the manganese precursor, 평균입경이 5 내지 50 nm이고 Mn/Al 몰비가 10 내지 50범위인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매.A porous manganese-aluminum composite oxide catalyst having an average particle diameter of 5 to 50 nm and a Mn / Al molar ratio in the range of 10 to 50. ⅰ)케긴 구조의 알루미늄 전구체와 망간전구체를 수열합성하는 단계,;Iii) hydrothermally synthesizing an aluminum precursor and a manganese precursor having a kegin structure; ⅱ)400℃ 내지 800℃범위의 온도에서 소결하는 단계를 포함하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법.Ii) A method for producing a porous manganese-aluminum composite oxide catalyst comprising the step of sintering at a temperature ranging from 400 ° C to 800 ° C. 제2항에 있어서,The method of claim 2, 상기 케긴 구조의 알루미늄 전구체와 망간전구체는 Mn/Al 몰비가 10 내지 50범위인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법.The method of preparing a porous manganese-aluminum composite oxide catalyst, characterized in that the keggin aluminum precursor and manganese precursor has a Mn / Al molar ratio of 10 to 50. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3, 상기 케긴 구조의 알루미늄 전구체는 케긴(keggin) 구조의 알루미늄 수산화 양이온 (AlO4Al12(OH)24(H2O)12 7+이고, 망간전구체는 과망간산염인 것을 특징으로 하는 다공성 망간-알루미늄 복합산화물 촉매 제조방법.The kegin-structured aluminum precursor is a keggin-structured aluminum hydroxide cation (AlO 4 Al 12 (OH) 24 (H 2 O) 12 7+ , and the manganese precursor is a permanganate, characterized in that the porous manganese-aluminum composite Oxide catalyst production method. 사이클로헥산의 산화반응에 의해 2-사이클로헥센-1-올을 제조하는 방법에 있어서, In the method for producing 2-cyclohexen-1-ol by oxidation of cyclohexane, 상기 산화반응은 제1항의 촉매 존재하에 수행되는 것을 특징으로 하는 2-사이클로헥센-1-올 제조방법.The oxidation reaction is carried out in the presence of the catalyst of claim 1, characterized in that 2-cyclohexene-1-ol.
KR1020080102685A 2008-10-20 2008-10-20 Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst Expired - Fee Related KR100956957B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080102685A KR100956957B1 (en) 2008-10-20 2008-10-20 Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080102685A KR100956957B1 (en) 2008-10-20 2008-10-20 Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst

Publications (2)

Publication Number Publication Date
KR20100043594A KR20100043594A (en) 2010-04-29
KR100956957B1 true KR100956957B1 (en) 2010-05-12

Family

ID=42218539

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102685A Expired - Fee Related KR100956957B1 (en) 2008-10-20 2008-10-20 Porous manganese-aluminum composite oxide catalyst, preparation method thereof and preparation method of 2-cyclohexene-1-ol using the catalyst

Country Status (1)

Country Link
KR (1) KR100956957B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007877A (en) * 2001-04-10 2003-01-23 악상스 Alumina pellets, catalyst supports, catalysts or absorbent containing same and methods for preparing same
JP2005139051A (en) 2003-11-10 2005-06-02 National Institute For Materials Science Layered manganese oxide porous body having an aluminum hydroxide crosslinked structure and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007877A (en) * 2001-04-10 2003-01-23 악상스 Alumina pellets, catalyst supports, catalysts or absorbent containing same and methods for preparing same
JP2005139051A (en) 2003-11-10 2005-06-02 National Institute For Materials Science Layered manganese oxide porous body having an aluminum hydroxide crosslinked structure and method for producing the same

Also Published As

Publication number Publication date
KR20100043594A (en) 2010-04-29

Similar Documents

Publication Publication Date Title
Kadi et al. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg (II) photoreduction under visible light
Suzuki et al. Visible light-sensitive mesoporous N-doped Ta 2 O 5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO 2 reduction
Thirumalairajan et al. Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO 3 nanostructures comprised of nanosheet petals
Zhong et al. Comparison of TiO 2 and gC 3 N 4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution
US10898880B2 (en) Method of making a copper oxide-titanium dioxide nanocatalyst
Jiang et al. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO 2− x N x derived from the ethylenediamine-based complex
Shao et al. Sol–gel synthesis of vanadium doped titania: Effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight
Li et al. Preparation, characterization and catalytic activity of palladium nanoparticles encapsulated in SBA-15
Roy et al. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: tuning properties for efficient CO oxidation
Liu et al. Enhanced photocatalytic activity by tailoring the interface in TiO2–ZrTiO4 heterostructure in TiO2–ZrTiO4–SiO2 ternary system
Jana et al. Mixed NaNb x Ta 1− x O 3 perovskites as photocatalysts for H 2 production
Dahl et al. Control of the crystallinity in TiO 2 microspheres through silica impregnation
Chen et al. Surfactant-additive-free synthesis of 3D anatase TiO 2 hierarchical architectures with enhanced photocatalytic activity
Li et al. Niobate nanoscroll composite with Fe 2 O 3 particles under moderate conditions: assembly and application research
Lucky et al. A One‐Step Approach to the Synthesis of ZrO2‐Modified TiO2 Nanotubes in Supercritical Carbon Dioxide
Sui et al. Sol–gel synthesis of linear Sn-doped TiO 2 nanostructures
Lucky et al. N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and photocatalytic activity
US20100179053A1 (en) Metal oxide nanotube-supported gold catalyst and preparing method thereof
Xu et al. Anatase TiO2-pillared hexaniobate mesoporous nanocomposite with enhanced photocatalytic activity
Mohammadi et al. Synthesis of highly pure nanocrystalline and mesoporous CaTiO3 by a particulate sol–gel route at the low temperature
Jiang et al. A direct route for the synthesis of nanometer-sized Bi 2 WO 6 particles loaded on a spherical MCM-48 mesoporous molecular sieve
Zhang et al. Ionic liquid-assisted synthesis of morphology-controlled TiO 2 particles with efficient photocatalytic activity
Shao et al. Peptization technique in the synthesis of titania–silica composites and their photocatalytic properties
Wang et al. A ZrO 2-RGO composite as a support enhanced the performance of a Cu-based catalyst in dehydrogenation of diethanolamine
WO2017068350A1 (en) Methods of making metal oxide catalysts

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20081020

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20100429

PG1501 Laying open of application
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20100430

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20100430

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20130729

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20130729

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20140416

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20150427

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20160427

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20171024

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20171024

Start annual number: 8

End annual number: 8

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20190211