KR100936483B1 - Transmission antenna selection method in multi-transmission and reception system - Google Patents
Transmission antenna selection method in multi-transmission and reception system Download PDFInfo
- Publication number
- KR100936483B1 KR100936483B1 KR1020070102436A KR20070102436A KR100936483B1 KR 100936483 B1 KR100936483 B1 KR 100936483B1 KR 1020070102436 A KR1020070102436 A KR 1020070102436A KR 20070102436 A KR20070102436 A KR 20070102436A KR 100936483 B1 KR100936483 B1 KR 100936483B1
- Authority
- KR
- South Korea
- Prior art keywords
- matrix
- sub
- equation
- transmission
- transmission antenna
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0658—Feedback reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0634—Antenna weights or vector/matrix coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
Abstract
본 발명은 다중송수신 시스템에서의 송신안테나 선택 방법에 관한 것으로서, 많은 양의 채널 정보를 송신단으로 피드백 해주지 않고, 제안된 수신단에서의 송신안테나 선택 기법에 의하여 선택된 송신안테나의 인덱스만을 피드백 해줌으로써, 계산량이 많은 matrix decomposition 연산 없이 적은 양의 복잡도(complexity)를 갖는 방법을 제공함에 그 특징적인 목적이 있다.The present invention relates to a transmission antenna selection method in a multi-transmission and reception system, and does not feed back a large amount of channel information to a transmitting end. Its characteristic purpose is to provide a method with a small amount of complexity without this many matrix decomposition operations.
이러한 목적을 달성하기 위한 본 발명은, (a) channel matrix H로부터 L개의 sub-matrix 를 추출하는 단계; (b) 상기 추출된 L개의 sub-matrix 의 고유 값들의 합을 산출하는 단계; (c) 선택 가능한 sub-matrix 에 대하여 를 계산하는 단계; 및 (d) 상기 (c) 단계를 통해 계산된 값을 최대화 시킬 수 있는 sub-matrix 를 선택하는 단계; 를 포함한다. The present invention for achieving this purpose is (a) L sub-matrix from the channel matrix H Extracting; (b) the extracted L sub-matrix Calculating a sum of eigenvalues of; (c) selectable sub-matrix about Calculating; And (d) calculated through step (c). Sub-matrix to maximize the value Selecting a; It includes.
MIMO, 송신안테나, 시스템 용량 MIMO, transmit antenna, system capacity
Description
본 발명은 송신안테나 선택 방법에 관한 것으로서, 더욱 상세하게는 많은 양의 채널 정보를 송신단으로 피드백 해주지 않고, 제안된 수신단에서의 송신안테나 선택 기법에 의하여 선택된 송신안테나의 인덱스만을 피드백 해줌으로써, 계산량이 많은 matrix decomposition 연산 없이 적은 양의 복잡도(complexity)를 가지며, 모든 SNR 영역에 대하여 최적화되는 다중송수신 시스템에서의 송신 안테나 선택 방법에 관한 것이다. The present invention relates to a transmission antenna selection method, and more specifically, a large amount of channel information is not fed back to a transmitting end, and only the index of the transmitting antenna selected by the transmitting antenna selecting technique at the proposed receiving end is fed back so that the amount of computation is increased. The present invention relates to a method of selecting a transmission antenna in a multi-transmission / reception system having a small amount of complexity and optimizing for all SNR regions without many matrix decomposition operations.
주지된 바와 같이, MIMO(Multiple-Input Multiple-Output) 시스템은 송신단과 수신단에 여러 개의 안테나를 설치하여 시스템을 성능을 향상시킬 수 있다. MIMO 전송 기술은 크게 diversity gain을 얻을 수 있는 시공간 코드(space-time code)와 multiplexing gain을 얻을 수 있는 공간 다중화(spatial multiplexing) 기법으로 대별된다. 이 중, 공간 다중화(spatial multiplexing) 기법은 다중 송수신 안테나를 통해서 여러 개의 data stream을 동시에 보내고 받음으로써 시스템의 용량(capacity)을 극대화 할 수 있는 방법이다. As is well known, a multiple-input multiple-output (MIMO) system can improve performance of a system by installing multiple antennas at a transmitter and a receiver. MIMO transmission technology is largely classified into a space-time code for obtaining diversity gain and a spatial multiplexing technique for obtaining multiplexing gain. Among these, spatial multiplexing is a method of maximizing the capacity of a system by simultaneously transmitting and receiving multiple data streams through multiple transmit / receive antennas.
M개의 송신안테나와 N개의 수신안테나를 갖는 MIMO 시스템을 가정해보면, 송신신호 s, channel matrix H(N×M), 수신 noise vector n 에 대하여 받은 신호 y 는 다음과 같은 [수식 1]로 나타낼 수 있다. Assuming a MIMO system having M transmit antennas and N receive antennas, the received signal y for the transmitted signal s, the channel matrix H (N × M), and the received noise vector n can be expressed by
[수식 1][Equation 1]
송신단에서 각 data stream에 동일한 송신 power를 할당했을 경우, 위의 주어진 시스템의 용량(channel capacity)은 다음의 [수식 2] 및 [수식 3]과 같이 '제 1 시스템 용량식'으로 주어진다.When the transmitter allocates the same transmission power to each data stream, the channel capacity of the given system is given by the first system capacity equation as shown in
.............. [수식 2] .............. [Equation 2]
...................................... [수식 3] Equation 3
위의 식에 주어진 용량(capacity)은 송신단에서 채널 정보를 알고 있을 때, SVD(Singular Value Decomposition)를 이용하여 얻을 수 있다. 또한, SVD와 water filling을 사용한 power 할당 기법을 사용함으로써, 최적의 용량(capacity)을 얻을 수 있고, 특히 SNR이 낮은 영역에서 water filling 기법이 효과적이다. The capacity given in the above equation can be obtained by using Singular Value Decomposition (SVD) when the transmitter knows the channel information. In addition, by using a power allocation technique using SVD and water filling, an optimum capacity can be obtained, and the water filling technique is particularly effective in a low SNR region.
한편, M개의 송신안테나와 N개의 수신안테나를 갖는 MIMO 시스템에서 송신안테나의 개수가 수신안테나의 개수보다 클 경우에는, 송신단에서 M개의 data stream 을 동시에 전송할 수 없고 최대 N개의 data stream을 전송할 수 있다. ([수식 2]에서 주어진 의 고유 값(eigenvalue)의 개수 L개만큼 data stream을 동시에 전송할 수 있다.) On the other hand, in the MIMO system having M transmit antennas and N receive antennas, when the number of transmit antennas is larger than the number of receive antennas, the transmitter cannot transmit M data streams simultaneously and can transmit up to N data streams. . (Given in [Equation 2] A data stream can be transmitted at the same time as L number of eigenvalues.)
도 1a 는 M개의 송신안테나 중 L개의 송신안테나를 선택하는 방법을 나타내는 일예시도로서, 주어진 channel matrix H로부터 H에서 L개의 column을 뽑아낸 sub-matrix 를 얻게 된다.FIG. 1A is an exemplary diagram illustrating a method of selecting L transmit antennas among M transmit antennas. FIG. 1A is a sub-matrix extracting L columns from H from a given channel matrix H. FIG. You get
송신안테나의 선택 기법은 수신단에서 수행하게 되는데, 종래에 제안된 기술을 요약하면 다음과 같다. The selection technique of the transmitting antenna is performed at the receiving end. The conventionally proposed technique is summarized as follows.
기본적인 개념은 선택 가능한 sub-matrix 중에서 용량(capacity)을 최대화할 수 있는 matrix를 찾는 것인데, 이는 원래 channel matrix H에서 어느 column을 뽑아내느냐 하는 것이고, 곧 송신안테나의 인덱스를 결정하는 것이 된다. 이것을 설명하기 위한 기본적인 가정은 다음과 같다.The basic concept is a selectable sub-matrix It is to find a matrix that can maximize the capacity from among them, which column to extract from the original channel matrix H, and determine the index of the transmission antenna. The basic assumptions for explaining this are as follows.
위와 같은 가정아래, 용량(capacity)을 최대화 할 수 있는 sub-matrix 를 찾기 위한 [수식 4] 및 [수식 5]와 같은 '제 2 시스템 용량식'을 나타낸다.Under the same assumption, sub-matrix can maximize the capacity Denotes a 'second system dose formula' such as [Equation 4] and [Equation 5] to find.
..... [수식 4] ..... [Equation 4]
............................ [수식 5] Equation 5
log 함수의 덧셈을 최대화하는 것은 각각의 곱을 최대화하는 것과 동일하므로 위의 [수식 5]와 같이 나타낼 수 있다. Maximizing the addition of the log function is equivalent to maximizing each product, and can be expressed as shown in [Equation 5] above.
[수식 4]에서 는 SNR (Signal to Noise Ratio)을 나타내는데, SNR값이 충분히 큰 영역에서는 다음과 같은 근사식, [수식 6]을 사용할 수 있다. In [Equation 4] Represents a Signal to Noise Ratio (SNR). In the region where the SNR value is sufficiently large, the following approximation equation (Equation 6) can be used.
............................ [수식 6] Equation 6
x의 값이 충분히 클 경우 [수식 6]과 같은 관계를 갖으며, 이 근사식을 이용하여 위에 나타낸 [수식 4]를 다음의 [수식 7]과 같이 근사할 수 있다.If the value of x is large enough, it has a relationship as shown in [Equation 6]. Using this approximation equation, [Equation 4] shown above can be approximated as [Equation 7] below.
.......................... [수식 7] Equation 7
근사식을 이용하여 sub-matrix를 찾는 방법을 [수식 7]과 같이 L개의 고유 값(eigenvalue)의 곱으로 나타낼 수 있다. 이 결과는 아래와 같은 [수식 8]로 표현할 수 있다.A method of finding a sub-matrix using an approximation can be expressed as the product of L eigenvalues as shown in [Equation 7]. This result can be expressed by Equation 8 below.
................. [수식 8] ...... [Equation 8]
L개의 고유 값(eigenvalue)의 곱이 [수식 8]과 같은 관계를 가지므로 용량(capacity)을 최대화 할 수 있는 sub-matrix 를 찾기 위해서는, 선택 가능한 sub-matrix 에 대하여 를 계산하여, 이 값을 최대화 시킬 수 있는 sub-matrix 를 선택하는 것이다.Since the product of L eigenvalues has the same relationship as [Equation 8], the sub-matrix can maximize the capacity. To find, selectable sub-matrix about Sub-matrix to maximize this value To select.
정리하면, 종래의 기술은 각각의 sub-matrix에 대하여 [수식 4]와 같은 계산을 수행하지 않고(수식 4와 같이 하기 위해서는 matrix decomposition이 필요), [수식 8]과 같이 를 계산하여 최적의 sub-matrix 를 찾는다. In summary, the prior art does not perform the calculation as shown in [Equation 4] for each sub-matrix (matrix decomposition is required to do the same as Equation 4), and as shown in [Equation 8]. Calculate the optimal sub-matrix Find it.
그러나 이는, SNR값이 크다는 가정 하에 제안되었으므로 SNR이 충분히 큰 영역에서는 효과적일 수 있으나, SNR값이 낮은 영역에서는 최적의 송신안테나 선택방법이 아닐 수 있다.However, since this is proposed under the assumption that the SNR value is large, it may be effective in a region where the SNR is sufficiently large, but may not be an optimal transmission antenna selection method in a region where the SNR value is low.
본 발명은 상기한 문제점을 감안하여 창안된 것으로서, 본 발명의 제 1 목적은, 많은 양의 채널 정보를 송신단으로 피드백 해주지 않고, 제안된 수신단에서의 송신안테나 선택 기법에 의하여 선택된 송신안테나의 인덱스만을 피드백 해줌으로써, 계산량이 많은 matrix decomposition 연산 없이 적은 양의 복잡도(complexity)를 갖는 방법을 제공함에 그 목적이 있다. The present invention was devised in view of the above problems, and a first object of the present invention is not to feed back a large amount of channel information to a transmitting end, but only an index of a transmitting antenna selected by a transmitting antenna selecting technique at the proposed receiving end. By providing feedback, the object is to provide a method having a small amount of complexity without a large amount of matrix decomposition operations.
그리고 본 발명의 제 2 목적은, SNR 값이 충분히 큰 영역에서만 최적화되는 것이 아닌, 모든 SNR 영역에 대하여 최적화되는 송신 안테나 선택 방법을 제공함에 있다. A second object of the present invention is to provide a transmission antenna selection method that is optimized for all SNR regions, rather than being optimized only in a region where the SNR value is sufficiently large.
이러한 목적을 달성하기 위한 본 발명은, (a) channel matrix H로부터 L개의 sub-matrix 를 추출하는 단계; (b) 상기 추출된 L개의 sub-matrix 의 고유 값들의 합을 산출하는 단계; (c) 선택 가능한 sub-matrix 에 대하여 를 계산하는 단계; 및 (d) 상기 (c) 단계를 통해 계산된 값을 최대화 시킬 수 있는 sub-matrix 를 선택하는 단계; 를 포함한다. The present invention for achieving this purpose is (a) L sub-matrix from the channel matrix H Extracting; (b) the extracted L sub-matrix Calculating a sum of eigenvalues of; (c) selectable sub-matrix about Calculating; And (d) calculated through step (c). Sub-matrix to maximize the value Selecting a; It includes.
상기와 같은 본 발명에 따르면, 많은 양의 채널 정보를 송신단으로 피드백 해주지 않고, 제안된 수신단에서의 송신안테나 선택 기법에 의하여 선택된 송신안테나의 인덱스만을 피드백 해줌으로써, 적은 계산량으로 송신안테나를 선택할 수 있는 효과가 있다. According to the present invention as described above, by feeding back only the index of the transmission antenna selected by the transmission antenna selection technique of the proposed receiver without feeding back a large amount of channel information to the transmitter, it is possible to select a transmission antenna with a small amount of calculation. It works.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다. 또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are defined in the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to explain his invention in the best way. It should be interpreted to mean meanings and concepts. In addition, when it is determined that the detailed description of the known function and its configuration related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.
이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 2 는 본 발명에 따른 다중송수신 시스템의 개략적인 구성도이며, 도 3 은 본 발명의 제 1 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법에 관한 흐름도이다. 도 2 에 도시된 바와 같이 M개의 송신안테나와 N개의 수신안테나를 갖는다. 이때, 수신단에서 받은 신호는 상기 [수식 1]에 나타낸 바와 같다. 2 is a schematic configuration diagram of a multi-transmission / reception system according to the present invention, and FIG. 3 is a flowchart illustrating a transmission antenna selection method in a multi-transmission / reception system according to the first aspect of the present invention. As shown in FIG. 2, there are M transmit antennas and N receive antennas. At this time, the signal received at the receiving end is as shown in [Equation 1].
본 발명의 제 1 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법은, channel matrix H로부터 용량(capacity)을 최대화 할 수 있는 L개의 column을 뽑아낸 sub-matrix 를 찾아서 이에 해당하는 송신안테나를 선택하는 방법으로 서, SNR이 낮은 경우를 가정한다.In the transmission antenna selection method in the multi-transmission / reception system according to the first aspect of the present invention, a sub-matrix is obtained by extracting L columns that can maximize capacity from the channel matrix H. It is assumed that SNR is low as a method of searching for and selecting a corresponding transmission antenna.
따라서, channel matrix H 로부터 L개의 sub-matrix 를 추출한다(S10).Thus, L sub-matrix from channel matrix H To extract (S10).
........................ [수식 9] Equation 9
이로서, x의 값이 충분히 작을 때, [수식 9]와 같은 근사식이 성립함을 알 수 있으며, [수식 9]를 이용하여 상기 [수식 4]로부터 sub-matrix 를 찾는 알고리즘을 유도해보면 아래의 [수식 10]과 같다.Thus, when the value of x is sufficiently small, it can be seen that an approximation equation such as [Equation 9] holds, and the sub-matrix is obtained from [Equation 4] using [Equation 9]. Deriving the algorithm to find is as shown in Equation 10 below.
........................ [수식 10] ............. Equation 10
이후, L개의 sub-matrix 의 고유 값(eigenvalue)들의 합을 산출하며(S20), [수식 10]은 아래와 같은 [수식 11]과 같이 나타낼 수 있다.Since, L sub-matrix The sum of the eigenvalues is calculated (S20), and Equation 10 may be expressed as Equation 11 below.
...................... [수식 11] Equation 11
즉, SNR이 낮은 영역에서는 L개의 고유 값(eigenvalue)의 합이 [수식 11]과 같은 관계를 가지므로, 용량(capacity)을 최대화 할 수 있는 sub-matrix 를 찾기 위해서는, 선택 가능한 sub-matrix 에 대하여 를 계산함으로 써(S30), 상기 값을 최대화 시킬 수 있는 sub-matrix 를 선택한다(S40). That is, in the region with low SNR, the sum of L eigenvalues has the relation as shown in [Equation 11], so the sub-matrix can maximize the capacity. To find, selectable sub-matrix about By calculating the (S30), said Sub-matrix to maximize the value Select (S40).
이러한, 을 구하기 위해서는 와 마찬가지로 matrix decomposition이 필요 없고, 는 에 비교할 때 매우 적은 계산량을 가지면서도 더 좋은 성능을 갖는다. Such, To save Like matrix decomposition is unnecessary Is Compared to, it has very little calculation and better performance.
그러나, 를 계산하여 송신안테나를 효과적으로 선택할 수 있지만, 이 기법 역시 SNR값이 낮은 영역에서만 효과적으로 동작하는 문제점을 갖고 있다. 즉, SNR의 값에 관계없이 효과적으로 송신안테나를 선택할 수 있는 방법이 필요하다. But, Although the transmission antenna can be effectively selected by calculating, the technique also has a problem of operating effectively only in the region with low SNR value. That is, there is a need for a method capable of effectively selecting a transmission antenna regardless of the value of the SNR.
따라서, 본 발명에서는 제 2 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법을 제시한다. 도 4 는 본 발명의 제 2 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법에 관한 흐름도이다.Accordingly, the present invention proposes a transmission antenna selection method in a multiplex transmission and reception system according to the second aspect. 4 is a flowchart illustrating a method of selecting a transmission antenna in a multi-transmission system according to a second aspect of the present invention.
앞서 설명한 [수식 4]로부터 전체 SNR영역에서 효과적으로 동작할 수 있는 송신안테나 방법을 찾기 위하여 아래와 같은 [수식 12]를 전개하였다. Equation 12 is developed from Equation 4 to find a transmission antenna method that can effectively operate in the entire SNR region.
[수식 12]Equation 12
주어진 용량(capacity) 계산식을 전개해보면, [수식 12]를 통해서 항과 항과 상수항 그리고 나머지 항 으로 이루어짐을 볼 수 있다. If we develop a given capacity equation, we can use Section Term, constant term, and rest term It can be seen that.
상수항은 sub-matrix 를 선택하는데 관계가 없고, 는 쉽게 얻을 수 없는 값이므로 고려하지 않는다. 여기서, 주목해서 볼 점은 에는 이 계수로 곱해지고 에는 가 계수로 곱해진다는 점이다.The constant term is irrelevant to selecting a sub-matrix, Is not taken into account because it is not easily obtained. At this point, On Multiplied by this coefficient On Is multiplied by a coefficient.
는 SNR값을 나타내는 변수로서, 이 값에 따라서 와 가 송신안테나를 결정하는데 서로 다른 비중을 갖게 됨을 알 수 있다. 즉, 가 작은 값을 가질 때는, 의 관계를 가지므로, 가 지배적인 역할을 하게 됨을 알 수 있다. Is the variable representing the SNR value, Wow It can be seen that the different weights are used to determine the transmit antenna. In other words, Has a small value, Has a relationship with Can be seen as a dominant role.
반대로, 가 큰 값을 가질 때는, 의 관계를 가지므로, 가 중요한 역할을 하게 된다. Contrary, Has a large value, Has a relationship with Will play an important role.
이 결과는 [수식 8]과 [수식 11]로부터 이미 언급된 바 있는, SNR이 큰 영역에서는 를 계산하여 송신안테나를 선택하고, SNR이 낮은 영역에서는 를 통해서 송신안테나를 선택한다는 것을 설명해준다.This result has been described in Eq. 8 and Eq. 11 in areas with large SNR. To select the transmitting antenna, and in the region with low SNR Explain that select the transmit antenna through.
즉, '제 2 시스템 용량식'([수식4] 및 [수식5])로부터 전체 SNR 영역이 고려된 와 의 조합으로 이루어진 다음의 [수식 13]과 같은 조합 값을 산출한다(S50).That is, the entire SNR region is considered from the 'second system capacity' ([Equation 4] and [Equation 5]). Wow A combination value of the following Equation 13 consisting of a combination of the following is calculated (S50).
[수식 13]Equation 13
이로서, 와 의 조합 값을 최대화 시킬 수 있는 sub-matrix 를 선택한다(S60). As such, Wow Sub-matrix to maximize the combination of Select (S60).
즉, 이러한 [수식 13]을 새로운 송신안테나 선택 방법으로 사용함으로써, 전체 SNR 영역에서 종래의 기술과 [수식 11]의 결과보다 좋은 성능을 얻을 수 있다.That is, by using this equation (13) as a new transmission antenna selection method, it is possible to obtain better performance than the results of the conventional technique and [11] in the entire SNR region.
또한, 제 2 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법 역시 matrix decomposition을 필요로 하지 않으며 종래의 기술에서 사용된 의 계산과 비교했을 때 거의 동일한 계산량을 갖는다.In addition, the transmission antenna selection method in the multi-transmission system according to the second aspect also does not require matrix decomposition and is used in the prior art. Compared with the calculation of has almost the same amount of calculation.
그러나, [수식 13]에 의한 송신안테나 선택방법은 또는 의 결과만으로 송신안테나를 결정하는 것보다 좋은 성능을 가질 수 있으나, 항을 고려하지 않았으므로 = 0 이 되는 경우를 제외하면 최적의 결과에 비해 성능 저하가 있을 수 있다.However, the transmission antenna selection method according to [Equation 13] or Although the result can be better than determining the transmission antenna, I didn't consider the terms Except for the case where = 0, there may be a performance degradation compared to the optimal result.
따라서, 본 발명에서는 제 3 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법을 제시한다. 도 5 는 본 발명의 제 3 양상에 따른 다중송수신 시스템에서의 송신안테나 선택방법에 관한 흐름도이다.Accordingly, the present invention proposes a transmission antenna selection method in a multiplex transmission and reception system according to a third aspect. 5 is a flowchart illustrating a method of selecting a transmission antenna in a multi-transmission system according to a third aspect of the present invention.
앞서 설명한 '제 2 시스템 용량식'([수식 4] 및 [수식 5])과 기본적인 가정으로부터 [수식 14]와 같은 결과를 얻을 수 있다.The same results as in [Equation 14] can be obtained from the aforementioned 'second system capacity formula' ([Equations 4] and [Equation 5]) and basic assumptions.
[수식 14][Equation 14]
따라서, [수식 14]로부터 를 계산하여(S70), 값을 최대화 시킬 수 있는 sub-matrix 를 선택한다(S80). 이와 같이 송신안테나를 결정하는 것은 이론적인 최적의 알고리즘과 동일함을 알 수 있다. 이 방법 역시 위에서 설명된 다른 방법과 마찬가지로, matrix decomposition을 필요로 하지 않으며 종래의 기술에서 쓰이는 의 계산과 거의 동일한 계산량을 갖는다. Therefore, from [Formula 14] By calculating (S70), Sub-matrix to maximize the value Select (S80). As described above, it can be seen that determining the transmission antenna is the same as the theoretical optimal algorithm. This method, like the other methods described above, does not require matrix decomposition and is used in the prior art. It has almost the same amount of calculation as.
이상에서 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같은 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다, 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. Although described and illustrated in connection with a preferred embodiment for illustrating the technical spirit of the present invention above, the present invention is not limited to the configuration and operation as shown and described as such, and the deviation from the scope of the technical spirit It will be appreciated by those skilled in the art that many changes and modifications can be made to the invention without departing from the scope of the invention, and therefore, all such suitable changes and modifications and equivalents should be considered to be within the scope of the invention.
도 1a 는 M개의 송신안테나 중 L개의 송신안테나를 선택하는 방법을 보이는 일예시도.1A is an exemplary view illustrating a method of selecting L transmit antennas among M transmit antennas.
도 2 는 본 발명에 따른 다중송수신 시스템에 관한 구성도.2 is a block diagram of a multiplex transmission and reception system according to the present invention.
도 3 은 본 발명의 제 1 양상에 따른 다중송수신 시스템에서의 송신안테나 선택 방법에 관한 흐름도.3 is a flowchart of a method of selecting a transmission antenna in a multi-transmission system according to a first aspect of the present invention.
도 4 는 본 발명의 제 2 양상에 따른 다중송수신 시스템에서의 송신안테나 선택 방법에 관한 흐름도.4 is a flow chart related to a transmission antenna selection method in a multiplex transmission and reception system according to a second aspect of the present invention.
도 5 는 본 발명의 제 3 양상에 따른 다중송수신 시스템에서의 송신안테나 선택 방법에 관한 흐름도.5 is a flowchart of a method of selecting a transmission antenna in a multi-transmission system according to a third aspect of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070102436A KR100936483B1 (en) | 2007-10-11 | 2007-10-11 | Transmission antenna selection method in multi-transmission and reception system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070102436A KR100936483B1 (en) | 2007-10-11 | 2007-10-11 | Transmission antenna selection method in multi-transmission and reception system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090037046A KR20090037046A (en) | 2009-04-15 |
KR100936483B1 true KR100936483B1 (en) | 2010-01-13 |
Family
ID=40761862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070102436A KR100936483B1 (en) | 2007-10-11 | 2007-10-11 | Transmission antenna selection method in multi-transmission and reception system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100936483B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050007734A (en) | 2003-07-11 | 2005-01-21 | 엘지전자 주식회사 | Transmit diversity apparatus and method in mobile communication system |
KR20050066633A (en) | 2003-12-26 | 2005-06-30 | 한국전자통신연구원 | System and method for selecting antenna in mimo system |
KR20060096360A (en) | 2005-03-04 | 2006-09-11 | 삼성전자주식회사 | Feedback method of multi-user multi-input / output system |
KR20070054083A (en) | 2005-11-22 | 2007-05-28 | 삼성전자주식회사 | Transmission and reception antenna determination apparatus and method in a communication system using multiple antennas |
-
2007
- 2007-10-11 KR KR1020070102436A patent/KR100936483B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050007734A (en) | 2003-07-11 | 2005-01-21 | 엘지전자 주식회사 | Transmit diversity apparatus and method in mobile communication system |
KR20050066633A (en) | 2003-12-26 | 2005-06-30 | 한국전자통신연구원 | System and method for selecting antenna in mimo system |
KR20060096360A (en) | 2005-03-04 | 2006-09-11 | 삼성전자주식회사 | Feedback method of multi-user multi-input / output system |
KR20070054083A (en) | 2005-11-22 | 2007-05-28 | 삼성전자주식회사 | Transmission and reception antenna determination apparatus and method in a communication system using multiple antennas |
Also Published As
Publication number | Publication date |
---|---|
KR20090037046A (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100981554B1 (en) | In a mobile communication system having multiple transmit / receive antennas, a method of transmitting signals by grouping transmit antennas | |
CA2350878C (en) | Space-time processing for wireless systems with multiple transmit and receive antennas | |
KR100951381B1 (en) | Scheduling device and method with low complexity in multi-input multi-output system in multi-user environment | |
US7907912B2 (en) | Apparatus and method for eliminating multi-user interference | |
US6888809B1 (en) | Space-time processing for multiple-input, multiple-output, wireless systems | |
US7991066B2 (en) | Transmitter, receiver and method for controlling multiple input multiple output system | |
KR101402242B1 (en) | Apparatus and method for beamforming in a multiple input multiple output wireless communication system based on hybrid division duplex | |
KR101373808B1 (en) | Apparatus and method for deciding channel quality indicator using beamforming in multiple antenna system | |
KR100923912B1 (en) | Channel State Information Feedback Apparatus and Method for Scheduling in Multi-antenna Systems | |
US20020118781A1 (en) | Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams | |
EP1568155A2 (en) | Low complexity beamformers for multiple transmit and receive antennas | |
KR20060028989A (en) | Signal Processing Method Applied to Multiple Input / Output System | |
JP2013518479A (en) | Data transmission method and system for cooperative multi-input multi-output beamforming | |
KR101020242B1 (en) | A receiving device of a terminal, a transmitting device of a base station and a receiving signal combining method | |
KR100961889B1 (en) | Apparatus and Method for Sequential Scheduling of Multiple Input Multiple Output System | |
EP1705820B1 (en) | Transmitting/receiving apparatus and transmitting/receiving method | |
KR20120131224A (en) | Transformation device and method | |
KR100936483B1 (en) | Transmission antenna selection method in multi-transmission and reception system | |
US7697621B2 (en) | Method and system for power loading implementation detection in beamforming systems | |
KR20080040105A (en) | Efficient Beam Based Transmission Apparatus and Method | |
KR101020107B1 (en) | Apparatus and method for data transmission and reception using multiple antennas in multi-user wireless communication system | |
KR20100102692A (en) | Radio communication system, radio communication device, and communication control method | |
KR100880000B1 (en) | Codebook generation method and device considering multi-antenna correlation and multi-antenna communication system | |
KR102340343B1 (en) | Analog function computation method and system using space-time line codes | |
Steiner et al. | Broadcasting with partial transmit channel state information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071011 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090812 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20091228 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20100105 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20100106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20130102 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20130102 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131231 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20131231 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20151209 |