[go: up one dir, main page]

KR100919128B1 - Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method - Google Patents

Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method Download PDF

Info

Publication number
KR100919128B1
KR100919128B1 KR1020070138357A KR20070138357A KR100919128B1 KR 100919128 B1 KR100919128 B1 KR 100919128B1 KR 1020070138357 A KR1020070138357 A KR 1020070138357A KR 20070138357 A KR20070138357 A KR 20070138357A KR 100919128 B1 KR100919128 B1 KR 100919128B1
Authority
KR
South Korea
Prior art keywords
zeolite
water
high temperature
molten salt
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020070138357A
Other languages
Korean (ko)
Other versions
KR20090070369A (en
Inventor
유영석
이재익
천경호
신우섭
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020070138357A priority Critical patent/KR100919128B1/en
Publication of KR20090070369A publication Critical patent/KR20090070369A/en
Application granted granted Critical
Publication of KR100919128B1 publication Critical patent/KR100919128B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/50Zeolites wherein inorganic bases or salts occlude channels in the lattice framework, e.g. sodalite, cancrinite, nosean, hauynite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명은 규산나트륨 수용액, 알루민산나트륨 등의 골격 구조물질과 수산화나트륨등의 구조 유도물질을 고온용융염과 함께 교반 혼합하여 겔 상태의 혼합물을 압력변화나 밀폐용기에 밀폐하지 않고 열처리만으로 소성하여 수세 한 후 건조함으로써, 제올라이트의 합성에 필수적으로 사용되는 물의 양을 최소화하고 고온용융염의 용융점 이상의 고온에서 단시간에 합성하여 제조할 수 있는 제올라이드 합성물질 제조방법 및 상기 제조방법을 통해 얻어진 제올라이트 합성물질에 관한 것이다. The present invention is stirred and mixed with a skeletal structural material such as sodium silicate aqueous solution, sodium aluminate, and structural inducer such as sodium hydroxide with a high temperature molten salt to be calcined by heat treatment only without changing the pressure or the airtight container in a sealed container After washing with water and drying, the method of preparing a zeolite composite material which can be produced by minimizing the amount of water essential for the synthesis of zeolite and synthesizing in a short time at a high temperature above the melting point of the hot molten salt and the synthesis of zeolite obtained through the method It is about matter.

본 발명은 제올라이트 합성에 필요한 물질로서, 실리카(SiO2)원이나 알루미나(Al2O3)원중 선택된 적어도 하나를 골격구조물질로 하고, 구조유도물질과, 고온 용융염을 겔상태에서 교반하여 혼합하는 제1 단계; 상기 겔상태로 혼합된 혼합물을 고온용융염이 용융될 수 있는 온도로 열을 가하여 소성하는 제2 단계; 소성 후 불순물 및 알칼리 물질을 제거하기 위한 수세를 실시하는 제3 단계; 및 수세 후 수분제거를 위해 건조를 실시하는 제4 단계를 포함하는 고온소성 제올라이트 합성물질 제조방법을 제공한다.The present invention is a material required for the synthesis of zeolite, at least one selected from a silica (SiO 2 ) source or an alumina (Al 2 O 3 ) source as a skeletal structure material, mixed with a structure-inducing substance and a high temperature molten salt in a gel state A first step of doing; A second step of baking the mixture mixed in the gel state by applying heat to a temperature at which the hot molten salt can be melted; A third step of performing washing with water to remove impurities and alkaline substances after firing; And it provides a high-temperature fired zeolite synthetic material manufacturing method comprising a fourth step of performing a drying to remove water after washing.

본 발명의 특징에 따르면, 일반적으로 많이 이용되는 제올라이트 합성 제조방법인 수열합성법에 비해 비교적 단시간에 합성을 수행할 수 있고, 규산나트륨 수용액에 함유된 수분 이외에는 수분의 첨가가 필요하지 않기 때문에 물의 사용량이 적어 2차적인 수질 오염에 대한 처리문제가 상대적으로 적고, 반응조의 크기를 줄 일 수 있으므로 대량 생산에 경제적인 효과가 있다. 또한, 본 발명은 소성시 특별한 압력조절이 필요하지 않고 겔 상태의 혼합물을 그대로 소성하는 방식으로 절차가 간단하고 연속식 공정으로 제올라이트를 합성할 수 있어 대량생산이 가능한 다른 효과가 있다. According to the characteristics of the present invention, since the synthesis can be performed in a relatively short time compared to the hydrothermal synthesis method, which is a commonly used method for preparing zeolite synthesis, since the addition of water is not required other than the water contained in the sodium silicate aqueous solution, the amount of water used is There are relatively few treatment problems for secondary water pollution, and the size of the reactor can be reduced, which is economically effective for mass production. In addition, the present invention does not require a special pressure control during firing, the procedure is simple by firing the mixture in the gel state as it is, and the zeolite can be synthesized in a continuous process, there is another effect capable of mass production.

고온소성, 제올라이트, 제올라이트 합성, 제조방법, 고온용융염 High temperature firing, zeolite, zeolite synthesis, production method, high temperature molten salt

Description

고온소성 제올라이트 합성물질 제조방법 및 상기 제조방법에 의해 제조된 제올라이트 합성물질{The synthesis method of zeolite by calcination at high temperature and its product}The synthesis method of zeolite by calcination at high temperature and its product

본 발명은 고온에서 용융됨으로써 제올라이트의 합성에 필요한 양이온을 공급하고 매체 역할을 할 수 있는 고온용융염을 이용하여 제올라이트 합성물질을 제조하는 방법에 관한 것으로, 더욱 상세하게는 규산나트륨 수용액, 알루민산나트륨 등의 골격 구조물질과 수산화나트륨등의 구조 유도물질을 고온용융염과 함께 교반 혼합하여 겔 상태의 혼합물을 압력변화나 밀폐용기에 밀폐하지 않고 열처리만으로 소성하여 수세 한 후 건조함으로써, 제올라이트의 합성에 필수적으로 사용되는 물의 양을 최소화하고 고온용융염의 용융점 이상의 고온에서 단시간에 합성하여 제조할 수 있는 제올라이드 합성물질 제조방법 및 상기 제조방법을 통해 얻어진 제올라이트 합성물질에 관한 것이다. The present invention relates to a method for producing a zeolite composite material using a hot molten salt that can supply a cation required for the synthesis of zeolite by melting at a high temperature and can act as a medium, and more specifically, an aqueous sodium silicate solution, sodium aluminate The mixture of skeletal structural materials such as sodium hydroxide and structural induction materials such as sodium hydroxide is stirred and mixed with the hot molten salt, and then the gel mixture is calcined by heat treatment only without being sealed in a pressure change or an airtight container, washed with water, and then dried. The present invention relates to a method for preparing a zeolite composite material which can be synthesized in a short time at a high temperature above the melting point of the hot molten salt and minimized the amount of water used, and a zeolite composite material obtained through the preparation method.

제올라이트 합성에 가장 대표적이고 보편적인 합성 방법은 수열반응을 이용 한 수열합성(hydrothermal synthesis)이다. 수열합성은 제올라이트 합성에 필수적으로 사용되는 실리카원, 알루미나 원등의 물질과 과잉의 물을 혼합하여 혼합물을 만든 후, 상기 혼합물을 밀폐된 용기에 넣고 비교적 저온인 50 ~ 200℃ 부근에서 열과 압력을 가하여 제올라이트를 합성하는 방법이다. The most common and common synthetic method for zeolite synthesis is hydrothermal synthesis using hydrothermal reaction. Hydrothermal synthesis is made of a mixture of silica, alumina, and the like, which is essential for the synthesis of zeolite, with excess water to make a mixture, and then the mixture is placed in a sealed container and heated and pressurized at a relatively low temperature of 50 to 200 ° C. It is a method of synthesizing zeolite.

수열합성 방법은 장치가 간단하고 조작이 쉬워 제올라이트 합성에 많이 이용되고 있다. 그러나, 상기 방법은 물의 사용량이 많아 반응조의 크기에 비해 회수율이 낮고, 반응에 필요한 시간이 많이 소요되며, 연속식 공정을 수행하기가 어려워 대량생산이 힘들며, 이로 인해 공업적으로 사용되기에 한계가 많은 문제점이 있다.The hydrothermal synthesis method is widely used for zeolite synthesis because of its simple device and easy operation. However, since the method uses a lot of water, the recovery rate is low compared to the size of the reaction tank, the time required for the reaction is large, and it is difficult to carry out the continuous process, making it difficult to mass-produce. There are many problems.

이에 비해, 건조 겔 전환법은 두 개의 층으로 이루어진 밀폐용기의 윗부분에 제올라이트 합성에 필요한 알루미노실리케이트 겔과 구조 유도 물질을 혼합 및 건조하여 고체 반응물을 만들어 두고, 아래에는 물만 넣어 용기를 밀폐하고 가열하는 방법으로서, 밀폐된 상태에서 온도를 높여주어 수증기를 생성하고 이 수증기를 위에 놓아둔 고체 반응물에 공급하여 제올라이트를 합성하게 된다.In contrast, the dry gel conversion method consists of mixing and drying the aluminosilicate gel and the structure inducing material necessary for the zeolite synthesis in the upper part of the two-layer sealed container to form a solid reactant, and the bottom of the container is filled with water and heated. As a method, the temperature is raised in a closed state to generate water vapor, and the water vapor is supplied to the solid reactant placed thereon to synthesize the zeolite.

상기한 건조 겔 전환법은 합성 혼합물이 그대로 제올라이트로 전환되므로 규소/알루미늄(Si/Al)의 몰비를 정확히 제어할 수 있고, 수열합성법에 비해 결정화 속도도 빠르고 폐수 발생을 줄일 수 있는 장점이 있다. 하지만, 수증기를 직접 합성물질에 접촉하는 방식이므로 제올라이트 합성에는 유리하나 제올라이트를 포함하고 있는 혼합물 제조에는 적용이 어려운 문제점이 있다.The dry gel conversion method can be used to precisely control the molar ratio of silicon / aluminum (Si / Al) because the synthetic mixture is converted to zeolite as it is, there is an advantage that the crystallization rate is faster than the hydrothermal synthesis method can reduce the generation of waste water. However, since it is a method of directly contacting the water vapor to the synthetic material, there is a problem that it is difficult to apply to the production of a mixture containing zeolite, but advantageous for zeolite synthesis.

따라서, 본 발명은 상기한 제반 문제점을 해결하기 위하여 제안된 것으로서, 고온에서 용융되어 물의 역할을 대신할 수 있는 고온용융염을 이용하여 제올라이트의 합성에 필수적으로 사용되는 물의 양을 최소화 할수 있어 2차적인 폐수처리문제를 감소시킬 수 있는 제올라이드 합성물질 제조방법 및 상기 제조방법을 통해 얻어진 제올라이트 합성물질을 제공함에 그 목적이 있다. Therefore, the present invention has been proposed to solve the above problems, by using a high temperature molten salt that can be melted at a high temperature to replace the role of water to minimize the amount of water that is essential for the synthesis of zeolite secondary It is an object of the present invention to provide a method for preparing a zeolitic compound that can reduce the problem of wastewater treatment and a zeolite compound obtained through the process.

또한, 본 발명은 고온에서 소성시에 특별한 압력 조절이나 밀폐용기 없이 열린계에서 간단히 합성이 가능하며, 합성 혼합물이 그대로 제올라이트로 전환되므로 Si/Al 몰비를 상당히 정확히 제어 할 수 있으며 연속식 공정으로 제올라이트의 합성이 가능한 제올라이드 합성물질 제조방법 및 상기 제조방법을 통해 얻어진 제올라이트 합성물질을 제공함에 다른 목적이 있다.In addition, the present invention can be easily synthesized in an open system without any special pressure control or closed vessel during firing at high temperature, and since the synthesis mixture is converted into zeolite, Si / Al molar ratio can be controlled quite accurately, and the continuous process of zeolite Another object of the present invention is to provide a method for preparing a synthetic zeolite material and a zeolite composite material obtained through the method.

상기 목적을 달성하기 위하여 본 발명은, 제올라이트 합성에 필요한 물질로서, 실리카(SiO2)원이나 알루미나(Al2O3)원중 선택된 적어도 하나를 골격구조물질로 하고, 구조유도물질과, 고온 용융염을 겔상태에서 교반하여 혼합하는 제1 단계; 상기 겔상태로 혼합된 혼합물을 고온용융염이 용융될 수 있는 온도로 열을 가하여 소성하는 제2 단계; 소성 후 불순물 및 알칼리 물질을 제거하기 위한 수세를 실시하는 제3 단계; 및 수세 후 수분제거를 위해 건조를 실시하는 제4 단계를 포함하는 고온소성 제올라이트 합성물질 제조방법을 제공한다.In order to achieve the above object, the present invention, as a material required for the synthesis of zeolite, at least one selected from a silica (SiO 2 ) source or an alumina (Al 2 O 3 ) source as a skeletal structural material, a structural induction material and a high temperature molten salt A first step of stirring and mixing in a gel state; A second step of baking the mixture mixed in the gel state by applying heat to a temperature at which the hot molten salt can be melted; A third step of performing washing with water to remove impurities and alkaline substances after firing; And it provides a high-temperature fired zeolite synthetic material manufacturing method comprising a fourth step of performing a drying to remove water after washing.

본 발명의 바람직한 실시예로서는 고온에서 용융되는 중성염으로 무수황산나트륨(Na2SO4, 용융온도 884℃)분말과; 구조 유도 물질로 수산화나트륨(NaOH)분말; 실리카(SiO2)원으로 액상의 규산나트륨(Na2SiO3) 및 알루미나(Al2O3)원으로 알루민산나트륨(NaAlO2)분말을 혼합하고, 각각의 물질들을 교반하여 고온에서 소성한 후 수세하여 건조하여 제올라이트 합성물질을 제조한 것을 특징으로 한다.Preferred embodiments of the present invention include anhydrous sodium sulfate (Na 2 SO 4 , melting temperature of 884 ° C.) as a neutral salt melted at high temperature; Sodium hydroxide (NaOH) powder as a structural inducing substance; Sodium silicate (Na 2 SiO 3 ) and sodium aluminate (NaAlO 2 ) powders are mixed with a silica (SiO 2 ) source and alumina (Al 2 O 3 ) source, and the respective materials are stirred and calcined at high temperature. Washing and drying to prepare a zeolite composite material.

상기한 바와 같이 본 발명의 제올라이트 합성물질 제조방법의 특징에 따르면, 제올라이트 합성 제조시, 고온에서 용융되어 제올라이트 합성에 필요한 양이온을 공급하고 매질 역할을 할 수 있는 고온용융염을 이용함으로써 제올라이트의 합성에 필수적으로 사용되는 물의 양을 최소화하여 2차적인 수질 오염에 대한 처리문제를 최소화할 수 있는 효과가 있다.According to the features of the method for producing a zeolite composite material as described above, in the preparation of zeolite synthesis, the synthesis of zeolite by using a high-temperature molten salt that can be melted at a high temperature to supply a cation necessary for the synthesis of zeolite and act as a medium By minimizing the amount of water used, there is an effect that can minimize the treatment problems for secondary water pollution.

또한, 반응에 필요한 반응조의 크기를 감소시키고, 고온에서 단시간 합성을 수행할 수 있어 반응시간 단축으로 대량 생산을 용이하게 하며, 고온에서 소성이 필요한 소재와 혼합 및 코팅을 통해 기능성 소재로 개발하는 것을 용이하게 할 수 있는 다른 효과가 있다. In addition, it is possible to reduce the size of the reaction tank required for the reaction, to perform short time synthesis at high temperature, to facilitate mass production by shortening the reaction time, and to develop a functional material through mixing and coating with a material requiring baking at high temperature. There are other effects that can be facilitated.

또한, 겔 상태로 혼합된 혼합물을 특별한 압력의 조절 없이 그대로 열린계(open-system)에서 열을 이용하여 소성하기 때문에, 규소/알루미늄(Si/Al) 몰비 를 정확히 제어할 수 있으며, 절차가 복잡하지 않아 연속식 공정으로 제올라이트 합성이 가능하므로 대량생산에 경제적인 또 다른 효과가 있다.In addition, the mixture mixed in the gel state is calcined by using heat in an open-system as it is without any special pressure control, so that the silicon / aluminum (Si / Al) molar ratio can be precisely controlled and the procedure is not complicated. As a result, zeolite synthesis is possible in a continuous process, which is another economical effect on mass production.

이하, 첨부된 도1 내지 도5를 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to FIGS. 1 to 5.

도1은 본 발명에 의한 고온 소성 제올라이트 합성물질의 제조방법을 도식화한 개략도를 나타낸다.Figure 1 shows a schematic diagram illustrating a method for producing a high temperature calcined zeolite composite material according to the present invention.

도면에 도시한 바와 같이, 제올라이트 합성에 필요한 물질로서 실리카(SiO2)원이나 알루미나(Al2O3)원 중 선택된 적어도 하나의 골격구조물질 50 ~ 80중량%와 수산화나트륨(NaOH), 수산화칼륨(KOH), 불화암모늄(NH4F)으로 이루어진 군으로부터 선택된 구조유도물질 10 ~ 20중량%, 염화칼륨(KCl), 요오드칼륨(KI), 염화나트륨(NaCl), 요오드나트륨(NaI), 질산나트륨(NaNO3), 황산나트륨(Na2SO4), 염화칼슘(CaCl2), 염화마그네슘(MgCl2)으로 이루어진 군으로부터 선택된 고온 용융염 10 ~ 30중량%을 혼합 교반하여 겔화한다.As shown in the figure, 50 to 80% by weight of at least one skeleton-structured material selected from a silica (SiO 2 ) source or an alumina (Al 2 O 3 ) source, sodium hydroxide (NaOH), potassium hydroxide as a material for the synthesis of zeolite (KOH), 10 to 20% by weight of structural derivatives selected from the group consisting of ammonium fluoride (NH 4 F), potassium chloride (KCl), potassium iodine (KI), sodium chloride (NaCl), sodium iodine (NaI), sodium nitrate ( NaNO 3 ), sodium sulfate (Na 2 SO 4 ), calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ) 10 to 30% by weight of the hot molten salt selected from the group consisting of mixing and stirring to gel.

상기의 조성물에서, 혼합물 제조시 골격구조물질 함량이 50중량%이하로 첨가되는 경우에는 최종결과물의 회수율이 떨어지고, 겔 형성이 힘들기 때문에 50 중량% 이상 혼합되는 것이 적절하다. In the above composition, when the content of the framework structure is added at 50% by weight or less when the mixture is prepared, it is appropriate that 50% by weight or more is mixed because the recovery of the final product is reduced and gel formation is difficult.

구조유도물질은 음이온에 대응하여 전기적으로 중성 상태 유지, 제올라이트 세공의 틀을 형성, 실리카나 알루미나를 녹이는 역할을 동시에 수행하므로 10중량% 이상 혼합되는 것이 좋으나 20중량% 이상 혼합하면 수세에 소요되는 물의 양이 증가하고 하전 보상물질로 작용하는 양이온이 과량으로 혼합될 우려가 있으므로 10~20중량%가 적절하다.Structural inducers respond to anions in an electrically neutral state, form a framework of zeolite pores, and dissolve silica or alumina at the same time, so it is better to mix more than 10% by weight. 10 to 20% by weight is appropriate because the amount is increased and the cation acting as a charge compensation material may be mixed in excess.

고온 용융염은 높은 용융점을 가지는 중성염으로써, 소성가공시 고온에서 용융되어 이온간의 활동을 원활하게 유지시키며 하전 보상물질로도 작용할 수 있으나 과량 주입될 경우 양이온 과량주입 및 회수율 감소 효과를 나타낼 수 있으므로 적정 혼합비는 10~ 30중량% 정도가 적절하다.High-temperature molten salt is a neutral salt having a high melting point, it is melted at high temperatures during plastic processing to maintain the activity between ions smoothly, and also act as a charge compensation material, but when excessively injected, it may have an effect of over-injection and recovery of cation. The proper mixing ratio is about 10 to 30% by weight.

상기 골격구조물질로서, 상기 실리카(SiO2)원으로 액상의 규산나트륨(Na2SiO3)를 사용하고, 알루미나(Al2O3)원으로는 알루민산나트륨(NaAlO2) 분말을 사용한다.As the skeletal structure material, liquid sodium silicate (Na 2 SiO 3 ) is used as the silica (SiO 2 ) source, and sodium aluminate (NaAlO 2 ) powder is used as the alumina (Al 2 O 3 ) source.

또한, 상기 액상의 규산나트륨(Na2SiO3)은 실리카 27%, 수산화나트륨14% 및 물59% 을 혼합하여 제조한다. 본 실시예에서 제시한 액상의 규산나트륨은 제조해서 사용한 것이 아니라, 실리카 27%, 수산화나트륨14% 및 물로 이루어진 시약을 구입해서 연구를 수행하였다. In addition, the liquid sodium silicate (Na 2 SiO 3 ) is prepared by mixing 27% silica, 14% sodium hydroxide and 59% water. The liquid sodium silicate presented in this example was not prepared and used, but the study was carried out by purchasing a reagent consisting of 27% silica, 14% sodium hydroxide and water.

그리고, 상기 겔상태로 혼합된 혼합물을 압력의 조절이나 용기를 통한 밀폐가 없는 열린계(open-system)에서 고온용융염이 용융될 수 있는 온도인 300 ∼ 1100℃의 열을 가하여 소성하고, 소성 후 불순물 및 알칼리 물질을 제거하기 위한 수세를 실시한다.The mixture mixed in the gel state is calcined by applying heat at a temperature of 300 to 1100 ° C., which is a temperature at which the hot molten salt can be melted in an open system without pressure control or sealing through a container. Water washing is performed to remove impurities and alkaline substances.

최종적으로 수세 후 수분제거를 위한 건조단계를 실시하여 제올라이트 합성물질을 제조한다.Finally, after washing with water, a drying step is performed to remove moisture to prepare a zeolite composite material.

이하에서는 제조예, 및 실험예를 사용하여 본 발명을 보다 구체적으로 설명하지만, 본 발명의 범주가 이들에 국한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Preparation Examples and Experimental Examples, but the scope of the present invention is not limited thereto.

[제조예 1] 구성 물질 혼합Production Example 1 Compositional Material Mixing

본 발명의 제조예1에서 골격구조물질로서 사용된 액상의 규산나트륨(Na2SiO3)은 실리카(SiO2) 27중량%, 수산화나트륨(NaOH) 14중량%, 물(H2O) 59중량%로 이루어져 있다. The liquid sodium silicate (Na 2 SiO 3 ) used as the framework structure in Preparation Example 1 of the present invention is 27% by weight of silica (SiO 2 ), 14% by weight of sodium hydroxide (NaOH), 59% by weight of water (H 2 O) It consists of%.

제올라이트 합성을 위한 혼합물은 고온에서 용융되는 중성염으로서 1M 무수황산나트륨(Na2SO4)분말과, 구조유도물질로서의 1M 수산화나트륨(NaOH)분말과, 골격구조물질로서 1M 알루민산나트륨(NaAlO2)분말 및 2M 실리카(SiO2)와 물(H2O)로 이루어져 있다. 이때, 2M 실리카(SiO2)와 물(H2O)은 액상의 규산나트륨(Na2SiO3)으로 주입하였다. The mixture for the synthesis of zeolite is 1M anhydrous sodium sulfate (Na 2 SO 4 ) powder as neutral salt melted at high temperature, 1M sodium hydroxide (NaOH) powder as structural inducer, and 1M sodium aluminate (NaAlO 2 ) as skeletal structure It consists of powder and 2M silica (SiO 2 ) and water (H 2 O). At this time, 2M silica (SiO 2 ) and water (H 2 O) was injected into the liquid sodium silicate (Na 2 SiO 3 ).

[제조예 2] 제조 온도 및 시간Production Example 2 Manufacturing Temperature and Time

상기 혼합물을 고르게 교반하여 알루미나 도가니에 담지한 후 소성로에 넣고 750℃~950℃의 온도에서 1~18시간 동안 소성하여 소달라이트(Sodalite), 라쥬라이 트(Lazurite), 칸크리나이트(Cancrinite)와 같은 제올라이트성 물질을 합성하였다. The mixture was stirred evenly, loaded in an alumina crucible, placed in a kiln, and fired at a temperature of 750 ° C. to 950 ° C. for 1 to 18 hours to provide sodalite, lazurite, and cancrinite. The same zeolitic material was synthesized.

도2는 950℃에서 1~18시간동안 소성하여 제조한 제올라이트의 XRD 패턴이고, 도3은 750℃~950℃에서 6시간 소성하여 제조한 제올라이트의 XRD 패턴을 나타낸 도면으로서, X선 회절분석결과 인공 제올라이트가 잘 형성되었음을 알 수 있다. 2 is an XRD pattern of a zeolite prepared by firing at 950 ° C. for 1 to 18 hours, and FIG. 3 shows an XRD pattern of a zeolite prepared by firing at 750 ° C. to 950 ° C. for 6 hours. It can be seen that the artificial zeolite is well formed.

도4는 본 발명의 합성 제올라이트의 주사전자현미경 사진으로서 도4a는 30,000배, 도4b는 12,000배 확대하여 살펴본 것이다. FIG. 4 is a scanning electron micrograph of the synthetic zeolite of the present invention, and FIG. 4A shows an enlarged view of 30,000 times and FIG. 4B of 12,000 times.

[실험예 1] 제조된 합성 제올라이트의 성능 평가Experimental Example 1 Performance Evaluation of the Prepared Synthetic Zeolite

상기의 제조 온도 및 시간에서 합성된 제올라이트의 성능을 알아보기 위해 각 온도 및 시간에 따른 BET를 측정하여 그 결과를 [표 1]에 정리하였다. BET 측정 결과 950℃에서 6시간동안 합성한 제올라이트의 BET가 가장 높게 나타났다.In order to determine the performance of the synthesized zeolite at the preparation temperature and time, BET was measured according to each temperature and time, and the results are summarized in [Table 1]. As a result of BET measurement, zeolite synthesized for 6 hours at 950 ° C showed the highest BET.

[표 1]TABLE 1

synthesis conditionssynthesis conditions Specific surface [m2/g]Specific surface [m 2 / g] 950/1hr950 / 1hr 10.0910.09 950/3hr950 / 3hr 32.1132.11 950/6hr950 / 6hr 46.3546.35 950/18hr950 / 18hr 36.6736.67 850/6hr850 / 6hr 13.3313.33 750/6hr750 / 6hr 3.2433.243

[실험예 2] 제올라이트의 흡착력 평가Experimental Example 2 Evaluation of Adsorption Capacity of Zeolite

본 발명품의 성능을 흡착력이 높은 황토분말, 천연제올라이트와 비표면적 및 양이온교환능(CEC) 분석을 통해 살펴본 결과 [표 2]에서와 같이 본 발명품의 성능이 더 우수한 것으로 나타났다. The performance of the present invention was examined through the analysis of the high adsorption power of ocher powder, natural zeolite and specific surface area and cation exchange capacity (CEC), and as shown in [Table 2], the performance of the present invention was better.

[표 2]TABLE 2

비표면적[m2/g]Specific surface area [m 2 / g] 양이온교환능(CEC)[mmol/100g]Cation exchange capacity (CEC) [mmol / 100g] 황토분말Ocher powder 22.422.4 9.529.52 천연제올라이트Natural zeolite 38.638.6 44.5444.54 본 발명품 (950℃ 6시간 합성)The present invention (950 ℃ 6 hours synthesis) 46.3546.35 159.50159.50

[실험예 3] 납(Pb) 성분에 대한 흡착능력 평가Experimental Example 3 Evaluation of Adsorption Capability for Lead (Pb) Components

본 발명품의 납(Pb) 성분에 대한 흡착능력을 살펴보기 위해 같은 양의 황토분말과 천연제올라이트와 비교하여 흡착성능을 살펴본 결과 도5에서와 같이 가장 높은 흡착성능을 나타내었다. In order to examine the adsorption capacity of the lead (Pb) component of the present invention, as compared with the same amount of ocher powder and natural zeolite, the adsorption performance was shown, as shown in FIG. 5.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

도1은 본 발명에 의한 고온 소성 제올라이트 합성 제조방법을 도식화한 개략도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram illustrating a high temperature calcined zeolite synthesis method according to the present invention.

도2는 950℃에서 1~18시간 합성한 제올라이트의 XRD 분석결과를 나타낸 패턴도.Figure 2 is a pattern diagram showing the XRD analysis of the zeolite synthesized for 1 to 18 hours at 950 ℃.

도3은 750℃~950℃에서 6시간 합성한 제올라이트의 XRD 분석결과를 나타낸 패턴도.Figure 3 is a pattern diagram showing the XRD analysis of the zeolite synthesized for 6 hours at 750 ℃ ~ 950 ℃.

도4는 합성된 제올라이트의 SEM 사진으로 도4a는 30,000배, 도4b는 12,000배 확대한 사진.Figure 4 is a SEM image of the synthesized zeolite, Figure 4a is 30,000 times, Figure 4b is an enlarged picture 12,000 times.

도5는 납(Pb)에 대한 흡착성능을 나타낸 그래프도.Figure 5 is a graph showing the adsorption performance for lead (Pb).

Claims (14)

제올라이트 합성에 필요한 물질로서, 실리카(SiO2)원이나 알루미나(Al2O3)원중 선택된 적어도 하나를 골격구조물질로 하고, 구조유도물질과, 고온 용융염을 겔상태로 교반하여 혼합하는 제1 단계;As a material required for zeolite synthesis, a first structure in which at least one selected from a silica (SiO 2 ) source or an alumina (Al 2 O 3 ) source is used as a skeleton structure material, and the structure inducer material and the hot molten salt are stirred and mixed in a gel state. step; 상기 겔상태로 혼합된 혼합물을 고온용융염이 용융될 수 있는 온도로 열을 가하여 소성하는 제2 단계;A second step of baking the mixture mixed in the gel state by applying heat to a temperature at which the hot molten salt can be melted; 소성 후 불순물 및 알칼리 물질을 제거하기 위한 수세를 실시하는 제3 단계; 및 A third step of performing washing with water to remove impurities and alkaline substances after firing; And 수세 후 수분제거를 위해 건조를 실시하는 제4 단계Fourth step of drying to remove water after washing 를 포함하는 고온소성 제올라이트 합성물질 제조방법.High temperature fired zeolite composite material manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제1 단계의 혼합물은 The mixture of the first step is 골격구조물질 50 ~ 80중량%와, 구조유도물질 10 ~ 20중량% 및 고온 용융염 10 ~ 30중량%을 혼합 교반한 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.50 to 80% by weight of the skeletal structural material, 10 to 20% by weight of the structural induction material and 10 to 30% by weight of the hot molten salt mixed agitation method for producing a high temperature fired zeolite composite material. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 골격구조물질로서의 실리카(SiO2)원으로 액상의 규산나트륨(Na2SiO3)를 사용하는 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.Method for producing a high temperature fired zeolite composite material characterized in that the use of liquid sodium silicate (Na 2 SiO 3 ) as the silica (SiO 2 ) source as the skeleton structure material. 제 3 항에 있어서,The method of claim 3, wherein 상기 액상의 규산나트륨(Na2SiO3)은 실리카, 수산화나트륨 및 물을 혼합하여 제조된 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.The liquid sodium silicate (Na 2 SiO 3 ) is a high-temperature fired zeolite composite material manufacturing method characterized in that prepared by mixing silica, sodium hydroxide and water. 제 3 항에 있어서, The method of claim 3, wherein 상기 액상의 규산나트륨(Na2SiO3)은 실리카 27중량%, 수산화나트륨 14중량% 및 물 59중량%를 혼합하여 제조한 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.The liquid sodium silicate (Na 2 SiO 3 ) is a high-temperature fired zeolite composite material manufacturing method characterized in that prepared by mixing 27% by weight of silica, 14% by weight of sodium hydroxide and 59% by weight of water. 제 1 항 또는 제 2 항에 있어서The method according to claim 1 or 2 상기 골격구조물질로서의 알루미나(Al2O3)원으로 알루민산나트륨(NaAlO2) 분 말을 사용하는 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.Sodium aluminate (NaAlO 2 ) powder is used as the alumina (Al 2 O 3 ) source as the skeletal structure material. 제 1 항에 있어서,The method of claim 1, 상기 제2 단계는 압력의 조절이나 용기를 통한 밀폐가 없는 열린계(open-system)에서 열을 가하여 소성하는 과정을 포함하는 것을 특징으로 하는고온소성 제올라이트 합성물질 제조방법.The second step is a method of producing a high temperature firing zeolite composite material, characterized in that the process of baking by applying heat in an open-system (open-system) without pressure control or sealing through the container. 제 7 항에 있어서,The method of claim 7, wherein 상기 열린계(open-system)에서 가해지는 온도가 300 ∼ 1100℃의 범위이고, 1~18시간 동안 가열하여 소성하는 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.The temperature applied in the open system (open-system) is in the range of 300 ~ 1100 ℃, the high-temperature fired zeolite composite manufacturing method, characterized in that the firing by heating for 1 to 18 hours. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 제1 단계에서의 고온용융염은 KCl, KI, NaCl, NaI, NaNO3, Na2CO3, Na2SO4, CaCl2, MgCl2로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.The hot molten salt in the first step is at least one selected from the group consisting of KCl, KI, NaCl, NaI, NaNO 3 , Na 2 CO 3 , Na 2 SO 4 , CaCl 2 , MgCl 2 Zeolite Synthetic Process 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 제1 단계에서의 구조유도물질은 수산화나트륨(NaOH), 수산화칼륨(KOH), NH4F으로 이루어진 군으로부터 선택된 적어도 하나 이상인 것을 특징으로 하는 고온소성 제올라이트 합성물질 제조방법.The structure-inducing substance in the first step is at least one or more selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), NH 4 F, a high-temperature fired zeolite composite material manufacturing method. 제 1 항 내지 제 10 항중 어느 한 항에 의하여 제조된 제올라이트 합성물질.A zeolite composite prepared according to any one of claims 1 to 10. 실리카(SiO2)원이나 알루미나(Al2O3)원 중 선택된 적어도 하나의 골격구조물질 50 ~ 80중량%와; 수산화나트륨(NaOH), 수산화칼륨(KOH), 불화암모늄(NH4F)으로 이루어진 군으로부터 선택된 구조유도물질 10 ~ 20중량%; 및 염화칼륨(KCl), 요오드칼륨(KI), 염화나트륨(NaCl), 요오드나트륨(NaI), 질산나트륨(NaNO3), 황산나트륨(Na2SO4), 염화칼슘(CaCl2), 염화마그네슘(MgCl2)으로 이루어진 군으로부터 선택된 고온 용융염 10 ~ 30중량%를 혼합 교반하여 겔화한 것을 특징으로 하는 제올라이트 합성물질 조성물.50 to 80% by weight of at least one skeleton selected from a silica (SiO 2 ) source or an alumina (Al 2 O 3 ) source; 10 to 20% by weight of a structural inducer selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), and ammonium fluoride (NH 4 F); And potassium chloride (KCl), potassium iodine (KI), sodium chloride (NaCl), sodium iodine (NaI), sodium nitrate (NaNO 3 ), sodium sulfate (Na 2 SO 4 ), calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ) Zeolite composite material composition characterized in that the gel was mixed by stirring 10 to 30% by weight of the hot molten salt selected from the group consisting of. 고온용융염과 구조유도물질로서의 수산화나트륨(NaOH), 골격구조물질로서의 알루민산나트륨(NaAlO2)과 액상의 규산나트륨(Na2SiO3)을 혼합하되, 상기 액상의 규산나트륨(Na2SiO3)은 실리카(SiO2), 수산화나트륨 및 물(H2O)을 포함하여 혼합된 것을 특징으로 하는 고온소성 제올라이트 합성물질. The molten hot salt and sodium hydroxide (NaOH) as a structural inducer, sodium aluminate (NaAlO 2 ) as a skeletal structural material and liquid sodium silicate (Na 2 SiO 3 ) are mixed, but the liquid sodium silicate (Na 2 SiO 3) ) Is a high-temperature fired zeolite composite, characterized in that mixed with silica (SiO 2 ), sodium hydroxide and water (H 2 O). 제 13 항에 있어서,The method of claim 13, 상기 고온용융염은 무수황산나트륨(Na2SO4)인 것을 특징으로 하는 고온소성 제올라이트 합성물질. The hot molten salt is an anhydrous sodium sulfate (Na 2 SO 4 ) high temperature calcined zeolite composite material.
KR1020070138357A 2007-12-27 2007-12-27 Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method Active KR100919128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070138357A KR100919128B1 (en) 2007-12-27 2007-12-27 Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070138357A KR100919128B1 (en) 2007-12-27 2007-12-27 Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method

Publications (2)

Publication Number Publication Date
KR20090070369A KR20090070369A (en) 2009-07-01
KR100919128B1 true KR100919128B1 (en) 2009-09-25

Family

ID=41321923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070138357A Active KR100919128B1 (en) 2007-12-27 2007-12-27 Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method

Country Status (1)

Country Link
KR (1) KR100919128B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150100B1 (en) * 2018-12-20 2020-08-31 넥센타이어 주식회사 Rubber composition for tire tread and Tire comprising the rubber composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830001132A (en) * 1978-12-20 1983-04-29 조우킴 에이치. 벡커 Small uniform size zeolite synthesis
KR20000049241A (en) * 1996-10-17 2000-07-25 엑손 케미칼 패턴츠 인코포레이티드 Synthesis of large crystal zeolites
US6180549B1 (en) 1998-09-10 2001-01-30 The B. F. Goodrich Company Modified zeolites and methods of making thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830001132A (en) * 1978-12-20 1983-04-29 조우킴 에이치. 벡커 Small uniform size zeolite synthesis
KR20000049241A (en) * 1996-10-17 2000-07-25 엑손 케미칼 패턴츠 인코포레이티드 Synthesis of large crystal zeolites
US6180549B1 (en) 1998-09-10 2001-01-30 The B. F. Goodrich Company Modified zeolites and methods of making thereof

Also Published As

Publication number Publication date
KR20090070369A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
Pfeiffer et al. Synthesis of lithium silicates
CN101979443B (en) Method for producing modified white carbon black
CN100584755C (en) Method for preparing superfine white carbon black and nano-alumina with kaolin as raw material
CN102583409B (en) Method for producing mullite and calcium silicate by using high-alumina fly ash
CN100434364C (en) Synthesis of Zeolite 4A by Low-temperature Alkali Fusion of Kaolin
CN102351213A (en) Method for preparing 3A type zeolite molecular sieve
Sánchez et al. Ultrasounds and microwave-assisted synthesis of mesoporous hectorites
CN104211086B (en) ZSM-5 zeolite molecular sieve and preparation method thereof
CN102674380B (en) Method for synthesizing tobermorite whiskers by sodium silicate
CN108495815A (en) The synthesis of molecular sieve SSZ-98
CN106276969B (en) The synthetic method of LTA type aluminium phosphate molecular sieves
CN104258804A (en) Comprehensive utilization method of coal gangue
CN106865565A (en) A kind of flyash synthesizes the method for X-type zeolite
KR100919128B1 (en) Method for producing high temperature fired zeolite composite material and zeolite synthetic material prepared by the above production method
CN102275950B (en) Method for preparing 5A zeolite molecular sieve
JP3767041B2 (en) Method for synthesizing zeolite β
CN101172619A (en) Method for preparing 4A zeolite molecular sieve by low-temperature calcination
CN100590074C (en) A method of producing cryolite
CN109279623A (en) A method for synthesizing high silicon-aluminum ratio mordenite by using microporous aluminum phosphite NKX-12 as aluminum source
KR100748211B1 (en) Method for preparing hectorite using water glass
JPS63252927A (en) Production of fine particle powder of sodium hexatitanate
CN102452659B (en) Preparation method of MCM-22 zeolite
JP4123546B2 (en) Zeolite OU-1 and synthesis method thereof
CN1287971A (en) Alkali fusion method for synthesis of 4 angtrom molecular sieve
CN106430233B (en) A method for preparing low-silicon X-type molecular sieve by melting and activating potassium-containing rock with Na2CO3-NaOH mixed alkali

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20071227

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20090915

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20090921

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20090921

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20120912

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20130612

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20140828

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20140828

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20150902

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20161115

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20170901

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20180903

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20200309

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20200901

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20210901

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20220824

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20230822

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20240826

Start annual number: 16

End annual number: 16