[go: up one dir, main page]

KR100942893B1 - Method for producing a catalyst with high methacrylic acid selectivity - Google Patents

Method for producing a catalyst with high methacrylic acid selectivity Download PDF

Info

Publication number
KR100942893B1
KR100942893B1 KR1020070023112A KR20070023112A KR100942893B1 KR 100942893 B1 KR100942893 B1 KR 100942893B1 KR 1020070023112 A KR1020070023112 A KR 1020070023112A KR 20070023112 A KR20070023112 A KR 20070023112A KR 100942893 B1 KR100942893 B1 KR 100942893B1
Authority
KR
South Korea
Prior art keywords
catalyst
methacrylic acid
maa
kegin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020070023112A
Other languages
Korean (ko)
Other versions
KR20080082350A (en
Inventor
이원호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020070023112A priority Critical patent/KR100942893B1/en
Publication of KR20080082350A publication Critical patent/KR20080082350A/en
Application granted granted Critical
Publication of KR100942893B1 publication Critical patent/KR100942893B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/145Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide with simultaneous oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 메타크릴산 선택도가 높은 촉매를 제조하는 방법 및 이 촉매를 사용하여 메타크릴산을 제조하는 방법에 관한 것으로, 좀 더 상세하게는, 케긴 타입 촉매를 사용하여 메타크롤레인으로부터 메타크릴산을 제조하는 방법에 있어서, 목표가 되는 생성물인 메타크릴산으로 케긴타입의 촉매를 전처리하는 단계를 포함하도록 하는 데에 특징이 있다. 본 발명에 따른 메타크릴산의 제조방법에 따르면, 촉매의 전처리 단계에서 최종생성물로 간단히 전처리하는 것에 의하여 촉매의 구조를 변화시켜 최종생성물의 선택율을 높이게 되는 효과를 얻을 수 있다.The present invention relates to a method for preparing a catalyst having high methacrylic acid selectivity and a method for producing methacrylic acid using the catalyst, and more particularly, to methacrylic acid from methacrolein using a kegin type catalyst. The method for producing an acid is characterized by including a step of pretreatment of a kegin type catalyst with methacrylic acid as a target product. According to the method for producing methacrylic acid according to the present invention, it is possible to obtain an effect of changing the structure of the catalyst by simply pretreating the final product in the pretreatment step of the catalyst to increase the selectivity of the final product.

메타크릴산, 메타크롤레인, 선택도, 케긴 타입 촉매, 헤테로폴리산계 촉매, 폴리옥소메탈레이트 Methacrylic acid, methacrolein, selectivity, keggin type catalyst, heteropolyacid-based catalyst, polyoxometalate

Description

메타크릴산 선택도가 높은 촉매의 제조방법{CATALYST PREPARATION METHOD FOR METHACRYLIC ACID PRODUCTION WITH HIGH SELECTIVITY}Method for producing a catalyst having high methacrylic acid selectivity {CATALYST PREPARATION METHOD FOR METHACRYLIC ACID PRODUCTION WITH HIGH SELECTIVITY}

도 1은, 본 발명에 따른 실험장치의 개략도. 1 is a schematic view of an experimental apparatus according to the present invention.

도 2는, 메타크롤레인의 유입 속도에 따른 메타크릴산으로의 전환율 및 선택도 그래프. 2 is a graph showing the conversion rate and selectivity to methacrylic acid according to the inflow rate of methacrolein.

도 3a 내지 3c는, 메타크릴산으로 전처리된 촉매(실선-점선)와 전처리하지 않은 촉매(점선)를 사용한 경우, 반응물 및 생성물의 펄스를 측정한 결과 그래프. 3A to 3C are graphs of pulses of reactants and products when using catalysts (solid line-dashed) pretreated with methacrylic acid and catalysts (dotted line) not pretreated (dashed line).

도 4는, Cs2H2PMo11VO40 샘플의 FTIR. 4 is an FTIR of a Cs 2 H 2 PMo 11 VO 40 sample.

도 5는, Cs2H2PMo11VO40 샘플의 XRD 패턴.5 is an XRD pattern of Cs 2 H 2 PMo 11 VO 40 sample.

도 6는, Cs2H2PMo11VO40 염의 격자 파라미터의 변화를 나타내는 그래프.6 is a graph showing changes in lattice parameters of Cs 2 H 2 PMo 11 VO 40 salt.

본 발명은 메타크릴산(MAA)을 높은 선택도로 제조하기 위한 촉매의 제조 방법 및 이 촉매를 사용하여 메타크릴산을 제조하는 방법에 관한 것으로서, 특히 케긴 타입 헤테로폴리산(HPA) 촉매를 사용하여 메타크릴산을 제조하는 방법에 관한 것이 다. The present invention relates to a process for preparing a catalyst for producing methacrylic acid (MAA) with high selectivity and to a process for producing methacrylic acid using the catalyst, in particular using a keggin type heteropolyacid (HPA) catalyst It relates to a method of preparing an acid.

메타크릴산을 제조하기 위한 방법의 하나로서, 헤테로폴리산계 촉매를 사용하여 메타크롤레인을 기상 접촉 산화시키는 것은 잘 알려진 방법이다. As one of the methods for producing methacrylic acid, it is a well known method to vapor-phase catalytic oxidize methacrolein using a heteropolyacid-based catalyst.

미국특허 제4,558,028호(1985.12.10 등록)에는 MoaPbAcBdCeDfOx( 여기서, Mo는 몰리브덴(molybdenum), P는 인(phosphorus), A는 As, Sb, Ge, Bi, Zr 및 Se으로 이루어지는 군으로부터 선택된 1종 이상의 원소이고, B는 Cu, Fe, Cr, Ni, Mn, Co, Sn, Ag, Zn 및 Rh으로 이루어지는 군으로부터 선택된 1종 이상의 원소이며, C는 V, W 및 Nb으로 이루어지는 군으로부터 선택된 1종 이상의 원소이고, D는 알칼리 금속, 알칼리 토금속 및 탈륨(thallium)으로 이루어지는 군으로부터 선택된 1종 이상의 원소이고, O는 산소이며, a는 12, b는 0.5~4, c는 0~5, d는 0~3, e는 0~4, f는 0.01~4이고, x는 각 원소의 산화상태를 고려한 값이다)을 조성으로 하는 촉매를 제조하는 방법을 개시하고 있다. U.S. Patent 4,558,028 (registered Dec. 10, 1985) discloses Mo a P b A c B d C e D f O x (where Mo is molybdenum, P is phosphorus, A is As, Sb, Ge , At least one element selected from the group consisting of Bi, Zr and Se, B is at least one element selected from the group consisting of Cu, Fe, Cr, Ni, Mn, Co, Sn, Ag, Zn and Rh, and C Is at least one element selected from the group consisting of V, W and Nb, D is at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, O is oxygen, a is 12, b Is 0.5-4, c is 0-5, d is 0-3, e is 0-4, f is 0.01-4, and x is a value considering the oxidation state of each element). A method is disclosed.

상기와 같은 조성을 가지는 촉매는 건조 과정을 거친 후 일정한 모양으로 성형하는 과정을 거치고, 다시 소성하여 최종 촉매가 된다. 성형하는 과정을 통하여 일반적으로 직경 5 ㎜, 길이 5 ㎜ 정도의 펠렛(pellet) 형태를 가지며, 소성 과정에서 분해가능한 암모늄 형태나 질산염 형태가 분해되어 최종적으로 원하는 구조와 조성을 가지는 촉매가 된다. 이때, 소성온도는 300~500 ℃이며, 산소 분위기 또는 질소 분위기 하에서 실시된다. The catalyst having the composition as described above is subjected to a process of forming into a predetermined shape after drying and then calcined again to become a final catalyst. Through the molding process, a pellet having a diameter of about 5 mm and a length of about 5 mm is generally formed, and the decomposable ammonium or nitrate form is decomposed during the firing process to finally form a catalyst having a desired structure and composition. At this time, the firing temperature is 300 to 500 ° C and is carried out in an oxygen atmosphere or a nitrogen atmosphere.

미국특허 제4,621,155호(1986. 11. 04 등록)에는 헤테로폴리산 촉매 제조시 N을 함유하는 물질인 피리딘(pyridine), 피페리딘(piperidine) 또는 피페라진(piperazine) 등을 첨가하여 촉매를 제조하면 촉매의 성형성과 물리성 강도, 그리고 촉매 제조의 재현성을 높일 수 있다고 주장하고 있다. U.S. Patent No. 4,621,155 (registered Nov. 4, 1986) includes preparing a catalyst by adding pyridine, piperidine, or piperazine, an N-containing material, to prepare a heteropolyacid catalyst. It is claimed to increase the moldability, physical strength and reproducibility of catalyst production.

촉매의 제조방법은 금속성분의 전구체에 따라 다르나, 일반적으로 금속나이트레이트(NO3 -)가 많이 사용된다. The method of preparing the catalyst depends on the precursor of the metal component, but metal nitrate (NO 3 ) is generally used.

미국특허 제6,333,293B1호(2001.12.25 등록)의 실시예 1에 개시된 바를 정리하면 다음과 같다. 암모늄 파라몰리브데이트(ammonium paramolybdate)와 암모늄 파라바나데이트(ammonium paravanadate)를 가열된 물에 녹이고 교반한다. 여기에 85 %의 인산을 적정량 주입하고 질산세슘(cesium nitrate)과 질산구리(copper nitrate)를 주입하여 만든 용액을 가열, 건조하여 촉매를 제조한다. The bar disclosed in Example 1 of US Pat. No. 6,333,293B1 (registered Dec. 25, 2001) is as follows. Ammonium paramolybdate and ammonium paravanadate are dissolved in heated water and stirred. The catalyst is prepared by heating and drying a solution made by injecting an appropriate amount of 85% phosphoric acid and injecting cesium nitrate and copper nitrate.

미국특허 제6,458,740B2호(2002.10.01 등록)에는 암모늄 파라몰리브데이트(ammonium paramolybdate)와 암모늄 메타바나데이트(ammonium metavanadate)를 피리딘(pyridine)과 85 % 인산(phosphoric acid)에 넣은 후, 여기에 질산과 질산세슘(cesium nitrate) 그리고 질산구리(copper nitrate)를 넣어 공침시킨 후, 이를 가열 건조하는 방법을 개시하고 있다. 또한, 상기 특허에서는 전구체에 포함된 NH4/Mo12와 NH4/NO3의 비에 의하여 촉매의 활성과 선택도가 영향을 받는다고 주장하고 있다.U.S. Patent No. 6,458,740B2 (registered Oct. 1, 2002) contains ammonium paramolybdate and ammonium metavanadate in pyridine and 85% phosphoric acid, which is then added thereto. Disclosed is a method of coprecipitation by adding nitrate, cesium nitrate and copper nitrate, followed by heat drying. In addition, the patent claims that the activity and selectivity of the catalyst are affected by the ratio of NH 4 / Mo 12 and NH 4 / NO 3 included in the precursor.

상기와 같은 여러 가지 촉매에 관하여 공지된 기술에도 불구하고 아직도 기 존의 헤테로폴리산 촉매의 활성은 낮은 상태이기 때문에 메타크롤레인의 전환율 및 메타크릴산의 선택도에서의 개선이 필요한 실정이다.Despite the known techniques with respect to such various catalysts, the activity of the existing heteropolyacid catalysts is still low, and thus, an improvement in the conversion rate of methacrolein and the selectivity of methacrylic acid is required.

본 발명은, 선택도가 높은 메타크릴산의 제조 방법을 제공하는 데에 그 목적이 있다.An object of this invention is to provide the manufacturing method of methacrylic acid with high selectivity.

상기한 바와 같은 문제점에 착안하여 메타크릴산의 제조방법에 관한 연구를 거듭하던 중, 본 발명자들은 메타크롤레인을 메타크릴산으로 제조하는 과정에서 반응기에 있는 촉매를 생성물로 전처리하는 경우, 촉매의 구조가 변화한다는 점을 알아내었고, 이를 이용하여 메타크릴산의 선택율을 높일 수 있다는 데에 착안하여 본 발명을 완성하게 되었다.In view of the problems described above, while continuously studying the method for producing methacrylic acid, the inventors of the present invention pretreated the catalyst in the reactor with the product in the process of producing methacrolein with methacrylic acid, It was found that the structure changes, and the present invention was completed by focusing on the fact that the selectivity of methacrylic acid can be increased by using the same.

본 발명은, 케긴타입 촉매를 사용하여 메타크롤레인으로부터 메타크릴산을 제조하는 방법에 있어서, 상기 케긴 타입 촉매를 목표 생성물인 메타크릴산으로 전처리하는 단계를 포함하여 이루어진 것을 특징으로 하는 메타크릴산의 제조 방법을 제공한다. The present invention is a method for producing methacrylic acid from methacrolein using a keggin type catalyst, methacrylic acid characterized in that it comprises the step of pretreating the keggin type catalyst with methacrylic acid as a target product It provides a method for producing.

이하에서 본 발명을 좀 더 상세히 살펴보기로 한다. Hereinafter, the present invention will be described in more detail.

메타크롤레인으로부터 메타크릴산을 합성하는 과정에 헤테로폴리산을 촉매로 사용하는 것은 매우 일반적인 방법이다. It is very common to use heteropolyacids as catalysts in the synthesis of methacrylic acid from methacrolein.

특히, 1-바나도-11-몰리브도 포스포릭 산의 산성 세슘염 CsxH4 - xPVMo11O40 은 메타크롤레인을 메타크릴산으로 산화시키는 데에 우수한 효능이 있는 촉매로 잘 알려져 있다. 상당수의 특허 및 연구 논문이 폴리옥소메탈레이트(POM) 군의 이러한 점을 나타내고 있다(N. Mizuno, M. Misono, Chemical Reviews (Washington, D.C.) 98 (1998) 199. 참조). 폴리옥소메탈레이트(POMs)의 잘 알려진 특징 중 하나는 활성촉매로의 변화가 대단히 느리다는 점이다. 이러한 폴리옥소메탈레이트의 촉매, 스펙트럼 및 상(phase)을 연구한 결과, POMs으로부터 각각의 산화물들의 혼합물로 서서히 전이되면 실제 활성 상태(active state)가 준안정상(metastable phase)으로 변화된다는 사실을 알게 되었다. 활성 부위로서 가장 유력한 후보로는, 케긴 유닛(Keggin unit)으로부터 VOx 와 MOx 단위가 제거된 생성물로서 HPA의 2차 구조로 되는 라쿠너리 케긴 유닛(lacunary Keggin unit) 이다. 따라서 평형 시간을 감소시키기 위한 효율적인 방법 중 하나는 pH 4 에서 헤테로폴리산에 기초한 촉매를 단순 합성하여 라쿠너리 케긴 구조를 유도하는 것이다. In particular, the acid cesium salt of 1 - banado- 11 - molybdo phosphoric acid Cs x H 4 - x PVMo 11 O 40 Silver is well known as a catalyst with excellent efficacy in oxidizing methacrolein to methacrylic acid. A number of patents and research papers show this point in the polyoxometalate (POM) group (see N. Mizuno, M. Misono, Chemical Reviews (Washington, DC) 98 (1998) 199.). One well-known feature of polyoxometalates (POMs) is that the change to active catalyst is very slow. A study of the catalyst, spectrum and phase of these polyoxometallates revealed that the slow transition from the POMs to the mixture of the respective oxides changed the actual active state to a metastable phase. It became. The most potent candidate as an active site is the lacunary Keggin unit, which is a secondary structure of HPA as a product in which VOx and MOx units are removed from the Keggin unit. Thus, one of the efficient ways to reduce the equilibrium time is to simply synthesize a catalyst based on heteropolyacids at pH 4 to derive the Lakunary keggin structure.

Marosi 외.의 논문에 나타난 바에 따르면, 메타크롤레인이 산화되는 동안 Cs1H3PMo11VO40 의 평형은 X-선회절(XRD)의 라인 증폭(broadening)을 야기한다. 이러한 현상은 메타크롤레인과 Cs1H3PMo11VO40 촉매가 상호작용한 결과로서 결정(crystallites)을 분해(disintegration) 시키기 때문이다. 그러나, 메타크롤레인과 산소의 혼합물과의 접촉시간이 길어지는 것은, 메타크롤레인과 촉매와의 상호작용뿐만 아니라, 촉매와 생성물(메타크릴산)과의 상호작용도 야기하게 된다. 이 러한 사실은, 평형에 대한 연구를 통하여, 생성물인 메타크릴산과 촉매와의 상호작용이 간과되어서는 안 된다는 점을 알려주는 것이다. According to Marosi et al., The equilibrium of Cs 1 H 3 PMo 11 VO 40 during methacrolein oxidation causes line broadening of the X-ray diffraction (XRD). This is due to methacrolein and Cs 1 H 3 PMo 11 VO 40 This is because the catalyst disintegrates crystallites as a result of the interaction. However, the prolonged contact time of the mixture of methacrolein and oxygen causes not only the interaction between methacrolein and the catalyst but also the interaction between the catalyst and the product (methacrylic acid). This fact suggests that the study of equilibrium suggests that the interaction between the product, methacrylic acid, and the catalyst should not be overlooked.

따라서, 본 발명자들은, 메타크릴산의 평형과정을 연구를 통하여, 메타크릴산을 촉매로 전처리하는 것에 의하여, 메타크릴산의 선택도를 높일 수 있다는 점을 발견하게 되어 본 발명을 완성하게 되었다. Accordingly, the present inventors have found that the selectivity of methacrylic acid can be increased by pretreatment of methacrylic acid with a catalyst by studying the equilibrium process of methacrylic acid, thereby completing the present invention.

이하에서 메타크릴산으로 Cs2H2PVMo11O40 촉매를 전처리함으로써 일어나는 일련의 효과를 설명한다. The following describes a series of effects that occur by pretreating the Cs 2 H 2 PVMo 11 O 40 catalyst with methacrylic acid.

우선 본 발명의 원리를 설명하기 위하여 하기와 같은 실험을 행하였다. 하기 실시예는 본 발명을 제한하는 것이 아니며, 본 발명은 하기 실시예와 동일한 원리 및 범주에서 다양한 변형이 가능함은 자명하다. First, the following experiment was conducted to explain the principle of the present invention. The following examples are not intended to limit the invention, it is apparent that the invention is capable of various modifications in the same principles and scope as the following examples.

[실시예]EXAMPLE

Nippon Inorganic Color and Chemical Co. 사의 H4PVMo11O40 (1-vanado-11-molybdophosphoric acid)를 디에틸에테르로 추출하고 물로 재결정하여 부가적인 정제를 행하였다. 수득된 결정의 상 조성을 XRD로 체크하였다. Nippon Inorganic Color and Chemical Co. H 4 PVMo 11 O 40 (1-vanado-11-molybdophosphoric acid) was extracted with diethyl ether and recrystallized with water for further purification. The phase composition of the obtained crystals was checked by XRD.

정제된 H4PVMo11O40 를 세슘 카보네이트 용액와 격렬하게 혼합한 후, 120℃에서 밤새 건조시켜 Cs2H2PMo11VO40 염을 제조하였다. 상기 염을 액상의 메타크릴산(MAA, 염 1g 당 300㎕ 의 메타크릴산)에 약 1시간 정도 침지(soaking)시킴으로서 전처리 하였다. Purified H 4 PVMo 11 O 40 was vigorously mixed with cesium carbonate solution and then dried at 120 ° C. overnight to prepare Cs 2 H 2 PMo 11 VO 40 salt. The salt was pretreated by soaking in liquid methacrylic acid (MAA, 300 μl of methacrylic acid per 1 g of salt) for about 1 hour.

실온에서 D4 Endeavor diffractometer(Brucker) 로 Cu Kα radiation (λ=1.5418 Å)을 이용하여 X-선 회절 패턴을 얻었다. 상 분석은 EVA 프로그램을 이용하였다. 격자 파라미터의 평가에는 TOPAS2 소프트웨어를 사용하였다. X-ray diffraction patterns were obtained using Cu Kα radiation (λ = 1.5418 kHz) with a D4 Endeavor diffractometer (Brucker) at room temperature. Phase analysis was performed using EVA program. TOPAS2 software was used to evaluate the grid parameters.

촉매 테스트는 300℃에서 연속 흐름 스테인레스 튜브형 리액터(9.5mm i.d., 28cm 길이)로 수행하였다. 0.5g 촉매(0.25-0.5mm 프랙션)을 SiC 그래뉼(0.25-0.5mm 프랙션)로 희석시켜, 총 부피가 2ml가 되도록 하고, 글래스 울 플러그(glass wool plug) 사이에 위치시켰다. 주입가스는 3.6% 메타크롤레인, 10% 산소, 10% 수증기 및 밸런스로는 헬륨으로 이루어졌다. 메타크롤레인과 물은, 캐리어 가스로서 사용된 헬륨과 함께, 일정한 압력과 온도에서 동작되는 포화-응축 시스템을 통하여 전달된다(도 1). 촉매 테스트에 앞서, MAA-처리된 샘플을 10% 산소, 10% 수증기와 밸런스로 헬륨을 함유하는 플로우 로, MAA 의 흔적을 유량(effluent) 에서 제거하기에 충분한 시간 동안(GC로 확인함, 통상 30~40분) 촉매 반응온도(280~300℃)에서, 전처리했다. 총 생성물을, carboxen 1000 이 채워진 Supelco 15ft. x 1/8 in. 컬럼과 Alltech AT-1000 (30m x 0.53m x 1.2μm i.d.) 모세관 컬럼을 사용하는 온-라인 GC와, 모세관 인렛이 장착된 온-라인 4중극자 MS 유닛(GeneSys ESS2846)으로 분석하였다. 모든 라인들은 응축을 방지하기 위하여 200℃까지 가열하였다. The catalyst test was carried out at 300 ° C. with a continuous flow stainless tubular reactor (9.5 mm i.d., 28 cm long). 0.5 g catalyst (0.25-0.5 mm fraction) was diluted with SiC granules (0.25-0.5 mm fraction) to a total volume of 2 ml and placed between glass wool plugs. The injection gas consisted of 3.6% methacrolein, 10% oxygen, 10% water vapor and helium in balance. Methacrolein and water, together with helium used as the carrier gas, are delivered through a saturated-condensation system operated at constant pressure and temperature (FIG. 1). Prior to the catalytic test, the MAA-treated samples were flowed with 10% oxygen, 10% water vapor and helium in balance, identified by GC for a time sufficient to remove traces of MAA from effluent, typically 30-40 minutes) It pretreated at the catalyst reaction temperature (280-300 degreeC). Total product, Supelco 15ft filled with carboxen 1000. x 1/8 in. Columns and on-line GC using an Alltech AT-1000 (30m × 0.53m × 1.2μm i.d.) capillary column and on-line quadrupole MS units (GeneSys ESS2846) equipped with capillary inlets were analyzed. All lines were heated to 200 ° C. to prevent condensation.

본 발명에 대한 연구(work)는 촉매 성능 평가 과정에서 부딪힌 문제에 의하여 시작되었다. 촉매 성능 평가 시, 촉매가 평형에 도달할 수 있도록 일정한 반응 주 입물 유량 하에서 초기 20시간의 TOS(time of stream)의 처리를 실시하였다. 평형 이후, 매 두 시간마다 플로우 레이트를 변화시킴으로서, 접촉시간을 점진적으로 증가 또는 감소하였다. 이러한 과정은, 촉매의 평형의 초기 20h 동안 사용된 반응 주입물 유량의 강한 "바이오그래피(biography)" 효과를 나타내었다. 낮은 플로우 속도(67ml/min, -▲-) 및 높은 플로우 속도(173ml/min, -■-)로 유입시킨 경우, 메타크롤레인에서 메타크릴산으로의 전환율 및 선택도의 관계를 측정한 그래프를 도 2에 나타내었다. 낮은 플로우 속도로 평형에 도달한 촉매 즉, 더 긴 접촉시간을 갖는 촉매의 경우가, 메타크릴산의 높은 선택율을 보여준다는 것이 명확하다. 주입구(feed)에서 메타크롤레인의 부분압은 고정되어 유지되기 때문에, 접촉시간이 길어질수록 메타크릴산(MAA)의 농도를 더 높이는 결과를 나타내게 된다. 따라서, 도 2에서 나타난 촉매 활성 효과는 반응에서 생성된 MAA 농도의 차이와 관련될 것으로 추정된다. Work on the present invention was initiated by problems encountered during the catalyst performance evaluation process. In evaluating catalyst performance, an initial 20 hour time of stream (TOS) treatment was performed under constant reaction injection flow rate to ensure that the catalyst reached equilibrium. After equilibration, the contact time gradually increased or decreased by varying the flow rate every two hours. This procedure exhibited a strong “biography” effect of the reaction injection flow rate used during the initial 20 h of equilibrium of the catalyst. At low flow rates (67 ml / min,-▲-) and high flow rates (173 ml / min,-■-), a graph measuring the relationship between the conversion and selectivity of methacrolein to methacrylic acid 2 is shown. It is clear that catalysts that have reached equilibrium at low flow rates, ie catalysts with longer contact times, show higher selectivity of methacrylic acid. Since the partial pressure of methacrolein at the feed port is kept constant, the longer the contact time, the higher the concentration of methacrylic acid (MAA). Thus, the catalytic activity effect shown in FIG. 2 is assumed to be related to the difference in MAA concentration produced in the reaction.

이후, 실시예에서와 같이 메타크릴산으로 전처리된 촉매와, 비교를 위하여 메타크릴산으로 전처리하지 않은 촉매를 사용하여 실험하였다. 이러한 실험은 순수한 MAA로 촉매를 전처리하는 것에 의하여 야기된 효과를 알아보기 위해서이다. Thereafter, experiments were carried out using catalysts pretreated with methacrylic acid as in Examples and catalysts not pretreated with methacrylic acid for comparison. This experiment is to determine the effect caused by pretreatment of the catalyst with pure MAA.

MAA-전처리한 촉매와, 전처리하지않은 촉매의 사이에서의 상당한 차이가 실험에서 나타났다. 산소, 수증기 그리고 밸런스로서의 헬륨으로 이루어진 반응 주입물의 흐름에, 메타크롤레인(MACR) 을 일정량 주입하였다. 도 3a 내지 도 3c에 결과를 나타내었다. 도 3a는 메타크롤레인과 산소, 도 3b는 메타크릴산과 메타크롤레인, 도 3c는 물, 메타크릴산, 메타크롤레인 및 산소의 측정 결과를 보여준다. Significant differences were seen in the experiments between the MAA-pretreated catalyst and the unpretreated catalyst. A certain amount of methacrolein (MACR) was injected into the flow of the reaction injection consisting of oxygen, water vapor and helium as balance. The results are shown in Figures 3A-3C. 3a shows methacrolein and oxygen, FIG. 3b shows methacrylic acid and methacrolein, and FIG. 3c shows measurement results of water, methacrylic acid, methacrolein and oxygen.

MAA-전처리된 촉매(도 3a 내 실선-점선)의 경우, O2 펄스의 진폭은 MAA-전처리 하지 않은 촉매(도 3a 내 점선)보다 더 높았으며, MACR 펄스의 진폭은 더 낮았다. 따라서 MACR 전환률이 더 높다는 것을 나타내고 있다. 또한, 도 3b 는 MAA-전처리된 촉매의 경우도 생성물인 MAA의 진폭이 더 높게 나타나 있다. 물, 아세트산, 이산화탄소 등의 다른 생성물의 수득율 또한 더 높았다. 다만, 도 3b에 나타낸 바와 같이 아크롤레인만 예외적이었으며, 이 경우 MAA-전처리가, 특정의 부-생성물을 감소시키는 것으로 보인다. For the MAA-pretreated catalyst (solid line-dotted line in FIG. 3A), the amplitude of the O 2 pulses was higher than that of the non-MAA-pretreated catalyst (dashed line in FIG. 3A) and the amplitude of the MACR pulse was lower. Thus, the MACR conversion rate is higher. Figure 3b also shows that the amplitude of the product MAA is higher even for the MAA-pretreated catalyst. Yields of other products such as water, acetic acid and carbon dioxide were also higher. Only acrolein, as shown in FIG. 3B, was exceptional, in which case MAA-pretreatment appears to reduce certain sub-products.

더 상세한 결과가 도 3c. 에 나타나 있다. 실선(----)은 MAA 전처리 하지 않은 샘플, 점선(- - -)은 MAA 전처리한 샘플을 나타낸다. MAA 와 물의 경우, 상당한 테일링의 증거가 나타난다. 이 결과는, 벌크내로 MAA 와 물이 침투함에 의하여 야기되는 촉매와 이들 분자 간의 더 우수한 상호작용을 의미한다. 케긴 타입 헤테로폴리산의 세슘 염은 2차 구조에서 상당량의 물을 보유할 수 있는 것으로 알려져 있으며, 일부 작은 유기 극성 분자들은 헤테로폴리산의 격자 내에 안정화 될 수 있다. 그러나, MAA 와 CsxH4 - xPVMo11O40 의 상호작용의 구조적 측면에 대해서는 아직 어떠한 데이터도 보고되고 있지 않다. 따라서 우리는 ambient 조건에서, Cs2H2PVMo11O40 와 메타크릴산, 메타크롤레인의 상호작용에 대한 예비 XRD 조사를 하였다. 시간에 따른 격자 파라미터의 변화를 도 6에 나타내었다. 촉매 고체 염을 메타크릴산으로 단순히 impregnation 하는 경우 시간에 따른 격자 파라미터가 현저히 증가한다. 반면에 메타크롤레인으로 impregnation 하는 경우에는, 크리스탈 격 자의 팽창이 나타나지 않았다. 이로써 메타크릴산은 Cs2H2PVMo11O40 의 격자 내에 안정화될 수 있으며, 메타크롤레인은 그렇지 않음을 알 수 있다. 메타크롤레인과 메타크릴산으로 impregnation 할 때 나타나는 공통적 특징은, 초기에 두 경우 다 격자가 수축(contraction)한다는 점이다. 이러한 수축은 세슘 염의 2차 구조로부터 물 분자가 빠르게 제거되는 것으로 설명될 수 있다. 메타크릴산의 경우, 초기 격자 수축과 함께 메타크릴산이 2시간 동안에 걸쳐 격자 내로 서서히 침투시킴으로써 격자 파라미터의 점진적인 증가가 이루어진다. 만일 MAA 가 POM의 격자 내로 침투된다면, POMs 에 의한 MACR 의 촉매적 산화가, 순수한 표면 타입 반응이라는 기존의 주장을 하는 것은 무리가 따를 수도 있다. MACR 과 헤테로폴리산의 세슘 염과의 상호작용이 표면 타입 반응이라 하더라도, 반응의 생성물은 벌크로 안정화될 수 있으며, 촉매의 성격을 변화시킬 수 있다. 따라서 이러한 반응을 순수한 표면 타입이라고 정의하기 어렵게 된다. More detailed results are shown in Figure 3c. Is shown in. The solid line (----) represents the sample without MAA pretreatment, and the dotted line (---) represents the sample pretreated with MAA. For MAA and water, there is evidence of significant tailing. This result means a better interaction between these molecules and the catalyst caused by the penetration of MAA and water into the bulk. Cesium salts of Keggin type heteropolyacids are known to have a significant amount of water in the secondary structure, and some small organic polar molecules can be stabilized in the lattice of heteropolyacids. However, no data has yet been reported on the structural aspects of the interaction of MAA with Cs x H 4 - x PVMo 11 O 40 . Therefore, we performed preliminary XRD studies on the interaction of mesacrylic acid and methacrolein with Cs 2 H 2 PVMo 11 O 40 at ambient conditions. The change of the lattice parameter with time is shown in FIG. Simply impregnation of the catalytic solid salt with methacrylic acid significantly increases the lattice parameters over time. On the other hand, there was no expansion of the crystal lattice when impregnation with methacrolein. It can be seen that methacrylic acid can be stabilized in the lattice of Cs 2 H 2 PVMo 11 O 40 , but not methacrolein. A common feature of impregnation with methacrolein and methacrylic acid is that the lattice contracts in both cases initially. This contraction can be explained by the rapid removal of water molecules from the secondary structure of the cesium salt. In the case of methacrylic acid, a gradual increase in lattice parameters is achieved by slowly infiltrating methacrylic acid into the lattice over two hours with initial lattice shrinkage. If MAA penetrates into the lattice of POM, it may be unreasonable to make the existing claim that catalytic oxidation of MACR by POMs is a pure surface type reaction. Although the interaction of the MACR with the cesium salt of heteropolyacid is a surface type reaction, the product of the reaction can be stabilized in bulk and change the nature of the catalyst. This makes it difficult to define this reaction as a pure surface type.

Ambient 조건에서 MAA로의 전처리 (또는 the same pretreatment combined with a subsequent calcination at 100 or 300℃)는, 통상적으로

Figure 112007019170212-pat00001
크리스탈 시메트리를 변화시키지 않는다(도 5). 도 5는 Cs2H2PMo11VO40 샘플의 XRD 패턴을 나타낸다. a는 120℃ 에서 공기건조한 샘플, b 는 72시간동안 액상 MAA로 전처리 하고 공기 흐름으로 300℃ 에서 하소한 샘플, c는 액상 MAA 로 20 시간 동안 전처리한 샘플을 각각 나타낸다. 세 경우 모두 피크가 나타나는 위치가 동일하다. 그럼에도 불구 하고 c 의 경우에, q=26.2°에서의 피크 넓이는 상당히 변화하였고, 몇 피크의 강도는 감소하였다(도 5c). 이것은, 촉매의 조직 변화를 나타내는 것이다. Pretreatment with MAA under ambient conditions (or the same pretreatment combined with a subsequent calcination at 100 or 300 ° C.)
Figure 112007019170212-pat00001
It does not change the crystal geometry (FIG. 5). 5 shows an XRD pattern of Cs 2 H 2 PMo 11 VO 40 samples. a represents an air-dried sample at 120 ° C., b is a sample pretreated with liquid MAA for 72 hours, calcined at 300 ° C. with air flow, and c is a sample pretreated for 20 hours with liquid MAA. In all three cases, the position at which the peak appears is the same. Nevertheless, in the case of c, the peak area at q = 26.2 ° changed significantly, and the intensity of several peaks decreased (FIG. 5C). This represents a change in the structure of the catalyst.

또한 MAA 에서 Cs2H2PVMo11O40 에 MAA를 impregnation 한 후에

Figure 112007019170212-pat00002
의 시메트리를 나타내는 XRD 패턴의 형태가 때때로 관찰되었다. 이러한 시메트리는 예를들면, H3 -2x[VO]xPMo12O40 에 전형적이며, MAA 전처리가 2차 구조에 바나딜 이온의 제거를 유도할 수 있다는 것을 제안한다. 불행하게도,
Figure 112007019170212-pat00003
패턴의 형태는 상이한 Cs2H2PVMo11O40 샘플의 MAA 전처리시 XRD 패턴 상으로는 반복재현성이 좋지 않았다. 그러나, MAA 처리로 케긴 이온으로부터 바나딜 종을 제거하는 것은 IR 스펙트로스코피를 사용하여 확인할 수 있었다. 도 6은, 액상 메타크릴산(○) 과 액상 메타크롤레인(●)을 주입(impregnation)시킨 후 Cs2H2PMo11VO40 염의 격자 파라미터의 변화를 나타낸 그래프이다. Also in MAA Cs 2 H 2 PVMo 11 O 40 After impregnation the MAA
Figure 112007019170212-pat00002
The shape of the XRD pattern, which represents the geometry of, was sometimes observed. This geometry is typical for example H 3 -2x [VO] x PMo 12 O 40 , suggesting that MAA pretreatment can lead to the removal of vanadyl ions in the secondary structure. Unfortunately,
Figure 112007019170212-pat00003
The pattern shape was not good repeatability on the XRD pattern during MAA pretreatment of different Cs 2 H 2 PVMo 11 O 40 samples. However, the removal of vanadil species from Keggin ions by MAA treatment could be confirmed using IR spectroscopy. 6 is a graph showing changes in lattice parameters of Cs 2 H 2 PMo 11 VO 40 salt after impregnation of liquid methacrylic acid (○) and liquid methacrolein (●).

MAA-전처리된 Cs2H2PVMo11O40 (도 4 왼쪽) 의 FTIR 은 케긴 구조가 잘 유지되고 있다는 것을 보여준다. 그럼에도 불구하고, 전처리 온도의 증가에 따라 P-Oa 진동(1060 cm-1)(도 4 오른쪽) 밴드에서의 숄더의 사라짐은 상당히 명백하다. 다수의 논문에 따르면, 거의 구형인 케긴 유닛에서 몰리브덴을 바나듐으로 치환하면, 인(phosphorus) 주위의 센트럴 테트라헤드론(정사면체)를 비틀어 단일 P-O 밴드의 스플리팅을 야기한다. 따라서, 점진적인 1060 cm- 1 에서의 숄더의 제거는, 2차 구조에서 케긴 유닛으로부터 바나듐이 이동한다는 표시일 수 있다. MAA 침투시 VOx 종의 이동이 높지 않은(moderate) 온도(at c.a. 100℃)에서 일어난다는 것을 알게되는 것은 매우 중요하다. 이로써, MAA는 촉매 반응으로 사용되는 것보다 더 낮은 온도에서 라쿠너리(lacunary) 구조의 형성이 유도될 것임을 알 수 있다. FTIR of MAA-pretreated Cs 2 H 2 PVMo 11 O 40 (left of FIG. 4) shows that the keggin structure is well maintained. Nevertheless, as the pretreatment temperature increases, PO a The disappearance of the shoulder in the oscillating (1060 cm −1 ) (FIG. 4 right) band is quite apparent. According to a number of papers, the substitution of molybdenum with vanadium in a nearly spherical Keggin unit twists the central tetrahedron (tetrahedron) around phosphorus to cause splitting of a single PO band. Thus, the gradual 1060 cm - removal of the shoulder in the first, can be shown that the vanadium is moved from kegin unit in the secondary structure. It is very important to know that the migration of VO x species occurs at a moderate temperature (at ca 100 ° C.) when invading MAA. As a result, it can be seen that MAA will induce the formation of lacunary structures at lower temperatures than those used for catalytic reactions.

폴리 옥소 메탈레이트(POM)를 메타크릴산(MAA)으로 전처리하는 것은, 구조적 및 촉매적 효과 둘 다에 영향을 미친다. 구조적 효과로서는, (i) 벌크 내의 카르복시산의 안정화에 의하여 POM 격자가 팽창한다는 것과 (ii) 낮은 온도에서 케긴 유닛으로부터 옥소바나듐 종이 제거된다는 것에 의해 뒷받침된다. Pretreatment of polyoxo metalate (POM) with methacrylic acid (MAA) affects both structural and catalytic effects. Structural effects are supported by (i) expansion of the POM lattice by stabilization of the carboxylic acid in the bulk and (ii) removal of the oxovanadium species from the keggin unit at low temperatures.

반응 생성물에 의한 촉매 활성(catalytic activation)의 특성(nature)은 현재 명확하지 않다. MAA의 탈착은, 촉매 온도에서 조차 상당히 느리게 일어난다. 이는 MAA 피크의 테일링에 의하여 뒷받침된다. 이는, MAA와 POM의 상호작용이 강하다는 것을 의미한다. 그러나, MAA는, CsxH3 -x+ yPVyMo12 - yO40 상에서의 메타크롤레인의 산화율이 메타크릴산의 부분 압력과 독립적이기 때문에, 촉매의 활성 부위에 직접 결합할 수 없다. 따라서, MAA가 특정 위치에 결합한다면, 이 위치는 반응이 일어나는 활성 부위(active site)와는 다를 것이다. 그러나, 만일 MAA 결합이 촉매적 활성을 변화시킨다면, MAA 결합 위치는 활성 부위와 인접되어 있어야 할 것이다. The nature of catalytic activation by the reaction product is currently unclear. Desorption of MAA occurs fairly slowly, even at catalyst temperatures. This is supported by the tailing of the MAA peaks. This means that the interaction between the MAA and the POM is strong. However, MAA, Cs x H 3 -x + y PV y Mo 12 - y O 40 Since the oxidation rate of methacrolein in the phase is independent of the partial pressure of methacrylic acid, it cannot bind directly to the active site of the catalyst. Thus, if the MAA binds to a specific site, this site will be different from the active site where the reaction occurs. However, if MAA binding changes the catalytic activity, the MAA binding site will have to be adjacent to the active site.

이러한 결합이 특이적이지 않다면, 즉 벌크 상에 또는 촉매 표면 상의 특정한 MAA-결합 부위가 없다면, MAA 분자가 POM 호스트의 2차 구조 내에 안정화될 충분한 공간이 있을 것이다. Centi.외. 의 책을 인용하면, 우리는 이런 상황을 "living active surface"라는 용어로 고려할 수 있다. "living active surface"의 아이디어에 따르면, 결합된 MAA 분자는 보조흡착물(coadsorbate) 또는 단순히 POM의 격자에서 용해된 종(species)으로서 존재할 수 있다. 이들 비특이적으로 결합된 "방관자(spectator)" 분자는 POM의 촉매적 특성, 예를 들면, 활성 부위의 기하학적 위치, POM-MACR 상호작용, 산소 수송, 등을 변화시킴으로써 현저하게 바꿀 수 있다. 현재 POM에의 MAA 결합의 성격을 정의(identify)할 수는 없다. If this binding is not specific, ie there are no specific MAA-binding sites on the bulk or on the catalyst surface, there will be enough space for the MAA molecules to stabilize within the secondary structure of the POM host. Centi. Et al. In this book, we can consider this situation as the term "living active surface". According to the idea of a "living active surface", the bound MAA molecules can exist as coadsorbates or simply as dissolved species in the lattice of the POM. These nonspecifically bound “spectator” molecules can be significantly altered by changing the catalytic properties of the POM, such as the geometric site of the active site, the POM-MACR interaction, oxygen transport, and the like. Currently it is not possible to identify the nature of the MAA binding to the POM.

POM 촉매는 반응 초기에는 매우 비-선택적이다. 이후, 반응시간에 따른 MAA의 점진적인 축적은, 그 촉매를 선택적인 것으로 전환시킨다. 따라서 POM 촉매의 선택도는 촉매 내의 MAA 농도에 의존된다. POM catalysts are very non-selective at the beginning of the reaction. Thereafter, the gradual accumulation of MAA over the reaction time converts the catalyst to an optional one. The selectivity of the POM catalyst thus depends on the MAA concentration in the catalyst.

POM 촉매와의 MAA의 결합 성격(nature), 정상-상태 성능(steady-state performance)에 대한 MAA 전처리 효과 및 관찰된 효과를 설명하는 반응 메커니즘에 대한 연구는 현재 진행 중에 있다. Research into reaction mechanisms describing the binding nature of MAA with POM catalysts, the effect of MAA pretreatment on the steady-state performance, and the observed effects are ongoing.

결론적으로, 본 발명에서는, i) 가수분해-환원에 기인한 불특정 준안정 상, 및 ii) 유력한 활성 부위로서의 라쿠너리 케긴(lacunary Keggin) 유닛의 형성에 관한 일반적 견해가 완전하지 않음을 밝혔다. POM과 MAA 의 상호작용은 상당히 중요하다. MAA는, 한편으로 POM과의 상호작용에 대한 라쿠너리(lacunary) 구조의 형성을 촉진시키고, 다른 한편으로 POM과 MAA의 바인딩이 촉매를 선택적인 상태로 전환시킨다. In conclusion, the present invention found that the general view regarding the formation of i) non-specific metastable phases due to hydrolysis-reduction and ii) lacunary Keggin units as potent active sites is not complete. The interaction between POM and MAA is very important. MAA, on the one hand, promotes the formation of a lacunary structure for interaction with POM, and on the other hand, binding of POM and MAA converts the catalyst into a selective state.

이러한 사실로부터, 헤테로폴리산 촉매를 사용하여 메타크롤레인으로부터 메타크릴산을 제조하는 메커니즘은, 기존에 알고 있던 바와 같은 순수한 표면 반응이 아니라, 촉매의 구조적 변화를 수반하는 반응이며, 이러한 원리를 이용하여, 메타크릴산으로 전처리한 촉매를 사용하여 메타크릴산을 제조하는 경우, 생성물의 선택률을 현저하게 높일 수 있다는 것을 알게 되었다. From this fact, the mechanism for producing methacrylic acid from methacrolein using a heteropolyacid catalyst is not a pure surface reaction as previously known, but a reaction involving a structural change of the catalyst, and using this principle, It has been found that when methacrylic acid is prepared using a catalyst pretreated with methacrylic acid, the selectivity of the product can be significantly increased.

상기와 같은 원리는 메타크릴산 뿐 아니라, 이를 비롯한 카르복시산의 제조에도 동일하게 적용할 수 있으며, 이 경우에도 유사한 결과가 나올 것이 예상된다. The same principle can be applied not only to methacrylic acid but also to the preparation of carboxylic acid including the same, and in this case, similar results are expected.

촉매 또한 본 발명에서 사용된 케긴 타입의 바나도 몰리브도 인산의 산성 세슘 염뿐만 아니라 케긴구조를 갖는 다른 헤테로폴리산계 촉매를 사용하는 경우에도 유사한 결과가 예상되므로, 이를 응용하여 널리 적용할 수 있을 것이다. Similar results are expected in the case of using other heteropolyacid catalysts having a kegin structure as well as an acidic cesium salt of phosphoric acid as well as the kegin type vanadium molybdenum used in the present invention, and thus may be widely applied. .

상기한 본 발명의 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various embodiments of the present invention described above are merely illustrative of the present invention and that various changes and modifications can be made within the scope and spirit of the present invention, and such modifications and modifications belong to the appended claims. It is also natural.

이상 살펴본 바와 같이, 본 발명에 따르면 케긴타입의 헤테로폴리산계 촉매를 이용하여 메타크롤레인으로부터 메타크릴산을 제조하는 방법에 있어서, 생성물인 메타크릴산으로 촉매를 간단히 전처리 하는 것만으로, 촉매의 활성을 향상시켜 메타크릴산의 선택도를 높이는 데에 우수한 효과가 있음을 알게 되었다. 이를 유사한 타입의 생성물과 촉매에 사용할 경우, 다양한 응용이 가능할 것이다.As described above, according to the present invention, in the method for producing methacrylic acid from methacrolein using a kegin-type heteropolyacid catalyst, the activity of the catalyst is simply obtained by simply pretreating the catalyst with methacrylic acid as a product. It has been found that there is an excellent effect in improving the selectivity of methacrylic acid by improving. When used in similar types of products and catalysts, various applications will be possible.

Claims (11)

카르복시산으로 케긴 타입 촉매를 침지시켜 전처리 하는 단계; 및 전처리된 촉매를 이용하여 알데히드로부터 카르복시산을 제조하는 단계를 포함하여 이루어진 카르복시산의 제조 방법. Pretreatment by immersing the kegin type catalyst with carboxylic acid; And preparing a carboxylic acid from aldehyde using a pretreated catalyst. 제1항에 있어서, The method of claim 1, 상기 케긴 타입 촉매는, 케긴 타입 헤테로폴리산염인 것을 특징으로 하는 제조 방법. The kegin-type catalyst is a production method, characterized in that the kegin-type heteropoly acid salt. 제 2항에 있어서, 3. The method of claim 2, 상기 헤테로폴리산염은 1-바나도-11-몰리브도 인산의 산성 세슘염인 것을 특징으로 하는 제조 방법. Wherein said heteropolyacid is an acidic cesium salt of 1-vanado-11-molybdo phosphoric acid. 제3항에 있어서, The method of claim 3, 상기 세슘염은 하기 화학식 1 The cesium salt is represented by the following Formula 1 [화학식 1][Formula 1] CsxH4 - xPVMo11O40 - 여기서, x는 4보다 작은 자연수임 - Cs x H 4 - x PVMo 11 O 40 Where x is a natural number less than 4 로 표시되는 것을 특징으로 하는 제조 방법. The manufacturing method characterized by the above-mentioned. 제1항에 있어서, The method of claim 1, 상기 알데히드는, 아크릴레이트계 화합물인 것을 특징으로 하는 제조 방법. The aldehyde is a production method, characterized in that the acrylate compound. 제 5항에 있어서, The method of claim 5, 상기 아크릴레이트계 화합물은 메타크롤레인인 것을 특징으로 하는 제조방법. The acrylate compound is a manufacturing method characterized in that the methacrolein. 기상접촉산화에 의하여 알데히드로부터 카르복시산을 제조하는데 사용되는 케긴 타입 헤테로폴리산염 촉매의 제조방법에 있어서,In the process for preparing a keggin type heteropolyacid catalyst used to prepare carboxylic acid from aldehyde by vapor phase catalytic oxidation, 상기 기상접촉산화와는 독립적으로, 상기 케긴 타입 헤테로폴리산염 촉매를 상기 기상접촉산화의 생성물인 상기 카르복시산에 침지시킴으로써 상기 카르복시산을 상기 촉매의 격자 내에 안정화시키는 단계를 포함하는 것을 특징으로 하는 케긴 타입 헤테로폴리산염 촉매의 제조방법.Independent of the vapor phase catalytic oxidation, stabilizing the carboxylic acid in the lattice of the catalyst by immersing the kegin type heteropolyacid catalyst in the carboxylic acid which is the product of the vapor phase catalytic oxidation. Method for preparing a catalyst. 제7항에 있어서,The method of claim 7, wherein 상기 헤테로폴리산염 촉매는 하기 화학식 1 The heteropolyacid catalyst is represented by the following Formula 1 [화학식 1][Formula 1] CsxH4 - xPVMo11O40 - 여기서, x는 4보다 작은 자연수임 - Cs x H 4 - x PVMo 11 O 40 Where x is a natural number less than 4 로 표시되는 것을 특징으로 하는 케긴 타입 헤테로폴리산염 촉매의 제조방법.Method of producing a kegin type heteropolyacid catalyst, characterized in that represented by. 제7항에 있어서,The method of claim 7, wherein 상기 알데히드는 아크릴레이트계 화합물인 것을 특징으로 하는 케긴 타입 헤테로폴리산염 촉매의 제조방법.The aldehyde is a method for producing a kegin type heteropolyacid catalyst, characterized in that the acrylate compound. 제9항에 있어서,The method of claim 9, 상기 아크릴레이트계 화합물은 메타크롤레인인 것을 특징으로 하는 케긴 타입 헤테로폴리산염 촉매의 제조방법.The acrylate-based compound is a method for producing a kegin type heteropolyacid catalyst, characterized in that the methacrolein. 제7항에 있어서,The method of claim 7, wherein 상기 침지시간은 1시간 이상인 것을 특징으로 하는 케긴 타입 헤테로폴리산염 촉매의 제조방법.The immersion time is a method for producing a kegin type heteropolyacid catalyst, characterized in that more than 1 hour.
KR1020070023112A 2007-03-08 2007-03-08 Method for producing a catalyst with high methacrylic acid selectivity Active KR100942893B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070023112A KR100942893B1 (en) 2007-03-08 2007-03-08 Method for producing a catalyst with high methacrylic acid selectivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070023112A KR100942893B1 (en) 2007-03-08 2007-03-08 Method for producing a catalyst with high methacrylic acid selectivity

Publications (2)

Publication Number Publication Date
KR20080082350A KR20080082350A (en) 2008-09-11
KR100942893B1 true KR100942893B1 (en) 2010-02-17

Family

ID=40021738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070023112A Active KR100942893B1 (en) 2007-03-08 2007-03-08 Method for producing a catalyst with high methacrylic acid selectivity

Country Status (1)

Country Link
KR (1) KR100942893B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172051A (en) 1976-09-06 1979-10-23 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid
US20030054945A1 (en) 2000-09-07 2003-03-20 Etsuko Kadowaki Catalyst for use in producing lower aliphatic carboxylic acid ester, process for producing the catalyst, and process for producing lower aliphatic carboxylic and ester using the catalyst
US20040152915A1 (en) 2000-09-07 2004-08-05 Showa Denko K.K. Catalyst for use in producing lower aliphatic carboxylic acid ester, process for producing the catalyst, and process for producing lower aliphatic carboxylic acid ester using the catalyst
JP2005272313A (en) 2004-03-23 2005-10-06 Sumitomo Chemical Co Ltd Method for producing methacrylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172051A (en) 1976-09-06 1979-10-23 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid
US20030054945A1 (en) 2000-09-07 2003-03-20 Etsuko Kadowaki Catalyst for use in producing lower aliphatic carboxylic acid ester, process for producing the catalyst, and process for producing lower aliphatic carboxylic and ester using the catalyst
US20040152915A1 (en) 2000-09-07 2004-08-05 Showa Denko K.K. Catalyst for use in producing lower aliphatic carboxylic acid ester, process for producing the catalyst, and process for producing lower aliphatic carboxylic acid ester using the catalyst
JP2005272313A (en) 2004-03-23 2005-10-06 Sumitomo Chemical Co Ltd Method for producing methacrylic acid

Also Published As

Publication number Publication date
KR20080082350A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
Cavani et al. Enhancement of catalytic activity of the ammonium/potassium salt of 12-molybdophosphoric acid by iron ion addition for the oxidation of isobutane to methacrylic acid
EP1246696B1 (en) Oxidative reactions using membranes that selectively conduct oxygen
DE69518547T2 (en) Process for the production of acrylic acid
KR102182916B1 (en) Catalyst for the oxidative dehydrogenation of butene to butadiene and preparation process thereof
US5700440A (en) Selective oxidation of hydrogen sulfide in the presence of iron-based catalysts
Pernicone MoO3 Fe2 (MoO4) 3 catalysts for methanol oxidation
DE68918345T2 (en) Catalyst usable for the selective reduction of nitrogen oxides.
US5653953A (en) Process for recovering elemental sulfur by selective oxidation of hydrogen sulfide
Roussel et al. Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts
Blasco et al. Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance
JPH0570503B2 (en)
DE2635031C2 (en) A catalyst for producing an α, β-unsaturated aliphatic carboxylic acid and using this catalyst
DE102015222198A1 (en) Oxidic composition
KR20050086244A (en) A catalyst for partial oxidation and preparation method thereof
KR100942893B1 (en) Method for producing a catalyst with high methacrylic acid selectivity
DE1493306C3 (en) Process for the production of acrylic acid by the oxidation of acrolein
DE69622692T2 (en) METHOD FOR PRODUCING UNSATURATED NITRILE
DE2831540A1 (en) METHACRYLIC ACID MANUFACTURING METHOD
Stytsenko et al. Catalyst design for methacrolein oxidation to methacrylic acid
DE2449991A1 (en) PROCESS FOR THE MANUFACTURING OF UNSATURATED ALIPHATIC CARBONIC ACIDS AND CATALYSTS THEREFORE
DE2328027C2 (en) Process for the production of dicarboxylic acid anhydrides
KR100995258B1 (en) Reactivation method of catalyst for methacrylic acid production
DE2449992A1 (en) CATALYST AND METHOD FOR MANUFACTURING UNSATATURATED CARBONIC ACIDS WITH THIS
WO2005065822A1 (en) Novel heteropolyacid catalyst and method for producing the same
RU2205688C1 (en) Catalyst and a method for production of phenol from benzene

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20070308

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20080407

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20070308

Comment text: Patent Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20100127

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20100209

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20100209

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20130111

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20140103

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20150119

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20160128

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20170202

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20170202

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20180116

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20190116

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20210118

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20221226

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20231226

Start annual number: 15

End annual number: 15