[go: up one dir, main page]

KR100907811B1 - Spiral Fluid Circulation System of Hermetic Geothermal System - Google Patents

Spiral Fluid Circulation System of Hermetic Geothermal System Download PDF

Info

Publication number
KR100907811B1
KR100907811B1 KR1020080119786A KR20080119786A KR100907811B1 KR 100907811 B1 KR100907811 B1 KR 100907811B1 KR 1020080119786 A KR1020080119786 A KR 1020080119786A KR 20080119786 A KR20080119786 A KR 20080119786A KR 100907811 B1 KR100907811 B1 KR 100907811B1
Authority
KR
South Korea
Prior art keywords
heat
heat recovery
circulating fluid
tube
recovery tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020080119786A
Other languages
Korean (ko)
Inventor
안근묵
Original Assignee
주식회사 지지케이
주식회사 대명엔지니어링
안근묵
홍성술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지지케이, 주식회사 대명엔지니어링, 안근묵, 홍성술 filed Critical 주식회사 지지케이
Priority to KR1020080119786A priority Critical patent/KR100907811B1/en
Application granted granted Critical
Publication of KR100907811B1 publication Critical patent/KR100907811B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 밀폐형 지열시스템의 나선식 유체순환장치에 관한 것으로, 열복원관에는, 순환유체회수관에 연결되어서 이로부터 회수된 순환유체가 지열공의 하부로 이송되는 시간이 연장되도록 하여 지열공 내부와 열교환이 충분히 이루어지도록 지열공의 수직방향을 따라 코일 형태로 형성된 제1열복원관이 구비되며; 제2열복원관의 둘레에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관의 영향을 받지 않고 순환유체공급관으로 공급되도록 보온관이 씌워진다.The present invention relates to a spiral fluid circulation system of a closed geothermal system, wherein the heat recovery pipe is connected to a circulating fluid recovery pipe to extend the time for transporting the circulating fluid recovered from the geothermal hole to the bottom of the geothermal hole. And a first heat recovery tube formed in a coil shape along the vertical direction of the geothermal holes so as to sufficiently exchange heat with each other; A heat insulating tube is placed around the second heat recovery tube so that the circulating fluid that has already been thermally restored is supplied to the circulating fluid supply pipe without being affected by the first heat recovery tube that is being restored.

따라서, 열복원관으로 회수된 순환유체가 코일 형태의 제1열복원관을 통과하면서 지열공 내에 비교적 긴 시간동안 머무르게 되고, 이에 따라 순환유체와 지열공 사이에 열교환이 충분히 이루어지게 되어 순환유체의 열복원이 확실하게 이루어지게 되며, 열교환이 이루어진 순환유체는 직선형태의 제2열복원관을 통해 순환유체공급관으로 신속히 공급되므로 열교환장치의 열효율을 향상시킬 수 있다. 또한, 보온관에 의해 제1열복원관과 제2열복원관 사이의 열교환이 차단되므로 충분히 열복원된 제2열복원관 내의 순환유체가 열복원중인 제1열복원관의 영향을 받지 않는 가운데 순환유체공급관으로 공급된다.Therefore, the circulating fluid recovered into the heat recovery tube is kept in the geothermal hole for a relatively long time while passing through the coil-shaped first heat recovery tube, and thus heat exchange is sufficiently performed between the circulating fluid and the geothermal hole. The heat recovery is surely performed, and the circulating fluid with heat exchange is rapidly supplied to the circulating fluid supply pipe through the second heat recovery pipe in a straight line, thereby improving the thermal efficiency of the heat exchanger. In addition, since the heat exchange between the first heat recovery tube and the second heat recovery tube is blocked by the heat insulating tube, the circulating fluid in the second heat recovery tube that is sufficiently heat restored is not affected by the first heat recovery tube in heat recovery. It is supplied to the circulating fluid supply pipe.

Description

밀폐형 지열시스템의 나선식 유체순환장치{Spiral fluid circulator of closed type geothermal system}Spiral fluid circulator of closed type geothermal system

본 발명은 밀폐형 지열시스템의 나선식 유체순환장치에 관한 것으로, 더 상세하게는 열교환기를 통과한 순환유체가 지열공으로 공급되는 동안 지열공 내에 충분히 머물도록 하여서 순환유체의 열복원이 충분히 이루어지고, 제1열복원관과 제2열복원관 사이의 열전달을 차단시켜서 순환유체공급관으로 공급되는 순환유체의 열효율이 향상되며, 제1열복원관 및 제2열복원관의 간격을 확실하게 유지할 수 있을 뿐 아니라, 제1열복원관의 흡열면적을 극대화시킬 수 있는 밀폐형 지열시스템의 나선식 유체순환장치에 관한 것이다.The present invention relates to a spiral fluid circulation device of a hermetic geothermal system, and more particularly, the heat recovery of the circulating fluid is sufficiently made by allowing the circulating fluid passing through the heat exchanger to stay sufficiently in the geothermal hole while being supplied to the geothermal hole. The thermal efficiency of the circulating fluid supplied to the circulating fluid supply pipe can be improved by blocking the heat transfer between the first heat recovery pipe and the second heat recovery pipe, and the gap between the first heat recovery pipe and the second heat recovery pipe can be reliably maintained. In addition, the present invention relates to a spiral fluid circulation device of a hermetic geothermal system capable of maximizing an endothermic area of a first heat recovery tube.

일반적으로 지중열을 이용한 밀폐형 열교환구조는, 지반에 수직으로 다수의 지열공들을 형성시키고, 이 지열공 내에 U자형 열복원관을 매설한다. 건물에는 열복원관의 열을 이용하여서 건물 내부를 냉방 또는 난방하도록 히트펌프 등의 열교환기를 설치한다.In general, a hermetic heat exchange structure using geothermal heat forms a plurality of geothermal holes perpendicular to the ground, and embeds a U-shaped heat recovery tube in the geothermal holes. Heat exchangers such as heat pumps are installed in the building to cool or heat the inside of the building by using the heat of the heat recovery tube.

열복원관의 출구와 열교환기에는 순환유체공급관을 연결하고 열교환기와 열복원관의 입구에는 순환유체회수관을 연결한다. 따라서 열복원관으로부터 열복원된 순환유체는 순환유체공급관을 통해 열교환기로 공급되고 열교환기를 통과한 순환유체는 순환유체회수관을 통해 열복원관으로 회수된 후 열복원된다.The circulation fluid supply pipe is connected to the outlet of the heat recovery pipe and the heat exchanger, and the circulation fluid recovery pipe is connected to the inlet of the heat recovery pipe and the heat recovery pipe. Therefore, the circulating fluid heat-restored from the heat recovery tube is supplied to the heat exchanger through the circulating fluid supply pipe, and the circulating fluid passing through the heat exchanger is recovered to the heat recovery tube through the circulating fluid recovery pipe and then heat-restored.

그런데 이러한 종래 지중열을 이용한 밀폐형 열교환구조는, 열교환기를 통과한 순환유체가 일자형태의 회수관을 빠르게 통과한 후 지열공으로 신속히 투입된다. 따라서 열교환기를 통과한 온도차가 큰 순환유체가 지열공으로 신속히 투입되므로 지열공 내의 열복원 능력이 점차 저하되었다. 즉, 열교환기를 통과한 큰 온도차의 순환유체가 지열공 내로 신속히 투입되므로 여름철에는 지열공 내의 온도가 점차 상승되고 겨울철에는 지열공 내의 온도가 점차 하강되면서 열효율이 점진적으로 저하되는 문제점이 발생된다.However, in the conventional heat exchange structure using underground heat, the circulating fluid passing through the heat exchanger is quickly introduced into the geothermal hole after passing through the straight line recovery pipe. Therefore, since the circulating fluid having a large temperature difference passing through the heat exchanger is rapidly introduced into the geothermal holes, the heat recovery capacity in the geothermal holes is gradually decreased. That is, since the circulating fluid having a large temperature difference passing through the heat exchanger is rapidly introduced into the geothermal hole, the temperature in the geothermal hole gradually increases in the summer, and the temperature in the geothermal hole gradually decreases in the winter.

이러한 종래의 U자형 열복원관은 하단의 연결부위를 제외한 대부분이 직선형태로 이루어진다. 즉, 순환유체가 회수되어 열복원되는 유입부와 열복원된 순환유체가 배출되는 배출부가 모두 직선형 파이프 형태로 이루어진다. 따라서 U자형 열복원관으로 회수된 순환유체는 직선형태의 유입부와 직선형태의 배출부를 비교적 신속하게 통과하게 된다. 그러므로 순환유체가 열복원관에 충분히 머무르지 못하게 되므로 열복원이 제대로 이루어지지 못하는 문제점이 발생된다.In the conventional U-shaped heat recovery tube, most of the lower portion of the connection portion is formed in a straight form. That is, both the inlet part of which the circulating fluid is recovered and heat-restored and the outlet part where the heat-restored circulating fluid is discharged are formed in a straight pipe shape. Therefore, the circulating fluid recovered by the U-shaped heat recovery tube passes through the straight inlet and the straight outlet relatively quickly. Therefore, the circulating fluid does not stay sufficiently in the heat recovery tube, the heat recovery is not properly made occurs.

상술한 문제점을 해결하기 위한 본 발명의 목적은, 열교환기를 통과한 순환유체가 지열공으로 공급되는 동안 지열공 내에 충분히 머물도록 하여서 순환유체의 열복원이 충분히 이루어지도록 한 밀폐형 지열시스템의 나선식 유체순환장치를 제공하는데 있다.An object of the present invention for solving the above-mentioned problems is to maintain a sufficient amount of heat recovery of a circulating fluid so that a circulating fluid that has passed through a heat exchanger stays in the geothermal hole while being supplied to the geothermal hole, thereby allowing a spiral fluid of a closed geothermal system. To provide a circulation device.

본 발명의 또 다른 목적은, 제1열복원관과 제2열복원관 사이의 열전달을 차단시켜서 순환유체공급관으로 공급되는 순환유체의 열효율이 향상되도록 한 밀폐형 지열시스템의 나선식 유체순환장치를 제공하는데 있다.It is still another object of the present invention to provide a spiral fluid circulation device of a closed geothermal system in which the thermal efficiency of a circulating fluid supplied to a circulating fluid supply pipe is improved by blocking heat transfer between a first heat restore pipe and a second heat restore pipe. It is.

본 발명의 또 다른 목적은, 제1열복원관 및 제2열복원관의 간격을 확실하게 유지할 수 있도록 한 밀폐형 지열시스템의 나선식 유체순환장치를 제공하는데 있다.It is still another object of the present invention to provide a spiral fluid circulation device of a hermetic geothermal system capable of reliably maintaining a distance between a first heat recovery tube and a second heat recovery tube.

본 발명의 또 다른 목적은, 제1열복원관의 흡열면적을 극대화시킬 수 있도록 한 밀폐형 지열시스템의 나선식 유체순환장치를 제공하는데 있다.Still another object of the present invention is to provide a spiral fluid circulation device of a hermetic geothermal system capable of maximizing an endothermic area of a first heat recovery tube.

이와 같은 목적을 달성하기 위한 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치는, 지반에 수직으로 형성되는 지열공들과, 건물에 설치되고 상기 지열공들 내의 지열을 공급받아서 건물 내부를 냉방 또는 난방하는 열교환기와, 순환유체가 입구로 유입된 후 지열공들의 내부로 공급되어서 열복원된 후 출구로 배출되도록 상기 지열공들의 내부에 설치되는 열복원관과, 상기 열복원관의 출구 및 열교 환기에 연결되어서 열복원된 순환유체를 열교환기로 공급하는 순환유체공급관과, 상기 열교환기 및 열복원관의 입구에 연결되어서 열교환기를 통과한 순환유체를 상기 열복원관으로 회수하는 순환유체회수관으로 이루어진 밀폐형 지열시스템의 나선식 유체순환장치에 있어서, 열복원관은, 순환유체회수관에 연결되어서 이로부터 회수된 순환유체가 지열공의 하부로 이송되는 시간이 연장되도록 하여 지열공 내부와 열교환이 충분히 이루어지도록 지열공의 수직방향을 따라 코일 형태로 형성된 제1열복원관과, 하단이 상기 제1열복원관의 하단에 연결되고 상단이 상기 순환유체공급관에 연결되며 상기 제1열복원관을 따라 이송되면서 열복원된 순환유체가 상기 순환유체공급관으로 신속히 공급되도록 직선형태로 이루어진 제2열복원관으로 이루어지며; 제2열복원관의 둘레에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관의 영향을 받지 않고 순환유체공급관으로 공급되도록 보온관이 씌워지는 것을 특징으로 한다.The spiral fluid circulation device of the hermetic geothermal system of the present invention for achieving the above object, the geothermal holes formed perpendicular to the ground, and installed in the building to receive the geothermal heat in the geothermal holes to cool the inside of the building or A heat exchanger for heating, a heat recovery tube installed inside the geothermal holes so that the circulating fluid is introduced into the geothermal holes after being introduced into the inlet, and is then restored to the outlet after the heat recovery, and the outlet and the heat exchange ventilation of the heat recovery tube A circulating fluid supply pipe connected to the heat exchanger to supply the heat-restored circulating fluid to the heat exchanger, and a circulating fluid recovery pipe connected to the inlet of the heat exchanger and the heat recovery pipe to recover the circulating fluid that has passed through the heat exchanger to the heat recovery pipe. In a spiral fluid circulation system of a closed geothermal system, a heat recovery pipe is connected to a circulating fluid recovery pipe and recovered therefrom. The first heat recovery tube formed in the form of a coil along the vertical direction of the geothermal hole to ensure sufficient heat exchange with the inside of the geothermal hole by extending the time to be transferred to the lower portion of the geothermal hole, the lower end of the first heat restoration tube A second heat recovery pipe having a linear shape connected to the circulation fluid supply pipe and having an upper end connected to the circulation fluid supply pipe, and configured to be quickly supplied to the circulation fluid supply pipe while the heat-restored circulation fluid is quickly supplied to the circulation fluid supply pipe; A heat insulating tube is placed around the second heat recovery tube so that the circulating fluid that has already been thermally restored is supplied to the circulating fluid supply pipe without being affected by the first heat recovery tube that is being restored.

본 발명 밀폐형 지열시스템의 나선식 유체순환장치의 다른 특징은, 상기 제2열복원관과 보온관의 사이에는, 상기 제2열복원관과 보온관의 유동을 방지하고 제2열복원관의 열이 외부와 교환되는 것을 차단시키도록 보온재가 더 구비된다.Another feature of the spiral fluid circulation system of the hermetic geothermal system of the present invention is that between the second heat recovery tube and the heat insulation tube, the flow of the second heat recovery tube and the heat insulation tube is prevented and the heat of the second heat recovery tube is prevented. It is further provided with a heat insulating material to block the exchange with the outside.

본 발명 밀폐형 지열시스템의 나선식 유체순환장치의 또 다른 특징은, 상기 제1열복원관 및 보온관에는, 중앙에 형성되어서 상기 보온관에 삽입되는 결합부와 양단에 형성되어서 상기 제1열복원관에 착탈되는 체결부와 상기 결합부 및 체결부 사이에 형성되어서 이들을 일체로 연결하는 연장부로 이루어진 간격유지편이 결합된다.A further feature of the spiral fluid circulation system of the hermetic geothermal system of the present invention is that the first heat recovery tube and the heat insulation tube are formed at both ends of the coupling portion which is formed at the center and inserted into the heat insulation tube, and the first heat restoration is performed. Spacing parts are formed between the coupling portion detachable to the tube and the coupling portion and the coupling portion and the extension portion for connecting them integrally.

본 발명 밀폐형 지열시스템의 나선식 유체순환장치의 또 다른 특징은, 상기 보온관에는, 그 길이방향을 따라 네 부분에 방사상으로 결합홈들이 형성되어 있고, 상기 결합홈들에는, 상기 제2열복원관의 둘레에 결합되는 지지부와 상기 지지부의 둘레에 방사상으로 네 개 형성되어서 상기 결합홈들에 각각 삽입되고 상기 제1열복원관의 내측면의 네 부분에 지지되는 간격유지부로 이루어진 간격유지블록이 결합된다.A further feature of the spiral fluid circulation device of the hermetic geothermal system of the present invention is that the insulating tube has coupling grooves formed radially in four portions along its longitudinal direction, and the coupling grooves have the second heat restoration. The interval maintaining block is composed of a support portion coupled to the circumference of the tube and four radially formed around the support portion and inserted into the coupling grooves and supported by four portions of the inner surface of the first heat recovery tube. Combined.

본 발명 밀폐형 지열시스템의 나선식 유체순환장치의 또 다른 특징은, 상기 제1열복원관에는, 상기 제1열복원관의 둘레에 그 길이방향을 따라 내측으로 오목하게 절곡되어서 상기 제1열복원관의 표면적이 증대되도록, 상기 제1열복원관의 외측면에는 오목한 절곡홈이 형성되고 상기 제1열복원관의 내부에는 볼록하게 돌출된 절곡돌부가 돌출되는 흡열주름부들이 형성된다.A further feature of the spiral fluid circulation system of the hermetic geothermal system of the present invention is that the first heat recovery tube is concave inwardly along its longitudinal direction around the first heat recovery tube to restore the first heat recovery. To increase the surface area of the tube, concave bending grooves are formed in the outer surface of the first heat recovery tube, and endothermic wrinkles are formed in the interior of the first heat recovery tube to protrude convex protrusions.

이상에서와 같은 본 발명은, 열복원관으로 회수된 순환유체가 코일 형태의 제1열복원관을 통과하면서 지열공 내에 비교적 긴 시간동안 머무르게 되고, 이에 따라 순환유체와 지열공 사이에 열교환이 충분히 이루어지게 되어 순환유체의 열복원이 확실하게 이루어지게 되며, 열교환이 이루어진 순환유체는 직선형태의 제2열복원관을 통해 순환유체공급관으로 신속히 공급되므로 열교환장치의 열효율을 향상시킬 수 있다.As described above, in the present invention, the circulating fluid recovered into the heat recovery tube stays in the geothermal hole for a relatively long time while passing through the first heat recovery tube in the form of a coil, so that heat exchange between the circulating fluid and the geothermal hole is sufficiently performed. The heat recovery of the circulating fluid is made reliably, and the circulating fluid with heat exchange is rapidly supplied to the circulating fluid supply pipe through the second heat recovery tube of a straight line shape, thereby improving the thermal efficiency of the heat exchanger.

열복원관의 제2열복원관에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관의 영향을 받지 않고 순환유체공급관으로 공급되도록 보온관이 씌워진다. 따 라서 보온관에 의해 제1열복원관과 제2열복원관 사이의 열교환이 차단되므로 충분히 열복원된 제2열복원관 내의 순환유체가 열복원중인 제1열복원관의 영향을 받지 않는 가운데 순환유체공급관으로 공급되며, 이에 따라 열복원관으로 출입되는 순환유체에 의해 열효율이 저하되는 문제가 방지된다.The second heat restoration tube of the heat restoration tube is covered with a heat insulation tube so that the circulating fluid that has already been thermally restored is supplied to the circulation fluid supply pipe without being affected by the first heat restoration tube that is being restored. Therefore, since the heat exchange between the first heat recovery tube and the second heat recovery tube is blocked by the heat insulating tube, the circulating fluid in the second heat recovery tube that is sufficiently heat restored is not affected by the first heat recovery tube in heat recovery. It is supplied to the circulating fluid supply pipe, thereby preventing the problem that the thermal efficiency is lowered by the circulating fluid entering and exiting the heat recovery pipe.

제2열복원관과 보온관의 사이에는, 제2열복원관과 보온관의 유동을 방지하고 제2열복원관의 열이 외부와 교환되는 것을 차단시키도록 보온재가 더 구비된다. 따라서 보온재에 의해 제2열복원관의 보온효과가 극대화될 뿐 아니라, 이들이 서로 부딪히면서 파손되는 문제가 방지된다.Between the second heat recovery tube and the heat insulating tube, a heat insulating material is further provided to prevent the flow of the second heat recovery tube and the heat insulating tube and to prevent the heat of the second heat recovery tube from being exchanged with the outside. Therefore, not only the heat insulating effect of the second heat recovery tube is maximized by the heat insulating material, but also a problem that they are damaged while colliding with each other is prevented.

제1열복원관과 제2열복원관의 사이에는, 열복원중인 제1열복원관과 열복원된 제2열복원관 사이에 열교환을 방지시키기 위해 간격유지편이 결합된다. 따라서 열복원관을 지열공에 매설시킬 시 제1열복원관과 제2열복원관이 서로 최적의 간격을 유지하므로 이들 사이의 열간섭에 의해 열효율이 저하되는 문제점을 감소시킨다.Between the first heat restorer and the second heat restorer, a gap retaining piece is coupled between the first heat restorer and the second heat restorer. Therefore, when the heat restoration tube is buried in the geothermal hole, the first heat restoration tube and the second heat restoration tube maintain the optimum distance from each other, thereby reducing the problem of thermal efficiency deteriorated by thermal interference therebetween.

보온관의 결합홈들에는, 제2열복원관의 둘레에 결합되는 지지부와, 지지부의 둘레에 방사상으로 네 개 형성되어서 결합홈들에 각각 삽입되고 제1열복원관의 내측면의 네 부분에 지지되는 간격유지부로 이루어진 간격유지블록이 결합된다. 따라서 간격유지블록의 지지부에 의해 제2열복원관과 보온관 사이에 일정한 간격이 유지되고 간격유지부들에 의해 보온관과 제1열복원관 사이에 일정한 간격이 유지된다. 그러므로 간격유지블록에 의해 제1열복원관, 보온관, 제2열복원관이 일정한 간격이 유지되므로 서로 부딪히면서 파손되는 문제가 방지되며 이들 사이의 열간섭이 최대한 적게 발생된다.In the coupling grooves of the heat insulating tube, four support portions coupled to the circumference of the second heat recovery tube and four radially formed around the support portion are inserted into the coupling grooves, respectively, and are provided at four portions of the inner surface of the first heat recovery tube. A spacing block composed of a spacing portion to be supported is coupled. Therefore, a constant gap is maintained between the second heat recovery tube and the heat insulation tube by the support part of the gap maintaining block, and a constant gap is maintained between the heat insulation tube and the first heat recovery tube by the gap retention parts. Therefore, the first heat recovery tube, the heat insulation tube, and the second heat recovery tube are maintained by a gap maintaining block so that the problem of being damaged while hitting each other is prevented and heat interference between them is generated as little as possible.

제1열복원관에는, 제1열복원관의 둘레에 그 길이방향을 따라 내측으로 오목하게 절곡되어서 상기 제1열복원관의 표면적이 증대되도록, 흡열주름부들이 형성된다. 따라서 흡열주름부에 의해 제1열복원관의 표면적이 증대되므로 지열공 내의 지열을 충분히 흡수하는데 적합하며, 이에 따라 본 발명 냉난방장치의 열효율을 증대시킨다.In the first heat recovery tube, endothermic wrinkles are formed so as to be bent inwardly along the longitudinal direction of the first heat recovery tube to increase the surface area of the first heat recovery tube. Therefore, since the surface area of the first heat recovery tube is increased by the endothermic wrinkles, it is suitable to sufficiently absorb the geothermal heat in the geothermal holes, thereby increasing the thermal efficiency of the air-conditioning and heating apparatus of the present invention.

본 발명의 구체적인 특징 및 이점은 첨부된 도면을 참조한 이하의 설명으로 더욱 명확해 질 것이다.Specific features and advantages of the present invention will become more apparent from the following description taken in conjunction with the accompanying drawings.

도 1은 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치를 보인 개략적 단면도이고, 도 2는 열복원관의 일실시예를 보인 개략적 사시도로써, 지반(1)에는 수직으로 다수의 지열공(2)들이 형성된다. 건물에는 지열공(2)들 내의 지열을 공급받아서 건물 내부를 냉방 또는 난방하도록 열교환기(3)가 설치된다.1 is a schematic cross-sectional view showing a spiral fluid circulation device of the hermetic geothermal system of the present invention, Figure 2 is a schematic perspective view showing an embodiment of the heat recovery tube, a plurality of geothermal holes (2) perpendicular to the ground (1) ) Are formed. The heat exchanger 3 is installed in the building to receive geothermal heat in the geothermal holes 2 to cool or heat the inside of the building.

지열공(2)들의 내부에는 열복원관(10)이 설치되어 있으며, 순환유체가 열복원관(10)의 입구(11)로 유입된 후 지열공(2)들을 통과하는 동안 열복원되며, 열복원된 순환유체는 열복원관(10)의 출구(12)를 통해 배출된다.Heat recovery tubes 10 are installed inside the geothermal holes (2), the circulation fluid is heat restored while passing through the geothermal holes (2) after entering the inlet 11 of the heat recovery tube (10), The heat restored circulating fluid is discharged through the outlet 12 of the heat recovery pipe 10.

여기서 열복원관(10)은, 제1열복원관(13), 제2열복원관(14)으로 이루어진다. 제1열복원관(13)은, 그 입구(11)가 순환유체회수관(5)에 연결되어서 이로부터 회수된 순환유체가 지열공(2)의 하부로 이송되는 시간이 연장되도록 하여 지열공(2) 내부와 열교환이 충분히 이루어지도록 지열공(2)의 수직방향을 따라 코일 형태로 형성된다.Here, the heat recovery tube 10 includes the first heat recovery tube 13 and the second heat recovery tube 14. The first heat recovery tube 13 is connected to the circulation fluid recovery pipe 5 of the inlet 11 so that the time for transferring the circulating fluid recovered therefrom to the lower portion of the geothermal hole 2 is extended. (2) is formed in the form of a coil along the vertical direction of the geothermal hole (2) to sufficiently heat exchange with the interior.

제2열복원관(14)은, 하단이 제1열복원관(13)의 하단에 연결되고 상단의 출구(12)가 순환유체공급관(4)에 연결된다. 이러한 제2열복원관(14)은, 제1열복원관(13)을 따라 이송되면서 열복원된 순환유체가 순환유체공급관(4)으로 신속히 공급되도록 직선형태로 이루어진다.The second heat recovery pipe 14 has a lower end connected to the lower end of the first heat restoration tube 13 and an outlet 12 at the upper end is connected to the circulating fluid supply pipe 4. The second heat recovery tube 14 is formed in a straight line such that the heat-restored circulating fluid is quickly supplied to the circulating fluid supply pipe 4 while being transported along the first heat recovery tube 13.

제2열복원관(14)의 둘레에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관(13)의 영향을 받지 않고 순환유체공급관(4)으로 공급되도록 보온관(20)이 씌워진다.Around the second heat recovery tube 14, the heat insulating tube 20 is supplied to the circulation fluid supply pipe 4 without being influenced by the first heat recovery tube 13 that is already thermally restored. It is covered.

열복원관(10)의 출구(12)와 열교환기(3)에는 열복원된 순환유체를 열교환기(3)로 공급하도록 순환유체공급관(4)이 연결되어 있다. 열교환기(3)와 열복원관(10)의 입구(11)에는 열교환기(3)를 통과한 순환유체를 열복원관(10)으로 회수하도록 순환유체회수관(5)이 연결되어 있다.The circulation fluid supply pipe 4 is connected to the outlet 12 of the heat recovery pipe 10 and the heat exchanger 3 so as to supply the heat restored circulation fluid to the heat exchanger 3. The circulation fluid recovery pipe 5 is connected to the heat exchanger 3 and the inlet 11 of the heat recovery tube 10 so as to recover the circulation fluid passing through the heat exchanger 3 to the heat recovery tube 10.

이러한 구성의 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치는, 겨울철에 히트펌프 등의 열교환기(3)를 구동시키면 지열공(2) 내의 지열에 의해 가열된 순환유체가 순환유체공급관(4)으로 공급된다. 순환유체공급관(4)은 고온의 순환유체를 열교환기(3)로 신속히 공급하도록 직선형태로 이루어진다. 열교환기(3)로 공급된 순환유체는 열교환기(3)에 의해 열교환이 이루어진 후 저온 상태로 배출된다. In the spiral geothermal system of the hermetic geothermal system of the present invention having such a configuration, when a heat exchanger 3 such as a heat pump is driven in winter, the circulating fluid heated by geothermal heat in the geothermal hole 2 is circulated fluid supply pipe 4 Is supplied. The circulating fluid supply pipe 4 is formed in a straight line so as to quickly supply a high temperature circulating fluid to the heat exchanger 3. The circulating fluid supplied to the heat exchanger 3 is discharged in a low temperature state after heat exchange is performed by the heat exchanger 3.

저온 상태로 배출되는 순환유체는 순환유체회수관(5)을 통과한 후 열복원관(10)으로 회수된다. 열복원관(10)으로 회수된 순환유체는 제1열복원관(13)의 입구(11)를 통해 지열공(2)으로 투입된다. 지열공(2)으로 투입된 순환유체는 코일 형 태로 절곡된 제1열복원관(13)을 통과하면서 지열공(2) 내부와 열교환이 이루어진다. 코일 형태의 제1열복원관(13)을 따라 지열공(2)의 하부로 이송된 순환유체는 열복원이 이루어지며, 제2열복원관(14)으로 공급된다. 제2열복원관(14)으로 배출된 순환유체는 출구(12)를 통해 순환유체공급관(4)으로 공급된다.The circulating fluid discharged at a low temperature is recovered to the heat recovery tube 10 after passing through the circulating fluid recovery pipe 5. The circulating fluid recovered by the heat recovery pipe 10 is introduced into the geothermal hole 2 through the inlet 11 of the first heat recovery pipe 13. The circulating fluid introduced into the geothermal hole (2) passes through the first heat recovery tube (13) bent in a coil shape and heat exchanges with the inside of the geothermal hole (2). The circulating fluid transferred to the lower portion of the geothermal hole 2 along the first heat recovery tube 13 in the form of a coil is made of heat recovery, and is supplied to the second heat recovery tube 14. The circulating fluid discharged to the second heat recovery pipe 14 is supplied to the circulating fluid supply pipe 4 through the outlet 12.

이러한 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치는 다음과 같은 장점이 있다.The spiral fluid circulation device of the hermetic geothermal system of the present invention has the following advantages.

먼저, 열복원관(10)으로 회수된 순환유체가 코일 형태의 제1열복원관(13)을 통과하면서 지열공(2) 내에 비교적 긴 시간동안 머무르게 된다. 따라서 순환유체와 지열공(2) 사이에 열교환이 충분히 이루어지게 되어 순환유체의 열복원이 확실하게 이루어지게 되며, 열교환이 이루어진 순환유체는 직선형태의 제2열복원관(14)을 통해 순환유체공급관(4)으로 신속히 공급된다. 그러므로 코일 형태의 제1열복원관(13)에 의해 순환유체의 열복원이 확실하게 이루어지므로 열교환장치의 열효율을 향상시킬 수 있다.First, the circulating fluid recovered into the heat recovery tube 10 passes through the first heat recovery tube 13 in the form of a coil and stays in the geothermal hole 2 for a relatively long time. Therefore, the heat exchange between the circulating fluid and the geothermal hole (2) is sufficiently made to ensure the heat recovery of the circulating fluid, the circulating fluid made of the heat exchange is circulating fluid through a straight second heat recovery pipe 14 It is quickly supplied to the supply pipe (4). Therefore, since the heat recovery of the circulating fluid is reliably performed by the first heat recovery tube 13 in the form of a coil, it is possible to improve the thermal efficiency of the heat exchanger.

다음, 열복원관(10)의 제2열복원관(14)에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관(13)의 영향을 받지 않고 순환유체공급관(4)으로 공급되도록 보온관(20)이 씌워진다. 따라서 보온관(20)에 의해 제1열복원관(13)과 제2열복원관(14) 사이의 열교환이 차단되므로 충분히 열복원된 제2열복원관(14) 내의 순환유체가 열복원중인 제1열복원관(13)의 영향을 받지 않는 가운데 순환유체공급관(4)으로 공급되며, 이에 따라 열복원관(10)으로 출입되는 순환유체에 의해 열효율이 저 하되는 문제가 방지된다.Next, the second heat recovery pipe 14 of the heat recovery pipe 10 is supplied to the circulation fluid supply pipe 4 without being affected by the first heat recovery pipe 13 that is already thermally restored. Insulating tube 20 is covered as possible. Therefore, since the heat exchange between the first heat recovery tube 13 and the second heat recovery tube 14 is blocked by the heat insulating tube 20, the circulating fluid in the second heat recovery tube 14 that is sufficiently heat restored is being heat restored. It is supplied to the circulating fluid supply pipe (4) while not affected by the first heat recovery pipe (13), thereby preventing the problem that the thermal efficiency is lowered by the circulating fluid entering and exiting the heat recovery pipe (10).

도 3은, 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치의 다른 실시예를 보인 개략적 부분 사시도로써, 제2열복원관(14)과 보온관(20)의 사이에는, 제2열복원관(14)과 보온관(20)의 유동을 방지하고 제2열복원관(14)의 열이 외부와 교환되는 것을 차단시키도록 보온재(30)가 더 구비된다.3 is a schematic partial perspective view showing another embodiment of the spiral fluid circulation system of the hermetic geothermal system according to the present invention, wherein a second heat recovery tube 14 is disposed between the second heat recovery tube 14 and the heat insulation tube 20. Insulating material 30 is further provided to prevent the flow of the 14 and the heat insulating tube 20, and to block the heat of the second heat recovery tube 14 from being exchanged with the outside.

따라서 보온관(20)에 의해 제1열복원관(13)과 제2열복원관(14) 사이의 열교환이 차단되므로 충분히 열복원된 제2열복원관(14) 내의 순환유체가 열복원중인 제1열복원관(13)의 영향을 받지 않는 가운데 순환유체공급관(4)으로 공급된다. 그러므로, 열복원관(10)으로 출입되는 순환유체에 의해 열효율이 저하되는 문제가 방지된다.Therefore, since the heat exchange between the first heat recovery tube 13 and the second heat recovery tube 14 is blocked by the heat insulating tube 20, the circulating fluid in the second heat recovery tube 14 that is sufficiently heat restored is being heat restored. It is supplied to the circulating fluid supply pipe (4) without being affected by the first heat recovery pipe (13). Therefore, a problem that the thermal efficiency is lowered by the circulating fluid entering and exiting the heat recovery tube 10 is prevented.

도 4 및 도 5는 간격유지편(40)을 보인 사시도 및 사용상태 사시도로써, 이 간격유지편(40)은, 제1열복원관(13) 및 보온관(20)에 결합된다. 이러한 간격유지편(40)은, 중앙에 보온관(20)에 삽입되는 결합부(41)가 형성되고, 양단에 제1열복원관(13)에 착탈되는 체결부(42)가 형성되며, 결합부(41) 및 체결부(42) 사이에 이들을 일체로 연결하는 연장부(43)가 형성된다. 4 and 5 are a perspective view showing a gap retaining piece 40 and a state of use, wherein the gap retaining piece 40 is coupled to the first heat recovery tube 13 and the heat insulating tube 20. The gap retaining piece 40 has a coupling portion 41 inserted into the heat insulating tube 20 at the center thereof, and fastening portions 42 detachable from the first heat recovery tube 13 are formed at both ends thereof. An extension part 43 is formed between the coupling part 41 and the fastening part 42 to integrally connect them.

따라서 열복원관(10)을 지열공(2)에 매설시킬 시 제1열복원관(13)과 제2열복원관(14)이 서로 최적의 간격을 유지하므로 이들 사이의 열간섭에 의해 열효율이 저하되는 문제점을 감소시킨다.Therefore, when the heat recovery tube 10 is embedded in the geothermal hole (2), the first heat recovery tube 13 and the second heat recovery tube 14 maintains the optimum spacing from each other, the thermal efficiency between the thermal interference between them This reduces the problem of degradation.

도 6은 제1열복원관 및 제2열복원관 사이의 간격을 유지하기 위한 다른 수단을 보인 개략적 부분 분리 사시도로써, 보온관(20)에는, 그 길이방향을 따라 네 부분에 방사상으로 결합홈(21)들이 형성되어 있다.6 is a schematic partial separation perspective view showing another means for maintaining a gap between the first heat recovery tube and the second heat recovery tube, wherein the heat insulation tube 20 is radially coupled to four portions along its longitudinal direction; (21) are formed.

이 결합홈(21)들에는, 간격유지블록(50)이 결합된다. 이 간격유지블록(50)은, 제2열복원관(14)의 둘레에 결합되는 지지부(51)와, 지지부(51)의 둘레에 방사상으로 네 개 형성되어서 결합홈(21)들에 각각 삽입되고 제1열복원관(13)의 내측면의 네 부분에 지지되는 간격유지부(52)로 이루어진다.In the coupling grooves 21, the interval maintaining block 50 is coupled. The space maintaining block 50, the support 51 is coupled to the circumference of the second heat recovery tube 14, and four radially formed around the support 51 and inserted into the coupling grooves 21, respectively. And a space keeping unit 52 supported by four portions of the inner side surface of the first heat restoration tube 13.

따라서 간격유지블록(50)의 지지부(51)에 의해 제2열복원관(14)과 보온관 사이에 일정한 간격이 유지되고 간격유지부(52)들에 의해 보온관(20)과 제1열복원관(13) 사이에 일정한 간격이 유지된다. 그러므로 간격유지블록(50)에 의해 제1열복원관(13), 보온관(20), 제2열복원관(14)이 일정한 간격이 유지되므로 서로 부딪히면서 파손되는 문제가 방지되며 이들 사이의 열간섭이 최대한 적게 발생된다.Therefore, a constant gap is maintained between the second heat recovery tube 14 and the heat insulating tube by the support part 51 of the gap maintaining block 50, and the heat insulating tube 20 and the first row are spaced by the gap holding parts 52. A constant gap is maintained between the restoration pipes 13. Therefore, the first heat recovery tube 13, the heat insulation tube 20, and the second heat recovery tube 14 are maintained at a predetermined interval by the space maintaining block 50, thereby preventing a problem of being damaged while colliding with each other. As little interference as possible.

도 7은 제1열복원관의 다른 실시예를 보인 개략적 단면도로써, 제1열복원관(60)에는, 제1열복원관(60)의 둘레에 그 길이방향을 따라 내측으로 오목하게 절곡되어서 제1열복원관(60)의 표면적이 증대되도록, 흡열주름부(61)가 형성된다. 이 흡열주름부(61)는, 제1열복원관(60)의 외측면에는 오목한 절곡홈(62)이 형성되고, 제1열복원관(60)의 내부에는 볼록하게 돌출된 절곡돌부(63)가 돌출된다.FIG. 7 is a schematic cross-sectional view showing another embodiment of the first heat recovery tube. The first heat recovery tube 60 is bent concave inwardly along its longitudinal direction around the first heat recovery tube 60. The endothermic wrinkle part 61 is formed so that the surface area of the 1st heat restoration tube 60 may increase. The endothermic wrinkle portion 61 is formed with a concave bending groove 62 in the outer surface of the first heat recovery tube 60, the bent projections 63 protruding convexly in the first heat recovery tube 60. ) Is projected.

따라서 흡열주름부(61)에 의해 제1열복원관(60)의 표면적이 증대되므로 지열 공(2) 내의 지열을 충분히 흡수하는데 적합하며, 이에 따라 본 발명 냉난방장치의 열효율을 증대시킨다.Therefore, the surface area of the first heat recovery tube 60 is increased by the endothermic wrinkle portion 61, which is suitable for sufficiently absorbing the geothermal heat in the geothermal hole (2), thereby increasing the thermal efficiency of the present invention.

도 1은 본 발명의 밀폐형 지열시스템의 나선식 유체순환장치를 보인 개략적 단면도1 is a schematic cross-sectional view showing a spiral fluid circulation device of the hermetic geothermal system of the present invention.

도 2는 열복원관의 일실시예를 보인 개략적 사시도Figure 2 is a schematic perspective view showing an embodiment of the heat recovery tube

도 3은 열복원관의 다른 실시예를 보인 개략적 부분 단면도3 is a schematic partial cross-sectional view showing another embodiment of the heat recovery tube

도 4는 제1열복원관 및 제2열복원관 사이의 간격을 유지하는 간격유지편을 보인 개략적 사시도Figure 4 is a schematic perspective view showing a gap maintaining piece for maintaining a gap between the first heat recovery tube and the second heat recovery tube

도 5는 열복원관에 간격유지편이 결합된 상태를 보인 개략적 사시도Figure 5 is a schematic perspective view showing a state in which the spacing maintenance piece is coupled to the heat recovery tube

도 6은 제1열복원관 및 제2열복원관 사이의 간격을 유지하기 위한 다른 수단을 보인 개략적 부분 분리 사시도FIG. 6 is a schematic partially separated perspective view showing another means for maintaining a gap between a first heat restorer and a second heat restorer; FIG.

도 7은 제1열복원관의 다른 실시예를 보인 개략적 단면도Figure 7 is a schematic cross-sectional view showing another embodiment of the first heat recovery tube

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 지반 2 : 지열공1: Ground 2: Geothermal Hole

3 : 열교환기 4 : 순환유체공급관3: heat exchanger 4: circulating fluid supply pipe

5 : 순환유체회수관 10 : 열복원관5: circulating fluid recovery pipe 10: heat restoration pipe

11 : 입구 12 : 출구11: entrance 12: exit

13,60 : 제1열복원관 14 : 제2열복원관13,60: First Heat Restoration Hall 14: Second Heat Restoration Hall

20 : 보온관 21 : 결합홈20: insulation tube 21: coupling groove

30 : 보온재 40 : 간격유지편30: thermal insulation material 40: space maintenance

41 : 결합부 42 : 체결부41: coupling portion 42: coupling portion

43 : 연장부 50 : 간격유지블록43: extension 50: space maintenance block

51 : 지지부 52 : 간격유지부51: support portion 52: gap holding portion

61 : 흡열주름부 62 : 절곡홈61: endothermic wrinkles 62: bending groove

63 : 절곡돌부63: bending protrusion

Claims (5)

삭제delete 삭제delete 삭제delete 지반에 수직으로 형성되는 지열공들과, 건물에 설치되고 상기 지열공들 내의 지열을 공급받아서 건물 내부를 냉방 또는 난방하는 열교환기와, 순환유체가 입구로 유입된 후 지열공들의 내부로 공급되어서 열복원된 후 출구로 배출되도록 상기 지열공들의 내부에 설치되는 열복원관과, 상기 열복원관의 출구 및 열교환기에 연결되어서 열복원된 순환유체를 열교환기로 공급하는 순환유체공급관과, 상기 열교환기 및 열복원관의 입구에 연결되어서 열교환기를 통과한 순환유체를 상기 열복원관으로 회수하는 순환유체회수관으로 이루어진 밀폐형 지열시스템의 나선식 유체순환장치에 있어서,Geothermal holes vertically formed on the ground, a heat exchanger installed in the building and cooling or heating the inside of the building by receiving geothermal heat in the geothermal holes, and a circulating fluid introduced into the geothermal holes after the circulation fluid enters the heat A heat recovery tube installed inside the geothermal holes to be discharged to an outlet after being restored, a circulation fluid supply pipe connected to an outlet of the heat recovery tube and a heat exchanger to supply a heat-restored circulating fluid to a heat exchanger, and the heat exchanger and In the spiral type fluid circulation device of a closed geothermal system, comprising a circulating fluid recovery pipe connected to an inlet of a heat recovery pipe and recovering a circulating fluid passing through a heat exchanger to the heat recovery pipe, 열복원관(10)은, 순환유체회수관(5)에 연결되어서 이로부터 회수된 순환유체가 지열공(2)의 하부로 이송되는 시간이 연장되도록 하여 지열공(2) 내부와 열교환이 충분히 이루어지도록 지열공(2)의 수직방향을 따라 코일 형태로 형성된 제1열복원관(13)(60)과, 하단이 상기 제1열복원관(13)(60)의 하단에 연결되고 상단이 상기 순환유체공급관(4)에 연결되며 상기 제1열복원관(13)(60)을 따라 이송되면서 열복원된 순환유체가 상기 순환유체공급관(4)으로 신속히 공급되도록 직선형태로 이루어진 제2열복원관(14)으로 이루어지고;The heat recovery tube 10 is connected to the circulating fluid recovery pipe 5 so that the time for transferring the circulating fluid recovered therefrom to the lower portion of the geothermal hole 2 is extended so that heat exchange with the inside of the geothermal hole 2 is sufficiently performed. The first heat recovery tube (13) (60) formed in the form of a coil along the vertical direction of the geothermal hole (2) to be made, and the lower end is connected to the lower end of the first heat recovery tube (13) (60) and the upper end is A second row connected to the circulating fluid supply pipe 4 and having a linear shape such that the heat-restored circulating fluid is rapidly supplied to the circulating fluid supply pipe 4 while being transported along the first heat recovery pipes 13 and 60. A restoration pipe 14; 제2열복원관(14)의 둘레에는, 이미 열복원된 순환유체가 열복원 중인 제1열복원관(13)(60)의 영향을 받지 않고 순환유체공급관(4)으로 공급되도록 보온관(20)이 씌워지며;Around the second heat recovery tube 14, the heat insulating tube is supplied to the circulation fluid supply pipe 4 without being affected by the first heat recovery tubes 13 and 60 which are already heat-restored. 20) is covered; 보온관(20)에는, 그 길이방향을 따라 네 부분에 방사상으로 결합홈(21)들이 형성되어 있고; Insulating tube 20, the coupling grooves 21 are formed radially in four portions along the longitudinal direction thereof; 상기 결합홈(21)들에는, 상기 제2열복원관(14)의 둘레에 결합되는 지지부(51)와 상기 지지부(51)의 둘레에 방사상으로 네 개 형성되어서 상기 결합홈(21)들에 각각 삽입되고 상기 제1열복원관(13)의 내측면의 네 부분에 지지되는 간격유지부(52)로 이루어진 간격유지블록(50)이 결합되는 것을 특징으로 하는 밀폐형 지열시스템의 나선식 유체순환장치.In the coupling grooves 21, four support portions 51 coupled to the circumference of the second heat recovery tube 14 and four radially circumferences of the support portion 51 are formed in the coupling grooves 21. Spiral fluid circulation of the hermetic geothermal system, characterized in that the interval maintaining block 50 is composed of a gap retaining portion 52 inserted into each of the four sides of the inner surface of the first heat recovery tube 13 is coupled Device. 삭제delete
KR1020080119786A 2008-11-28 2008-11-28 Spiral Fluid Circulation System of Hermetic Geothermal System Active KR100907811B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080119786A KR100907811B1 (en) 2008-11-28 2008-11-28 Spiral Fluid Circulation System of Hermetic Geothermal System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080119786A KR100907811B1 (en) 2008-11-28 2008-11-28 Spiral Fluid Circulation System of Hermetic Geothermal System

Publications (1)

Publication Number Publication Date
KR100907811B1 true KR100907811B1 (en) 2009-07-16

Family

ID=41337623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080119786A Active KR100907811B1 (en) 2008-11-28 2008-11-28 Spiral Fluid Circulation System of Hermetic Geothermal System

Country Status (1)

Country Link
KR (1) KR100907811B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154042B1 (en) * 2009-10-09 2012-06-07 이한출 Heat Exchanger Unit of Heating Apparatus Using Solar Heat
KR101431193B1 (en) 2012-10-24 2014-08-18 주식회사 남도 Heat exchange device using geothermal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268956A (en) * 1984-12-20 1986-11-28 Kazuo Kuroiwa Geothermic heat exchanging device
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
KR100666469B1 (en) * 2004-06-23 2007-01-09 코오롱건설주식회사 Coil Geothermal Exchanger
JP2007315742A (en) * 2006-04-28 2007-12-06 Just Thokai:Kk Underground heat exchanger and its buried structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268956A (en) * 1984-12-20 1986-11-28 Kazuo Kuroiwa Geothermic heat exchanging device
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
KR100666469B1 (en) * 2004-06-23 2007-01-09 코오롱건설주식회사 Coil Geothermal Exchanger
JP2007315742A (en) * 2006-04-28 2007-12-06 Just Thokai:Kk Underground heat exchanger and its buried structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154042B1 (en) * 2009-10-09 2012-06-07 이한출 Heat Exchanger Unit of Heating Apparatus Using Solar Heat
KR101431193B1 (en) 2012-10-24 2014-08-18 주식회사 남도 Heat exchange device using geothermal

Similar Documents

Publication Publication Date Title
ES2784185T3 (en) Heat absorption or dissipation device with temperature difference fluids transported inversely in multiple pipes
KR101431193B1 (en) Heat exchange device using geothermal
KR101011130B1 (en) Underground heat exchanger
KR101184208B1 (en) Heat exchanger
KR100927227B1 (en) Fluid circulation system in hermetic geothermal system
KR100907811B1 (en) Spiral Fluid Circulation System of Hermetic Geothermal System
KR20170103054A (en) Air-handling system comprising a condensate providing part
KR101290776B1 (en) Using for arranging substation transformer of water storage-type air source heat pump system
EP3141824A1 (en) Air conditioning system
CN117109180B (en) Heat conduction oil heater
KR101842402B1 (en) Heat Exchanger
JP2008298311A (en) Gas cooler for hot water supply system
KR101534612B1 (en) Out-door condenser
KR101095921B1 (en) Fluid circulation system in hermetic geothermal system
KR100720119B1 (en) Multiple temperature difference header type cooling device using dam temperature difference
KR100853965B1 (en) Solar heating system using heating water pipe
KR100846164B1 (en) Water temperature geothermal heat collector and air conditioner using the same
KR100664684B1 (en) Freeze Protection Vertical Coil Unit
KR100820554B1 (en) Heat storage tank with heat exchanger with expansion tank function
CN219063818U (en) Fin evaporator assembly and refrigerator
CN222027217U (en) Heat pipe passive cooling water system
JP4225170B2 (en) Heat pump equipment
KR101574132B1 (en) Boiler heating device
KR102213187B1 (en) Air conditioner header structure
US20090266526A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20081128

PA0201 Request for examination
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20090116

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

A302 Request for accelerated examination
N231 Notification of change of applicant
PA0302 Request for accelerated examination

Patent event date: 20090123

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20081128

Patent event code: PA03021R01I

Comment text: Patent Application

PN2301 Change of applicant

Patent event date: 20090123

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20090401

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20090617

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20090708

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20090709

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20120702

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20130705

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20130705

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20140708

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20140708

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20150708

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20150708

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20160707

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20170707

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20180709

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20180709

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20190708

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20190708

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20200708

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20210708

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20220707

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20230710

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20240708

Start annual number: 16

End annual number: 16