KR100937472B1 - Differential pressure flow meter - Google Patents
Differential pressure flow meter Download PDFInfo
- Publication number
- KR100937472B1 KR100937472B1 KR1020070091215A KR20070091215A KR100937472B1 KR 100937472 B1 KR100937472 B1 KR 100937472B1 KR 1020070091215 A KR1020070091215 A KR 1020070091215A KR 20070091215 A KR20070091215 A KR 20070091215A KR 100937472 B1 KR100937472 B1 KR 100937472B1
- Authority
- KR
- South Korea
- Prior art keywords
- pressure
- fluid
- optical fiber
- main body
- flow meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 claims abstract description 62
- 239000013307 optical fiber Substances 0.000 claims abstract description 57
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000008602 contraction Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 16
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 9
- 238000009530 blood pressure measurement Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/38—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
- G01F1/383—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L7/00—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
- G01L7/02—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
- G01L7/026—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges with optical transmitting or indicating means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Volume Flow (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
본 발명은 유체의 압력을 측정하기 위한 압력측정기가 광섬유 압력센서로 이루어진 차압식 유량계에 관한 것으로, 본 발명에 따른 차압식 유량계는 유체가 흐를 수 있는 내부공간을 가지며, 내부 단면적이 좁아지는 교축부를 갖는 본체와, 상기 교축부의 상,하류 측에 고정부에 의해 각각 설치되어 유체의 압력을 검출하는 검출수단과, 상기 검출수단에서 검출된 압력을 전기신호로 수신하여 상기 각 지점의 압력차를 이용해 상기 본체를 통과하는 유체의 유량을 계산하고 이를 표시하는 제어수단을 구비하며, 상기 검출수단은 광섬유 압력센서로 된 것이다.The present invention relates to a differential pressure flow meter in which a pressure gauge for measuring the pressure of a fluid is composed of an optical fiber pressure sensor, and the differential pressure flow meter according to the present invention has an internal space through which a fluid can flow, and an throttle portion having an narrow internal cross section. A main body having a main body, detecting means installed at upper and lower sides of the throttle part to detect a pressure of the fluid, and receiving the pressure detected by the detecting means as an electrical signal, and the pressure difference at each point. It is provided with a control means for calculating the flow rate of the fluid passing through the main body and displaying it, the detection means is an optical fiber pressure sensor.
본 발명에 따른 차압식 유량계는 광섬유 압력센서를 통해 관 내부의 유체의 정확한 압력을 측정함으로써, 유량을 정확하게 계산할 수 있는 이점이 있다.Differential pressure flow meter according to the present invention has the advantage that can accurately calculate the flow rate by measuring the exact pressure of the fluid inside the pipe through the optical fiber pressure sensor.
차압식 유량계, 광섬유, 압력센서 Differential pressure flow meter, optical fiber, pressure sensor
Description
본 발명은 차압식 유량계에 관한 것으로서, 더 상세하게는 유체의 압력을 측정하기 위한 압력측정기가 광섬유 압력센서로 이루어진 차압식 유량계에 관한 것이다.The present invention relates to a differential pressure flow meter, and more particularly, to a differential pressure flow meter in which a pressure gauge for measuring the pressure of a fluid comprises an optical fiber pressure sensor.
유량계에는 여러 종류가 있으나, 비교적 널리 사용되고 있는 것에 날개차 유량계, 차압식 유량계, 면적식 유량계가 있다. 이 중에서 날개차 유량계가 제일 간단한 것으로 흐름에 의해 날개차를 돌려, 그 회전수를 기어의 메커니즘으로 지시한다. 주변에서 흔히 볼 수 있는 것으로 수도의 미터가 이것을 이용하고 있다. There are various types of flowmeters, but there are relatively widely used flowmeters such as vane flowmeters, differential pressure flowmeters and area flowmeters. Among them, the vane flow meter is the simplest, and the vane is turned by the flow, and the rotation speed is instructed by the mechanism of the gear. As you can see in the surroundings, water meters use this.
면적식은 위쪽으로 올라갈수록 넓어진 압력검출관 속에 플로트(float)를 넣고, 유체를 아래에서 위로 흘려보내고, 유체류에 밀어올려진 플로트의 전후에 생기는 차압에 의한 부력과 플로트의 무게를 평형시켜 플로트의 위치에서 유량을 안다. 이 밖에 일정한 부피의 용기로 직접 유체의 양을 측정하는 것도 있으며, 도시가스의 가스미터는 그 일종이다.The area expression puts a float in the pressure detector tube that is widened upwards, flows the fluid from the bottom up, and balances the weight of the float with the buoyancy caused by the differential pressure before and after the float pushed up into the fluid stream. Know the flow rate at the location. In addition, the volume of the fluid is directly measured in a container of a constant volume, the gas meter of the city gas is a kind.
차압식 유량계는 주로 공업방면에서 많이 사용되는 것인데, 유체가 흐르는 관로 중에 조리기구인 오피리스, 벤츄리관, 플로우 노즐 등을 설치하여 교축부의 전후 지점에서 발생되는 유체의 압력차를 이용하여 유량을 검출하는 방식이다.Differential pressure flowmeters are mainly used in the industrial field, and the flow rate is detected by using the pressure difference of the fluid generated at the front and rear of the throttle by installing the cooking utensils, venturi tubes, flow nozzles, etc. in the pipeline. That's the way it is.
베르누이의 법칙에 의하면 유체가 흐르고 있는 관로 상 일부를 축소시키면 유체가 그 부분을 통과할 때 속도는 증가하고 압력이 감소함으로써 관로의 전후 압력차와 유량과의 사이에는 일정한 관계가 성립되어 짐으로써 곧 차압을 측정유량으로 환산하는 것이다. Bernoulli's law states that shrinking a portion of a pipeline through which a fluid flows increases the velocity and decreases the pressure as the fluid passes through the section, creating a constant relationship between the flow rate and the back and forth pressure of the pipeline. The differential pressure is converted into the measured flow rate.
따라서 차압식 유량계에 있어서 압력을 측정하는 압력센서는 매우 중요하다. 종래의 압력을 측정하기 위한 센서는 검출방식에 따라 기계식과 전기식 및 반도체식으로 분류할 수 있는데, 이러한 압력센서들의 경우 정밀한 압력 측정이 어렵고, 이를 보완하기 위해 압력에 대한 민감도를 증진시킬 경우 압력측정범위가 아주 협소하게 되며, 광범위의 압력을 계측하고자 할 경우 감도가 좋지 않게 되어 정확한 유량을 계산하기 위해 선행되어야 하는 정확한 압력 측정이 어려워지게 되는 문제점이 있었다.Therefore, the pressure sensor for measuring the pressure in the differential pressure flow meter is very important. Conventional sensors for measuring pressure can be classified into mechanical, electrical, and semiconductor types according to the detection method. For these pressure sensors, precise pressure measurement is difficult, and to compensate for this, if pressure sensitivity is increased, pressure measurement is performed. The range becomes very narrow and there is a problem that it is difficult to accurately measure the pressure to be measured in order to calculate the accurate flow rate if the sensitivity is not good if you want to measure a wide range of pressure.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 정확한 유량의 측정을 위해 교축부의 전후에서의 유체의 압력을 광섬유 압력센서를 이용해 측정하는 차압식 유량계를 제공하는 것에 그 목적이 있다.An object of the present invention is to provide a differential pressure flow meter for measuring the pressure of the fluid before and after the throttle using an optical fiber pressure sensor for accurate measurement of the flow rate.
상기 목적을 달성하기 위한 본 발명에 따른 차압식 유량계는 유체가 흐를 수 있는 내부공간을 가지며, 내부 단면적이 좁아지는 교축부를 갖는 본체와, 상기 교축부의 상,하류 측에 고정부에 의해 각각 설치되어 유체의 압력을 검출하는 검출수단과, 상기 검출수단에서 검출된 압력을 전기신호로 수신하여 상기 각 지점의 압력차를 이용해 상기 본체를 통과하는 유체의 유량을 계산하고 이를 표시하는 제어수단을 구비하며, 상기 검출수단은 광섬유 압력센서로 된 것이다.The differential pressure flow meter according to the present invention for achieving the above object has an internal space through which fluid can flow, and a main body having an throttle portion whose inner cross-sectional area is narrowed, and fixed portions on the upper and downstream sides of the throttle portion, respectively. A detection means installed to detect the pressure of the fluid, and a control means for receiving the pressure detected by the detection means as an electrical signal to calculate and display a flow rate of the fluid passing through the main body using the pressure difference between the points. It is provided, the detection means is made of an optical fiber pressure sensor.
상기 고정부는 상기 광섬유 압력센서가 유체의 압력에 따른 상기 본체의 변형량을 통해 유체의 압력을 측정할 수 있도록 상기 광섬유 압력센서를 상기 본체의 외주면에 밀착 고정시키는 고정밴드로 형성될 수 있다. The fixing part may be formed as a fixing band for tightly fixing the optical fiber pressure sensor to the outer peripheral surface of the main body so that the optical fiber pressure sensor can measure the pressure of the fluid through the deformation amount of the main body according to the pressure of the fluid.
상기 본체에는 상기 교축부를 중심으로 상류측과 하류측에 각각 제1, 제2 압력취출구가 형성되어 있고, 상기 제1, 제2 압력취출구로부터 상기 본체의 내부로 연통되는 제1, 제2 압력검출관이 연장되며, 상기 고정부는 상기 광섬유 압력센서를 상기 제1, 제2 압력검출관으로 소정깊이 인입되게 고정하며, 상기 제1, 제2 압력취출구가 밀폐되도록 상기 본체에 결합되는 하우징을 포함하고, 상기 제어수단은 상 기 하우징의 상부에 설치될 수도 있다.The main body has first and second pressure outlets formed on the upstream side and the downstream side of the throttle part, respectively, and communicates with the inside of the main body from the first and second pressure outlets. The detection tube is extended, and the fixing portion secures the optical fiber pressure sensor to be introduced into the first and second pressure detection tube to a predetermined depth, and includes a housing coupled to the main body to seal the first and second pressure outlets. In addition, the control means may be installed on the upper portion of the housing.
또한 상기 본체는 상기 교축부를 중심으로 상류측과 하류측에 각각 유체의 압력에 의해 길이방향을 따라 신축되는 벨로우즈형 신축부가 형성되어 있고, 상기 광섬유 압력센서는 상기 신축부의 변형량에 의해 압력을 측정할 수 있도록 상기 신축부에 접촉하도록 설치될 수도 있다.In addition, the main body has a bellows-type expansion and contraction is formed in the longitudinal direction by the pressure of the fluid on the upstream side and the downstream side around the throttle portion, respectively, the optical fiber pressure sensor measures the pressure by the amount of deformation of the expansion portion It may be installed so as to contact the expansion and contraction.
본 발명에 따른 차압식 유량계는 광섬유 압력센서를 통해 관 내부의 유체의 정확한 압력을 측정함으로써, 유량을 정확하게 계산할 수 있는 이점이 있다.Differential pressure flow meter according to the present invention has the advantage that can accurately calculate the flow rate by measuring the exact pressure of the fluid inside the pipe through the optical fiber pressure sensor.
첨부된 도면을 참조하여 본 발명에 따른 차압식 유량계에 대해 보다 상세하게 설명하면 다음과 같다.Referring to the accompanying drawings in more detail with respect to the differential pressure type flow meter according to the present invention.
도 1 및 도 2에는 본 발명에 따른 차압식 유량계(10)의 제1 실시예가 도시되어 있다. 도면을 참조하면, 차압식 유량계(10)는 내부 유로를 갖는 본체(11)와, 본체(11)의 외주면에 설치된 제1, 제2 광섬유 압력센서(14,15)와, 본체(11)의 외주면에 결합되며, 상기 제1, 제2 광섬유 압력센서(14,15)를 감싸는 하우징(16)과, 하우징(16)의 내부에 설치되어 제1, 제2 광섬유 압력센서(14,15)에서 측정된 측정치를 통해 유량을 계산하고, 사용자가 인식할 수 있도록 표시하는 제어수단(20)을 포함한다.1 and 2 show a first embodiment of a differential
본체(11)는 내부에 유체가 이동할 수 있는 유로가 마련되어 있다. 그리고 내부 유로 상에는 유로의 폭이 점차 좁아지는 교축부(12)가 형성되어 있으며, 본 체(11)의 양단은 유체의 이송관에 연결할 수 있도록 플랜지부(13)가 구비되어있다. 본체(11)는 내부 유로를 통해 유체가 이동할 때, 유체의 압력에 의해 팽창될 수 있도록 탄성력을 갖는 소재로 제작된다.The
본체(11)의 외주면에는 제1, 제2 광섬유 압력센서(14,15)가 부착되어 있다. 제1, 제2 광섬유 압력센서(14,15)는 본체(11)의 내부를 흐르는 유체의 압력을 측정하기 위한 것으로서, 제1 광섬유 압력센서(14)는 상기 교축부(12)를 중심으로 상류 측의 유체의 압력을 측정하도록 설치되어 있고, 제2 광섬유 압력센서(15)는 하류측의 유체의 압력을 측정하도록 본체(11)에 설치되어 있다.First and second optical
제1, 제2 광섬유 압력센서(14,15)는 모두 동일한 구조를 갖는다.The first and second optical
제1, 제2 광섬유 압력센서(14,15)는 기준 신호용 광섬유와, 압력측정용 광섬유가 내장되어 있으며, 이 두 가지 광섬유에 광을 공급하는 광원과, 광섬유를 통과한 광신호를 검출하는 광검출기를 구비한다. 기준 신호용 광섬유에서는 유체의 압력에 상관없이 일정한 광신호가 검출된다. 반면에 압력측정용 광섬유는 본체(11)의 외주면에 접촉하는 탄성체를 감싸도록 설치되며, 유체의 압력에 의해 본체(11)가 팽창하거나 변형이 일어나면 탄성체가 본체(11)의 변형에 따라 함께 변형이 일어나게 된다. 압력측정용 광섬유는 탄성체의 형태변형에 따라 길이가 변화하거나 굴절율 및 직경이 변하게 되며, 이에 따라 동일 광원에서 광신호를 인가하여도 기준 신호용 광섬유와 위상차가 있는 광신호가 검출된다. 따라서 외부 인가 압력에 따른 광신호의 위상차를 통해 유체의 압력을 측정할 수 있다.The first and second optical
제어수단(20)에서는 제1, 제2 광섬유 압력센서(14,15)에서 측정된 유체의 압 력 측정값을 토대로 유체의 유량을 계산하고, 이를 사용자가 인식할 수 있도록 수치화하여 표시하는데, 제어수단(20)은 연산부(21)와, 연산부(21)의 연산결과를 외부에서 인식할 수 있도록 하우징(16)의 상면으로 노출되는 디스플레이부(22)를 포함한다.The control means 20 calculates the flow rate of the fluid based on the pressure measurement values of the fluids measured by the first and second optical
연산부(21)에서는 각각의 지점에서 즉, 제1, 제2 광섬유 압력센서(14,15)에서 측정된 압력값을 토대로 유량을 계산하는데, 유량계산은 연속의 법칙과 베르누이 방정식에 따른 것이다. The
유체의 압력변화와 무관하게 밀도가 일정하다고 가정하면, 제1 광섬유 압력센서가 설치된 지점의 면적을 A1[㎥], 유속을 V1[㎨], 압력을 P1[㎏/㎡]라고 하고, 상기 제2 광섬유 압력센서가 설치된 지점의 면적을 A2[㎥], 유속을 V2[㎨], 압력을 P2[㎏/㎡]라 할 때 관로가 수평으로 되어 있으면 상류 지점과 하류 지점을 흐르는 유체의 유량은 동일하다.Assuming that the density is constant irrespective of the pressure change of the fluid, the area of the point where the first optical fiber pressure sensor is installed is A 1 [㎥], the flow rate is V 1 [㎨], and the pressure is P 1 [㎏ / ㎡]. When the area of the point where the second optical fiber pressure sensor is installed is A 2 [㎥], the flow rate is V 2 [㎨], and the pressure is P 2 [㎏ / ㎡], the upstream point and the downstream point if the pipeline is horizontal. The flow rate of the fluid flowing through the same is the same.
Q = A1v1 = A2v2 Q = A 1 v 1 = A 2 v 2
상류 지점과 하류 지점 위치에서 에너지 관계를 보면 다음과 같다.The energy relationship at the upstream and downstream locations is:
여기서 관을 수평으로 하게 되면 위치에너지가 동일하므로 상기 식은 와 같이 표기될 수 있으며,If the tube is horizontal, the potential energy is the same. Can be written as:
양변을 로 나누게 되면 과 같은 결과가 도출된다.On both sides Divided by The result is as follows.
이므로 이며, Because of ,
결과식 연속의 법칙에서 에 대해 정리한 것을 대입하면 가 된다.In the Law of Consecutive Continuity Substituting the summation for Becomes
또한 기체 유체를 측정하는 경우에는 기체유량은 온도, 압력에 따라 크게 변한다. 따라서 차압식 유량계(10)를 이용하여 비압축성 유체와 같이 계산 측정하면 오차가 발생하게 된다. 측정기체가 이상기체라고 하면 보일-샤를의 법칙에 의해 기체의 비중량()은 (n:기준상태,T:절대온도(T=273.15+℃,P:절대압력)In the case of measuring the gas fluid, the gas flow rate varies greatly depending on the temperature and pressure. Therefore, an error occurs when the differential
이 되며, 압축성 유체의 중량 유량은 구하는 식에 대입하면 If the weight flow rate of the compressive fluid is substituted into the equation
{ = 기체 팽창 보정계수(0.01252), = 유량계수( )}{ = Gas expansion correction factor (0.01252), = Flow coefficient ( )}
을 얻는다. Get
따라서 이것으로부터 알 수 있듯이 유체의 차압을 측정함과 동시에 유체의 압력 및 온도를 측정하여 유량계의 설계 시 기준치와 비만 정확히 보정하면 바른 유량을 얻을 수 있다.Therefore, as can be seen from this, it is possible to obtain a correct flow rate by measuring the differential pressure of the fluid and at the same time measuring the pressure and temperature of the fluid and accurately correcting the reference value and obesity in the design of the flowmeter.
연산부(21)에서는 상기와 같은 과정을 통해 제1, 제2 광섬유 압력센서(14,15)에서 측정된 압력 값을 통해 유량을 계산하게 된다.The calculating
본 실시예에서는 비압축성 유체의 유량을 측정하는 차압식 유량계(10)이므로 온도센서가 설치되지 않았으나, 상기한 바와 같이 기체와 같은 압축성 유체의 유량을 측정하기 위한 차압식 유량계(10)인 경우에는 상류측 지점과 하류측 지점의 온도를 측정하여 연산부(21)에 정보를 전달하는 별도의 온도센서가 더 구비될 것이다.In the present embodiment, since the differential
연산부(21)에서 계산된 유량은 디스플레이부(22)를 통해 관리자가 인식할 수 있도록 표시된다.The flow rate calculated by the
디스플레이부(22)는 연산부(21)와 연결되어 있으며, 본체(11)의 상면을 통해 외부로 노출되게 되어있다. 연산부(21)에서 계산된 유량은 디스플레이부(22)의 액정 표시장치(23)를 통해 수치화하여 표시되므로, 관리자는 쉽게 유량을 파악할 수 있다.The
하우징(16)은 제1, 제2 광섬유 압력센서(14,15)를 감싸도록 본체(11)에 결합되며, 하우징(16)의 상부에는 차압식 유량계(10)의 전원을 단속하기 위한 전원버튼(17)과, 유량의 재측정을 위한 리셋버튼(18) 및 유량측정 시작을 위한 시작버튼(19)이 마련되어 있다.The
도 3에는 본 발명에 따른 차압식 유량계(30)의 제2 실시예가 도시되어 있는데, 도 3을 참조하면, 차압식 유량계(30)는 본체(31)와, 본체(31)의 내부 유로로 연장된 제1, 제2 압력검출관(35,36)과, 상기 제1, 제2 압력검출관(35,36)에 삽입설치되는 제3, 제4 광섬유 압력센서(37,38) 및 제어수단(20)을 구비한다.3 shows a second embodiment of the differential
본 실시예의 본체(31)는 양 측단이 유체가 유입 및 배출될 수 있도록 개방되어 있으며, 외부 관과의 연결이 용이하도록 플랜지부(33)가 형성되어 있다. 또한 내부 유로 상에는 관로의 폭이 좁아지는 교축부(32)가 형성되어 있으며, 교축부(32)를 중심으로 본체(31)의 상류측과 하류측에는 각각 본체(31)의 외부와 내부 공간을 연통하는 압력취출구(34)가 형성되어 있다.The
제1, 제2 압력검출관(35,36)은 제3, 제4 광섬유 압력센서(37,38)가 설치될 수 있는 설치공간을 제공하며, 상기 본체(31)의 압력취출구(34)를 통해 본체(31)의 내부로 연장되게 설치된다. 압력취출구(34)를 통해 외부공기가 본체(31)의 내부로 유입되는 것을 방지하도록 제1, 제2 압력검출관(35,36)과의 결합부분에는 실링처리 를 하는 것이 바람직하다. The first and second
제1, 제2 압력검출관(35,36)은 하방이 개방되어 있어서 유체가 본체(31)를 통과할 때, 제1, 제2 압력검출관(35,36)의 하부를 통해 유체의 압력이 제1, 제2 압력검출관(35,36)의 내부로 전달된다.The first and second
제3, 제4 광섬유 압력센서(37,38)는 제1, 제2 압력검출관(35,36)을 통해 전달되는 유체의 압력에 의해 형 변형이 일어날 때, 광검출기에서 수신되는 광신호의 위상차에 의해 각 지점에서의 유체의 압력을 측정하게 된다.The third and fourth optical
본 실시예의 제3, 제4 광섬유 압력센서(37,38)는 제1 실시예의 제1, 제2 광섬유 압력센서(14,15)와 동일한 원리로 유체의 압력을 측정하므로 이에 대한 상세한 설명은 생략한다.Since the third and fourth optical
또한 본 실시예의 연산부 및 디스플레이부를 포함하는 제어수단은 도시되지는 않았으나 본체(31)와 인접하도록 설치되어 있으며, 연산부는 제1 실시예의 연산부(21)와 동일한 방법으로 제3, 제4 광섬유 압력센서(37,38)의 압력 측정값을 통해 유량을 계산하며, 디스플레이부에서는 이를 수치화 하여 사용자가 인식할 수 있도록 표시한다.In addition, although not shown, the control means including the operation unit and the display unit of the present embodiment is installed so as to be adjacent to the
본 실시예에서는 제1, 제2 압력검출관(35,36)의 하부가 개방되어 있고, 개방된 부분을 통해 유입되는 유체의 압력이 직접 제3, 제4 광섬유 압력센서(37,38)에 인가되도록 되어 있다. 그러나 본체(31)를 통과하는 유체가 광섬유 압력센서에 부식을 유발하는 경우와 같이 광섬유 압력센서에 직접 접촉할 수 없는 유체인 경우, 광섬유 압력센서를 보호하기 위한 별도의 보호층을 형성하고, 유체의 압력으로 인 한 보호층의 변형을 광섬유 압력센서가 감지하여 유체의 압력을 측정하도록 형성할 수도 있다.In the present embodiment, the lower portions of the first and second
도 4에는 본 발명에 따른 차압식 유량계(40)의 제3 실시예가 도시되어 있는데, 도면을 참조하면, 차압식 유량계(40)는 본체(41)와, 본체(41)에 설치되는 제5, 제6 광섬유 압력센서(45,46)와, 제어수단을 구비한다.4 shows a third embodiment of a differential
본체(41)는 내부에 유로의 폭이 좁은 교축부(42)를 가지며, 양단에는 유체이송관과의 결합이 용이하도록 플랜지부(44)가 마련되어 있고, 교축부(42)를 중심으로 양 측에 신축 가능한 밸로우즈형의 신축부(43)가 형성되어 있다. 유체가 유동할 때, 유체의 압력을 받으면 상기 신축부(43)가 길이방향을 따라 소정길이 신장 된다.The
유체의 압력을 측정하기 위한 제5, 제6 광섬유 압력센서(45,46)는 상기 신축부(43)에 부착 설치된다.The fifth and sixth optical
유체의 압력에 의한 신축부(43)의 신장시, 신축부(43)에 부착된 제5, 제6 광섬유 압력센서(45,46)가 신축부(43)에 의해 신장되며, 이에 따라 제5, 제6 광섬유 압력센서(45,46)에 내장된 기준신호 광섬유와 압력측정용 광섬유의 굴절률과 길이에 차이가 생기면서 광검출기에 수신되는 광신호 사이에 위상차가 발생한다. 이를 토대로 제5, 제6 광섬유 압력센서(45,46)는 교축부(42)를 중심으로 상류측과 하류측의 압력을 측정한다.When the
도시되지는 않았으나, 제어수단의 연산부는 제5, 제6 광섬유 압력센서(45,46)와 유체의 압력 측정값을 전달받을 수 있도록 전기적으로 연결되어 있으 며, 양 측의 압력 측정값을 토대로 본체(41)를 지나는 유체의 유량을 연산한다. 유량의 연산과정 및 디스플레이부의 표시방법은 상기 제1 실시예와 동일하므로 자세한 설명은 생략한다. Although not shown, the calculation unit of the control means is electrically connected to the fifth and sixth optical
도 1은 본 발명에 따른 차압식 유량계의 제1 실시예를 도시한 부분 절단 사시도,1 is a partially cut perspective view showing a first embodiment of a differential pressure flow meter according to the present invention;
도 2는 도 1의 유량 연산 및 표시 단계를 도시한 블럭도,2 is a block diagram showing the flow rate calculation and display step of FIG.
도 3은 본 발명에 따른 차압식 유량계의 제2 실시예를 도시한 부분 절단 사시도,3 is a partially cut perspective view showing a second embodiment of a differential pressure flow meter according to the present invention;
도 4는 본 발명에 따른 차압식 유량계의 제3 실시예를 도시한 단면도.4 is a sectional view showing a third embodiment of a differential pressure flow meter according to the present invention;
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070091215A KR100937472B1 (en) | 2007-09-07 | 2007-09-07 | Differential pressure flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070091215A KR100937472B1 (en) | 2007-09-07 | 2007-09-07 | Differential pressure flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090025973A KR20090025973A (en) | 2009-03-11 |
KR100937472B1 true KR100937472B1 (en) | 2010-01-19 |
Family
ID=40694204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070091215A Expired - Fee Related KR100937472B1 (en) | 2007-09-07 | 2007-09-07 | Differential pressure flow meter |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100937472B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101514017B1 (en) * | 2013-11-15 | 2015-04-21 | 주식회사 골드텔 | pressure sensor using optical fiber and pressure sensing apparatus having the same |
KR20230139048A (en) | 2022-03-25 | 2023-10-05 | 주식회사 동화엔지니어링 | Pump flow, pressure and temperature measuring apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101128301B1 (en) * | 2009-06-02 | 2012-03-23 | 케이에프이 주식회사 | Strainer Status Indicator |
CN109443459B (en) * | 2018-12-05 | 2024-01-16 | 福建上润精密仪器有限公司 | Throttle device with built-in high-precision sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159566A (en) * | 1988-12-13 | 1990-06-19 | Kubota Ltd | current meter |
US6698297B2 (en) * | 2002-06-28 | 2004-03-02 | Weatherford/Lamb, Inc. | Venturi augmented flow meter |
US7249525B1 (en) * | 2005-06-22 | 2007-07-31 | Cidra Corporation | Apparatus for measuring parameters of a fluid in a lined pipe |
-
2007
- 2007-09-07 KR KR1020070091215A patent/KR100937472B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159566A (en) * | 1988-12-13 | 1990-06-19 | Kubota Ltd | current meter |
US6698297B2 (en) * | 2002-06-28 | 2004-03-02 | Weatherford/Lamb, Inc. | Venturi augmented flow meter |
US7249525B1 (en) * | 2005-06-22 | 2007-07-31 | Cidra Corporation | Apparatus for measuring parameters of a fluid in a lined pipe |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101514017B1 (en) * | 2013-11-15 | 2015-04-21 | 주식회사 골드텔 | pressure sensor using optical fiber and pressure sensing apparatus having the same |
KR20230139048A (en) | 2022-03-25 | 2023-10-05 | 주식회사 동화엔지니어링 | Pump flow, pressure and temperature measuring apparatus |
KR20240115783A (en) | 2022-03-25 | 2024-07-26 | 주식회사 동화엔지니어링 | Pump flow, pressure and temperature measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20090025973A (en) | 2009-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6239727B2 (en) | Main components of a flow meter with multiple sensors | |
EP0871848B1 (en) | Flowmeter with pitot tube with average pressure | |
US10274351B2 (en) | Method of making a multivariable vortex flowmeter | |
US8069734B2 (en) | Multi-vortex flowmeter integrating pressure gauge | |
US20130213130A1 (en) | Fluid measurement sensor attachment structure | |
JP2010502950A (en) | Process equipment with concentration measurement | |
JP4158980B2 (en) | Multi vortex flowmeter | |
US20150043612A1 (en) | Method for heat quantity measurement with an ultrasonic, flow measuring device | |
US20120160032A1 (en) | Vortex flowmeter with optimized temperature detection | |
KR100937472B1 (en) | Differential pressure flow meter | |
KR101178038B1 (en) | Differential pressure-type mass flow meter with double nozzles | |
US20110107847A1 (en) | Acoustic Sensor For Averaging Pitot Tube Installation | |
CN103591994B (en) | A kind of high-precision flow measurement mechanism that is not subject to such environmental effects | |
CN111928910A (en) | Integral type bidirectional measurement return bend flowmeter | |
CN105352558B (en) | A kind of downhole optic fiber vortex-shedding meter | |
JPH09101186A (en) | Pitot-tube type mass flowmeter | |
CN206056692U (en) | A kind of MEMS thermal mass gas meter, flow meters equipped with many bypass measurement apparatus | |
JP2005017152A (en) | Flowmeter, flow rate calculation method, program and recording medium | |
CN201100846Y (en) | Multi-detection spiral vortex flow meter | |
JP3398251B2 (en) | Flowmeter | |
CN214173502U (en) | Gas flowmeter calibrating device capable of dynamically compensating temperature change in real time | |
JP6202327B2 (en) | Mass flow meter and static pressure measurement method | |
CN119063797A (en) | A mine-used fiber grating gas flowmeter, measurement system and method | |
KR100687261B1 (en) | Differential pressure flow meter | |
RU2299404C2 (en) | Non-invasive thermal liquid consumption indicator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070907 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090528 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20091118 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20100111 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20100112 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20130111 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20130111 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131029 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20131029 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20141229 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20141229 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20151111 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20151111 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20171228 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20171228 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20190109 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20190109 Start annual number: 10 End annual number: 10 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20201022 |