KR100902561B1 - Transparent electrode manufacturing method - Google Patents
Transparent electrode manufacturing method Download PDFInfo
- Publication number
- KR100902561B1 KR100902561B1 KR1020087000210A KR20087000210A KR100902561B1 KR 100902561 B1 KR100902561 B1 KR 100902561B1 KR 1020087000210 A KR1020087000210 A KR 1020087000210A KR 20087000210 A KR20087000210 A KR 20087000210A KR 100902561 B1 KR100902561 B1 KR 100902561B1
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- transparent electrode
- carbon nanotube
- substrate
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 118
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 113
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 112
- 239000010409 thin film Substances 0.000 claims abstract description 86
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 239000007787 solid Substances 0.000 claims abstract description 24
- 239000002243 precursor Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 41
- 239000012528 membrane Substances 0.000 claims description 26
- 238000001914 filtration Methods 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 18
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 14
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 14
- -1 polyethylene terephthalate Polymers 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 229920000307 polymer substrate Polymers 0.000 claims description 7
- 239000000178 monomer Substances 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 239000004417 polycarbonate Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 238000003828 vacuum filtration Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 238000007611 bar coating method Methods 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 229920006393 polyether sulfone Polymers 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004695 Polyether sulfone Substances 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229920002301 cellulose acetate Polymers 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 3
- 239000013504 Triton X-100 Substances 0.000 claims description 3
- 229920004890 Triton X-100 Polymers 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 238000003618 dip coating Methods 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 3
- 239000002109 single walled nanotube Substances 0.000 claims description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 claims description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 2
- 239000002134 carbon nanofiber Substances 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 2
- 239000002079 double walled nanotube Substances 0.000 claims description 2
- 239000002048 multi walled nanotube Substances 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 238000001338 self-assembly Methods 0.000 claims description 2
- 159000000000 sodium salts Chemical class 0.000 claims description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 description 17
- 229920001940 conductive polymer Polymers 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000002082 metal nanoparticle Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229920000767 polyaniline Polymers 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000002848 electrochemical method Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920005570 flexible polymer Polymers 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Polymers C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910021404 metallic carbon Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133305—Flexible substrates, e.g. plastics, organic film
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Electric Cables (AREA)
- Non-Insulated Conductors (AREA)
Abstract
본 발명은 (1) 고체 기판 상에 탄소나노튜브 박막을 형성하는 단계; (2) 상기 탄소나노튜브 박막 상에 연성 투명 기판을 형성할 수 있는 전구체를 도포하는 단계; (3) 상기 전구체를 경화시켜, 상기 탄소나노튜브 박막이 고정화된 연성 투명 기판으로 만드는 단계; 및 (4) 상기 고체 기판을 제거하는 단계를 포함하여 이루어지는 전도성 투명 전극 제조방법 및 그에 의해 제조된 투명 전극에 관한 것이다. 본 발명에 따르면, 반복적인 휨, 구부림 등의 작용 후에도 박막의 뛰어난 접착안정성을 보이는 대면적의 유연한 투명 전극이 얻어질 수 있다. 본 발명에 따라 제조된 투명 전극은 광범위한 용도로 사용될 수 있는데, 예를 들면, 디스플레이, 전자소자, 센서, 메모리 등 다양한 분야에 활용이 가능하다.The present invention (1) forming a carbon nanotube thin film on a solid substrate; (2) applying a precursor capable of forming a flexible transparent substrate on the carbon nanotube thin film; (3) curing the precursor to form a flexible transparent substrate to which the carbon nanotube thin film is immobilized; And (4) relates to a conductive transparent electrode manufacturing method comprising the step of removing the solid substrate and a transparent electrode produced thereby. According to the present invention, a large-area flexible transparent electrode showing excellent adhesion stability of a thin film can be obtained even after repeated bending, bending and the like. The transparent electrode manufactured according to the present invention can be used for a wide range of applications, for example, it can be used in various fields such as a display, an electronic device, a sensor, a memory.
Description
본 발명은 투명 전극 제조방법 및 그에 의해 제조된 투명 전극에 관한 것으로서, 보다 상세하게는, 탄소나노튜브를 이용하여 연성(flexible) 폴리머 기판 상에 박막을 형성하므로써, 반복적인 휨, 구부림 등의 작용 후에도 박막의 뛰어난 접착안정성을 보이는 대면적의 유연한 투명 전극 제조방법 및 그에 의해 제조된 투명 전극에 관한 것이다.The present invention relates to a method for manufacturing a transparent electrode and a transparent electrode produced by the same, and more particularly, by forming a thin film on a flexible polymer substrate using carbon nanotubes, the action of repeated bending, bending, etc. The present invention relates to a large-area flexible transparent electrode manufacturing method showing excellent adhesion stability of a thin film and a transparent electrode produced thereby.
최근 디지털 기술을 기반으로 하는 정보화 시대를 맞이하여, 새로운 미래형 디스플레이의 개발이 중요시되고 있다. 특히, TFT-LCD(thin film transistor-liquid crystal display), PDP(plasma display panel), OLED(organic light emitting diode) 등과 같이, 현재 상용화되어 있는 평판 디스플레이의 고기능화 연구를 중심으로 차세대 디스플레이의 개발이 활발히 진행되고 있다.Recently, in the information age based on digital technology, the development of a new futuristic display is becoming important. In particular, development of next-generation displays is actively focused on research on high-performance of flat panel displays currently commercialized, such as thin film transistor-liquid crystal displays (TFT-LCDs), plasma display panels (PDPs), and organic light emitting diodes (OLEDs). It's going on.
디스플레이의 유연성은, 구부리거나 접을 수 있어 휴대가 간편하다는 이유에서 차세대 디스플레이에 기본적으로 요구되는 중요한 기능 중 하나이다. 연성 디스플레이(flexible display)란, 디스플레이 특성에 손실을 가져오지 않으면서, 종이 처럼 접거나(bendable) 말(rollable) 수가 있고, 또한 내충격성에 강한 디스플레이로서, 딱딱한 유리 기판을 사용하는 기존 디스플레이의 대체 뿐만 아니라, 기존의 디스플레이로는 구현이 불가능한 전자종이(e-paper) 기술 등에 적용될 수 있는 디스플레이를 말한다.The flexibility of the display is one of the fundamental functions required for next-generation displays because it can be bent or folded for portability. A flexible display is a display that can be bendable, rollable, and also resistant to impact, without causing any loss of display characteristics, and is a replacement for conventional displays that use rigid glass substrates. In addition, it refers to a display that can be applied to e-paper technology that cannot be implemented with existing displays.
Technical ProblemTechnical Problem
연성 디스플레이의 구현을 위한 연성 투명 전극의 제조방법으로서, 폴리이미드, 폴리에스테르 또는 폴리카보네이트 등의 플라스틱 기판 상에 스퍼터링법에 의해 인듐-주석 산화물(indium tin oxide, ITO)의 박막을 형성하는 것이 당업계에 공지되어 있다. 그러나, ITO 박막은, 우수한 전도성과 투명도를 가지지만, ITO의 본질적인 부서지기 쉬운 성질 및 기판과의 열팽창계수의 차이에 의한 변형 때문에, 터치스크린에 적용하거나, 박막을 휘거나 접을 때 기계적인 안정성이 떨어지는 문제점을 나타내고 있다. 또한, ITO 박막의 제조에는 진공장치 등 고가의 장비가 필요하고, 제조과정 상 고온 공정을 포함하고 있어, 플라스틱 기판의 열변형에 의한 면저항의 변화 등의 문제가 발생한다.As a method of manufacturing a flexible transparent electrode for implementing a flexible display, it is preferable to form a thin film of indium tin oxide (ITO) by sputtering on a plastic substrate such as polyimide, polyester or polycarbonate. Known in the art. However, ITO thin films have excellent conductivity and transparency, but due to their inherent brittleness and deformation due to differences in coefficient of thermal expansion with the substrate, the mechanical stability of the ITO thin film when applied to a touch screen or when bending or folding the thin film is low. The problem is falling. In addition, the production of ITO thin film requires expensive equipment such as a vacuum apparatus, and includes a high temperature process in the manufacturing process, there is a problem such as a change in sheet resistance due to thermal deformation of the plastic substrate.
이러한 ITO 박막의 문제점 때문에, 투명 ITO 전극을 대체하고자, 폴리아세틸렌, 폴리피롤, 폴리아닐린, 폴리티오펜 등과 같은 전도성 고분자를 이용하는 연구가 활발히 진행되고 있다. 이러한 전도성 고분자 전극의 이점은, ITO 전극보다 훨씬 더 유연하고 부서짐이 덜하여, 구부리거나 접었을 때의 기계적 안정성이 매우 우수하다는 것이다. 그러나, 전도성 고분자 자체가 가시광선 영역의 빛을 흡수하기 때문에, 적절한 면저항을 얻기 위하여 전도성 고분자 막을 두껍게 코팅한 경우에는, 전극의 가시광 투과도가 급격히 나빠지는 단점이 있다.Due to the problems of the ITO thin film, in order to replace the transparent ITO electrode, studies using conductive polymers such as polyacetylene, polypyrrole, polyaniline, polythiophene, and the like are being actively conducted. The advantage of this conductive polymer electrode is that it is much more flexible and less brittle than the ITO electrode, so that the mechanical stability when bent or folded is very good. However, since the conductive polymer itself absorbs light in the visible light region, when the conductive polymer film is thickly coated in order to obtain an appropriate sheet resistance, the visible light transmittance of the electrode is sharply deteriorated.
한편, 최근에는, 우수한 전도도와 기계적 특성을 동시에 가지는 탄소나노튜브를 이용하여, 유연하면서도 투명한 전극을 제조하는 방법이 제안되고 있다.On the other hand, in recent years, a method of manufacturing a flexible and transparent electrode using carbon nanotubes having both excellent conductivity and mechanical properties has been proposed.
탄소나노튜브는 결정성 흑연인 그라펜 시트(graphene sheet)가 튜브 형상으로 감겨있는 구조를 갖는 것으로서, 튜브의 직경이 대략 수 나노미터 정도이고, 결함이 거의 없는 신소재이며, 1991년에 발견된 이후에 많은 관련 연구가 진행되어 왔다. 이러한 탄소나노튜브에 있어서는, 흑연 시트가 감기는 형상과 직경에 따라 전기적 특성이 민감하게 변화하기 때문에, 절연체로부터 반도체, 금속 등의 성질을 다양하게 나타낼 수 있는 것으로 보고되고 있다. 특히 금속성 탄소나노튜브는, 저항률이 10-4∼10-3Ωcm 정도로, 매우 우수한 전도도를 나타낸다. 이러한 전기적 특성 이외에, 탄소나노튜브는 기계적 성질이 우수하고, 화학적으로 안정하며, 박막의 경우 가시광 영역에서 투명하기 때문에, 이를 투명 전극 소재로서 이용하는 연구가 많이 보고되어 있는 바, 예를 들면, 한국공개특허 2005-0001589호에는 탄소나노튜브가 포함된 고분자 공중합체를 제조하고, 이를 폴리에스테르 기판 위에 코팅하여 투명 전극을 제조하는 방법이 개시되어 있다. 그러나 이 방법을 사용할 경우에는, 탄소나노튜브가 고분자 필름 중에 분산이 되어 있으므로, 적절한 면저항 값을 얻기 위해서는 상대적으로 많은 양의 탄소나노튜브가 필요하고, 또한, 폴리에스테르 기판 상에 전도성 고분자 필름의 코팅이 추가적으로 필요하다는 단점이 있다.Carbon nanotubes have a structure in which a graphene sheet, which is crystalline graphite, is wound in a tube shape, and is a new material having a diameter of about several nanometers and almost no defects. Many related studies have been conducted. In such carbon nanotubes, since electrical characteristics are sensitively changed depending on the shape and diameter of the graphite sheet wound, it is reported that various properties such as semiconductors and metals can be exhibited from the insulator. In particular, metallic carbon nanotubes exhibit very good conductivity, having a resistivity of about 10 −4 to 10 −3 μm cm. In addition to these electrical properties, carbon nanotubes have excellent mechanical properties, are chemically stable, and in the case of thin films, they are transparent in the visible region, and thus, many studies using them as transparent electrode materials have been reported. Patent 2005-0001589 discloses a method for preparing a polymer copolymer containing carbon nanotubes and coating the same on a polyester substrate to produce a transparent electrode. However, when using this method, since the carbon nanotubes are dispersed in the polymer film, a relatively large amount of carbon nanotubes are required to obtain an appropriate sheet resistance value, and the coating of the conductive polymer film on the polyester substrate There is a further disadvantage that this is necessary.
Technical SolutionTechnical Solution
본 발명은 상기와 같은 선행기술의 문제점들을 해결하고자 한 것으로, 본 발명의 목적은, 극소량의 탄소나노튜브를 사용하면서도 우수한 전기 전도성을 얻을 수 있고, 아주 작은 스밈 문턱값(percolation threshold)을 가지며, 탄소나노튜브박막과 폴리머 기판과의 계면에서의 인터디지테이션(interdigitation) 현상에 의하여 탄소나노튜브박막의 접착안정성이 현저히 향상된, 유연한 투명 전극의 제조방법 및 그에 의해 제조된 투명 전극을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention, it is possible to obtain excellent electrical conductivity while using a very small amount of carbon nanotubes, has a very small percolation threshold (percolation threshold), The present invention provides a method for manufacturing a flexible transparent electrode, and a transparent electrode manufactured thereby, by which the adhesion stability of the carbon nanotube thin film is remarkably improved by the interdigitation phenomenon at the interface between the carbon nanotube thin film and the polymer substrate.
본 발명에 따르면, (1) 고체 기판 상에 탄소나노튜브 박막을 형성하는 단계; (2) 상기 탄소나노튜브 박막 상에 연성 투명 기판을 형성할 수 있는 전구체를 도포하는 단계; (3) 상기 전구체를 경화시켜, 상기 탄소나노튜브 박막이 고정화된 연성 투명 기판으로 만드는 단계; 및(4) 상기 고체 기판을 제거하는 단계를 포함하여 이루어지는 전도성 투명 전극 제조방법이 제공된다.According to the present invention, (1) forming a carbon nanotube thin film on a solid substrate; (2) applying a precursor capable of forming a flexible transparent substrate on the carbon nanotube thin film; (3) curing the precursor to form a flexible transparent substrate to which the carbon nanotube thin film is immobilized; And (4) there is provided a conductive transparent electrode manufacturing method comprising the step of removing the solid substrate.
본 발명의 제조방법에 있어서, 상기 고체 기판으로는, 여과 멤브레인, 금속기판, 불투명 무기기판, 투명 무기기판 및 폴리머 기판 중에서 선택된 것을 사용할 수 있다. 특히, 이 중에서, 여과 멤브레인으로는, 알루미늄 옥사이드, 폴리카보네이트, 폴리에틸렌 테레프탈레이트, 질산 셀룰로스 또는 초산 셀룰로스와 같은 셀룰로스 에스테르, 나일론, 폴리프로필렌 및 폴리에테르술폰으로 이루어진 군에서 선택된 재질의 것을 사용할 수 있으며, 멤브레인 기공(pore)의 직경은 0.01∼10㎛인 것이 적당하다.In the manufacturing method of the present invention, the solid substrate may be selected from a filtration membrane, a metal substrate, an opaque inorganic substrate, a transparent inorganic substrate, and a polymer substrate. In particular, among these, as the filtration membrane, those of a material selected from the group consisting of cellulose esters such as aluminum oxide, polycarbonate, polyethylene terephthalate, cellulose nitrate or cellulose acetate, nylon, polypropylene and polyether sulfone can be used. The diameter of the membrane pores is suitably 0.01 to 10 mu m.
또한, 본 발명의 제조방법에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브, 탄소나노섬유 또는 흑연으로 이루어진 군에서 하나 이상 선택될 수 있고, 본 발명의 목적을 저해하지 않는 한, 그 제조방법에 특별히 제한되지 않는 바, 예를 들면 화학기상증착법, 아크방전법, 레이저 에블레이션법(Laser ablation)으로 제조된 것들 중에서 선택할 수 있으며, 시판되는 제품을 구입하여 사용할 수도 있다.In addition, in the production method of the present invention, the carbon nanotubes may be selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers or graphite, the present invention As long as the purpose of the present invention is not impaired, the production method is not particularly limited, and for example, chemical vapor deposition, arc discharge, and laser ablation may be selected. It can also be purchased and used.
또한, 상기 탄소나노튜브 박막은 그 두께가 1nm∼100nm가 되도록 형성되는 것이 바람직한데, 그 두께가 1nm 미만이면, 원하는 전도성을 얻기에 불충분하고, 100nm를 초과하면, 전극의 광투과도가 저하될 우려가 있다. 또한, 상기 탄소나노튜브는, 그 전기전도성을 높이기 위하여 금, 은 또는 구리 등의 금속나노입자로 치환된 형태의 것일 수도 있다.In addition, the carbon nanotube thin film is preferably formed so that the thickness is 1nm to 100nm, if the thickness is less than 1nm, it is insufficient to obtain the desired conductivity, if it exceeds 100nm, there is a fear that the light transmittance of the electrode is lowered There is. In addition, the carbon nanotubes may be of a type substituted with metal nanoparticles such as gold, silver or copper in order to increase the electrical conductivity thereof.
또한, 본 발명의 제조방법에 있어서, 상기 연성 투명 기판을 형성할 수 있는 전구체는, 폴리디메틸실록산(polydimethylsiloxane, PDMS), 폴리에폭사이드, 폴리아크릴레이트, 폴리이미드, 폴리에스테르, 폴리카보네이트, 셀룰로스아세테이트, 폴리스티렌, 폴리올레핀, 폴리메타크릴레이트, 폴리술폰, 폴리에테르술폰, 폴리비닐아세테이트, 연성 유리 등과 같이, 투명하면서도 유연한 폴리머 계열 물질 또는 유연한 유리소재를 형성할 수 있는 전구체이며, 바람직하게는, 폴리디메틸실록산(polydimethylsiloxane, PDMS), 폴리에폭사이드, 폴리아크릴레이트, 폴리이미드, 폴리에스테르, 폴리카보네이트, 셀룰로스아세테이트, 폴리스티렌, 폴리올레핀, 폴리메타크릴레이트, 폴리술폰, 폴리에테르술폰 또는 폴리비닐아세테이트와 같은 열경화성, 광경화성 또는 열가소성 폴리머의 단량체이다.In addition, in the manufacturing method of the present invention, the precursor capable of forming the flexible transparent substrate, polydimethylsiloxane (polydimethylsiloxane, PDMS), polyepoxide, polyacrylate, polyimide, polyester, polycarbonate, cellulose Precursors that can form transparent and flexible polymer-based materials or flexible glass materials, such as acetates, polystyrenes, polyolefins, polymethacrylates, polysulfones, polyethersulfones, polyvinylacetates, soft glass, etc., preferably poly Such as dimethylsiloxane (polydimethylsiloxane, PDMS), polyepoxide, polyacrylate, polyimide, polyester, polycarbonate, cellulose acetate, polystyrene, polyolefin, polymethacrylate, polysulfone, polyethersulfone or polyvinylacetate Thermoset, photocurable or thermoplastic poly Of the monomer.
한편, 본 발명의 제조방법에 있어서, 상기 (1)단계에서 상기 고체 기판 상의 탄소나노튜브 박막의 형성은, 진공여과(vacuum filtration)법, 자기조립(self-assembly)법, 랭뮤어-블로제트(Langmuir-Blodgett)법, 용액캐스팅(solution casting)법, 바코팅(bar coating)법, 침지코팅(dip coating)법, 스핀코팅(spin coating)법, 분사코팅(spray coating)법 및 롤투롤(roll-to-roll)법으로 이루어진 군에서 선택된 방법에 의해 수행될 수 있다.On the other hand, in the manufacturing method of the present invention, the carbon nanotube thin film formed on the solid substrate in the step (1), vacuum filtration (vacuum filtration) method, self-assembly method, Langmuir-Bazette (Langmuir-Blodgett) method, solution casting method, bar coating method, dip coating method, spin coating method, spray coating method and roll-to-roll method It may be performed by a method selected from the group consisting of a roll-to-roll method.
또한, 본 발명의 제조방법에 있어서, 상기 (2)단계에서 상기 탄소나노튜브 박막 상에, 연성 투명 기판을 형성할 수 있는 전구체의 도포는, 바코팅(bar coating)법, 침지코팅(dip coating)법, 스핀코팅(spin coating)법, 분사코팅(spray coating)법 및 롤투롤(roll-to-roll)법으로 이루어진 군에서 선택된 방법에 의해 수행될 수 있다.In the manufacturing method of the present invention, in the step (2), the coating of the precursor capable of forming a flexible transparent substrate on the carbon nanotube thin film may be performed by a bar coating method or a dip coating method. ), A spin coating method, a spray coating method and a roll-to-roll method.
또한, 본 발명의 제조방법에 있어서, 상기 (3)단계에서 상기 전구체의 경화는, 예컨대, 냉각에 의해, 경화제에 의해, 열에 의해, 자외선 조사에 의해, 또는 용매의 휘발에 의해 수행될 수 있다.In addition, in the manufacturing method of the present invention, the curing of the precursor in the step (3), for example, may be carried out by cooling, by a curing agent, by heat, by ultraviolet irradiation, or by volatilization of the solvent. .
또한, 본 발명의 제조방법에 있어서, 상기 (4)단계에서 상기 고체 기판의 제거는, 기계적 박리에 의해, 또는 적절한 용매에 의한 고체 기판의 용해에 의해 수행될 수 있다.In addition, in the manufacturing method of the present invention, the removal of the solid substrate in step (4) may be performed by mechanical peeling or by dissolving the solid substrate with a suitable solvent.
도 1에 도시된 것과 같은 본 발명의 바람직한 구체예에 따르면, 상기 (1)단계에서 상기 고체 기판으로서 알루미늄 옥사이드 여과 멤브레인을 사용하고, 상기 연성 투명 기판의 전구체로서 폴리디메틸실록산(PDMS)의 단량체를 사용하는 경우에, 투명 전극의 제조는 다음과 같이 수행된다.According to a preferred embodiment of the present invention as shown in FIG. 1, in step (1), an aluminum oxide filtration membrane is used as the solid substrate, and a monomer of polydimethylsiloxane (PDMS) is used as a precursor of the flexible transparent substrate. In the case of use, the preparation of the transparent electrode is carried out as follows.
먼저, 트리톤(Triton) X-100, 도데실벤젠술폰산의 나트륨염(Na-DDBS), 세틸트리메틸 암모늄 브로마이드(CTAB, Cetyl Trimethyl Ammonium Bromide), 또는 소듐 도데실 설페이트(SDS, Sodium Dodecyl Sulfate) 등의 계면활성제가 녹아 있는 수용액에 탄소나노튜브를 첨가하고, 초음파를 가하여, 안정한 분산 상태를 유지하는 0.001∼0.1중량%의 탄소나노튜브 분산 수용액을 제조한다. 다르게는, 동일한 방법으로, N-메틸피롤리돈(NMP, N-Methylpyrrolidone), o-디클로로벤젠(o-dichlordoenzene), 디클로로에탄(dichloroethane), 디메틸포름아미드(DMF), 클로로포름(chloroform) 등의 유기용매를 사용하여 안정하면서 엉김이 없는 상태로 분산된 탄소나노튜브 유기분산 용액을 제조하여 사용할 수도 있다.First, Triton X-100, sodium salt of dodecylbenzenesulfonic acid (Na-DDBS), cetyltrimethyl ammonium bromide (CTAB), or sodium dodecyl sulfate (SDS) Carbon nanotubes are added to an aqueous solution in which the surfactant is dissolved, and ultrasonic waves are added to prepare a 0.001 to 0.1% by weight aqueous carbon nanotube dispersion solution that maintains a stable dispersion state. Alternatively, in the same way, N-methylpyrrolidone (NMP, N-Methylpyrrolidone), o-dichlorodoenzene, dichloroethane, dimethylformamide (DMF), chloroform and the like It is also possible to prepare and use a carbon nanotube organic dispersion solution dispersed in a stable and tangled state using an organic solvent.
상기와 같이 하여 제조된 탄소나노튜브의 수분산 혹은 유기분산 용액을, 고체 기판으로서 알루미늄 옥사이드 여과 멤브레인(1)이 장착된 진공여과장치를 이용하여 여과하면, 균일한 탄소나노튜브의 박막(2)이 여과 멤브레인(1) 상에 형성된다. 형성되는 박막(2)의 두께는, 여과하는 탄소나노튜브 분산 용액의 양을 조절하므로써 손쉽게 조절이 가능하다. 이 때, 알루미늄 옥사이드 여과 멤브레인(1) 상에 패터닝된 물체(예를 들면, TEM 그리드)를 올려 놓고, 탄소나노튜브 분산 용액을 여과하면, 부분적으로 분산액의 흐름이 막히게 되어 결과적으로 패터닝된 탄소나노튜브 박막을 여과 멤브레인 상에 얻을 수도 있다.When the aqueous dispersion or organic dispersion solution of carbon nanotubes prepared as described above is filtered using a vacuum filtration device equipped with an aluminum
여과가 완료된 후, 만약 탄소나노튜브의 수분산 용액이 사용되었다면, 탄소나노튜브 박막(2)에 남아 있는 계면활성제를 제거하기 위해 충분한 양의 물을 이용하여 여과 멤브레인(1) 상에 형성된 박막(2)을 추가로 세정한다. 여과 후, 탄소나노튜브 박막이 형성된 멤브레인을 오븐 등에서 건조시킨다.After the filtration is completed, if an aqueous dispersion solution of carbon nanotubes is used, a thin film formed on the
다음으로, 탄소나노튜브 박막(2)을 연성 투명 PDMS 기판 상에 전이하기 위하여, 상기 건조된 멤브레인 상에 형성된 탄소나노튜브 박막의 상부에 열경화가 가능한 폴리디메틸실록산(PDMS)의 단량체(3)를 바코팅법으로 도포하고, 이를 오븐에서 경화(curing)시킨다. 이 때, PDMS 기판은 공지의 방법(예를 들면, Langmuir 1994, 10, 1498에 개시된 방법)에 따라 제작될 수 있다.Next, in order to transfer the carbon nanotube
PDMS 경화 후, 알루미늄 옥사이드 여과 멤브레인(1)을 NaOH 수용액 중에서 제거하므로써, 탄소나노튜브의 박막(2)이 PDMS 연성 투명 기판(3) 상에 형성된 투명 전극을 얻을 수 있다.After the PDMS curing, the aluminum
한편 본 발명의 또 다른 구체예에 따르면, 본 발명의 방법은, 상기 (1)단계와 (2)단계의 사이에, 고체 기판 상에 형성된 탄소나노튜브 박막의 상부에 전기화학적인 방법으로 폴리아세틸렌, 폴리피롤, 폴리아닐린, 폴리티오펜 등의 전도성 고분자의 박막을 성장시키는 단계를 더 포함할 수 있다. 이 구체예에 있어서는, 상기한 바와 같이 그 상부에 성장된 전도성 고분자의 박막을 갖는 탄소나노튜브 박막이, 이후의 단계에서 연성 투명 기판에 고정화된다.Meanwhile, according to another embodiment of the present invention, the method of the present invention, between the steps (1) and (2), polyacetylene by an electrochemical method on top of the carbon nanotube thin film formed on the solid substrate The method may further include growing a thin film of a conductive polymer such as polypyrrole, polyaniline, and polythiophene. In this embodiment, the carbon nanotube thin film having the thin film of the conductive polymer grown thereon as described above is immobilized on the flexible transparent substrate in a later step.
본 발명에 따르면, 기존 탄소나노튜브를 이용한 투명전극의 전기적 특성을 개선하기 위해, 먼저 고체 기판 상에 탄소나노튜브의 박막을 형성하고, 이 탄소나노튜브 박막 상부에 연성 투명 기판을 형성할 수 있는 전구체를 코팅하고 이를 경화한 후, 고체기판을 박리하거나 적절한 용매로 녹여내는 것에 의해, 탄소나노튜브의 박막이 연성 투명 기판 상에 고정화된 투명전극이 제조된다.According to the present invention, in order to improve the electrical characteristics of the transparent electrode using the existing carbon nanotubes, first to form a thin film of carbon nanotubes on a solid substrate, the flexible transparent substrate can be formed on the carbon nanotube thin film After coating the precursor and curing the precursor, the solid substrate is peeled off or melted with an appropriate solvent to prepare a transparent electrode on which a thin film of carbon nanotubes is immobilized on a flexible transparent substrate.
이러한 본 발명에 있어서는, 탄소나노튜브가 필름의 형태로 투명 폴리머 기판의 표면상에만 존재하기 때문에, 적은 양의 탄소나노튜브로도 효율적인 전도성을 갖는 투명전극이 제조될 수 있다. 또한 고체 기판이 탄소나노튜브 박막을 지지하고 있는 상태에서 연성 투명 기판의 전구체를 코팅 및 경화함에 따라, 탄소나노튜브/연성 투명 기판의 계면에서의 인터디지테이션(interdigitation)에 의하여 탄소나노튜브 박막의 접착안정성이 현저히 향상되는 장점이 있다.In the present invention, since carbon nanotubes exist only on the surface of the transparent polymer substrate in the form of a film, a transparent electrode having an efficient conductivity can be manufactured even with a small amount of carbon nanotubes. In addition, as the precursor of the flexible transparent substrate is coated and cured while the solid substrate supports the carbon nanotube thin film, the carbon nanotube thin film may be formed by interdigitation at the interface of the carbon nanotube / flexible transparent substrate. There is an advantage that the adhesion stability is significantly improved.
따라서 본 발명에 의하면, 투명 탄소나노튜브 전극의 제조에 있어서 탄소나노튜브의 사용량을 최소화할 뿐 아니라, 탄소나노튜브가 폴리머 내부에 분산되어 있을 때 발생하는 전도도의 저하를 막을 수 있어, 부가적인 전도성 폴리머 박막의 코팅이 없어도 양호한 전도성을 얻을 수 있다.Therefore, according to the present invention, in addition to minimizing the amount of carbon nanotubes used in the production of transparent carbon nanotube electrodes, it is possible to prevent a decrease in the conductivity generated when the carbon nanotubes are dispersed in the polymer, thereby providing additional conductivity. Good conductivity can be obtained without a coating of the polymer thin film.
Advantageous EffectsAdvantageous Effects
본 발명에 의한 방법과 종래의 기술에 의한 방법의 가장 큰 차이점은 다음과 같다. 즉, 종래의 방법인 폴리머 기판 상에 탄소나노튜브 분산용액을 도포하는 방법은 탄소나노튜브의 박막이 균일하게 되지 않을 뿐만 아니라, 박막의 부착 안정성이 매우 낮아 대면적의 전극기판제조가 불가능한 문제점이 있었다.The main difference between the method according to the invention and the method according to the prior art is as follows. That is, the conventional method of coating the carbon nanotube dispersion solution on the polymer substrate has a problem that the thin film of the carbon nanotubes is not uniform and the adhesion stability of the thin film is very low, making it impossible to manufacture a large-area electrode substrate. there was.
그러나 본 발명에서는, 먼저 진공여과법 또는 랭뮤어-블로제트법과 같은 방법을 이용하여 고체기판 상에 균일한 탄소나노튜브의 박막을 제조하고, 그 다음에, 탄소나노튜브 박막 상부에 예컨대 투명 폴리머 기판을 경화에 의해 형성시키므로써, 박막의 폴리머 기판에 대한 부착 안정성을 획기적으로 증가시킬 수 있다. 또한 본 발명에 따르면, 탄소나노튜브가 투명 전극의 표면상에만 존재하기 때문에, 약 1㎍/㎠의 극소량의 탄소나노튜브를 이용하면서도 우수한 전기전도성을 갖는 연성 투명 전극의 제조가 가능하다.However, in the present invention, first, a uniform thin film of carbon nanotubes is prepared on a solid substrate by a method such as vacuum filtration or Langmuir-Blozet method, and then a transparent polymer substrate is placed on top of the thin film of carbon nanotubes. By forming by curing, the adhesion stability of the thin film to the polymer substrate can be significantly increased. In addition, according to the present invention, since carbon nanotubes exist only on the surface of the transparent electrode, it is possible to manufacture a flexible transparent electrode having excellent electrical conductivity while using a very small amount of carbon nanotubes of about 1 µg /
도 1은, 본 발명의 일 구체예에 따른 투명 전극의 제조방법을 개략적으로 보여주는 도면이다.1 is a view schematically showing a method for manufacturing a transparent electrode according to an embodiment of the present invention.
도 2는, 본 발명의 실시예 1에 있어서, 탄소나노튜브 분산 용액의 양을 조절하므로써 투명 전극의 투명도를 용이하게 조절할 수 있음을 나타내는 사진이다.2 is a photograph showing that in Example 1 of the present invention, the transparency of the transparent electrode can be easily adjusted by adjusting the amount of the carbon nanotube dispersion solution.
도 3은, 본 발명의 실시예 1에서 제조된 투명 전극의 유연성을 나타내는 사진이다.3 is a photograph showing the flexibility of the transparent electrode produced in Example 1 of the present invention.
도 4는, 본 발명의 실시예 4에서 제조된, 패터닝된 투명 전극의 패턴을 나타내는 사진이다.4 is a photograph showing a pattern of a patterned transparent electrode prepared in Example 4 of the present invention.
[도면에 나타난 부호의 설명][Description of Symbols in Drawing]
1 : 고체 기판1: solid substrate
2 : 탄소나노튜브 박막2: carbon nanotube thin film
3 : 연성 투명 기판을 형성할 수 있는 전구체3: precursor capable of forming a flexible transparent substrate
Mode for InventionMode for Invention
이하에서는 첨부된 도면을 참조하면서, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 이들 실시예는 단지 본 발명을 구체적으로 설명하기 위한 예시적 목적의 것으로서, 본 발명의 범위가 이들 실시예에 국한되지는 않는 것으로 이해되 어야 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. These examples are merely for illustrative purposes only to specifically describe the present invention, and it should be understood that the scope of the present invention is not limited to these examples.
[ 실시예 1]Example 1
계면활성제로서 Triton X-100 1g이 녹아 있는 1L 수용액에 단일벽 탄소나노튜브(제조사: 일진나노텍) 10mg을 첨가하고, 60Hz의 초음파를 가하여, 안정한 분산 상태를 유지하는0.001중량%의 탄소나노튜브 분산 수용액을 제조하였다.0.001% by weight of carbon nanotube dispersion, in which 10 mg of single-walled carbon nanotubes (manufactured by Iljin Nanotech) was added to a 1 L aqueous solution in which 1 g of Triton X-100 was dissolved as a surfactant and a 60 Hz ultrasonic wave was applied to maintain a stable dispersion state. An aqueous solution was prepared.
상기와 같이 하여 제조된 탄소나노튜브의 수분산용액1ml를 알루미늄 옥사이드 여과 멤브레인이 장착된 진공여과장치를 이용하여 여과하여, 균일한 탄소나노튜브의 박막을 여과 멤브레인 상에 형성하였다. 형성된 탄소나노튜브 박막을 충분한 양의 물로 세정하고, 탄소나노튜브 박막이 형성된 멤브레인을 오븐에서 건조하였다.1 ml of the aqueous dispersion solution of carbon nanotubes prepared as described above was filtered using a vacuum filtration apparatus equipped with an aluminum oxide filtration membrane, thereby forming a uniform thin film of carbon nanotubes on the filtration membrane. The formed carbon nanotube thin film was washed with a sufficient amount of water, and the membrane on which the carbon nanotube thin film was formed was dried in an oven.
다음으로, Langmuir 1994, 10, 1498에 개시된 방법에 따라, 상기 건조된 멤브레인 상에 형성된 탄소나노튜브 박막의 상부에 폴리디메틸실록산(PDMS)의 단량체를 바코팅법으로 도포하고, 이를 65℃ 오븐에서 경화시켰다.Next, according to the method disclosed in Langmuir 1994, 10, 1498, a monomer of polydimethylsiloxane (PDMS) is applied by the bar coating method on top of the carbon nanotube thin film formed on the dried membrane, and this in a 65 ℃ oven Cured.
PDMS 경화 후, 알루미늄 옥사이드 여과 멤브레인을 3M NaOH 수용액 중에서 제거하므로써, 탄소나노튜브의 박막이 PDMS 연성 투명 기판 상에 형성된 투명 전극을 얻었다. 얻어진 투명 전극 상의 탄소나노튜브 박막에 있어서, 단위 면적당 탄소나노튜브의 양은 약 1㎍/㎠이었다.After PDMS curing, the aluminum oxide filtration membrane was removed in 3M NaOH aqueous solution to obtain a transparent electrode on which a thin film of carbon nanotubes was formed on a PDMS flexible transparent substrate. In the obtained carbon nanotube thin film on the transparent electrode, the amount of carbon nanotubes per unit area was about 1 µg /
상기와 같이 하여 제조된 투명 전극에 대하여, 자외선-가시광선 분광기를 이용하여 측정된 투과도는 약 90%이었다. 또한, 표면저항측정기를 이용하여 측정된 상기 투명 전극의 면저항은 100Ω/sq 미만이었다.For the transparent electrode produced as described above, the transmittance measured using an ultraviolet-visible spectrometer was about 90%. In addition, the sheet resistance of the transparent electrode measured using a surface resistance meter was less than 100 kHz / sq.
한편, 탄소나노튜브 박막의 두께에 따른 투명 전극의 투명도를 알아보고자, 상기 탄소나노튜브의 수분산용액 0.5, 1.0, 1.5, 2.0 및 2.5ml를 사용하여, 상기와 같은 방법으로 투명 전극들을 각각 제조하였으며, 이들을 좌측으로부터 순서대로 늘어놓은 사진을 도 2에 도시하였다. 도 2에 따르면, 탄소나노튜브 분산 용액의 양을 조절하므로써 탄소나노튜브 박막의 두께 조절이 가능하고, 이에 따라 투명 전극의 투명도를 용이하게 조절할 수 있음을 알 수 있다.On the other hand, to determine the transparency of the transparent electrode according to the thickness of the carbon nanotube thin film, using the 0.5, 1.0, 1.5, 2.0 and 2.5ml of the water dispersion solution of the carbon nanotube, the transparent electrodes are prepared in the same manner as described above The photographs are arranged in order from the left side in FIG. 2. According to Figure 2, by controlling the amount of the carbon nanotube dispersion solution it is possible to control the thickness of the carbon nanotube thin film, it can be seen that the transparency of the transparent electrode can be easily adjusted accordingly.
한편, 본 실시예에서 얻어진 투명 전극의 유연성을 나타내는 사진을 도 3에 도시하였다. 도 3에 따르면, 본 실시예에서 얻어진 투명 전극은 매우 우수한 유연성을 가짐을 알 수 있다.In addition, the photo which shows the flexibility of the transparent electrode obtained by the present Example was shown in FIG. According to Figure 3, it can be seen that the transparent electrode obtained in this embodiment has very excellent flexibility.
상기한 바와 같이, 본 실시예에서 제조된 투명 전극은, 그 투명도, 전도도, 유연성 및 탄소나노튜브 박막의 부착 안정성에 있어서 매우 우수함을 알 수 있다.As described above, it can be seen that the transparent electrode manufactured in this embodiment is very excellent in its transparency, conductivity, flexibility, and adhesion stability of the carbon nanotube thin film.
[ 실시예 2]Example 2
0.001 중량%의 탄소나노튜브가 분산된 클로로포름 용액을 제조하고, 이를 랭뮤어-블로제트(Langmuir-Blodgett; LB) 트로프에 담긴 수면 위에 전개한 다음, 용매를 기화시킨 후, 배리어를 밀어서 수면의 면적을 점진적으로 감소시켜 탄소나노튜브 랭뮤어막을 얻고, 이 랭뮤어막을 실리콘 또는 유리기판에 전이하여 탄소나노튜브 박막을 얻는, 랭뮤어-블로제트(Langmuir-Blodgett; LB)법을 이용하여 탄소나노튜브 박막을 형성시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다. 제조된 투명 전극에 있어서, 탄소나노튜브 박막의 두께는 약 30nm이었다.A chloroform solution containing 0.001% by weight of carbon nanotubes was prepared, spread over a surface of water in Langmuir-Blodgett (LB) troughs, and after vaporizing the solvent, the surface of the surface of the surface was pushed by pushing the barrier. Gradually decrease to obtain a carbon nanotube Langmuir film, and transfer the Langmuir film to a silicon or glass substrate to obtain a carbon nanotube thin film using a Langmuir-Blodgett (LB) method Except for forming a thin film, a transparent electrode having a carbon nanotube thin film was prepared in the same manner as in Example 1. In the prepared transparent electrode, the thickness of the carbon nanotube thin film was about 30nm.
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으로 평가하였다. 평가 결과, 자외선-가시광선 분광기를 이용하여 측정된 투과도는 약 95%이었고, 면저항은 200Ω/sq 미만이었으며, 실시예 1의 전극과 유사한 수준의 유연성을 가지는 것으로 나타났다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. As a result of the evaluation, the transmittance measured using an ultraviolet-visible spectrometer was about 95%, the sheet resistance was less than 200 mW / sq, and it was shown to have a similar level of flexibility as the electrode of Example 1.
[ 실시예 3]Example 3
멤브레인 상에 형성된 탄소나노튜브 박막의 상부에 폴리아크릴레이트의 단량체를 스핀코팅법으로 도포하고, 이를 자외선에 의해 경화시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다. 제조된 투명 전극에 있어서, 탄소나노튜브 박막의 단위 면적당 탄소나노튜브의 양은 약 1㎍/㎠이었다.A transparent electrode on which a carbon nanotube thin film was formed in the same manner as in Example 1, except that a polyacrylate monomer was applied by spin coating to the upper portion of the carbon nanotube thin film formed on the membrane and cured by ultraviolet rays. Was prepared. In the prepared transparent electrode, the amount of carbon nanotubes per unit area of the carbon nanotube thin film was about 1 µg /
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으로 평가하였다. 평가 결과, 실시예 1의 전극과 유사한 수준의 투명도, 전도도 및 유연성을 가지는 것으로 나타났다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. The evaluation resulted in a similar level of transparency, conductivity and flexibility as the electrode of Example 1.
[ 실시예 4]Example 4
멤브레인 상에 형성된 탄소나노튜브 박막의 상부에, 클로로포름에 용해된 폴리메타크릴레이트를 스핀코팅법으로 도포하고, 용매의 휘발에 의해 이를 경화시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다. 제조된 투명 전극에 있어서, 탄소나노튜브 박막의 단위 면적당 탄소나노튜브의 양은 약 1㎍/㎠이었다.On the top of the carbon nanotube thin film formed on the membrane, polymethacrylate dissolved in chloroform was applied by spin coating, and the carbon nanotube was hardened by volatilization of the solvent. A transparent electrode on which a tube thin film was formed was prepared. In the prepared transparent electrode, the amount of carbon nanotubes per unit area of the carbon nanotube thin film was about 1 µg /
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으 로 평가하였다. 평가 결과, 실시예 1의 전극과 유사한 수준의 투명도, 전도도 및 유연성을 가지는 것으로 나타났다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. The evaluation resulted in a similar level of transparency, conductivity and flexibility as the electrode of Example 1.
[ 실시예 5]Example 5
패터닝된 탄소나노튜브 박막을 여과 멤브레인 상에 얻기 위하여, 알루미늄옥사이드 여과 멤브레인 상에 패터닝된 300메쉬 TEM 그리드를 올려 놓고 탄소나노튜브 분산 용액을 여과한 것을 제외하고는, 실시예 1과 동일한 방법에 의하여, 패터닝된 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다.In order to obtain the patterned carbon nanotube thin film on the filtration membrane, the same method as in Example 1 was carried out except that the patterned 300 mesh TEM grid was placed on the aluminum oxide filtration membrane and the carbon nanotube dispersion solution was filtered. The transparent electrode on which the patterned carbon nanotube thin film was formed was prepared.
제조된 패터닝된 투명 전극의 사진을 도 4에 나타내었다.A photograph of the prepared patterned transparent electrode is shown in FIG. 4.
[ 실시예 6]Example 6
여과 멤브레인 상에 형성된 탄소나노튜브 박막의 상부에 Diamond and Related Materials, 2004, 13, 256에 공지된 방법인 전기화학적인 방법으로 폴리아닐린의 전도성 고분자 박막을 추가적으로 성장시키고, 이를 건조시킨 것을 제외하고는, 실시예 1과 동일한 방법에 의하여, 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다.Except that the conductive polymer thin film of polyaniline was further grown and dried on top of the carbon nanotube thin film formed on the filtration membrane by an electrochemical method known in Diamond and Related Materials, 2004, 13, 256, By the same method as in Example 1, a transparent electrode having a carbon nanotube thin film was prepared.
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으로 평가하였다. 평가 결과, 자외선-가시광선 분광기를 이용하여 측정된 투과도는 약 85%이었고, 면저항은 50Ω/sq 미만이었으며, 실시예 1의 전극과 유사한 수준의 유연성을 가지는 것으로 나타났다. 본 실시예에 따르면, 폴리아닐린 전도성 고분자가 추가적으로 코팅된 탄소나노튜브 박막의 경우, 투과도의 큰 저하 없이 전기전도도가 향상됨을 알 수 있었다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. As a result of the evaluation, the transmittance measured using an ultraviolet-visible spectrometer was about 85%, the sheet resistance was less than 50 mA / sq, and it was shown to have a similar level of flexibility as the electrode of Example 1. According to this embodiment, in the case of the carbon nanotube thin film additionally coated with a polyaniline conductive polymer, it can be seen that the electrical conductivity is improved without a significant decrease in the transmittance.
[ 실시예 7]Example 7
랭뮤어-블로제트법으로 형성된 탄소나노튜브 박막의 상부에 Diamond and Related Materials, 2004, 13, 256에 공지된 방법인 전기화학적인 방법으로 폴리아닐린의 전도성 고분자 박막을 추가적으로 성장시키고, 이를 건조시킨 것을 제외하고는, 실시예 3과 동일한 방법에 의하여, 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다.The conductive polymer thin film of polyaniline was additionally grown on the carbon nanotube thin film formed by the Langmuir-Bloze method by an electrochemical method known in Diamond and Related Materials, 2004, 13, 256, and dried. By the same method as in Example 3, a transparent electrode on which a carbon nanotube thin film was formed was manufactured.
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으로 평가하였다. 평가 결과, 자외선-가시광선 분광기를 이용하여 측정된 투과도는 약 85%이었고, 면저항은 50Ω/sq 미만이었으며, 실시예 1의 전극과 유사한 수준의 유연성을 가지는 것으로 나타났다. 본 실시예에 따르면, 폴리아닐린 전도성 고분자가 추가적으로 코팅된 탄소나노튜브 박막의 경우, 투과도의 큰 저하 없이 전기전도도가 향상됨을 알 수 있었다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. As a result of the evaluation, the transmittance measured using an ultraviolet-visible spectrometer was about 85%, the sheet resistance was less than 50 mA / sq, and it was shown to have a similar level of flexibility as the electrode of Example 1. According to this embodiment, in the case of the carbon nanotube thin film additionally coated with a polyaniline conductive polymer, it can be seen that the electrical conductivity is improved without a significant decrease in the transmittance.
[ 실시예 8]Example 8
Langmuir 2000, 18, 3569 에 공지된 방법을 이용하여, 금, 은 또는 구리(특정필요)금속의 나노입자로 탄소나노튜브를 치환하였다. 금속 나노입자로 치환된 탄소나노튜브의 형상과 나노입자의 분포는 AFM(Atomic Force Microscope)를 통하여 확인하였다. 상기에서 준비된 금속 나노입자로 치환된 탄소나노튜브를 사용하여, 실시예 1과 동일한 방법으로, 금속 나노입자로 치환된 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다.Carbon nanotubes were substituted with nanoparticles of gold, silver or copper (certain required) using methods known to Langmuir 2000, 18, 3569. The shape of carbon nanotubes substituted with metal nanoparticles and the distribution of nanoparticles were confirmed by AFM (Atomic Force Microscope). Using the carbon nanotubes substituted with the metal nanoparticles prepared above, in the same manner as in Example 1, a transparent electrode having a carbon nanotube thin film substituted with metal nanoparticles was prepared.
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으 로 평가하였다. 평가 결과, 실시예 1의 전극과 유사한 수준의 투명도, 전도도 및 유연성을 가지는 것으로 나타났다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. The evaluation resulted in a similar level of transparency, conductivity and flexibility as the electrode of Example 1.
[ 실시예 9]Example 9
Langmuir 2000, 18, 3569 에 공지된 방법을 이용하여, 금, 은 또는 구리(특정필요)금속의 나노입자로 탄소나노튜브를 치환하였다. 금속 나노입자로 치환된 탄소나노튜브의 형상과 나노입자의 분포는 AFM(Atomic Force Microscope)를 통하여 확인하였다. 상기에서 준비된 금속 나노입자로 치환된 탄소나노튜브를 사용하여, 실시예 2와 동일한 방법으로, 금속 나노입자로 치환된 탄소나노튜브 박막이 형성된 투명 전극을 제조하였다.Carbon nanotubes were substituted with nanoparticles of gold, silver or copper (certain required) using methods known to Langmuir 2000, 18, 3569. The shape of carbon nanotubes substituted with metal nanoparticles and the distribution of nanoparticles were confirmed by AFM (Atomic Force Microscope). Using the carbon nanotubes substituted with the metal nanoparticles prepared above, in the same manner as in Example 2, a transparent electrode having a carbon nanotube thin film substituted with metal nanoparticles was prepared.
제조된 투명 전극의 투명도, 전도도 및 유연성을 실시예 1과 동일한 방법으로 평가하였다. 평가 결과, 실시예 2의 전극과 유사한 수준의 투명도, 전도도 및 유연성을 가지는 것으로 나타났다.The transparency, conductivity and flexibility of the prepared transparent electrode were evaluated in the same manner as in Example 1. The evaluation resulted in similar level of transparency, conductivity and flexibility as the electrode of Example 2.
이상 설명한 바와 같이, 본 발명에 따르면, 우수한 광학적 특성을 갖는 유연하고 투명한 대면적의 전극이 제공될 수 있다. 본 발명에 따라 제조된 투명 전극은 광범위한 용도로 사용될 수 있는데, 예를 들면, 디스플레이, 전자소자, 센서, 메모리 등 다양한 분야에 활용이 가능하며, 구체적으로는, 액정표시장치(LCD), 플라즈마 표시장치 패널(PDP), 유기 EL 표시장치(OELD), 전계방출 표시장치(FED) 등의 표시장치; 정전기록기판, 광전변환소자, 레지스터, 박막복합회로 등의 전자소자; 광센서, 적외선센서, 압력센서, 생물화학센서 등의 센서; 강유전체 메모리, 열가소성 기록 등의 메모리; 기타 대전방지, 전자파차폐, 전지용 전극 등에 응용이 가능하다.As described above, according to the present invention, a flexible and transparent large area electrode having excellent optical properties can be provided. The transparent electrode manufactured according to the present invention can be used for a wide range of purposes, for example, it can be used in various fields such as a display, an electronic device, a sensor, a memory, and specifically, a liquid crystal display (LCD), a plasma display Display devices such as a device panel (PDP), an organic EL display device (OELD), and a field emission display device (FED); Electronic devices such as electrostatic green substrates, photoelectric conversion devices, resistors, and thin film composite circuits; Sensors such as light sensors, infrared sensors, pressure sensors and biochemical sensors; Memory such as ferroelectric memory and thermoplastic recording; It can be applied to other antistatic, electromagnetic shielding, battery electrode, etc.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020087000210A KR100902561B1 (en) | 2008-01-04 | 2005-07-05 | Transparent electrode manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020087000210A KR100902561B1 (en) | 2008-01-04 | 2005-07-05 | Transparent electrode manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080031725A KR20080031725A (en) | 2008-04-10 |
KR100902561B1 true KR100902561B1 (en) | 2009-06-11 |
Family
ID=39532972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087000210A Expired - Fee Related KR100902561B1 (en) | 2008-01-04 | 2005-07-05 | Transparent electrode manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100902561B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101144610B1 (en) | 2011-08-02 | 2012-05-11 | 한국기계연구원 | Embeded method of conductive mesh for transparent electrode |
WO2012044068A3 (en) * | 2010-09-30 | 2012-05-31 | Kolon Industries, Inc. | Manufacturing method of electrode substrate |
WO2017074051A1 (en) * | 2015-10-28 | 2017-05-04 | 덕산하이메탈(주) | Light-transmissive substrate and manufacturing method therefor |
WO2017074048A1 (en) * | 2015-10-28 | 2017-05-04 | 덕산하이메탈(주) | Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same |
KR101775782B1 (en) | 2015-08-31 | 2017-09-11 | 국방과학연구소 | Method for removing covalent functional groups attached on single-walled carbon nanotubes |
KR102096293B1 (en) * | 2019-03-05 | 2020-04-06 | 한국생산기술연구원 | Manufacturing method of CNT thin film for energy harvest element, CNT thin film for energy harvest element, Manufacturing method of CNT energy harvest element and CNT energy harvest element |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033093B1 (en) * | 2008-05-20 | 2011-05-06 | 경북대학교 산학협력단 | Method for manufacturing conductive transparent film using carbon nanotubes and conductive transparent film manufactured by the method |
KR101303905B1 (en) * | 2011-06-20 | 2013-09-11 | 한국기계연구원 | Touch panel, display device and manufacturing method of touch panel |
KR101360281B1 (en) | 2012-01-12 | 2014-02-12 | 한국과학기술원 | Single-walled carbon nanotube saturable absorber production via multi-vacuum filtration method |
KR102006831B1 (en) * | 2016-08-01 | 2019-10-08 | 한국생산기술연구원 | Flexible electrode device with carbon nanotube yarn, method for making the same, and heating apparatus using the same |
FI128433B (en) * | 2018-05-09 | 2020-05-15 | Canatu Oy | An electrically conductive multilayer film including a coating layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050001589A (en) * | 2003-06-26 | 2005-01-07 | 주식회사 디피아이 솔루션스 | Method of making organic transparent electrode for display |
-
2005
- 2005-07-05 KR KR1020087000210A patent/KR100902561B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050001589A (en) * | 2003-06-26 | 2005-01-07 | 주식회사 디피아이 솔루션스 | Method of making organic transparent electrode for display |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012044068A3 (en) * | 2010-09-30 | 2012-05-31 | Kolon Industries, Inc. | Manufacturing method of electrode substrate |
KR101144610B1 (en) | 2011-08-02 | 2012-05-11 | 한국기계연구원 | Embeded method of conductive mesh for transparent electrode |
US9182858B2 (en) | 2011-08-02 | 2015-11-10 | Korea Institute Of Machinery & Materials | Method for burying conductive mesh in transparent electrode |
KR101775782B1 (en) | 2015-08-31 | 2017-09-11 | 국방과학연구소 | Method for removing covalent functional groups attached on single-walled carbon nanotubes |
WO2017074051A1 (en) * | 2015-10-28 | 2017-05-04 | 덕산하이메탈(주) | Light-transmissive substrate and manufacturing method therefor |
WO2017074048A1 (en) * | 2015-10-28 | 2017-05-04 | 덕산하이메탈(주) | Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same |
KR102096293B1 (en) * | 2019-03-05 | 2020-04-06 | 한국생산기술연구원 | Manufacturing method of CNT thin film for energy harvest element, CNT thin film for energy harvest element, Manufacturing method of CNT energy harvest element and CNT energy harvest element |
Also Published As
Publication number | Publication date |
---|---|
KR20080031725A (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007004758A1 (en) | Method for manufacturing transparent electrode and transparent electrode man¬ ufactured thereby | |
KR101468690B1 (en) | Transparent electrode comprising elecrode line of high-vicosity conductive nano ink composition and touch sensor, transparent heater and electromagnetic wave shielding material using the transparent electrode | |
Hecht et al. | Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures | |
Kim et al. | Stretchable and transparent electrodes based on in-plane structures | |
Hsu et al. | Passivation coating on electrospun copper nanofibers for stable transparent electrodes | |
Lian et al. | Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode | |
Kulkarni et al. | Towards low cost materials and methods for transparent electrodes | |
CN103345963B (en) | Graphene composite transparent electrode and preparation method and application thereof | |
Ko et al. | Highly transparent and stretchable conductors based on a directional arrangement of silver nanowires by a microliter-scale solution process | |
US20090129004A1 (en) | Electrically conducting and optically transparent nanowire networks | |
CN102087884A (en) | Flexible transparent conductive film based on organic polymers and silver nanowires and preparation method thereof | |
Kwon et al. | Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres | |
KR100902561B1 (en) | Transparent electrode manufacturing method | |
WO2004052559A2 (en) | Optically transparent nanostructured electrical conductors | |
KR101777016B1 (en) | Metal grid-Silver nanowire mixed transparent electrodes and the preparation method of metal grid using polymeric nanofiber mask | |
JP2010251292A (en) | Conductive film manufacturing method using conductive structure and conductive film | |
CN103068573A (en) | Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence element using same | |
KR101677339B1 (en) | Preparing method of transparent electrode having silver nanowires | |
Nie et al. | High-performance transparent and conductive films with fully enclosed metal mesh | |
KR101661517B1 (en) | Manufacturing method of metal mesh-carbon nanotube flexible transparent electrode | |
KR101675201B1 (en) | Preparing method of transparent electrode having silver nanowires using support | |
US9847211B2 (en) | Conductive film and method of making same | |
KR100791999B1 (en) | Manufacturing method of conductive composite material | |
JP2009292664A (en) | Method and apparatus for producing thin film and method for manufacturing electronic device | |
KR100801670B1 (en) | Manufacturing method of fine electrode pattern of nanomaterial by inkjet printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0105 | International application |
Patent event date: 20080104 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090325 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090529 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090605 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090605 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20120529 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130327 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20130327 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140310 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20140310 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20170509 |