KR100940067B1 - Manufacturing method of bio ceramics composition - Google Patents
Manufacturing method of bio ceramics composition Download PDFInfo
- Publication number
- KR100940067B1 KR100940067B1 KR1020090055029A KR20090055029A KR100940067B1 KR 100940067 B1 KR100940067 B1 KR 100940067B1 KR 1020090055029 A KR1020090055029 A KR 1020090055029A KR 20090055029 A KR20090055029 A KR 20090055029A KR 100940067 B1 KR100940067 B1 KR 100940067B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- bio
- composition
- firing
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 239000003462 bioceramic Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 24
- 239000011707 mineral Substances 0.000 claims abstract description 24
- 238000010304 firing Methods 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 238000000465 moulding Methods 0.000 claims abstract description 15
- 239000008213 purified water Substances 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000000227 grinding Methods 0.000 claims abstract description 10
- 238000010298 pulverizing process Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 238000003801 milling Methods 0.000 claims description 4
- 239000011669 selenium Substances 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 229910052613 tourmaline Inorganic materials 0.000 claims 1
- 229940070527 tourmaline Drugs 0.000 claims 1
- 239000011032 tourmaline Substances 0.000 claims 1
- 239000000498 cooling water Substances 0.000 abstract description 26
- 238000001816 cooling Methods 0.000 abstract description 11
- 239000000919 ceramic Substances 0.000 abstract description 9
- 150000001450 anions Chemical class 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000013212 metal-organic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 바이오 세라믹 조성물의 제조방법에 관한 것으로, 광물질을 분말화하는 분쇄단계, 분쇄된 광물질 분말 및 정제수를 믹싱기에 넣고 혼합하는 혼합단계, 혼합된 조성물을 지름 5 내지 6 밀리미터 크기의 구형으로 성형하는 성형단계 및 전술한 성형단계에서 성형된 조성물을 소성하는 소성단계를 포함하여 이루어진다.The present invention relates to a method for producing a bio-ceramic composition, comprising: a pulverizing step of powdering a mineral, a mixing step of mixing the crushed mineral powder and purified water into a mixer, and molding the mixed composition into a sphere having a diameter of 5 to 6 millimeters in diameter. It includes a molding step and a firing step of firing the composition molded in the above-mentioned molding step.
전술한 제조방법으로 제조된 바이오 세라믹 조성물을 자동차 냉각수에 적용하면 세라믹 조성물에서 발생하는 음이온 및 원적외선에 의해 냉각수의 클러스터가 분해되어 냉각효율이 높아지기 때문에, 엔진출력을 증가시켜 주는 효과를 나타낸다.Applying the bio-ceramic composition prepared by the above-described manufacturing method to the automotive cooling water has an effect of increasing the engine output since the cluster of cooling water is decomposed by anion and far-infrared rays generated in the ceramic composition to increase the cooling efficiency.
Description
본 발명은 자동차 냉각수에 적용하여 냉각수의 클러스터를 분해하고 냉각효율이 높여 엔진출력을 증가시켜 주는 바이오 세라믹 조성물의 제조방법에 관한 것으로, 더욱 상세하게는, 분쇄단계, 혼합단계, 성형단계 및 소성단계를 포함하여 이루어진다.The present invention relates to a method for producing a bio-ceramic composition which is applied to an automobile cooling water to decompose a cluster of cooling water and increase an engine output by increasing a cooling efficiency, and more particularly, a grinding step, a mixing step, a molding step and a firing step. It is made, including.
본 발명은 자동차 냉각수에 적용하여 냉각수를 구성하는 물분자 클러스터를 분해하고, 냉각효율을 높여 엔진출력을 증가시켜 주는 바이오 세라믹 조성물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a bio-ceramic composition which is applied to an automobile cooling water to decompose a water molecule cluster constituting the cooling water and increase the engine output by increasing the cooling efficiency.
일반적으로 세라믹이란 무기물질을 주원료로 사용하는 산화물, 질화물, 탄화물 등의 재료를 뜻하는 것으로 이러한 재료는 금속재료, 유기재료에 비하여 내식성, 내열성, 내마모성 등이 매우 크며 다양한 기능성을 가지기 때문에 다양한 산업분야에 사용되고 있다.Generally, ceramic refers to materials such as oxides, nitrides, carbides, etc., which use inorganic materials as main raw materials. These materials have much higher corrosion resistance, heat resistance, and abrasion resistance than metal materials and organic materials, and have various functionalities. It is used for.
이러한 세라믹은 제조방법에 따라 분류되는데, 내화재료, 소결재료, 수경재료, 용융재료, 단결정 박막재료 등이 대표적이다.Such ceramics are classified according to the manufacturing method, which is typically a refractory material, a sintered material, a hydroponic material, a molten material, or a single crystal thin film material.
내화재료란 일반적으로 고온에 견디는 물질을 말하는 것으로 1000 ℃ 이상의 고온에서 연화하지 않고 그 강도를 유지하며, 화학적 반응 등에도 견딜 수 있는 재료로서 내화벽돌 및 금속 용해용 도가니 등에 사용된다.A refractory material generally refers to a material that withstands high temperatures. The refractory material does not soften at a high temperature of 1000 ° C. or higher, and is used for refractory bricks and crucibles for melting metals.
소결재료란 분말체를 원하는 형상으로 성형한 후 가열하면 서로 단단히 결합하여 치밀화하는 현상을 이용하여 만든 재료로, 고체의 분말을 틀속에 넣고 프레스로 적당히 눌러 단단하게 만든 다음 그 물질의 녹는점에 가까운 온도로 가열했을 때, 분말이 서로 접한 부분에서 접합이 이루어지거나 일부가 증착하여 서로 연결되어 한 덩어리가 된다. 대부분의 세라믹 재료는 이와 같은 소결 공정을 거쳐 제조되며, 대표적인 예로서는 도자기와 파인세라믹 재료의 대표인 알루미나, 지르코니아, 탄화규소, 질화규소 등이 있다.A sintered material is a material made by forming a powder into a desired shape and then tightly bonding to each other when heated to make it compact. A solid powder is put in a mold and pressed by a press to make it hard and then close to the melting point of the material. When heated to a temperature, the powders are bonded together in contact with each other, or some of them are deposited and connected together to form a mass. Most ceramic materials are manufactured through this sintering process, and representative examples thereof include alumina, zirconia, silicon carbide, and silicon nitride, which are representative of ceramics and fine ceramic materials.
수경재료란 물과 반응하여 경화하는 재료로서 대표적으로 시멘트가 있다. 용융재료의 대표적인 예로서 유리가 있다. 유리는 무기질의 용융체를 냉각할 때 결정화하지 않고 단단한 상태로 과냉각될 수 있는 물질이다. 단결정이란 결정 전체가 일정한 결정축을 따라 규칙적으로 생성된 세라믹 재료, 다른 세라믹 재료들이 다결정체인데 비하여 하나의 결정으로만 이루어졌기 때문에 물질의 고유한 특성을 약화시키는 결함이 존재하지 아니하므로 가장 이상적인 재료이다.Hydroponic material is a material that reacts with water to cure and typically includes cement. Representative examples of molten materials include glass. Glass is a material that can be supercooled in a solid state without crystallization when cooling the inorganic melt. The single crystal is the ideal material because the whole crystal is a ceramic material that is regularly produced along a certain crystal axis, and other ceramic materials are made of only one crystal. .
박막재료란 기계 가공으로는 실현이 불가능한 두께 수 ㎛이하의 얇은 막을 여러 가지 방법으로 기판위에 형성시켜 목적하는 물성을 나타내게 한 재료로서 반 도체, 화합물 반도체, 절연체, 자성체 및 초전도체 등의 박막이 있다.Thin film materials are thin films of several micrometers or less in thickness that cannot be realized by machining, and are formed on the substrate in various ways to exhibit desired physical properties. There are thin films such as semiconductors, compound semiconductors, insulators, magnetic materials, and superconductors.
이외에도, 현재 상품화 되어있는 기능성 세라믹으로는 게르마늄, 맥반석등 원적외선 방사세라믹, 세레사이트-견운모를 가공 소성시킨 항균세라믹, 산화마그네슘, 산화칼슘 등 알칼리 발생 세라믹, 옥(玉)등 광물자체의 기능석, 음이온 및 경수연화 등 단일 세라믹으로 사용중이다.In addition, functional ceramics currently commercialized include germanium, far-infrared radiation ceramics such as elvan, ceresite-molecules processed and fired, alkali-generating ceramics such as magnesium oxide, calcium oxide, mineral stones such as jade, It is used as a single ceramic such as anion and hard water softening.
그러나, 종래에 사용되던 바이오 세라믹의 제조방법은 제조과정이 용융상태에서 진행되어, 기공이 닫힌 구조의 바이오 세라믹이 제조되는데, 기공이 닫힌 구조의 바이오 세라믹은 음이온 및 원적외선의 방사효율이 낮고 불량율이 높은 단점이 있었다.However, in the conventional method of manufacturing a bio-ceramic, the manufacturing process is performed in a molten state, and thus, a bio-ceramic having a closed pore structure is manufactured. There was a high disadvantage.
본 발명의 목적은 세라믹 조성물을 용융하지 않고, 소성 공정을 적용하여 기공이 열린 상태의 바이오 세라믹 조성물의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a bio-ceramic composition in a pore open state by applying a firing process without melting the ceramic composition.
본 발명의 다른 목적은 차량용 냉각수의 물분자 클러스터의 분해효율이 높아 냉각수의 냉각효율을 증대시키고, 엔진출력의 향상시키는 바이오 세라믹 조성물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a bio-ceramic composition, in which the decomposition efficiency of the water molecule cluster of the vehicle cooling water is high, thereby increasing the cooling efficiency of the cooling water and improving the engine output.
본 발명의 목적은 광물질을 분말화하는 분쇄단계, 분쇄된 광물질 분말 및 정제수를 믹싱기에 넣고 혼합하는 혼합단계, 혼합된 조성물을 지름 5 내지 6 밀리미터 크기의 구형으로 성형하는 성형단계 및 상기 성형단계에서 성형된 조성물을 소성하는 소성단계를 포함하여 이루어지는 것을 특징으로 하는 바이오 세라믹 조성물의 제조방법을 제공함에 의해 달성된다.An object of the present invention is a pulverizing step of powdering minerals, a mixing step of mixing the pulverized mineral powder and purified water into a mixer and mixing, a molding step of molding the mixed composition into a sphere having a diameter of 5 to 6 millimeters in diameter and in the forming step It is achieved by providing a method of producing a bio-ceramic composition comprising a firing step of firing the molded composition.
본 발명의 바람직한 특징에 따르면, 상기 분쇄단계에서는 밀링장치를 이용해 상기 광물질을 325 메시 이상으로 분쇄하는 것으로 한다.According to a preferred feature of the invention, in the grinding step is to use the milling device to grind the mineral to more than 325 mesh.
본 발명의 더 바람직한 특징에 따르면, 상기 광물질은 견운모 50 중량부, 셀레늄 10 중량부, 망간 5 중량부, 포르말린 10 중량부, 이산화티탄 5 중량부 및 탄산리튬 5 중량부를 포함하여 이루어지는 것으로 한다.According to a further preferred feature of the present invention, the mineral material comprises 50 parts by weight of mica, 10 parts by weight of selenium, 5 parts by weight of manganese, 10 parts by weight of formalin, 5 parts by weight of titanium dioxide and 5 parts by weight of lithium carbonate.
본 발명의 더욱 바람직한 특징에 따르면, 상기 혼합단계에서는 광물질 분말 60 중량부에 정제수 40 중량부를 첨가하되, 상기 정제수 40중량부는 3일에 걸쳐 30분 간격으로 동일한 양을 첨가하는 것으로 한다.According to a more preferable feature of the present invention, in the mixing step, 40 parts by weight of purified water is added to 60 parts by weight of the mineral powder, and 40 parts by weight of the purified water is added to the same amount every 30 minutes over three days.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 소성단계에서는 상기 성형단계에서 성형된 조성물을 820 내지 850℃의 가스가마에서 소성하는 것으로 한다.According to a still more preferred feature of the present invention, in the firing step, the composition formed in the molding step is to be fired in a gas kiln of 820 to 850 ° C.
본 발명에 따른 바이오 세라믹 조성물의 제조방법은 용융과정 없이, 소성 공정을 통해 기공이 열린 상태의 바이오 세라믹 조성물을 제조하기 때문에, 음이온 및 원적외선 방출효율이 향상되는 탁월한 효과를 나타낸다.The method for producing a bioceramic composition according to the present invention has an excellent effect of improving anion and far-infrared emission efficiency because the bioceramic composition of the pores is opened through a sintering process without a melting process.
또한, 차량용 냉각수의 물분자 클러스터를 분해하여 냉각수의 냉각효율을 증대시키고, 엔진출력의 향상시키는 바이오 세라믹 조성물을 제공하는 탁월한 효과를 나타낸다.In addition, it exhibits an excellent effect of providing a bio-ceramic composition which decomposes the water molecule cluster of the vehicle cooling water to increase the cooling efficiency of the cooling water and improves the engine output.
이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.In the following, preferred embodiments of the present invention and the physical properties of each component will be described in detail, which is intended to explain in detail enough to be able to easily carry out the invention by one of ordinary skill in the art, This does not mean that the technical spirit and scope of the present invention is limited.
본 발명에 따른 바이오 세라믹 조성물의 제조방법은 광물질을 분말화하는 분 쇄단계(S101), 분쇄된 광물질 분말 및 정제수를 믹싱기에 넣고 혼합하는 혼합단계(S103), 혼합된 조성물을 지름 5 내지 6 밀리미터 크기의 구형으로 성형하는 성형단계(S105) 및 전술한 성형단계(S105)에서 성형된 조성물을 소성하는 소성단계(S107)를 포함하여 이루어진다.Method for producing a bio-ceramic composition according to the present invention is a grinding step of powdering the mineral (S101), mixing the pulverized mineral powder and purified water into the mixing step (S103), the mixed composition 5 to 6 millimeters in diameter It comprises a molding step (S105) for molding into a spherical shape of size and a firing step (S107) for firing the composition molded in the above-mentioned molding step (S105).
전술한 분쇄단계(S101)는 광물질을 분말화하는 단계로, 밀링장치를 이용해 상기 광물질을 325 메시 이상으로 분쇄하는데, 전술한 광물질은 견운모 50 중량부, 셀레늄 10 중량부, 망간 5 중량부, 포르말린 10 중량부, 이산화티탄 5 중량부 및 탄산리튬 5 중량부를 포함하여 이루어진다.The above-mentioned crushing step (S101) is a step of pulverizing the minerals, using a milling device to crush the minerals to 325 mesh or more, the above-mentioned minerals are 50 parts by weight of mica, 10 parts by weight of selenium, 5 parts by weight of manganese,
전술한 분쇄단계(S101)에서 325 메시 이상으로 분쇄된 광물질은 전술한 정제수와 혼합되어 구의 형태로 성형하기 적합한 입도를 갖게되며, 전술한 성분으로 이루어진 광물질 분말은 음이온 및 원적외선을 방출하게 된다.In the aforementioned crushing step (S101), the mineral pulverized to 325 mesh or more is mixed with the above-mentioned purified water to have a particle size suitable for molding into a sphere, and the mineral powder composed of the above-mentioned components emits anions and far infrared rays.
전술한 혼합단계(S103)는 분쇄된 광물질 분말 및 정제수를 믹싱기에 넣고 혼합하는 단계로, 광물질 분말 60 중량부에 정제수 40 중량부를 첨가하되, 상기 정제수 40 중량부는 3일에 걸쳐 30분 간격으로 동일한 양을 첨가하여 이루어진다.The above mixing step (S103) is a step of mixing the crushed mineral powder and purified water into a mixer, and adding 40 parts by weight of purified water to 60 parts by weight of mineral powder, the 40 parts by weight of purified water is the same every 30 minutes over 3 days It is done by adding amount.
전술한 정제수 40 중량부를 동일항 양으로 첨가하되, 30분 간격으로 3일간 첨가하는 과정을 거치게 되면, 광물질 분말 성분들과 정제수가 고르게 혼합된다.40 parts by weight of the above-mentioned purified water is added in the same amount, but when the process of adding for 3 days at intervals of 30 minutes, the mineral powder components and purified water are evenly mixed.
전술한 성형단계(S105)는 혼합된 조성물을 지름 5 내지 6 밀리미터 크기의 구형으로 성형하는 단계로, 본 발명에 따른 바이오 세라믹 조성물이 냉각수의 물분자 클러스터를 분해할 때, 분해효율을 높이기 위해 냉각수와의 단면적이 가장 넓은 구의 형태로 성형한다.The aforementioned molding step (S105) is a step of molding the mixed composition into a sphere having a diameter of 5 to 6 millimeters in diameter. When the bioceramic composition according to the present invention decomposes the water molecule cluster of the cooling water, the cooling water is increased to increase the decomposition efficiency. The cross section of the cavity is formed in the shape of the sphere with the largest area.
전술한 소성단계(S107)는 전술한 성형단계(S105)에서 성형된 조성물을 소성하는 단계로, 전술한 성형단계(S105)에서 성형된 조성물을 820 내지 850℃의 가스가마에서 소성하면 조성물 내에 수분 및 불순물 등이 제거된다.The above-described firing step (S107) is a step of firing the composition molded in the above-mentioned forming step (S105), when the composition formed in the above-mentioned forming step (S105) is fired in a gas kiln of 820 to 850 ℃ water in the composition And impurities are removed.
전술한 소성단계(S105)를 통해 제조된 바이오 세라믹 조성물은 기공이 열린 상태로 제조되기 때문에, 음이온 및 원적외선 방출효율이 증대된다.Since the bio-ceramic composition prepared by the above-described firing step (S105) is manufactured with the pores open, the anion and the far infrared emission efficiency are increased.
전술한 분쇄단계(S101), 혼합단계(S103), 성형단계(S105) 및 소성단계(S107)를 통해 제조된 바이오 세라믹 조성물은 음이온 및 원적외선 발생효율이 높기 때문에, 라지에이터 호스 등에 투입되어 냉각수에 적용할 경우 음이온 및 원적외선에 의한 냉각수의 물분자 클러스터 분해효율이 증가하고, 물분자 클러스터가 분해된 냉각수는 엔진룸과 접촉하는 물분자의 수가 증가하게 되어 냉각효율이 증대된다.Bio-ceramic compositions prepared through the above-mentioned grinding step (S101), mixing step (S103), molding step (S105) and firing step (S107) have high efficiency of generating negative ions and far-infrared rays, and are applied to cooling water by being applied to a radiator hose. In this case, the decomposition efficiency of the water molecule cluster of the cooling water by anion and far infrared rays increases, and the cooling water in which the water molecule cluster is decomposed increases the number of water molecules in contact with the engine room, thereby increasing the cooling efficiency.
냉각수의 냉각효율이 증대됨에 따라, 엔진룸이 적정온도를 유지하게 되고, 적정온도가 유지되는 엔진룸은 완전연소가 됨에 따라, 실린더 외부로부터 유입되는 공기의 유입량이 증가하여 엔진출력이 상승하게 되고, 엔진소음 감소, 매연감소, 엔진오일 교환주기 연장 및 연비향상 등의 효과를 나타낸다.As the cooling efficiency of the coolant is increased, the engine room maintains the proper temperature, and the engine room maintaining the proper temperature is completely burned, so that the inflow of air from the outside of the cylinder increases and the engine output increases. It has the effect of reducing engine noise, reducing soot, extending engine oil change interval, and improving fuel economy.
보다 상세하게 설명하면, 냉각수에 사용되는 물의 경우 표면장력이 높은 물 은 물분자가 커다란 클러스터를 이루는 형태이며, 표면장력이 낮은 물은 클러스터의 크기가 작은 형태인데, 물분자의 클러스터 크기가 작을수록 엔진룸과의 접촉면이 증가되어 냉각효율이 향상된다. 즉, 냉각수로 사용되는 물분자의 클러스터 크기가 작고, 표면장력이 낮을수록 냉강수의 냉각효율은 향상된다.In more detail, in the case of water used for cooling water, water having a high surface tension forms a large cluster of water molecules, and water having a low surface tension has a small cluster size. The contact surface with the engine room is increased to improve the cooling efficiency. That is, the smaller the cluster size of the water molecules used as the cooling water and the lower the surface tension, the cooling efficiency of the cold water is improved.
또한, 냉각수의 냉각효율이 향상됨에 따라, 실린더 내에 공기의 팽창압력이 낮아지기 때문에, 외부로부터 유입되는 공기가 증가하여, 엔진의 연소효율이 증가하게 된다.In addition, as the cooling efficiency of the cooling water is improved, since the expansion pressure of the air in the cylinder is lowered, the air flowing in from the outside increases, thereby increasing the combustion efficiency of the engine.
이하에서는, 본 발명에 따른 바이오 세라믹 조성물의 제조방법 및 실험결과를 실시예를 들어 설명한다.Hereinafter, the production method and experimental results of the bioceramic composition according to the present invention will be described with reference to Examples.
<실시예> <Example>
견운모 50 중량부, 셀레늄 10 중량부, 망간 5 중량부, 포르말린 10 중량부, 이산화티탄 5 중량부 및 탄산리튬 5 중량부로 이루어진 광물질을 밀링장치를 이용하여 325 메시 이상으로 분쇄하고, 분쇄된 광물질 분말을 믹싱기에 넣고 정제수 40 중량부를 30분 간격으로 3일 동안 동일한 양으로 투입하면서 혼합하고, 혼합된 조성물을 지름 5 밀리미터 크기의 구형으로 성형하고, 성형된 조성물을 830℃의 가스가마에 넣고 소성하여 바이오 세라믹 조성물을 제조하였다.Minerals composed of 50 parts by weight of mica, 10 parts by weight of selenium, 5 parts by weight of manganese, 10 parts by weight of formalin, 5 parts by weight of titanium dioxide, and 5 parts by weight of lithium carbonate are pulverized to 325 mesh or more using a milling apparatus, and pulverized mineral powder The mixture was added to a mixer and 40 parts by weight of purified water were added in the same amount for 3 days at 30 minute intervals. A bio ceramic composition was prepared.
전술한 실시예를 통해 제조된 바이오 세라믹 조성물로 처리된 냉각수의 원적 외선 방출량을 한국원적외선응용평가연구원에서 KFIA-FI-1006의 시험방법을 통해 측정(실내온도 20℃, 습도 33%)하여 원적외선 방출량을 영상과 온도 데이터로 처리한 결과를 도 1에 나타내었다.Far-infrared emission amount of cooling water treated with the bio-ceramic composition prepared by the above-described embodiment was measured by KFIA-FI-1006 test method (indoor temperature 20 ℃, humidity 33%) by the Korea Far Infrared Application Evaluation Institute. The results obtained by processing the images with temperature data are shown in FIG. 1.
도 1의 측정방법과 동일한 방법으로 측정된 일반냉각수의 원적외선 방출량을 측정한 결과를 도 2에 나타내었다.The results of measuring the far-infrared emission amount of the general cooling water measured by the same method as the measuring method of FIG. 1 are shown in FIG. 2.
도 1 및 도 2에 나타난 것처럼 본 발명에 의해 제조된 바이오 세라믹 조성물로 처리된 냉각수의 원적외선 방출량이 일반냉각수에서 방출되는 원적외선의 방출량에 비해 월등한 것을 알 수 있다.1 and 2, it can be seen that the far-infrared emission amount of the cooling water treated with the bio-ceramic composition prepared by the present invention is superior to the far-infrared emission amount emitted from the general cooling water.
또한, 전술한 실시예에 의해 제조된 바이오 세라믹 조성물을 라지에이터 호스에 넣어 냉각수를 처리했을 때와, 일반 냉각수로 처리했을 때의 차량의 RPM에 따른 마력과 토크의 변화량을 측정한 결과를 도 4에 나타내었다.In addition, the results of measuring the amount of change in horsepower and torque according to the RPM of the vehicle when the bio-ceramic composition prepared according to the above-described embodiment was treated in the radiator hose and treated with the coolant, and when treated with the normal coolant, is shown in FIG. 4. Indicated.
도 4에 나타낸 것처럼 본 발명의 실시예에 의해 제조된 바이오 세라믹 조성물로 처리된 냉각수를 사용하였을 때, 모든 RPM 구간에서 마력과 토크가 월등하게 향상되는 것을 알 수 있다.When using the cooling water treated with the bio-ceramic composition prepared according to the embodiment of the present invention as shown in Figure 4, it can be seen that the horsepower and torque is significantly improved in all RPM section.
도 1은 본 발명에 따른 바이오 세라믹 조성물의 제조방법을 나타낸 순서도이다.1 is a flow chart showing a method of manufacturing a bio-ceramic composition according to the present invention.
도 2는 본 발명에 의해 제조된 바이오 세라믹 조성물로 처리된 냉각수의 원정외선 방출량을 측정한 사진이다.Figure 2 is a photograph of the far-away emission amount of the cooling water treated with the bio-ceramic composition prepared by the present invention.
도 3은 일반 냉각수의 원적외선 방출량을 측정한 사진이다.3 is a photograph measuring the far-infrared emission amount of general cooling water.
도 4는 본 발명에 의해 제조된 바이오 세라믹 조성물을 라지에이터 호스에 넣어 냉각수를 처리했을때와, 일반 냉각수로 처리했을 때, RPM에 따른 차량의 마력과 토크의 변화량을 측정한 표이다.4 is a table in which the amount of change in horsepower and torque of a vehicle according to RPM is measured when the bioceramic composition prepared according to the present invention is put into a radiator hose and treated with coolant, and when treated with normal coolant.
(단, 차량은 1998년형 아반떼 자동변속기 모델이고, 일반 냉각수를 측정할 때는 10분간 공회전 후에 측정하였으며, 다이나모 테스트 방법을 적용하였다.)(However, the vehicle is a 1998 Avante automatic transmission model, and the general cooling water was measured after idling for 10 minutes, and the dynamo test method was applied.)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090055029A KR100940067B1 (en) | 2009-06-19 | 2009-06-19 | Manufacturing method of bio ceramics composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090055029A KR100940067B1 (en) | 2009-06-19 | 2009-06-19 | Manufacturing method of bio ceramics composition |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100940067B1 true KR100940067B1 (en) | 2010-02-05 |
Family
ID=42082949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090055029A KR100940067B1 (en) | 2009-06-19 | 2009-06-19 | Manufacturing method of bio ceramics composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100940067B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101295405B1 (en) * | 2012-12-24 | 2013-08-09 | (주)원윤 | Manufacturing method of ceramic |
CN110256061A (en) * | 2019-08-04 | 2019-09-20 | 娄底市远程精密结构陶瓷有限责任公司 | A kind of biology speciality ceramics and preparation method thereof |
CN111377705A (en) * | 2020-04-17 | 2020-07-07 | 上海清馀堂生物科技有限公司 | Ceramic material and preparation method and application thereof |
KR20210115583A (en) * | 2020-03-13 | 2021-09-27 | 오충록 | Photocatalytic Paint Composition for Ventilator and Filter Box and Manufacturing Method of thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10116718A (en) | 1996-09-19 | 1998-05-06 | Seiyo Ko | Ceramics composition material and manufacture thereof |
KR19980067796A (en) * | 1997-02-12 | 1998-10-15 | 홍성용 | Ceramic composition having electromagnetic wave absorptivity and manufacturing method thereof |
KR20060029870A (en) * | 2004-10-04 | 2006-04-07 | 윤민식 | Functional ceramic ball and its manufacturing method |
KR100896822B1 (en) * | 2008-03-14 | 2009-05-11 | 박재풍 | Manufacturing method of ceramic sintered body |
-
2009
- 2009-06-19 KR KR1020090055029A patent/KR100940067B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10116718A (en) | 1996-09-19 | 1998-05-06 | Seiyo Ko | Ceramics composition material and manufacture thereof |
KR19980067796A (en) * | 1997-02-12 | 1998-10-15 | 홍성용 | Ceramic composition having electromagnetic wave absorptivity and manufacturing method thereof |
KR20060029870A (en) * | 2004-10-04 | 2006-04-07 | 윤민식 | Functional ceramic ball and its manufacturing method |
KR100896822B1 (en) * | 2008-03-14 | 2009-05-11 | 박재풍 | Manufacturing method of ceramic sintered body |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101295405B1 (en) * | 2012-12-24 | 2013-08-09 | (주)원윤 | Manufacturing method of ceramic |
CN110256061A (en) * | 2019-08-04 | 2019-09-20 | 娄底市远程精密结构陶瓷有限责任公司 | A kind of biology speciality ceramics and preparation method thereof |
KR20210115583A (en) * | 2020-03-13 | 2021-09-27 | 오충록 | Photocatalytic Paint Composition for Ventilator and Filter Box and Manufacturing Method of thereof |
KR102389529B1 (en) * | 2020-03-13 | 2022-04-21 | 오충록 | Photocatalytic Paint Composition for Ventilator and Filter Box and Manufacturing Method of thereof |
CN111377705A (en) * | 2020-04-17 | 2020-07-07 | 上海清馀堂生物科技有限公司 | Ceramic material and preparation method and application thereof |
CN111377705B (en) * | 2020-04-17 | 2022-03-01 | 上海清馀堂生物科技有限公司 | Ceramic material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5230935B2 (en) | Aluminum magnesium titanate crystal structure and manufacturing method thereof | |
Riedel et al. | Ceramics Science and Technology, Volume 4: Applications | |
Li et al. | Fabrication of transparent, sintered Sc2O3 ceramics | |
KR100940067B1 (en) | Manufacturing method of bio ceramics composition | |
JP2009114063A (en) | Aluminum magnesium titanate sintered product | |
WO2010098348A1 (en) | Method for producing aluminum titanate ceramic sintered body, and aluminum titanate ceramic sintered body | |
JP2008150247A (en) | Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element | |
CN105418054A (en) | Novel special ceramic material preparing method | |
CN1974477A (en) | Prepn process of transparent toughened magnesia alumina spinel ceramic | |
US9637415B2 (en) | Method of making high purity polycrystalline aluminum oxynitride bodies useful in semiconductor process chambers | |
Randhawa | A state-of-the-art review on advanced ceramic materials: fabrication, characteristics, applications, and wettability | |
JP4153080B2 (en) | Method for producing boron nitride-containing composite ceramic sintered body and sintered body | |
CN112912447A (en) | Magnesium oxide and its preparation method, high thermal conductivity magnesium oxide composition and magnesium oxide ceramics using the same | |
Riedel et al. | Modern trends in advanced ceramics | |
CN104418608A (en) | Low-temperature sintering method of silicon carbide porous ceramic | |
JP2008169115A (en) | Production method of composite ceramic sintered compact containing boron nitride and the sintered compact | |
CN101723670A (en) | Ti(CxN1-x)/Al2O3 composite material and preparation method thereof | |
CN112624619A (en) | Quartz nanocrystalline microcrystalline glass synthesized by desert aeolian sand and synthetic method thereof | |
JP2015086125A (en) | Nitrogen and silicon-based sintered body and manufacturing method thereof | |
Kirsever et al. | The cordierite formation in mechanically activated talc-kaoline-alumina-basalt-quartz ceramic system | |
Rundans et al. | Effect of sintering process and additives on the properties of cordierite based ceramics | |
WO2018117162A1 (en) | Transparent aln sintered body, and production method therefor | |
Aydin et al. | Characterization and production of slip casts mullite–zirconia composites | |
KR101140352B1 (en) | Manufacturing method of pre-sintered porous Si granules for porous reaction-bonded silicon nitride, pre-sintered porous granules therefrom | |
Chowdhury et al. | Synthesis, properties and applications of cordierite ceramics, Part 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090619 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20090702 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20090619 Patent event code: PA03021R01I Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20091009 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20100121 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20100126 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20100126 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20130726 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20130726 Start annual number: 4 End annual number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |