KR100913056B1 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- KR100913056B1 KR100913056B1 KR1020020084277A KR20020084277A KR100913056B1 KR 100913056 B1 KR100913056 B1 KR 100913056B1 KR 1020020084277 A KR1020020084277 A KR 1020020084277A KR 20020084277 A KR20020084277 A KR 20020084277A KR 100913056 B1 KR100913056 B1 KR 100913056B1
- Authority
- KR
- South Korea
- Prior art keywords
- region
- ion implantation
- semiconductor substrate
- gate electrode
- implantation process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 63
- 238000005468 ion implantation Methods 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000137 annealing Methods 0.000 claims abstract description 13
- 230000007547 defect Effects 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 8
- 230000007704 transition Effects 0.000 abstract description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 17
- 238000005530 etching Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000012535 impurity Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000001892 vitamin D2 Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0135—Manufacturing their gate conductors
- H10D84/014—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/013—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0151—Manufacturing their isolation regions
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
본 발명은 반도체 소자의 제조방법에 관한 것으로, 반도체 소자의 제조공정에 있어서, 'n+' 이온 주입 공정 후 'p+' 이온 주입 공정 전에 퍼니스 어닐링 방식으로 열처리공정을 실시함으로써 상기 'n+' 이온 주입 공정시 반도체 기판 내에서 발생하는 결함을 제거할 수 있으며, 따라서, 궁극적으로 반도체 제품의 수율을 향상시킬 수 있는 반도체 소자의 제조방법을 개시한다.
The present invention relates to a method for manufacturing a semiconductor device, wherein in the manufacturing process of a semiconductor device, the 'n +' ion implantation process is performed by a furnace annealing method after the 'n +' ion implantation process and before the 'p + ' ion implantation process. Disclosed is a method of manufacturing a semiconductor device capable of eliminating defects occurring in a semiconductor substrate during a process and ultimately improving a yield of a semiconductor product.
반도체 소자, CMOS, 퍼니스 어닐링, 전이 에치 핏 Semiconductor Devices, CMOS, Furnace Annealing, Transition Etch Fit
Description
도 1 내지 도 5는 종래기술의 반도체 소자의 제조방법에 따라 야기되는 문제점을 설명하기 위한 도면들이다. 1 to 5 are diagrams for explaining a problem caused by the method of manufacturing a semiconductor device of the prior art.
도 6 내지 도 14는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위하여 도시한 단면도들이다.
6 to 14 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명> <Explanation of symbols for the main parts of the drawings>
10, 100 : 반도체 기판 12, 102 : 소자 분리막10, 100:
104 : 게이트 산화막 106 : 폴리실리콘막 104: gate oxide film 106: polysilicon film
110 : NMOS 게이트 전극 112 : PMOS 게이트 전극110: NMOS gate electrode 112: PMOS gate electrode
116, 120 : 저농도 접합영역 122 : LDD 스페이서116, 120 low
126, 130 : 고농도 접합영역 126, 130: high concentration junction region
18, 114, 118, 124, 128 : 포토레지스트 패턴
18, 114, 118, 124, 128: photoresist pattern
본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 고집적 반도체 소자의 제조공정시 반도체 기판에 발생하는 결함을 제거하여 궁극적으로 제품의 수율을 향상시킬 수 있는 반도체 소자의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of removing defects occurring in a semiconductor substrate during a manufacturing process of a highly integrated semiconductor device and ultimately improving product yield.
최근 로직 소자(logic device)의 제조에서는 소자 분리를 위해 통상적으로 STI(Shallow Trench Isolation) 스킴(scheme)이 이용된다. 이러한 STI 스킴은 안정적인 활성영역의 확보에는 많은 기여를 하고 있으나, 도 1에 도시된 'A'에서와 같이 트렌치 모서리(trench corner) 부위에 집중되는 고응력에 의해 다양한 문제가 발생하고 있는 실정이다. 그 중 제품의 불량률에 가장 큰 영향을 주는 것이 고응력 집중 부위에 발생하는 전위(dislocation), 즉 격자결함에 의한 누설전류의 증가다. 트렌치 하부(trench bottom)를 통한 누설전류의 증가는 제품의 수율에 직접적인 영향을 준다. In the manufacture of logic devices, a shallow trench isolation (STI) scheme is commonly used for device isolation. Although the STI scheme contributes to securing a stable active region, various problems are caused by high stress concentrated in trench corners as shown in 'A' of FIG. 1. Among them, the greatest influence on the defective rate of the product is the dislocation occurring at the high stress concentration site, that is, the increase of leakage current due to lattice defects. The increase in leakage current through the trench bottom directly affects product yield.
도 1에 도시된 바와 같이 고응력 부위가 형성된 후 소오스/드레인 이온주입공정을 통해 NMOS 영역(즉, n+ 영역)은 통상적으로 'As'로 이온주입되게 된다. 이때, 도 2에 도시된 바와 같이 'As'의 원자 충돌에 의해 도시된 'B' 부위에 많은 결함들이 발생하게 된다. 그리고, 상기 결함들은 후속의 열공정에 의해 트렌치의 고응력 부위로 이동하게 되며, 이에 따라, 도 3에 도시된 'C'와 같이 트렌치 근처에 전이가 형성된다. 이러한 전이를 분석하는 방법은 반도체 소자의 제조 공정후 디캡(decap) 과정을 통해 기판 상의 모든 구조물층을 제거한 후 'Wright Etch'를 실시하여 전이가 형성되는 부위에 발생한 에치 핏(etch pit)을 관찰함으로써 가능 하다. As shown in FIG. 1, the NMOS region (ie, the n + region) is usually implanted into 'As' through the source / drain ion implantation process after the high stress region is formed. In this case, as shown in FIG. 2, many defects are generated at the 'B' portion shown by the atomic collision of 'As'. The defects are then moved to the high stress site of the trench by a subsequent thermal process, whereby a transition is formed near the trench as shown in FIG. 3. The method for analyzing such transitions is to remove all the structure layers on the substrate through a decap process after the semiconductor device manufacturing process, and then perform a 'right etch' to observe the etch pit generated at the site where the transition is formed. It is possible by doing
도 3에 도시된 바와 같이, 전이가 형성되면 'Wright Etch'시 도 4와 같이 식각방향에 따른 식각속도 차에 의해 전이를 따라 에치 핏이 발생하게 된다. 실제로 도 5에 도시된 'D'와 같이 NMOS 활성영역과 트렌치 경계부위에서 에치 핏이 발생한다. 이와 같이 NMOS 영역에는 에피 칫이 발생하는 반면, 일반적으로 'B' 또는 'BF2'는 'As'처럼 과도한 결함을 유발하지 않기 때문에 PMOS 영역(즉, p+ 영역)에서는 에치 핏이 발생하지 않는다. 여기서, 미설명된 '10'은 반도체 기판이고, '12'는 소자 분리막이며, '20'은 전이 시드(dislocation seed)를 가리키며, '30'는 식각방향을 가리킨다.
As shown in FIG. 3, when the transition is formed, an etch fit is generated along the transition by the difference in etching speed in the etching direction as shown in FIG. 4 during 'Wright Etch'. In fact, an etch fit occurs in the NMOS active region and the trench boundary, as shown by 'D' shown in FIG. As such, the epitaxial is generated in the NMOS region, whereas in general, 'B' or 'BF 2 ' does not cause excessive defects such as 'As', so no etch fit occurs in the PMOS region (ie, the p + region). Herein, '10', which is not described, is a semiconductor substrate, '12' is a device isolation layer, '20' is a transition seed, and '30' is an etching direction.
따라서, 본 발명은 상기에서 설명한 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 고집적 반도체 소자의 제조공정시 반도체 기판에 발생하는 결함을 제거하여 궁극적으로 제품의 수율을 향상시킬 수 있는 반도체 소자의 제조방법을 제공하는데 그 목적이 있다.
Accordingly, the present invention has been made to solve the problems of the prior art described above, the manufacturing of a semiconductor device that can improve the yield of the product by eliminating defects occurring in the semiconductor substrate during the manufacturing process of the highly integrated semiconductor device The purpose is to provide a method.
본 발명의 일측면에 따르면, NMOS 영역과 PMOS 영역으로 정의되는 반도체 기판에 소자 분리막을 형성하는 단계와, 상기 반도체 기판 상에 NMOS 게이트 전극과 PMOS 게이트 전극을 형성하는 단계와, LDD 이온 주입 공정을 실시하여 상기 NMOS 게이트 전극 및 상기 PMOS 게이트 전극의 양측으로 노출되는 상기 반도체 기판에 저농도 접합영역을 형성하는 단계와, 'n+' 이온 주입 공정을 실시하여 상기 NMOS 게이트 전극의 양측으로 노출되는 상기 반도체 기판에 상기 저농도 접합영역보다 깊은 제1 고농도 접합영역을 형성하는 단계와, 퍼니스 어닐링 방식을 이용한 열처리공정을 실시하여 상기 단계에서 실시되는 상기 'n+' 이온 주입 공정에 의해 상기 반도체 기판 내에서 발생하는 격자결합을 제거하는 단계와, 'p+' 이온 주입 공정을 실시하여 상기 PMOS 게이트 전극의 양측으로 노출되는 상기 반도체 기판에 상기 저농도 접합영역보다 깊은 제2 고농도 접합영역을 형성하는 단계를 포함하는 반도체 소자의 제조방법을 제공한다. According to an aspect of the present invention, forming an isolation layer on a semiconductor substrate defined as an NMOS region and a PMOS region, forming an NMOS gate electrode and a PMOS gate electrode on the semiconductor substrate, and an LDD ion implantation process And forming a low concentration junction region in the semiconductor substrate exposed to both sides of the NMOS gate electrode and the PMOS gate electrode, and performing an 'n + ' ion implantation process to expose the semiconductor to both sides of the NMOS gate electrode. Forming a first high concentration junction region deeper than the low concentration junction region on the substrate, and performing a heat treatment process using a furnace annealing method to generate the inside of the semiconductor substrate by the 'n + ' ion implantation process performed in the step. the PMOS gate electrode by carrying out the step of removing the grid coupling, '+ p' ion implantation step of In the semiconductor substrate which is exposed on both sides to provide a method of manufacturing a semiconductor device including forming a deep second heavily doped junction area than that of the lightly doped junction regions.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록하며 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 6 내지 도 14는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위해 도시한 단면들이다. 그 일례로 CMOS(Complementary Metal-Oxide-Semiconductor) 소자를 도시한 단면도들이다. 도 6 내지 도 14에 도시된 참조부호들 중 동일한 참조부호는 서로 동일한 기능을 하는 동일한 구성요소를 가리 킨다. 6 to 14 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention. As an example, cross-sectional views of a complementary metal-oxide-semiconductor (CMOS) device are shown. The same reference numerals among the reference numerals shown in FIGS. 6 to 14 indicate the same components having the same function.
도 6을 참조하면, P형 반도체 기판(100)을 NMOS 영역과 PMOS 영역으로 정의하기 위해 STI(Shallow Trench Isolation) 공정을 실시하여 소자 분리막(102)을 형성한다. 그런 다음, NMOS 영역에는 'p-' 불순물인 'B'을 주입하여 P-웰(P-Well)을 형성하고, PMOS 영역에는 'n-' 불순물인 'P' 또는 'As'을 주입하여 N-웰(N-Well)을 형성한다. Referring to FIG. 6, a
도 7을 참조하면, 전체 구조 상부에 게이트 산화막(104)을 형성한 후 그 상부에 게이트 전극용 폴리실리콘막(106)을 형성한다. 그런 다음, 일례로, NMOS 영역이 오픈(open)되도록 PMOS 영역에 미도시된 포토레지스트 패턴을 형성한 후 상기 포토레지스트 패턴을 이용한 전처리 이온주입공정을 실시한다. 이로써, NMOS 영역의 폴리실리콘막(106) 내에는 인 또는 비소가 주입된다. Referring to FIG. 7, a
도 8을 참조하면, 전체 구조 상부에 게이트 전극 패턴용 포토레지스트 패턴(108)을 형성한 후 상기 포토레지스트 패턴(108)을 이용한 식각공정을 실시하여 NMOS 영역에는 NMOS 게이트 전극(110)을 형성하고, PMOS 영역에는 PMOS 게이트 전극(112)을 형성한다. Referring to FIG. 8, after forming the
도 9를 참조하면, NMOS 영역이 오픈되도록 포토레지스트 패턴(114)을 PMOS 영역에만 형성한 후 상기 포토레지트 패턴(114)을 이용한 LDD(Lightly Drain Doped) 이온 주입 공정, 즉 'n-' 이온 주입 공정을 실시하여 NMOS 영역의 P-웰에 얕은 접합영역(Shallow junction)인 저농도 접합영역(116)을 형성한다. 이후, 스트립 공정을 실시하여 상기 포토레지스트 패턴(114)을 제거한다. Referring to Figure 9, after the photoresist pattern is NMOS region are open 114 formed only in PMOS region of the
도 10을 참조하면, PMOS 영역이 오픈되도록 포토레지스트 패턴(118)을 NMOS 영역에만 형성한 후 상기 포토레지트 패턴(118)을 이용한 LDD 이온 주입 공정, 즉 'p-' 이온 주입 공정을 실시하여 PMOS 영역의 N-웰에 얕은 접합영역인 저농도 접합영역(120)을 형성한다. 그런 다음, 스트립 공정을 실시하여 상기 포토레지스트 패턴(118)을 제거한다. 10, after the photoresist pattern has PMOS region are open 118 formed only in the NMOS region LDD ion implantation process, that is, using the above photoresist bit pattern (118) by performing an ion implantation process 'p' A low
도 11을 참조하면, 증착공정 및 식각공정을 순차적으로 실시하여 NMOS 게이트 전극(110) 및 PMOS 게이트 전극(112)의 양측벽에 고농도 이온 주입 공정시 이온주입마스크로 기능하기 위하여 LDD 스페이서(122)를 형성한다. 이때, LDD 스페이서(122)는 HLD(High temperature Low pressure Dielectric)막을 이용하여 형성한다. Referring to FIG. 11, the
도 12를 참조하면, NMOS 영역이 오픈되도록 포토레지스트 패턴(124)을 PMOS 영역에만 형성한 후 상기 포토레지트 패턴(124)을 마스크로 이용한 'n+' 이온 주입 공정을 실시하여 NMOS 영역의 P-웰에 깊은 접합영역(Depth junction)인 고농도 접합영역(126)을 형성한다. 이때, 'n+' 이온 주입 공정은 'As' 및 'P'를 이용하여 실시한다. Referring to FIG. 12, the
도 13을 참조하면, 전체 구조 상부에 대하여 상기 포토레지스트 패턴(124)을 제거하고 열처리공정을 실시한다. 이때, 열처리공정은 'n+' 이온 주입 공정후 발생 하는 결함을 제거하기 위하여 퍼니스 어닐링(furnace annealing) 방식으로 실시한다. 여기서, 퍼니스 어닐링 방식은 650 내지 850℃ 온도에서 10 내지 20분 동안 실시하되, 바람직하게는 적어도 700℃ 온도에서 적어도 10분 동안 실시한다. 또한, 퍼니스 어닐링 방식은 100% O2 분위기에서 실시하여 소정 영역에 미도시된 산화막을 20 내지 150Å의 두께로 형성하는 것이 바람직하다. Referring to FIG. 13, the
이와 같이, 퍼니스 어닐링 방식으로 열처리공정을 실시함으로써 종래기술에서 'n+' 이온 주입 공정후 발생하는 결함을 제거할 수 있다. 즉, 상기 열처리공정을 적어도 700℃에서 적어도 10분 동안 실시하게 되면, NMOS 영역에서 발생하는 격자결함이 제거된다. 이로써, NMOS 영역에서는 종래기술에서 발생하는 에치 핏이 발생되지 않는다. 또한, 열처리공정을 100% O2 분위기에서 실시함으로써 공정진행시 표면의 산화시 발생하는 스태킹 폴트(stacking fault)에 의해 실리콘 원자(silicon intersitial)를 주입할 수 있도록 하여 이온 주입시 발생한 결함을 더욱 빨리 제거할 수 있도록 한다. 한편, 상기 열처리 공정을 실시함으로써 도 14에서 실시되는 'p+' 이온 주입 공정시 발생할 수 있는 'B' 침투(penetration) 문제를 방지할 수 있다. As such, by performing the heat treatment process by the furnace annealing method, defects occurring after the 'n + ' ion implantation process in the related art can be removed. That is, when the heat treatment process is performed at least 700 ° C. for at least 10 minutes, lattice defects occurring in the NMOS region are removed. As a result, the etch fit generated in the prior art is not generated in the NMOS region. In addition, the heat treatment process is performed in a 100% O 2 atmosphere so that silicon intersitial can be injected by the stacking fault generated during the oxidation of the surface during the process, and thus the defects generated during ion implantation can be removed more quickly. To be removed. On the other hand, by performing the heat treatment process it is possible to prevent the 'B' penetration (penetration) problem that may occur during the 'p + ' ion implantation process performed in FIG.
도 14를 참조하면, PMOS 영역이 오픈되도록 포토레지스트 패턴(128)을 NMOS 영역에만 형성한 후 상기 포토레지트 패턴(128)을 이용한 'p+' 이온 주입 공정을 실시하여 PMOS 영역의 N-웰에 깊은 접합영역인 고농도 접합영역(130)을 형성한다. 이 후, 스트립 공정을 실시하여 상기 포토레지스트 패턴(128)을 제거한다. 이로써, NMOS 영역의 P-웰에는 저농도 접합영역(116) 및 고농도 접합영역(126)으로 이루어진 NMOS 소오스/드레인 영역이 형성되고, PMOS 영역의 N-웰에는 저농도 접합영역(120) 및 고농도 접합영역(130)으로 이루어진 PMOS 소오스/드레인 영역이 형성된다.Referring to FIG. 14, the
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명은 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
Although the technical spirit of the present invention described above has been described in detail in a preferred embodiment, it should be noted that the above embodiment is for the purpose of description and not of limitation. In addition, the present invention will be understood by those skilled in the art that various embodiments are possible within the scope of the technical idea of the present invention.
이상 설명한 바와 같이, 본 발명에서는 반도체 소자의 제조공정에 있어서, 'n+' 이온 주입 공정 후 'p+' 이온 주입 공정 전에 퍼니스 어닐링 방식으로 열처리공정을 실시함으로써 상기 'n+' 이온 주입 공정시 반도체 기판 내에서 발생하는 결함을 제거할 수 있다. 따라서, 궁극적으로 반도체 제품의 수율을 향상시킬 수 있다.
As described above, in the present invention, the semiconductor substrate during the 'n +' ion implantation process is performed by a furnace annealing process in the manufacturing process of the semiconductor device after the 'n + ' ion implantation process and before the 'p +' ion implantation process. The defect which arises in the inside can be eliminated. Therefore, ultimately, the yield of a semiconductor product can be improved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020084277A KR100913056B1 (en) | 2002-12-26 | 2002-12-26 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020084277A KR100913056B1 (en) | 2002-12-26 | 2002-12-26 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040057519A KR20040057519A (en) | 2004-07-02 |
KR100913056B1 true KR100913056B1 (en) | 2009-08-20 |
Family
ID=37350089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020084277A Expired - Fee Related KR100913056B1 (en) | 2002-12-26 | 2002-12-26 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100913056B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541234B2 (en) | 2005-11-03 | 2009-06-02 | Samsung Electronics Co., Ltd. | Methods of fabricating integrated circuit transistors by simultaneously removing a photoresist layer and a carbon-containing layer on different active areas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09252055A (en) * | 1996-03-18 | 1997-09-22 | Oki Electric Ind Co Ltd | Manufacture of cmosfet |
KR19980084534A (en) * | 1997-05-23 | 1998-12-05 | 문정환 | Manufacturing method of semiconductor device |
KR100334965B1 (en) * | 1999-08-12 | 2002-05-04 | 박종섭 | Formation method of device of mos field effect transistor |
-
2002
- 2002-12-26 KR KR1020020084277A patent/KR100913056B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09252055A (en) * | 1996-03-18 | 1997-09-22 | Oki Electric Ind Co Ltd | Manufacture of cmosfet |
KR19980084534A (en) * | 1997-05-23 | 1998-12-05 | 문정환 | Manufacturing method of semiconductor device |
KR100334965B1 (en) * | 1999-08-12 | 2002-05-04 | 박종섭 | Formation method of device of mos field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
KR20040057519A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100393216B1 (en) | Method of fabricating Metal Oxide Semiconductor transistor with Lightly Doped Drain structure | |
KR0129125B1 (en) | LDD MOSFET manufacturing method of semiconductor device | |
EP0417715B1 (en) | Method of manufacturing a semicondcutor device | |
KR100913056B1 (en) | Manufacturing method of semiconductor device | |
WO1999057759A1 (en) | Method of manufacturing a radiation hardened semiconductor device having active regions and isolation regions | |
KR100273291B1 (en) | Method for manufacturing mosfet | |
KR100840684B1 (en) | Manufacturing method of semiconductor device | |
US9412869B2 (en) | MOSFET with source side only stress | |
US20070184620A1 (en) | Field effect transistor and method of manufacturing a field effect transistor | |
KR100607818B1 (en) | Method of manufacturing transistor of semiconductor device | |
KR100418721B1 (en) | Method for manufacturing a transistor of a semiconductor device | |
KR101017042B1 (en) | Manufacturing Method of Semiconductor Device | |
KR100325596B1 (en) | Method of suppressing the formation of crystal defects in silicon wafers after arsenic ion injection | |
KR100880336B1 (en) | Manufacturing method of semiconductor device | |
KR100577607B1 (en) | Well forming method for semiconductor device and manufacturing method of semiconductor device including same | |
JP2008235567A (en) | Semiconductor device manufacturing method and semiconductor device | |
KR100215697B1 (en) | Isolation Method of Semiconductor Devices | |
KR100313090B1 (en) | Method for forming source/drain junction of semiconductor device | |
KR100487641B1 (en) | Method for fabricating semiconductor device | |
KR20050059749A (en) | Method of manufacturing semiconductor device | |
JPH1050819A (en) | Manufacture of semiconductor device | |
KR20050118467A (en) | A method for forming a gate dielectric layer and a method for manufacturing a semiconducter divice using the same | |
KR20040056450A (en) | Method for manufacturing a semiconductor device | |
KR20050064264A (en) | Method of manufacturing transistor for semiconductor device | |
KR20000043185A (en) | Method for forming device isolation film of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20021226 |
|
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20041006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20071226 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20021226 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090604 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090806 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090812 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090812 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20120720 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120720 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130730 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20130730 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150716 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20150716 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160718 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20160718 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170719 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20170719 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180717 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20180717 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190716 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20190716 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20200716 Start annual number: 12 End annual number: 12 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220523 |