KR100903439B1 - 천연가스로부터 경질탄화수소의 직접 제조방법 - Google Patents
천연가스로부터 경질탄화수소의 직접 제조방법 Download PDFInfo
- Publication number
- KR100903439B1 KR100903439B1 KR1020070103677A KR20070103677A KR100903439B1 KR 100903439 B1 KR100903439 B1 KR 100903439B1 KR 1020070103677 A KR1020070103677 A KR 1020070103677A KR 20070103677 A KR20070103677 A KR 20070103677A KR 100903439 B1 KR100903439 B1 KR 100903439B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction
- catalyst
- zeolite
- light hydrocarbons
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
- B01J29/146—Y-type faujasite
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/06—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
- B01J29/20—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
- B01J29/24—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/68—Iron group metals or copper
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/382—Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/332—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/334—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0238—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0833—Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1025—Natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
Claims (10)
- 하기 화학식 1로 표시되는 Ni/알루미나계 촉매하에서, 천연가스의 수증기 개질반응과 이산화탄소와 메탄의 개질반응이 동시에 수행되는 복합 개질반응으로 일산화탄소와 수소가 1 : 1.5 ∼ 2.5 몰비를 유지하는 1 단계와 ;제올라이트를 기준으로 Fe는 10 ∼ 70 중량%, Cu는 1 ∼ 10 중량%, 및 K는 1 ∼ 10 중량% 범위로 각각 담지된 Fe-Cu-K계/제올라이트 촉매하에서, 상기 일산화탄소와 수소를 피셔-트롭시(Fisher-Tropsch) 반응하여 경질탄화수소(C2 ∼ C4) 및 부산물인 메탄 및 이산화탄소를 제조하는 2 단계 ; 및상기 반응의 부산물인 메탄 및 이산화탄소를 분리하여 1단계의 복합개질 반응으로 재순환하여 연속공정을 수행하는 3단계를 포함하여 이루어진 것을 특징으로 하는 천연가스로부터 경질탄화수소의 제조방법 :[화학식 1]NixCeyZrzOx+2(y+z)/Al2O3상기 화학식 1에서, x+y+z = 1.0 이고, x는 0.04 ∼ 0.45 이며 y는 0.01 ∼ 0.96의 범위를 나타낸다.
- 삭제
- 제 1 항에 있어서, 상기 복합 개질반응은 반응 온도 600 ∼ 1,000 ℃, 반응 압력 0.5 ∼ 30 기압 및 공간속도 1,000 ∼ 500,000 h-1 범위에서 수행하는 것을 특징으로 하는 제조방법.
- 제 1 항에 있어서, 상기 복합개질 반응은 CH4의 전환율이 80 ∼ 95 %이고, CO2의 전환율이 60 ∼ 90 % 범위인 것을 특징으로 하는 제조방법.
- 삭제
- 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매의 제올라이트는 비표면적이 200 ∼ 500 ㎡/g이고, Si/Al이 2 ∼ 200 몰비 범위이며,IA, IIA, Zr, P 및 란탄계 중에서 선택된 단일 금속전구체 또는 이원 금속전구체를 이용하여 이온교환 또는 담지법으로 전처리된 것을 특징으로 하는 제조방법.
- 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매는 담체인 제올라이트에 대하여 0 ∼ 20 중량% 범위의 Al을 추가로 함유하는 것을 특징으로 하는 제조방법.
- 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매는 비표면적이 150 ∼ 300 ㎡/g 범위인 것을 특징으로 하는 제조방법.
- 제 1 항에 있어서, 상기 피셔-트롭시(Fisher-Tropsch) 반응은 반응 온도 250 ∼ 500 ℃, 반응 압력은 5 ∼ 60 kg/㎠, 공간속도 500 ∼ 10,000 h-1 범위에서 수행하는 것을 특징으로 하는 제조방법.
- 제 1 항에 있어서, 경질 탄화수소(C2 ∼ C4)의 수율은 15 ∼ 55 카본몰%이 고, 경질 올레핀(C2 ∼ C4)의 수율은 10 ∼ 45 카본몰%이며, CO 전환율은 70 ∼ 99 카본몰% 범위를 유지하는 것을 특징으로 하는 제조방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070103677A KR100903439B1 (ko) | 2007-10-15 | 2007-10-15 | 천연가스로부터 경질탄화수소의 직접 제조방법 |
EP08838757.6A EP2197816B1 (en) | 2007-10-15 | 2008-09-22 | Method of direct synthesis of light hydrocarbons from natural gas |
PCT/KR2008/005608 WO2009051353A2 (en) | 2007-10-15 | 2008-09-22 | Method of direct synthesis of light hydrocarbons from natural gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070103677A KR100903439B1 (ko) | 2007-10-15 | 2007-10-15 | 천연가스로부터 경질탄화수소의 직접 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090038267A KR20090038267A (ko) | 2009-04-20 |
KR100903439B1 true KR100903439B1 (ko) | 2009-06-18 |
Family
ID=40567920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070103677A Expired - Fee Related KR100903439B1 (ko) | 2007-10-15 | 2007-10-15 | 천연가스로부터 경질탄화수소의 직접 제조방법 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2197816B1 (ko) |
KR (1) | KR100903439B1 (ko) |
WO (1) | WO2009051353A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101087165B1 (ko) * | 2009-07-20 | 2011-11-25 | (주)시너지 | 피셔-트롭쉬 합성반응에 사용되는 철계 촉매의 제조방법 및 이를 이용한 액체탄화수소의 제조방법 |
KR20250074578A (ko) | 2023-11-20 | 2025-05-27 | 지에스칼텍스 주식회사 | 제올라이트를 활용하여 액상연료 수율이 향상된 이산화탄소 전환용 촉매 시스템 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101026536B1 (ko) * | 2009-06-12 | 2011-04-01 | 한국화학연구원 | 피셔-트롭쉬 합성 반응용 철계열의 촉매와 이의 제조방법 |
EP2314557A1 (en) * | 2009-10-23 | 2011-04-27 | Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) | Production of lower olefins from synthesis gas |
EP2501781B1 (de) | 2009-11-19 | 2014-03-19 | Basf Se | Verfahren zur selektiven herstellung von leichten olefinen |
US8461220B2 (en) | 2010-06-10 | 2013-06-11 | Chevron U.S.A. Inc. | Process and system for reducing the olefin content of a fischer-tropsch product stream |
BR112014009541B1 (pt) * | 2011-10-21 | 2019-08-06 | Igtl Technology Ltd | Métodos de preparação e formação de catalisadores e precursores suportados de metal ativo |
GB201118228D0 (en) | 2011-10-21 | 2011-12-07 | Ingen Gtl Ltd | Methods of preparation and forming supported active metal catalysts and precursors |
KR20140104636A (ko) * | 2013-02-20 | 2014-08-29 | 한국화학연구원 | 피셔 트롭시 합성용 코발트 촉매, 제조방법 및 이를 이용한 액체 탄화수소 제조방법 |
KR20140109224A (ko) * | 2013-02-28 | 2014-09-15 | 한국화학연구원 | 다공성 탄소 물질에 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법 |
US20140264176A1 (en) * | 2013-03-14 | 2014-09-18 | Membrane Technology And Research, Inc. | Membrane-Based Gas Separation Processes to Produce Synthesis Gas With a High CO Content |
US20160083658A1 (en) * | 2013-04-19 | 2016-03-24 | Gunnar Sanner | Methods for production of liquid hydrocarbons from energy, co2 and h2o |
US20170320730A1 (en) * | 2014-10-27 | 2017-11-09 | Aghaddin Mamedov | Integration of syngas production from steam reforming and dry reforming |
CN108199054B (zh) * | 2018-01-04 | 2020-10-27 | 西南化工研究设计院有限公司 | 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法 |
US11278874B2 (en) * | 2018-11-30 | 2022-03-22 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-framework metal into aluminosilicate zeolites |
EP3892603B1 (en) * | 2018-12-03 | 2024-08-21 | Furukawa Electric Co., Ltd. | Production device for hydrocarbons and production method for hydrocarbons |
EP3900829A4 (en) * | 2018-12-21 | 2022-03-09 | Dalian Institute of Chemical Physics, Chinese Academy of Sciences | METHOD FOR PREPARING A HIGH-SELECTIVITY LOW-CARBON OLEFIN FROM SYNTHESIS GAS CATALYZED BY A HETERATOMO-DOPED MOLECULAR SIEVE |
KR102365335B1 (ko) * | 2019-12-12 | 2022-02-18 | 한국화학연구원 | 합성가스로부터 가솔린 범위의 액상 탄화수소 혼합물을 제조하는 방법 |
KR102499704B1 (ko) * | 2021-05-21 | 2023-02-14 | 한국에너지기술연구원 | 흡수 및 흡착 공정을 포함하는 초청정 산성가스 분리시스템 |
CN114716294B (zh) * | 2022-04-08 | 2024-04-30 | 南方海洋科学与工程广东省实验室(广州) | 一种天然气水合物化学链制备烯烃联产高纯氢气的方法 |
CN114716300B (zh) * | 2022-04-08 | 2024-07-02 | 南方海洋科学与工程广东省实验室(广州) | 一种天然气水合物化学链转化联产醇氢的方法 |
CN114789064A (zh) * | 2022-05-07 | 2022-07-26 | 合肥综合性国家科学中心能源研究院(安徽省能源实验室) | 一种煤层气部分氧化制甲醇催化剂及其制备方法与应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100482646B1 (ko) | 2002-12-13 | 2005-04-14 | 한국화학연구원 | 공침법으로 제조된 천연가스 개질반응용 촉매 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4340503A (en) * | 1980-08-15 | 1982-07-20 | The United States Of America As Represented By The United States Department Of Energy | Catalyst for converting synthesis gas to light olefins |
CA1176228A (en) * | 1981-05-18 | 1984-10-16 | Minoru Koikeda | Catalyst for the production of hydrocarbons from the synthesis gas |
US5100856A (en) * | 1990-10-01 | 1992-03-31 | Exxon Research And Engineering Company | Iron-zinc based catalysts for the conversion of synthesis gas to alpha-olefins |
AR013002A1 (es) * | 1997-06-18 | 2000-11-22 | Exxonmobil Chem Patents Inc | Metodo para incorporar catalizadores para la conversion de un gas de sintesis en tamices moleculares y tamiz molecular modificado. |
US6225359B1 (en) * | 1999-12-21 | 2001-05-01 | Chevron U.S.A. Inc. | Process for conversion of natural gas and associated light hydrocarbons to salable products |
AU2001236974A1 (en) * | 2000-02-15 | 2001-08-27 | Syntroleum Corporation | System and method for preparing a synthesis gas stream and converting hydrocarbons |
-
2007
- 2007-10-15 KR KR1020070103677A patent/KR100903439B1/ko not_active Expired - Fee Related
-
2008
- 2008-09-22 WO PCT/KR2008/005608 patent/WO2009051353A2/en active Application Filing
- 2008-09-22 EP EP08838757.6A patent/EP2197816B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100482646B1 (ko) | 2002-12-13 | 2005-04-14 | 한국화학연구원 | 공침법으로 제조된 천연가스 개질반응용 촉매 |
Non-Patent Citations (2)
Title |
---|
Catalysis Today 2005 |
Fuel 2003 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101087165B1 (ko) * | 2009-07-20 | 2011-11-25 | (주)시너지 | 피셔-트롭쉬 합성반응에 사용되는 철계 촉매의 제조방법 및 이를 이용한 액체탄화수소의 제조방법 |
KR20250074578A (ko) | 2023-11-20 | 2025-05-27 | 지에스칼텍스 주식회사 | 제올라이트를 활용하여 액상연료 수율이 향상된 이산화탄소 전환용 촉매 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR20090038267A (ko) | 2009-04-20 |
EP2197816A4 (en) | 2014-05-21 |
EP2197816B1 (en) | 2018-10-24 |
EP2197816A2 (en) | 2010-06-23 |
WO2009051353A3 (en) | 2009-06-04 |
WO2009051353A2 (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100903439B1 (ko) | 천연가스로부터 경질탄화수소의 직접 제조방법 | |
KR101026536B1 (ko) | 피셔-트롭쉬 합성 반응용 철계열의 촉매와 이의 제조방법 | |
WO2018045652A1 (en) | Production of lower olefins from hydrogenation of co2 | |
JP5285776B2 (ja) | 天然ガス及び二酸化炭素からの合成ガス製造用触媒及びその製造方法 | |
EP2318131B1 (en) | Catalyst for direct production of light olefins and preparation method thereof | |
TWI296614B (en) | Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst | |
KR101261124B1 (ko) | 촉매 활성과 올레핀 수율이 높은 피셔-트롭쉬 철계 촉매 및 이의 제조방법, 및 상기 촉매를 이용한 합성가스로부터의 경질 올레핀 제조방법 | |
WO2014018653A1 (en) | Nanoparticle catalyst capable of forming aromatic hydrocarbons from co2 and h2 | |
KR100837377B1 (ko) | 지르코니아와 알루미나의 혼합담체를 이용한 피셔-트롭쉬 반응용 촉매 및 이를 이용한 합성가스로부터 액체탄화수소의 제조방법 | |
KR100933062B1 (ko) | 합성가스로부터 경질올레핀을 직접 생산하기 위한 촉매와이의 제조방법 | |
KR101847549B1 (ko) | 철계 촉매의 제조방법 및 상기 제조방법으로 제조된 철계 촉매를 이용한 탄화수소의 제조방법 | |
WO2006016444A1 (ja) | 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 | |
US12285744B2 (en) | Fischer-tropsch catalyst | |
JP2010001241A (ja) | 一酸化炭素と水素からの炭化水素の製造方法 | |
KR101968297B1 (ko) | 고열량 합성천연가스 생산용 촉매 및 이의 용도 | |
JP4833856B2 (ja) | β−SiCの存在下で合成ガスを炭化水素に変換する方法 | |
KR101969554B1 (ko) | 고열량 합성천연가스 생산용 철-코발트계 복합 촉매 및 이의 용도 | |
JP2021003681A (ja) | 炭化水素製造触媒、炭化水素製造触媒の製造方法、及び炭化水素の製造方法 | |
KR102147421B1 (ko) | 2이상의 ft 모드로 작동하는 슬러리 기포탑 반응기 구비한 합성연료 제조 장치 | |
KR101386629B1 (ko) | 성형촉매조성물, 그 제조방법 및 이를 이용한 액체탄화수소의 제조방법 | |
KR20190057186A (ko) | 철계 촉매층 및 니켈계 촉매층이 적층된 반응기에서 고수율의 고발열량 합성천연가스 제조 방법 | |
KR20230057947A (ko) | 철계 촉매, 이의 제조방법 및 이를 이용한 탄화수소 생산 방법 | |
Cutad et al. | Direct transformation of Carbon Dioxide to aromatics as high-value liquid fuels via the modified fischer-Tropsch synthesis and Methanol-mediated routes | |
GB2599966A (en) | Catalyst | |
KR20250037393A (ko) | 이산화탄소 직접 수소화 촉매, 이의 제조방법 및 이를 이용한 탄화수소 화합물의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
FPAY | Annual fee payment |
Payment date: 20120305 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130329 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150420 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160419 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20170611 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20170611 |